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SUMMARY

Resource provisioning is one of the main challenges in large-scale distributed systems such as federated
Grids. Recently, many resource management systems in these environments have started to use the lease
abstraction and virtual machines (VMs) for resource provisioning. In the large-scale distributed systems,
resource providers serve requests from external users along with their own local users. The problem arises
when there is not sufficient resources for local users, who have higher priority than external ones, and need
resources urgently. This problem could be solved by preempting VM-based leases from external users and
allocating them to the local ones. However, preempting VM-based leases entails side effects in terms of
overhead time as well as increasing makespan of external requests. In this paper, we model the overhead
of preempting VMs. Then, to reduce the impact of these side effects, we propose and compare several
policies that determine the proper set of lease(s) for preemption. We evaluate the proposed policies through
simulation as well as real experimentation in the context of InterGrid under different working conditions.
Evaluation results demonstrate that the proposed preemption policies serve up to 72% more local requests
without increasing the rejection ratio of external requests. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Managing and providing computational resources for user applications is one of the challenges in the
high-performance computing community. Resource-sharing environments enable sharing, selection,
and aggregation of resources across several resource providers (RP), also known as sites, that are
connected through high bandwidth network connections. In a resource-sharing environment, com-
putational resources in each RP are shared between external users as well as local users of the RP.
Recently, virtual machine (VM) technology has been employed for resource provisioning in many
resource-sharing environments [1-3]. Nowadays, heavy computational requirements, mostly from
scientific communities, are supplied by these resource-sharing environments, such as Grid’5000 [4]
in France and DAS-2 [5] in the Netherlands.

InterGrid [6] is an example of resource-sharing environments that provides an architecture and
policies for sharing resources among Grids. In InterGrid, resource provisioning and sharing is based
on the lease abstraction [7]. A lease is an agreement between an RP and a resource consumer
whereby the provider agrees to allocate resources to the consumer according to the lease terms
presented by the consumer [3,8]. VM technology has been used to implement lease-based resource
provisioning [3]. The capabilities of VMs in getting suspended, resumed, stopped, or even migrated
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Figure 1. A scenario that shows the contention between local and external requests. IGG, InterGrid
Gateway; LRMS, local resource manager system; RP, resource provider.

(when there is enough bandwidth) have been extensively studied and have shown to be useful in
resource provisioning without major utilization loss [8-10]. InterGrid makes one lease for each user
VM request.

As illustrated in Figure 1, resource provisioning in InterGrid is performed for different types of
users, namely, local users and external users. Local users (hereafter termed local requests) refer to
users who ask their local RP for resources. The provisioning rights over the resources from several
RPs inside a Grid are delegated to the InterGrid Gateway (IGG). IGGs coordinate resource allocation
for external requests through predefined arrangements between Grids [6]. External users (hereafter
termed external requests) are those users who send their requests to the IGG to have access to larger
amount of resources.

Typically, for an RP, local requests have more priority than external ones [9]. In other words, the
organization that owns the resources would like to ensure that its community has priority access to
the resources. In this circumstance, external requests are welcome to use resources if they are avail-
able. Nonetheless, external requests should not delay the execution of local requests. This scenario
leads to resource contention between local and external requests to access resources.

In this paper, we resolve the resource contention between local and external requests in the Inter-
Grid by preempting external leases in favor of local requests. However, preempting VM-based leases
is not free of cost and involves various side effects. In this paper, we also deal with these side effects
and propose policies to reduce their impact.

The rest of this paper is organized as follows: In Section 2, details of the problem we inves-
tigate in this paper is discussed; then, in Section 3, related research works are introduced. We
explain the architectural framework including the InterGrid architecture and its extension for our
proposed solution in Section 4. The model proposed for VM preemption time overhead is discussed
in Section 5. Investigated policies are described in Section 6, and detailed evaluations are described
in Section 7. The implementation of the investigated policies is discussed in Section 8. Finally,
conclusion and future works are provided in Section 9.

2. PROBLEM STATEMENT

The main problem we are dealing with is resource procurement for local requests when existing
resources have been allocated to external ones and the rest of resources are not adequate to serve the
local requests. In this situation, one solution is to preempt external leases and allocate the resources
to local requests [11]. However, preempting VM-based leases involves two main side effects.

The first side effect is the time overhead imposed on the system for preempting VM-based leases.
The overhead varies based on the type of operation performed on the preempted VMs. For instance,
if a VM is suspended after preemption, then the imposed overhead is lower than situation that it
is migrated to another provider. The imposed overhead of preempting VMs can affect the resource
utilization of an RP. This impact is remarkable particularly when the arrival rate of local requests
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Figure 2. Resource contention takes place when the interval 71 to 7> is requested by a local requests. In this
situation, both currently running leases and those waiting in the queue are affected.

is high. Additionally, precise estimation of the imposed overhead is necessary for implementing
preemption-based resource scheduling [3].

Existing works on modeling the time overhead of VM preemption [1, 3] consider the amount of
memory that should be deallocated, the number of VMs mapped to each physical node, and the
use of local or shared storage. However, there are other factors such as communication between
VMs that also have to be considered. Therefore, the second problem we address in this paper is
to model the overhead time of preempting VM-based leases by taking into account the possible
communication between VMs of leases.

The second side effect of preempting leases is increasing the makespan time of the external
requests. Indeed, many of the current distributed systems use a variation of the backfilling policy for
scheduling [12-14]. In the backfilling, future resource availabilities are reserved for requests that
are waiting in the queue. Preempting leases and vacating resources for local requests can poten-
tially affect these reservations. For instance, in Figure 2, vacating resources between f; and f;
affect the currently running leases (leases one and four) as well as reservation waiting in the queue
(leases two, three, and five). The affected leases and reservations are scheduled at a later time in the
scheduling queue. Therefore, preempting external leases delays their execution and increases their
makespan time.

By getting lease preemption possible in an RP, there is a possibility that several leases have to be
preempted to free sufficient resources for an arriving local request. Therefore, there are potentially
several sets of candidate leases that can be preempted. We term each set of the candidate leases a
Candidate Set. For example, in Figure 2, if a local request needs one VM for the duration of #;
to 15, then the candidate sets are leases {1,2},{1, 3,5}, {4}. Selecting different candidate sets for
preemption affects the amount of imposed overhead as well as the makespan of external requests.
Therefore, the third problem we address in this paper is how to choose an optimal candidate set for
preemption in a way that the side effects of preempting leases are reduced.

