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Abstract—Cloud service providers are providing resources
including a variety of VM instances to support customers
that migrate their services to the cloud. From the customers’
perspective, selecting the appropriate amount of resources is
tightly coupled with performance and cost. By identifying the
potential resource bottlenecks in the early stage of the service
deployment process, resource planning can be significantly op-
timized. To support system non-functional requirements in a
better manner, we propose an approach to support the system’s
non-function requirements management concerning the multiple
service interaction scenarios by identifying the potential resource
bottleneck and optimizing the demanded resources. We also
develop our proposed approach in the extended version of the
CloudSim simulation toolkit. The proposed approach can predict
the resource bottleneck for multiple service interactions, e.g.
bottleneck in CPU or overloads in specific service, and provide
guidance for resource planning. Evaluations with realistic data
from Siemens MindSphere system and Alibaba Cloud show that
our proposed approach can achieve good accuracy in terms of
metrics, such as response time, queries per second (QPS) and
resource usage.

Keywords-Cloud; Service Interactions; Non-functional require-
ment; Resource bottleneck; MindSphere

I. INTRODUCTION

The rapid development of cloud computing has made it be
regarded as the fifth utility, like electricity, gas, and water [1].
Rather than assigning all tasks to a single local computer
or a traditional computer cluster, cloud computing enables
users to utilize computing or storage resources remotely,
which provisions transparent and on-demand resources. In
essence, the cloud is a networked computer paradigm based
on virtualization techniques to improve resource usage. The
pay-as-you-go model provided by cloud computing also helps
the service providers and customers to start their business with
minimal costs and eliminates the efforts to maintain the data
centers. [2].
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Among all the benefits provided by cloud computing, some
features are particularly attractive for customers. To be more
specific, the first one is flexibility, which allows customers to
acquire or release resources dynamically to fit their demands.
The second is cost reduction, which means cloud computing
service can convert capital expenditures to operational expen-
ditures [3]. By utilizing the cloud, the expensive infrastructure
like servers and professionals will not be the main concern of
customers anymore. And the third advantage is the device and
location independence [4], which supports customers to access
computing resources anywhere and anytime, instead of using
the specific interfaces to access the local server cluster and
avoiding server maintenance time. Because of these benefits,
many customers have started to migrate their business to
the cloud, for instance, Alibaba has announced a statement
that their services should be ”All in Cloud”. Currently, the
prominent IT companies such as Amazon, Google, Microsoft,
and Alibaba, have established their own cloud data centers and
become cloud providers.

Though cloud computing has many advantages, based on
the practice of utilizing resources of cloud computing, resource
bottlenecks can still happen occasionally, like CPU, memory,
and bandwidth [5] [6]. The reason is that when customers
set up their services, they need estimate how much of the
resources will be used for their services and reserve a specific
amount of resources. However, due to the fluctuations of
paperloads, overloads can happen thus lead to bottlenecks.
When bottlenecks exist, the system performance, such as non-
functional requirement (NFR) can be significantly influenced,
for instance, CPU bottleneck can cause insufficient comput-
ing power and small number of parallel processes, memory
bottleneck can lead to insufficient tasks or data waiting to be
processed [7], and bandwidth bottleneck can trigger requests
failed to be responded [8].

As bottlenecks can greatly affect the performance and user
experience of cloud services [9], it is too important to identify



the potential bottlenecks. However, different cloud services
often provide different provisioned resource capacity, such as
VM instances with different CPU, memory, and bandwidth,
thus they may have bottlenecks under different load condi-
tions. Besides, the bottlenecks of individual services are more
difficult to be predicted based on different resource demands,
running status and internal logic. If service providers can
identify the potential bottleneck of each service and modify
configurations, the costs and NFR can be satisfied.

However, identifying the bottlenecks at the early stage is
not easy. Arranging testers to perform a large number of
stress tests to evaluate the bottlenecks when changing resource
configurations is not feasible. Apart from it, purchasing much
more resources than required is not cost-effective and eval-
uation results may not be reproducible due to uncontrolled
factors, such as network traffics.

To deal with the above challenges, using a simulation toolkit
to simulate the real environment is a promising way. In this
paper, we use CloudSim [10], which is a well-known cloud
simulation toolkit that enables seamless modeling, simulation
and experimentation of cloud computing [11]. With CloudSim,
we can model the resource provisioning of various cloud
infrastructure configurations and generate reproducible results.
Large-scale simulations can also be easily conducted. Our
motivation is to predict the potential resource and service
bottlenecks based on a small-scale dataset of MindSphere
[12]1, a cloud-based Internet-of-Things (IoT) open operating
system from Siemens. We aim to generate various metrics to
help MindSphere to plan hardware resources for their services.
We also make efforts to make our solution as generic as
possible, so it can be easily extended and migrated to other
cloud platforms. To achieve these goals, we also have some
challenges to address, including how to build a model for the
realistic scenario of MindSphere, how to ensure that the system
output results are consistent with the real test results, and how
to make it a generic solution.