In summary, this paper makes three contributions as follows:

(i) Facilitating preemption of VM-based leases to allocate local requests.
(i) Modeling the imposed overhead of preempting VM-based leases with respect to the performed
operation on the VMs.
(iii) Proposing preemption policies to determine the optimal set of leases for preemption.

2.1. Problem formulation

The formal definition of the problem can be stated as follows:

e L;:Lease .
e R;:Local request j
e 7(L;) € LeaseTypes (see Section 4.2)
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e v(x;): Number of VMs in the lease/request i.
e h(L;): Overhead time of preempting lease i.
e p(L;): Category of lease i (local or external) and defined as follows:

if external request

1
p(Li) = { 0 if local request

According to the aforementioned definitions, candidate set m for allocating local request R; can
be presented as follows:

Nm
Li| p(Li) = 1&v(R;) < ) v(Ly) ()

i=1

Cy:

where N,, is the number of leases involved in candidate set C,,. If there are S candidate sets, then
all candidate sets can be presented as follows:

A {Cpr|0<m<S—1} (2)

Finally, a preemption policy can be presented as a function that selects an appropriate candidate set
out of all candidate sets (i.e. policy(A) = Cy,).

We believe that in an RP with many nodes and requests, selecting a proper candidate set for
preemption is crucial and leads to significant reduction in preemption overhead time and increases
user satisfaction. Although the problem we are investigating is in InterGrid context, it could be also
applied to other lease-based Grid/Cloud RPs where requests with higher priority (such as local or
organizational requests) coexist with other requests.

Specifically, the environment and assumptions we consider in this research share similarities with
current public Cloud providers. One important similarity is that our proposed preemption policies
do not have any assumption or estimation about the leases duration. However, there are differences
that can be considered in a future research direction. Most importantly, prioritizing leases in public
Cloud providers are economy driven (e.g Spot, On-demand, and Reserved instances in Amazon EC2
have different prices and different priorities). Another difference is that public Clouds are primarily
tailored for transactional workloads [15], such as web transactions. Nonetheless, leases we consider
in this research are in form of batch requests.

3. RELATED WORK

Although preemption was not extensively studied in distributed computing previously [12], emer-
gence of resource provisioning based on VMs has motivated many research works to be undertaken
in the area.

Haizea [8] is a lease scheduler that schedules advance-reservation and best-effort leases. Haizea
preempts best-effort leases in favor of advance-reservation requests. In case of preemption, the basic
preemption policy in Haizea tries to affect (preempt) the minimum possible number of leases (see
Section 6.2 for detailed description). By contrast, we propose and compare policies that determine
the optimal candidate set for preemption on the basis of its imposed overhead and the number of
leases affected. In Haizea, all preempted leases are suspended and put in the queue to be resumed
later, whereas we consider a diversity of lease types that enable more operations, such as migration
of the leases.

In another research undertaken by Sotomayor et al. [3], the overhead time imposed for suspending
and resuming a VM-based lease is estimated. The proposed model is based on the amount of
memory that should be deallocated, the number of VMs mapped to each physical node, the local
or global memory used for allocating VMs, and the delay related to commands being enacted.
Nonetheless, they have not considered situation where there is communication between VMs of
a lease.

Walters et al. [2] introduced a preemption-based scheduling policy for combination of batch and
interactive jobs within a Cluster. In this work, batch jobs are preempted (suspended) in favor of
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interactive jobs. The authors introduce different challenges in preempting jobs including selecting
a proper job to be preempted, checkpointing of the preempted job, and VM provisioning. Their
preemption policy is based on weighted summation of several factors such as the time spent in
the queue. By contrast, we consider various operations for preemption and model the overhead of
performing these operations.

Kettimuthu et al. [16] focused on the impact of preempting parallel jobs in supercomputers for
improving their average and worst case slow down. The authors suggested a preemption policy,
called selective suspension, where an idle job can preempt a running job if its suspension factor is
adequately more than the running job.

However, the authors do not specify which job should be preempted; instead, they decide when to
do the preemption. The proposed policy is starvation-free because it operates based on the response
ratio of jobs.

Isard et al. [17] investigate the problem of optimal scheduling for data intensive applications, such
as Map-Reduce [17], on the Clusters that computing and storage resources are close together. They
propose a scheduling policy that preempts currently running job to maintain data locality for a new
job. Although the scheduling policy is based on job preemption, the authors do not discuss which
job is selected to be preempted amongst several candidates.

Snell et al. [12] consider the impact of preemption on the backfilling scheduling. They provide
policies to select a set of jobs for preemption in a way that jobs with higher priority are satisfied
and the resources utilization increases. In this work, the preempted job is restarted and rescheduled
in the next available time. Our work is different than Snell ef al. from several aspects. Firstly, we
consider VM-based leases that offer more choices for the preempted lease. Secondly, Snell ef al.
recognize the best set of running jobs for preemption, whereas in our contribution, the preemption
policy considers current leases as well as the reservations waiting in the queue. The third difference
is that they do not consider the overhead of preempting jobs. In fact, by killing the preempted jobs,
they reduced the overhead to zero. Nonetheless, the computational power is wasted in that case.

4. ARCHITECTURAL FRAMEWORK

In this section, we briefly overview the InterGrid architecture and the required extension in terms
of different lease types for the proposed solutions. This section also provides necessary background
for the implementation explained in Section 8.

4.1. InterGrid architecture

InterGrid provides an architecture and policies for federating Grids [6]. Figure 3, illustrates a
scenario in which multiple Grids, are federated through IGGs. A Grid has predefined peering
arrangements [6] with other Grids, through which IGGs coordinate adoption of resources from
other Grids. An IGG is aware of the peering terms between Grids, selects suitable Grids that can
provide the required resources, and replies to requests from other IGGs. In InterGrid, each request
is contiguous and has to be served within resources of a single RP.

The local resource manager system (LRMS)* is the resource manager in each RP that provisions
resources for local and external requests.

The main part of InterGrid architecture is the IGG. The core component of IGG is its Scheduler,
which implements provisioning policies and peering with other IGGs. The scheduler orders creation,
starting, and stopping of VMs through the VM manager (VMM). VMM implementation is generic;
so, different LRMSs (in different RPs) can interact with it. Currently, it is possible for VMM to
connect to OpenNebula [18], or Eucalyptus [19] to manage the local resources. In addition, two
interfaces to connect to a Grid middle-ware (i.e. Grid’5000 [4]) have been developed. Moreover,
an emulated LRMS for testing and debugging has been implemented for the VMM.

“This component is also called virtual infrastructure engine in the InterGrid.
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Figure 3. A high-level view of InterGrid architecture. LRMS, local resource manager system; RP, resource
provider; IGG, InterGrid Gateway.

Figure 4. Internal structure of the InterGrid Gateway. (IaaS: Infrastructure as a Service).

The internal architecture of IGG is illustrated in Figure 4. The persistence database is used for
storing information of IGG such as VM templates and peering arrangements. The management and
monitoring provide command-line tools to configure and manage IGG. The communication module
provides an asynchronous message-passing mechanism between IGGs, which makes IGGs loosely
coupled and fault-tolerant.

4.2. Introducing different lease types

To tackle the challenges mentioned in Section 2, we should first make the preemption possible in
lease terms agreed between RP and consumer in InterGrid. In fact, one difference between job-based
and lease-based resource provisioning is that jobs can be preempted without notifying the job owner.
However, this is not the case for leases [7]. Therefore, to make preemption possible for leases, in
this section, we come up with regulations in the lease terms. For that purpose, we introduce different
request types in InterGrid [11].
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Currently, a request issued by a user in InterGrid has the following characteristics:

VM template needed by the user.

Number of VMs.

Ready time is the time that requested VMs should be ready.

Deadline is the time that serving the request must be finished (this is an optional field).

We extend the InterGrid request by adding the ‘request type’ to it; therefore, users can select type
of their requests. When a reservation is created for a user request, the ‘request type’ is mapped to
‘lease type’.

On the basis of the request/lease type, the scheduler determines how to schedule the lease and
which operation should be performed on the preempted lease(s).

Different request types we consider for requests in InterGrid are broadly classified as best-effort
and deadline-constraint requests. More details of different request types are as follows:

e Best-Effort-Cancellable: These requests can be scheduled at any time after their ready time.
Leases of such type can be canceled without notifying the lease owner. Cancellable leases
neither guarantee the deadline nor the duration of the lease. Such leases are suitable for
map-reduce-like requests [17]. Spot instances [20] in Amazon EC2? is another example of
Cancellable leases.

e Best-Effort-Suspendable: Leases of this type can be suspended at any time but should be
resumed later. This type of lease guarantees the duration of the lease but not in a specific
deadline. Suspendable leases are flexible in start time and can be scheduled at any time
after their ready time. In the case of preemption, these leases should be rescheduled to find
another free time-slot for the remainder of their execution. Suspendable leases are suitable for
Bag-of-task [21] and Parameter Sweep type of applications [22].

e Deadline-Constraint-Migratable: These leases guarantee both the duration and deadline of the
lease. However, there is no guarantee that they will be run on a specific resource(s). In other
words, there is a chance for the lease to be preempted and migrated but it will be resumed and
finished before its deadline, either on the same resource or on another resource. Migratable
leases are needed by applications with tight Quality of Service (QoS) demands [23]. For these
applications, the lease can be migrated to a more powerful RP to meet QoS constraints of the
user, such as deadline.

e Deadline-Constraint-Non-Preemptable: The leases associated with such requests cannot be
preempted at all. These leases guarantee both deadline and duration without being preempted
during the execution of the lease. This type of lease is useful for critical tasks in workflows
where some tasks have to start and finish at exact times to prevent delaying the execution of the
workflow [24].

We assume that local requests are all deadline-constraint and non-preemptable. However, external
users can send all request types mentioned earlier. In practice, different request types correspond to
different prices. Thus, users with various demands are motivated to associate their requests to dif-
ferent request types. Unarguably, the more flexible request type, the less expensive the lease [25].
However, we leave the market-oriented implications of the lease-based scheduling as a future work.

5. MEASURING THE OVERHEAD OF PREEMPTING A VM-BASED LEASE

The time overhead imposed for preempting a candidate set depends on the type of leases involved
within that candidate set. In other words, the overhead is driven by the operation performed on the
VMs of leases involved in a candidate set. In this part, we provide the worst-case model for time
overhead of possible operations on the VMs of a lease.

Preempting cancellable leases imposes the minimum time overhead. This overhead pertains to
the time needed to stop VMs of a lease. The duration of the stop operation is independent from the

Shttp://aws.amazon.com/ec2/spot-instances
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VM characteristics, such as memory size of the VM, and it is almost instant [1]. In practice, this
time is usually negligible [3].

Preempting a suspendable lease is more complicated than a cancellable lease. One complex-
ity relates to the message exchange between the VMs of the lease. In fact, running a distributed
application inside the VMs of a lease implies exchanging messages between the VMs. However,
suspending a lease occurs in the VM level that is unaware of the communication. Therefore, sus-
pending a lease can interrupt the message communication and lead to inconsistent state for jobs
running inside VMs [1].

More specifically, messaging is commonly performed through the Transmission Control Protocol
to assure the message delivery. If the sender host does not receive acknowledgment after a certain
number of retransmissions, then the connection with the receiver is terminated. At the suspen-
sion and resumption times, there is a possibility that some VMs become unreachable and conse-
quently some connections are lost. Therefore, it is important to coordinate the suspend and resume
operations to avoid inconsistent situation.

One possible way to reduce the impact of the suspend and resume operations on the jobs running
within the VMs is pausing them before suspending and unpausing VMs after resumption. Pausing
a VM prevents it from accessing the processor and is supported by hypervisors such as Xen [26].
This operation is quicker (takes few milliseconds) than writing the whole memory into the disk and
can be completed before the unreachable delay of Transmission Control Protocol [1].

Taking these coordinations into consideration, the time overhead of preempting a suspendable
lease broadly includes the time to pause VMs, suspending (i.e. writing the memory image of the
VMs to the disk), and rescheduling the lease. Accordingly, resuming the lease includes the time
for VM resumption (i.e. the time for loading the VMs’ memory image from the disk) and then
unpausing VMs.