In this paper, we propose a data-driven framework to support
the non-functional requirement, e.g. system performance, for
multiple service interaction to identify the potential bottle-
necks of service in the early stage. Based on CloudSim, we
simulate the resource usage of interactive services, service
interactions process. Our approach can predict the potential
system bottleneck based on limited data collected from some
real test cases and guide for the companies to optimize
the resource configuration. Additionally, the system can help
predict the response time and QPS when the system has
reached the bottleneck.

Our key contributions are as follows:
• Proposing a framework to identify the potential bottle-

neck for multiple service interactions in the cloud to
optimize resource planning for companies.

• Presenting an approach to model the resource utilization
based on collected data, and guiding to predict the system
behaviors under different loads.

1https://siemens.mindsphere.io/en

• Extending CloudSim to model the service internal logic,
Siemens MindSphere model and AliCloud.

The rest of the paper is organized as: The related work is
discussed in Section 2. We introduced our proposed frame-
work, named, IRBS, in Section 3. Section 4 discusses the
modeling of multiple service interaction scenarios, and the
evaluation results based on MindSphere are demonstrated in
Section 5. Finally, conclusions and future work are given.

II. RELATED WORK

To call cloud service more efficiently and reduce the cost,
modeling services in the cloud, scheduling service in the cloud
and optimizing resources in the cloud become pretty important.
Neeraja et al. developed a data-driven system named PARIS,
which can predict workload performance, resulting in costs
and workloads across multiple cloud providers [13]. To de-
crease the task execution failure, Lattif et al. proposed DCLCA
(dynamic clustering league championship algorithm) schedul-
ing technique for fault tolerance awareness to address cloud
task execution which would reflect on the currently available
resources and reduce the untimely failure of autonomous tasks
[14]. Sekaran et al. proposed a new meta-heuristic algorithm,
named the dominant firefly algorithm, which optimizes load
balancing of tasks among the multiple virtual machines in
the Cloud server, thereby improving the response efficiency
of Cloud servers that concomitantly enhances the accuracy of
m-learning systems [15]. Cheng et al. proposed DRL-Cloud,
a novel Deep Reinforcement Learning (DRL)-based RP and
TS system, to minimize energy cost for large-scale CSPs
with a very large number of servers that receive enormous
numbers of user requests per day [16]. Nayak et al. used
AHP (Analytic Hierarchy Process) as a decision-maker in the
backfilling algorithm to choose the possible best lease from the
given best-effort queue to schedule the deadline sensitive lease
[17]. Priya et al. constructed a Fuzzy-based Multidimensional
Resource Scheduling model to obtain resource scheduling
efficiency in cloud infrastructure and increased utilization of
Virtual Machines through effective and fair load balancing
is then achieved by dynamically selecting a request from
a class using Multi-dimensional Queuing Load Optimization
algorithm [18]. However, these workers are not aiming at
identifying the potential bottleneck of services in the system.

In order to find bottlenecks with low cost quickly, CloudSim
is frequently used to build scenarios, set input and stimulate.
For instance, Wickremasinghe wt al. developed CloudAnalyst,
which is a CloudSim based tool for simulating large-scale
Cloud applications to study the behavior of such applications
under various deployment configurations [19]. Shi et al. used
CloudSim to develop efficient energy-saving methods to re-
duce the huge energy consumption in the cloud datacenter
[20]. Jung et al. proposed a simulation tool that supports the
MapReduce model, implemented on CloudSim [21]. Belalem
et al. proposed two approaches which aim at returning a
better availability of Datacenters without deteriorating the
performances for the answers of the users [22]. Alla et al.
proposed Task Scheduling optimization using a novel approach
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based on Dynamic dispatch Queues (TSDQ) and hybrid meta-
heuristic algorithms, which is based on CloudSim and showed
a great advantage in terms of waiting time, queue length,
makespan, cost, resource utilization, degree of imbalance, and
load balancing [23]. Sharma et al. proposed a modified particle
swarm optimization (MPSO) task scheduling algorithm in or-
der to optimize execution time, transmission time, makespan,
transmission cost and load balancing of virtual machines and
got the best cost as compared to original PSO on the CloudSim
[24]. However, these workers do not model service internal
logic. Besides, they do not provide the model for MindSphere
and AliCloud.