Because pausing and unpausing operations take a short time, usually to control the order of these
operations, they are performed sequentially on VMs (e.g. based on the VM identifier) [1]. If a lease
L; contains v(L;) VMs, then the time for pausing the VMs is v(L;)-t, where ¢, is the time to
pause a single VM. In our analysis, we consider the same amount of time for pausing and unpausing
operations. Therefore, the overall time overhead of pausing and unpausing is v(L;)-2¢,.

Suspending a lease implies rescheduling it for the remainder of the execution. The time overhead
of rescheduling depends on the time complexity of rescheduling algorithm. The complexity usually
depends on factors such as number of physical nodes and current workload condition. Nonetheless,
because our model does not assume any particular scheduling policy, we consider a constant value
(8) for the rescheduling time overhead.

The major time overhead in suspendable leases pertains to the time for suspending and resuming
VMs. The time for these operations is driven by the memory size of each VM. Specifically, the

suspension time for VM ; (which is shown as t/) and resumption time (tr ) are worked out on the
basis of Equations (3) and (4), respectively.

mem;

t] = 2 )
= 4)

where mem; is the memory size of VM, B is the rate of suspending megabytes of VM memory
per second, and r is the rate of re-allocating megabytes of VM memory per second [3].

We consider a shared storage in the RPs to be able to resume the suspended lease on any of its
hosts. In this circumstance, to avoid any possible contention on the shared storage, suspension and
resumption is when these operations are performed sequentially for all VMs of the lease. Therefore,
for lease L; with v(L;) VMs, the suspension time overhead is Zv(_Ll) tl.

It is worth noting that this is the worst-case analysis for the suspension and resumption time over-
heads. We expect that the best and average analyses that considers factors, such as an overlapping,
result in lower overheads for these operations.
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By taking into account all the aforementioned factors, the overall time overhead for suspending
(s(L;)) and resuming leases (r(L;)) are calculated according to Equations (5) and (6), respectively.

v(L;)
S(Liy=v(Li)ty+ Y t] +8 (5)
j=1
v(L;) '
r(Li) =v(Li)tp+ Y 1] (6)
j=1

where ¢, is the time for pausing a VM, tsj is the time overhead of suspending jth VM of a lease,

and #/ is the time overhead of resuming jth VM of a lease. Therefore, the overall time overhead of
preempting a suspendable lease (h(L;)) is as follows:

v(L;)
h(Li)=2v(Li) 1, +8+ Y (i +1]) (7
j=1

Time overhead imposed for preempting migratable leases includes VM image transferring
overhead in addition to all overheads considered for suspendable leases [10]. More specifically,
migrating a VM includes suspending it on source host, transferring the suspended VM to destina-
tion RP, and resuming VM in destination host. The overheads pertain to pausing, unpausing, and
rescheduling VMs (i.e. finding a proper destination) also have to be taken into account.

In the transferring phase, disk memory image of suspended VM is transferred to destination host
over the network [10]. The time for transferring depends on the size of the suspended VM and the
network bandwidth, therefore, 14,,y = mem; /b where mem; is the size of disk memory image for
VM and b is the network bandwidth.

In migrating VMs of a lease, suspending VMs in the source RP can be overlapped with resuming
them in the destination RP. Particularly, although the second VM is being suspended in the source
RP, the first VM that has already been transferred to the destination RP can be resumed without
conflicting with other operations. The overhead of these operations for jth VM of the lease is

driven by the max {tsj 1] _1}. Additionally, the time for suspending the first VM (¢}) and resuming

the last VM of the lease (t,v (Li )) cannot be overlapped. Thus, the overall time for suspend and

resume phases of migrating VM for lease i is 7} + le).(zL{)_l max {tf, t',i_l} + D,
Additionally, the time for transferring VMs (Z.py) cannot be overlapped and has to be carried out
sequentially for all the VMs to avoid any contention on the shared storage. Therefore, the overall

time for transferring phase of migrating a lease is as follows: Zj(j{) tcjé)py.

The overheads regarding rescheduling, pausing, and unpausing VMs are the same as those dis-
cussed for suspendable leases. The overall overhead of migrating VMs of lease L; can be worked
out on the basis of Equation (8).

v(L;) v(Li)—1
h(Li)= Y thy+ti+ D max{t].(]7) +7E0 4 20(Li)- 1, + 6 8)
j=1 j=1
It is worth noting that we assume that the destination host has the disk image of the VM; therefore,
it is not needed to be transferring over the network.

6. PREEMPTION POLICIES

When an LRMS cannot find sufficient vacant resource for a local request, it forms all candidate sets
where each candidate set contains leases that their preemption creates enough space for an arriving
local request. Preemption policy in this situation determines the proper candidate set for preemption.
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From the user perspective, selecting different candidate sets is decisive for the amount of resource
contention that take place within an RP between local and external requests. Additionally, it affects
the waiting time of external requests. From the system centric perspective, choosing different can-
didate sets determines the number of VMs to be preempted as well as the operation that has to
be performed on them (e.g., suspension or migration). Therefore, choosing different candidate sets
influences the amount of time overhead imposed to the system.

In the following, we evaluate the impact of various preemption policies in terms of time over-
head and resource contention. The first policy focuses on the system centric criteria by trying to
minimize time overhead and, consequently, increase resource utilization. The second policy focuses
on user centric criteria and sought to minimize the resource contention by preempting fewer leases
and affecting fewer users. The third policy makes a trade-off between resource utilization and user
satisfaction.

6.1. Minimum overhead policy

As a system centric policy, this policy aims at maximizing resource utilization. Therefore, this policy
tries to minimize the time overhead imposed to the underlying system by preempting a candidate set
that leads to the minimum overhead. For this purpose the total overhead imposed to the system by
each candidate set is calculated and a set with minimum overhead is selected. Minimum overhead
(MOV) policy can be formally presented on the basis of Equation (9).

MOV(A) = gni%{h(cm)} )

6.2. Minimum leases involved policy

Preempting leases makes longer waiting times for suspendable and migratable leases to get com-
pleted. In the case of cancellable leases, preempting the lease results in terminating the lease.
Therefore, as a user centric policy, minimum leases involved policy (MLIP) tries to satisfy more
users by creating less resource contention and preempting fewer leases.

In this policy, a candidate set that contains the minimum number of leases is selected from all
the candidate sets regardless of lease types involved in each candidate set. MLIP can be presented
according to Equation (10).

MLIP(A) = min{|Cy} (10)

where |Gy, | gives the number of leases involved (cardinality) in each candidate set Cy,. This policy
is practically used as the preemption policy in the Haizea [8] scheduler, and we use it as the baseline
policy to evaluate the performance other preemption policies (Section 7).

6.3. Minimum overhead minimum lease policy

The two policies mentioned earlier aim to either improve resource utilization (as a system centric
criterion) or minimize the number of lease preemption (as a user centric criteria). However, the
minimum overhead minimum lease (MOML) policy fulfills both system and user centric criteria at
the same time. The way this policy operates is depicted in Figure 5, and its pseudo code is shown
in Algorithm 1. In fact, MOML makes a trade-off between MOV, which minimizes the imposed
overhead, and MLIP, which minimizes the number of resource contentions.

According to Figure 5 and Algorithm 1, in MOML, the selection of a candidate set is carried out
in two phases. In the first phase (pre-selection), all candidate sets that have a total overhead less than
a certain threshold («) are pre-selected for the second phase (lines five to eight in Algorithm 1). The
pre-selection phase increases the tolerance of acceptable overhead in comparison with MOV. In the
second phase, to have fewer resource contentions, a candidate set that contains minimum number of
leases is selected (lines 9 to 11 in Algorithm 1).

Selecting a proper value for o determines the behavior of MOML policy. More specifically, if
the « — oo, then MOML behaves the same as MLIP. On the other hand, if « — 0, then MOML
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Figure 5. Pre-selection and final selection phases of minimum overhead minimum lease policy.

Algorithm 1: Minimum overhead minimum lease preemption policy (MOML).
Input: Candidate Sets
Output: Selected Candidate Set
foreach candidateSet € Candidate Sets do
L Overheads.Add (getOverhead (candidateSet) ) ;

[S I

min <— oo;
o < getMedian (Overheads) ;
foreach candidateSet € Candidate Sets do
ovhd < getOverhead (candidateSet);
NoLeases < Cardinality (candidateSet);
if ovhd < o then
if NoLeases < min then
10 selected <— candidateSet;
11 L min <— NoLeases;,

E-EEN- - BC N ]

behaves the same as MOV. Thus, to keep the trade-off between MOV and MLIP, we consider « as the
median value of the overheads (lines one, two, and four in Algorithm 1). By choosing « = median
we ensure that just half of the candidate sets that have lower overheads are considered in the second
phase for having a minimum number of leases.

7. PERFORMANCE EVALUATION

In this section, we discuss different performance metrics considered, the scenario in which the
experiments were carried out, and experimental results obtained from simulation.

7.1. Performance metrics

Introducing different types of leases along with preemption policy are expected to affect different
parameters, which are described over the next subsections.

7.1.1. Local and external request rejection rate. The initial objective of this paper is to serve more
local requests by preempting resources from external leases. Therefore, it is interesting to realize
the efficiency of different preemption policies in terms of serving more local requests.

We define the ‘local request rejection rate’ that is the fraction of local requests that are
rejected, possibly because of allocating resources to non-preemptable external requests or other
local requests.
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Additionally, we are interested to see if decreasing local request rejection rate comes with the cost
of rejecting more external requests. External request rejection rate describes this metric and shows
the percentage of external requests that are rejected. The ideal case is that local request rejection
rate is reduced without increasing the external request rejection rate.

7.1.2. Resource utilization. Time overhead is a side-effect of preempting VMs that degrades
resource utilization. Therefore, we are interested to see how different preemption policies affect
the resource utilization. Resource utilization is defined according to Equation (11).

o . computationTime
Utilization = - x 100 (11)
totalTime
where:
[A]
computationTime = Z v(Li)-d(L;) (12)

i=1

where |A| is the number of leases, v(L;) is the number of VMs in lease L;, and d(L;) is the duration
of the lease L;.

7.1.3. Number of lease preemption. Total number of lease preemptions is a proper metric to
measure user satisfaction resulting from different preemption policies.

7.1.4. Makespan time. Makespan is a user centric metric that is affected by preemption. This metric
is prominent for best-effort external requests that are in the risk of getting preempted several times
that increases their makespan. This metric measures the amount of time; on-average, a best-effort
lease should wait beyond its ready time to be completed. Makespan is calculated on the basis of
Equation (13).

> (e(Li) = r(Li))

Makespan = Lich Bl (13)

where f is the set of best-effort leases, | ] is the number of best-effort leases, and ¢(L;) and r(L;)
show the completion time and ready time of lease L;, respectively. Although best-effort requests are
not bound to any deadline, users are more satisfied to wait less for their requests to be completed.

7.2. Experimental setup

For simulation, we used Gridsim [27] as a discrete event simulator. In the experiments conducted,
Lublin99 [28] has been configured to generate a two-week-long workload that includes 3000 par-
allel requests. Lublin99 is a workload model on the basis of the San Diego Super Computer Blue
Horizon machine. Job traces collected from this supercomputer are publicly available and have been
studied extensively in the past.

To simulate an RP within InterGrid, we consider a Cluster with 32 worker nodes. We assume
all nodes of the RP as single core with one VM. We also assure that the number of VM(s) needed
by requests would not be more than Cluster nodes. It is worth noting that our proposed model and
policies are not limited to this configuration and can support multicore architectures and several
VMs on each worker node.

We consider each VM of 1024 MB and a 100 Mbps network bandwidth. We also assume a shared
file system (e.g., Network File System (NFS)) for the Cluster where the disk images for VMs and
memory snapshots for suspended VMs are maintained. We assume each VM disk image is 2 GB.
Because we consider that the disk images are replicated on all RPs in the InterGrid, they are not
needed to be transferred.
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On the basis of the research by Sotomayor ef al. [3] and considering the 100 Mbps network
bandwidth, the suspending rate of VM memory as s = 6.36 MB/s, and re-allocating rate as
r = 8.12 MB/s (Section 5). Hence, in our experiments, suspension time (#;) and resumption time
(ty) for a lease with 1 VM are 161.0 and 126.1 s, respectively. These values were also validated
through experimenting in the real environment. In migrating a VM with similar configuration, the
time overhead for transferring a suspended VM to another RP (¢, in Equation (8)) of InterGrid
is 160.2 s [10]. On the basis of our experiments, pausing and unpausing operations on each VM
takes 5 ms. Finally, we employ a conservative backfilling as the scheduling policy in the LRMS.
During the initial experiments in the real environment, we noticed that the average overhead time of
rescheduling is 2.3 s.