III. IRBS FRAMEWORK

To make our proposed approach to be reusable, correct and
universal, we propose a framework to identify resource and
service bottlenecks for multiple service interactions in Cloud,
which we called IRBS (Identifying Resource Bottlenecks
Solution). IRBS can evaluate different kinds of cloud services
to achieve their availability and scalability. IRBS aims to
predict the bottlenecks of the cloud service and identify the
metrics when the service has reached the bottleneck. From
the companies’ perspective, selecting the appropriate amount
of resources is tightly coupled with performance and cost,
bottlenecks are the important reference metrics to improve
the rationality of resource allocation. We provide a high-level
summary below and then discuss the details in the subsequent
sections.

We aim to make generic design, thus IRBS should be
applicable to cloud services of different specifications by
changing configurations. We also target to fit the data provided
by Siemens to achieve good accuracy. Furthermore, when
a new service is integrated into the system, our framework
should also represent the behavior of the system.

The framework of IRBS has shown in Fig. 1, the framework
contains five components: Input controller, Resource Usage
Model, Data Fitting Model, Queue processing model, Multiple
Service Interaction Modelling.

The Input controller component handles the input work-
loads. The workloads can be generated by this component,
then, the concurrent loads enter into the system. The char-
acteristic of loads is defined in the input properties, which
will be loaded firstly. To make our framework to fit a realistic
scenario, we consider the online scheduling policy, which we
generate the loads then deal with the loads per unit time.
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Fig. 2: Queue process

The Resource Usage Model component is the key com-
ponent of IRBS. It produces the resource pool containing
the CPU pool and Bandwidth pool, then simulates the real
scenario to perform the loads’ assignment. Based on this,
results including real-time CPU usage, the real-time bandwidth
usage, the initial response time can be achieved further. More
details will be provided in Section IV.

The Data Fitting model component helps to calculate
results. In the real scenario, there are various factors that
can affect cloud service performance. For the hardware, the
temperature, the voltage, and other elements can have huge
impacts. As for the software, the scheduling policy and the
adopted cloud service can also influence the NFR. IRBS uses
Equation (1), which mainly calculates the response time based
on the Resource Usage Model calculated. The response time
is calculated as:

response time = finish time− submit time (1)

Queue processing model controls two queues by monitoring
the data in Resource Usage Model, which named deferral
queue and processing queue. The deferral queue stores the
load that is deferred when the resource pool is full so that
the load can’t be handled. The processing queue stores the
loads under processing. The process is shown in Fig. 2. The
component notifies the Input controller about the total loads
in the system and then adjusts the load generator dynamically
as feedback.

The Multiple Service Interaction component above will run
in different services. Considered that if one service reaches the
bottleneck, the other service will be affected, so IRBS designs
the multiple service interaction to deal with the situation. By
querying the queue processing model, the component will get
the previous service queue and notify the next service, then
achieve better effects.

IV. MULTIPLE SERVICE INTERACTION MODELLING

A. Modelling Process

The operation process of the way to use this system is shown
as the Fig. 3, the key steps are introduced as follows.

1) Collecting Data: The Data is provided by Siemens,
which is from the MindSphere system and Alibaba cloud
service. Certainly, IRBS is not limited in this scene, it is
suitable for the service which comes down to the resource
computation. The data mainly includes the load generation
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over time, CPU usage over time, bandwidth usage over time,
response time over time and queries per second overtime.
There are at least three sets of the data then the system will
simulate real scenarios well.

2) Setting Configurations: IRBS doesn’t just apply to one
scenario, as a simulation system, it should be reusable. We
adopt the properties as the tools to help the customers sim-
plify input and implement differentiated input. We just need
to modify the properties file and we will achieve different
simulation results.

3) Data Fitting with Model: In the real scenario, taking
CPU ability as an example. There is a lot of interference
will affect CPU ability. To reduce the complexity of our
modeling, we simplify the definition process. By abstracting
the core number of CPU into parameter CPU-ability, IRBS
distinguishes the computing ability of cloud services under
different specifications. Consequently, we can use this param-
eter to measure the computing power in this service very well,
as well as the bandwidth part.

4) Parameters Configuration: Because the equivalent CPU
capacity of a core under different hardware specifications is
different, we adjust the calculated resource mapping parameter
by using the case that the compute resource is not fully
loaded, the bandwidth part is also similar to this. after that the
parameters CPU-ability and Bandwidth-ability in IRBS will
be obtained.