We study the behavior of different policies when they face workloads with different characteris-
tics. For that purpose, we modify the characteristics of the workloads when:

e Percentage of best-effort external requests (i.e., cancellable and suspendable) varies.

e Percentage of deadline-constraint external requests (i.e., migratable and non-preemptable)
varies.

e Percentage of local requests varies.

Because Lublin workload does not provide us the request types, we generated these types uni-
formly and assigned them to the generated workloads. We changed the percentage of best-effort
and deadline-constraint requests from 10% to 50% of the external requests, whereas the number
of local requests remains constant (1000). In other configuration, local requests are also changed
from 20% to 70% of the whole workload. In fact, we experimented conditions that local requests
are below and above these limits. However, we noticed that not many preemption take place in those
points; therefore, there is not major difference between policies. To have a realistic evaluation, in the
Lublin workload, we adjusted the average number of VMs of leases to be 4 and the average duration
of requests to be 2 hours.

7.3. Results and discussions

7.3.1. Local and external request rejection rate. In this experiment, we evaluate the efficacy of the
preemption mechanism in resolving the resource contention between local and external requests.
For that purpose, we compare performance of the MOML policy against the baseline situation, that
is, when there is no preemption mechanism in place. More specifically, we report the difference
between local requests’ rejection rate in these two situations.

In Table I, the mean difference of decrease in local requests rejection rate is reported (in the
second column) along with a 95% confidence interval of the difference (in the third column). We
use a t-test to work out the mean difference between these two policies. To perform the #-test, we
have ensured that the distribution of difference is normal. Each row of the table shows results of the
experiment when one characteristic of the workload, which is shown in the first column, is changed.

Table I. Mean difference and 95% confidence interval (CI) of decrease in local requests rejection rate and
external requests rejection rate as a result of applying preempting leases in a resource provider of InterGrid.

Mean decrease in CI of decrease in local Change in external
Modified Requests rejection requests Rejection Rejection requests
parameter rate rate rate
Percentage of BE external 72.0% (51.1, 92.8), p-value=0.001 Not statistically significant,
requests p-value=0.6
Percentage of DC external 54.3% (35.0, 73.7), p-value=0.001  Not statistically significant,
requests p-value=0.3
Percentage of local 58.2% (40.3,75.9), p-value<0.001  Not statistically significant,
requests p-value=0.6

BE, best-effort; DC, Deadline-Constraint.
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According to the second column in Table I, local request rejection rate has statistically and prac-
tically significantly decreased by applying preemption mechanism in comparison with situation
that there is no preemption mechanism in place. The 95% confidence interval and the corresponding
p-value of the difference in rejection ratio of local requests is reported in the third column of Table I.
More importantly, this reduction in local request rejection rate has not been with the cost of reject-
ing more external requests. On the basis of the fourth column in Table I, in all experiments, external
request rejection rate does not change significantly.

On the basis of this experiment, the maximum decrease in the local request rejection rate occurs
when the percentage of best-effort external requests is higher (the first row in Table I). In this
circumstance, more local requests can be accommodated by preempting the best-effort leases.

7.3.2. Resource utilization. In this experiment, we measure the resources utilization when different
preemption policies are applied. In all subfigures of Figure 6, it is observed that MOV results in bet-
ter utilization comparing with the other policies. However, in a few points (e.g. in Figure 6(a) when
40% of the requests are best-effort), MOV has slightly less utilization than MOML. The reason is
resource fragmentations (i.e. unused spaces) in the scheduling queue that leads to resource under-
utilization. Subfigures of Figure 6 also demonstrates that resource utilization MOML lies between
MLIP and MOV.

Figure 6(a) indicates that increasing the percentage of best-effort requests improves the resource
utilization; however, after a certain point (i.e. best-effort>20%), resource utilization does not fluc-
tuate significantly in different policies. Indeed, in this situation, unused spaces are allocated to the
preempted leases.

In Figure 6(b), we can see that resource utilization increases by increasing the percentage of
deadline-constraint requests in all policies. In fact, having more deadline-constraint requests imply
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Figure 6. Resource utilization results from different policies. The experiment was carried out by modifying

(a) the percentage of best-effort external requests, (b) the percentage of deadline-constraint external requests,

and (c) the number of local requests. MLIP,minimum leases involved policy; MOML,minimum overhead
minimum lease; MOV, minimum overhead.
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fewer preemptions and more resource utilization. As expected, MOV policy outperforms other
policies because of preempting leases that impose less overhead.

In Figure 6(c), it is expressed that by increasing the percentage of local requests, the number of
preemption and subsequently the amount of overhead is increased. Therefore, resource utilization
decreases almost linearly in all policies. Another reason for the reduction in resource utilization
is that local requests are not preemptable and their scheduling leads to many fragmentation in the
scheduling queue.

7.3.3. Number of lease preemptions. The number of external leases that are preempted in different
preemption policies indicates the amount of (external) user dissatisfaction in the system.

Figure 7(a) shows that when the percentage of best-effort requests is increased, the number of
preemptions rises almost linearly. For the lower percentages of best-effort external requests (best-
effort<30%), MOML behaves similar to MOV; however, after that point, MOML approaches MLIP.
The reason is that when the percentage of best-effort leases is high, the likelihood of having a can-
didate set with the minimum number of leases and not large overall overhead is high. Thus, MOML
approaches MLIP.

Figure 7(b) demonstrates that the number of preemptions does not vary significantly when the per-
centage of deadline-constraint requests is less than 40%. In fact, in this situation, there are enough
best-effort requests for preemption, and changing the percentage of deadline-constraint requests
does not play an important role.

Figure 7(c) reveals the impact of number of local requests on the resource contention. We can see
that in all policies, the number of lease preemptions is increased almost linearly by increasing the
percentage of local requests.
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Figure 7. Number of lease preemption resulted from different policies by changing (a) percentage of

best-effort external requests, (b) percentage of deadline-constraint external requests, and (c) the number

of local requests. MLIP, minimum leases involved policy; MOML, minimum overhead minimum lease;
MOV, minimum overhead.
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In general, in all subfigures of Figure 7, MLIP results in fewer number of lease preemptions
(resource contention), and MOML operates between MLIP and MOV.

7.3.4. Average makespan time. In this experiment, we investigate the impact of different pre-
emption policies on the average makespan of the best-effort external requests. The results of the
experiment under different workloads are illustrated in Figure 8. All subfigures of Figure 8§ testify
that MLIP leads to less makespan time in comparison with other policies. The reason is that MLIP
disregards the type of leases for preemption. This means that, comparing with MOV, it is less likely
in MLIP to preempt best-effort requests. Therefore, the best-effort requests are completed earlier,
and their average makespan time is lower in MLIP. Figure 8(a) demonstrates that by increasing the
percentage of best-effort requests, the average makespan time decreases after a certain point. When
20% of external requests are best-effort, because of numerous preemptions takes place, the average
makespan time is in its peak. However, after that point, we notice a decrease in makespan time of
the best-effort requests. This decrease occurs due to fewer deadline-constraint requests and more
opportunities for local requests to be allocated. When 10% of the external requests are best-effort,
because there are not many preemptable requests in the system, many local requests are rejected,
and few preemption occurs. Hence, the average makespan time is low in that point.

Figure 8(b) shows that by increasing the percentage of deadline-constraint requests, the average
makespan time decreases. In fact, increasing the percentage of deadline-constraint requests implies
fewer best-effort external requests exist in the system. Therefore, the average makespan time for
best-effort external requests is decreased.

Figure 8(c) illustrates that by increasing the percentage of local requests in the system (and con-
sequently increasing the number of preemptions), the average makespan time is increased. As the
percentage of best-effort requests is decreased by rising the percentage of local requests, we notice
that makespan becomes flat when more than 50% of requests are local.
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Figure 8. Average makespan time resulted from different policies. The experiment is carried out by altering

(a) percentage of best-effort external requests, (b) percentage of deadline-constraint external requests, and

(c) the number of local requests. MLIP, minimum lease involved policy; MOML, minimum overhead
minimum lease; MOV, minimum overhead.
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8. IMPLEMENTATION OF THE PREEMPTION POLICIES IN THE INTERGRID

This section presents the realization of the investigated policies in the context of InterGrid. It
specifically realizes the architecture described in Section 4.1.

8.1. Virtualization infrastructure

In our implementation, we consider an RP as a compute Cluster. We employed OpenNebula [18]
as the virtual infrastructure manager to handle the VMs lifecycle across the Cluster. OpenNebula
provides a software layer on top of hypervisors and enables dynamic provisioning of resources to
requests. The architecture of OpenNebula has been designed to be flexible and modular, and sup-
ports various hypervisors and infrastructure configurations within the Cluster. For each user request,
OpenNebula starts, manages, and stops VMs according to the provisioning policies in place.

Along with the virtual infrastructure manager, a hypervisor is required in each node of the RP
to provide VMs. In our implementation, we use Kernel-based VM (KVM) [29] as the hypervisor
within each node of the Cluster. KVM is a hardware-assisted, fully virtualized platform for Linux
on X86 hardware. By installing KVM, multiple execution environments (guest VMs from different
disk images) can be created on top of each physical node. Each of these VMs has private, virtualized
hardware, including a network card, storage, memory, and graphics adapter.

As mentioned earlier, OpenNebula as the virtual infrastructure manager in the Cluster offers an
immediate provisioning model, where virtualized resources are allocated when they are requested.
However, resource provisioning in InterGrid has requirements that cannot be supported within
the immediate model. For instance, requests that are subject to priorities, capacity reservations at
specific times, and variable resource usage throughout a VM’s lifetime.

8.2. Local scheduler

Haizea is an open source scheduler developed by Sotomayor et al. [8,30] that employs VM-based
leases for resource provisioning. The advantage of Haizea is considering priority between leases as
well as the overheads of deploying VMs (e.g. suspending and resuming) in the scheduling. There-
fore, we adopt Haizea as the local scheduler of the LRMS in RPs. As a result, the scheduling
capability of the virtual infrastructure manager (i.e. OpenNebula) is extended and enables the LRMS
to recognize the contention between local and external requests occurs in the RP.

Adopting Haizea as the local scheduler enables leasing resources to external requests and preempt
them in favor of local requests to serve them within their requested time interval. In this way, the
local scheduler operates as the scheduling back-end of OpenNebula. It also employs conservative
backfilling algorithms along with VMs’ abilities to efficiently schedule the leases and increase the
resource utilization.

Although incorporating the preemption-based local scheduler into the architecture of InterGrid
enables recognition of the contention between local and external requests, the scheduler does not
consider the side effects implied by preemption. Therefore, in the next step, we implement differ-
ent preemption policies as discussed in Section 6, within the local scheduler to detect the resource
contentions and try to minimize their impact.

8.3. Evaluation scenario

The testbed for evaluation of the implemented system is as follows:

e A four-node Cluster as the RP. Servers are three IBM System X3200 M3 machines, each with
a quad-core Intel Xeon x3400, 2.7 GHz processor, and a 4 GB memory. The head node, where
the LRMS resides, is a Dell Optiplex 755 machine with Intel Core 2 Duo E4500, 2.2 GHz
processor, and 2 GB memory.

o The host-operating system installed in the server nodes is CentOS 6.2 Linux distribution. Also,
the operating system in the head node is Ubuntu 12.4.

o All the nodes are connected through a 100 Mbps switched Ethernet network.
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e We used OpenNebula 3.4 and Haizea version 1.1 as the virtual infrastructure manager and the
local scheduler, respectively.

e Qemu-KVM 0.12.1.2 is used as the hypervisor on each server.

e GlusterFS is used as the Cluster file system. It aggregates commodity storages across a Cluster
and forms a large parallel network file system [31]. The disk images needed by the VMs and
the memory image files (created when a VM is suspended) are stored on the shared file system.

The scenario we consider for evaluation involves an InterGrid with three IGGs with peering
arrangements established between them, as illustrated in Figure 9. IGGI has the Cluster as the
RP and users from IGG2 and IGG3 request leases through the IGG interface. IGG1 receives these
requests in the form of external requests and are allocated resources through the local scheduler in
the LRMS of the RP. However, the RP has its own local requests that have more priority than the
external ones. Information of the lease requests received by the LRMS are explained in Table II.

To be able to follow the order of events occurring in the system and demonstrate their impact,
we perform the evaluation on few lease requests. According to the table, seven lease requests are
submitted to the RP. Each row of the table shows the arrival time, the number of requested process-
ing elements, the amount of memory, the duration, and the request type (i.e. local or external). We
assume all external requests as BE-Suspendable. We consider 00:00:00 as the start of the experi-
ment (i.e. the arrival of the first request), and the arrival time of other requests are proportional to
the start time of the experiment. All of these lease requests use a ttylinux disk image located on the
shared storage.

‘ External
User

Figure 9. Evaluation scenario based on three InterGrid Gateways (IGGs). RP, resource provider; LRMS,
local resource manager system.

Table II. Characteristics of lease requests used in the experiments.

Request ID Arrival time No. nodes Memory (MB) Duration (s) Type

1 00:00:00 3 256 3600 External
2 00:05:00 1 128 5400 External
3 00:06:00 2 128 5400 External
4 00:08:00 1 256 5400 External
5 00:08:50 2 64 2400 External
6 00:09:40 3 128 3600 External
7 00:12:00 5 128 3600 Local
ID, identification.
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For evaluation, we first demonstrate how our implementation enables InterGrid to resolve the
contention between local and external requests. It shows the effect of preempting existing external
leases on a virtualized physical testbed to satisfy the requirements of an arriving local request.
For that purpose, we compare the baseline situation, that is, when there is not any preemption
policy (No Policy (NOP)) against situation that the MOML preemption policy is applied. In the
former, the local request (request ID: 7) is rejected; whereas in the latter, external leases (request
identification: five and six) are preempted and vacate resources for the local requests. We notice that
the local request is served without being delayed. Additionally, the RP could utilize its resources
more efficiently by leasing them to the external requests.

More specifically, Figure 10 indicates how the MOML contention resolution policy allocates
resources to the local request in comparison with NOP. In fact, the vertical axis in this figure shows
the resource utilization variations, whereas the horizontal axis presents the overall makespan time
to run the workload.

In the beginning, the resource utilization rapidly increases to 100% for both policies because
of allocating resources to the arriving external requests (requests one to six in Table II). As time
passes, we observe that the resource utilization gradually drops to 0% as the requests are com-
pleted. We can see that the resource utilization reduction is sharper for NOP than MOML. Indeed,
when the resources are 100% utilized and the local request arrives, the MOML policy preempts
external requests and schedules them after the local request. After completing the local request,
the preempted external requests are resumed. As a result, the MOML policy operates with higher
utilization for longer time to run the local request. Additionally, as it is presented in Figure 10, pre-
empting external request in favor of the local requests and resuming them at a later time leads to
longer makespan time for the MOML policy.

Various contention resolution policies (preemption policies) preempt different leases. Therefore,
they lead to different amount of resource contention and overhead time. In the next experiment, we
evaluate the efficacy of the implemented policies from the overhead, overall makespan time, and
resource contention aspects. Specifically, we measure how many resource contentions are resulted
from different policies. Additionally, we work out how much overhead imposed to the system by
suspension and resumption operations on the preempted leases.

In Table III, the number of resource contentions as well as the amount of overhead resulted
from MLIP, MOV, and MOML policies are listed. As we can see, the MLIP policy affects two
leases, and the overall size of memory should be written/read to/from memory is 1152 MB. The
MOV policy that aims at minimizing the overall preemption overhead. Therefore, it preempts leases
that impose minimum overhead to the system (i.e. {5, 2, 3}), and the amount of memory should be
deallocated and snapshot on the disk is 512 MB that implies 27.8 s overhead. MOML affects just
two leases ({5, 6}), whereas results in 512 MB of memory suspension and resumption overhead.
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Figure 10. Efficacy of the preemption mechanism by comparing minimum overhead minimum lease

(MOML) preemption policy against baseline situation that there is no contention resolution in place (NOP).

The vertical axis shows how the resource utilization varies over the time using these policies. The horizontal
axis shows the overall makespan of running the requests in seconds.
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Table III. Number of resource contentions (lease preemption), overhead, and makespan
resulted from applying different preemption policies.

Policy Preempted leases Overhead (s) Makespan (s)
MLIP {1, 6} 59.9 7800
MOV {5,2,3} 27.8 8479
MOML {5,6} 27.8 7800

MLIP, minimum leases involved policy; MOV, minimum overhead; MOML, minimum overhead
minimum lease.

The comparison of the results from different policies indicates that the selection of different
preemption policies is effective on the number of contentions and time overhead imposed to
the system.

9. CONCLUSION AND FUTURE WORK

In this work, we explored how the resource contention between local and external requests can be
resolved in a virtualized large-scale distributed system. For this purpose, we applied a preemption-
based approach where external leases are preempted in favor of local requests. We observed that
preempting leases substantially decrease the rejection of local requests (up to 72% with 95% con-
fidence interval:(51.1, 92.8)) without increasing external requests rejection rate. Furthermore, we
investigated the side effects of preemption mechanism when VMs are used for resource provision-
ing. Specifically, we modeled the overhead of suspending and migrating operations on VMs. The
advantage of the proposed model is considering the possible communications between VMs at the
time of preemption.

Then, we considered three policies to decide which lease(s) are better choices for preemption.
The MOV policy that aims at reducing the imposed overhead and improving resource utilization.
The MLIP increases user satisfaction. However, it does not provide a good resource utilization. The
MOML policy makes a trade-off between resource utilization and user satisfaction.

Although the problem we are investigating in this paper is in the InterGrid context, it could be
also applied to other lease-based Grid/Cloud RPs where requests with higher priority (such as local
or organizational requests) coexist with other requests. For instance, in Amazon EC2 datacenters,
different types of instances with distinct priorities coexist, for example, Spot, On-demand, and
Reserved instances. However, there are some differences between the Cloud computing and the
environment we considered in this research. Most importantly, Cloud computing environments are
generally economy driven, thus, require cost-aware preemption policies.

In the future, we plan to extend the current work by considering economy-based preemption
policies. Another interesting future direction is situation where there is a dependency between
leases. Furthermore, we are interested in scenarios where local requests are also from different
types (e.g., local suspendable and local migratable).
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