5) Comparing outputs with real data: Certainly, using the
default regression parameters in the properties will not get
the correct answer. The hardware configuration of different
cloud services are different, even cloud services of the same
specification may vary slightly at different running phase, thus
what we target is to fulfill the gap as much as possible with
the right trends.

6) Updating parameters: We narrow this gap by adjusting
the parameters in the linear regression model. Due to the
situation of full load and non-full load, the simulation of the
two sets of data alone will not achieve good performance.
Therefore, a third set of full load conditions is needed to
reflect the response of the component to the increasing load
situation under the full load condition. After that, continuously
adjust the parameters to ensure that the result pictures output
by IRBS is almost the same as the pictures in the real test
scene, the bottlenecks of the cloud service will be shown in
the evaluations section.

7) Validating Model and Test Model: We can use another
test dataset to validate our proposed model. Of course, the

more data we have, the more precious the model will be. With
limited data, the model can still guarantee accuracy. According
to the initial output data, the user of the system can utilize
this system to identify potential bottlenecks and predict some
metrics of the cloud service.

8) Applying to new scenario: In our model, we try to make
the models to be representatives of a series of similar service
types, such as load generator services for generating loads,
gateway services for forwarding loads, load balancing services
for balancing loads, database related services for managing
database queries. The basic scenario Siemens provides has five
service, which will be introduced in section V. IRBS can be
extended to the other scenario, whether it’s changing the order
or adding or removing services, or even applied to a brand new
scenario only if it contains similar cloud service. We have
tested its extendability and it is shown in section V.

B. Resource Usage Modelling

In the real scenario, both the CPU resources and bandwidth
requirements of different workloads generated by different
users are different, thus the companies aim to identify the
bottlenecks of various cloud services. Based on this, we
redefined the characteristics of the load generated by the users.
Based on the data from Siemens, by using a random algorithm
with normal distribution, the CPU resources and bandwidth
resources required for the random generation of each load task
are generated. Similarly, as mentioned in the previous sections,
we abstracted the CPU resources and bandwidth resources in
the real environment into specific values in the simulation
system as a resource pool for processing loads. Due to the
large magnitude of the load, The load characteristics is not
easy to be fine-tuned. Therefore, We adjust the model by fine-
tuning the multiple of the computing power corresponding to
each core number.

The load stream generated by the input part firstly enters the
delay queue. If resources are obtained, it enters the processing
queue. When the load has completed, it is removed from the
processing queue and record the time as the load finishing
time. The load generation is controlled by reading the number
of elements in these two queues.

We use an array to process the load and resource pool. The
abscissa is used as the unit time length. Unit time is adjustable.
The ordinate is used as resource usage. The characteristics of
each load include the required CPU resources, the required
bandwidth resources and the length of time, these resources are
stored in the resource pool as small matrix blocks. Eventually,
in this way, we can simulate the entire resource scheduling
process.

In the Siemens scenario, or another scenario, there are multi-
ple ECS (Elastic Compute Service) on the cloud server running
MindSphere, and each ECS contains multiple pods, the basic
unit for processing load is the pod. On this basis, we map ECS
to the virtual machine, and pod to the container. The CPU
resource pool uses the resources of the pod as a benchmark,
and the bandwidth is based on the resources allocated by the
entire service to perform resource scheduling. Owing to the
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scenario there are multiple resource pools processing the same
load, we use the round-robin algorithm to balance the loads.

When the resource pool is almost full, the pending loads
obtained from the deferral queue cannot obtain resources,
it also cannot be transferred from the deferral queue to the
processing queue. In this case, the bottleneck of the cloud
service under this configuration is reached, and all subsequent
loads are delayed.

The current CPU utilization and bandwidth usage are ob-
tained by reading the resource usage of each unit of time. The
original average response time calculation method is shown in
Equation (2), RT means response time, AVG means average
response time. Generally, when resources are almost full,
computing ability will decline due to competitive resources,
so we used linear regression to calculate the basic average
response time. Calculation Equation is shown in Equation (3)
to get the final average response time, the parameters α and
β are the regression parameters. According to the definition
of QPS (Queries-per-second), Equation of QPS calculation is
shown in Equation (4).

basicAV G =

∑
load∈finished loadRT

loadnumber
(2)

AV G = α ∗ basicAV G+ β (3)

QPS =
total averageResponse time

loadNumber Unit T ime
(4)

C. Extension of CloudSim for Siemens scenarios

By following CloudSim approach, we have implemented
the definition of basic classes by inheriting cloudlet, container,
containerVM and host. We use the queueing method, and refer
to the resource scheduling method to design our scheduling
policy. All of these are shown in Fig. 4.

Considering the scenario provided by Siemens, there is a
mechanism similar to feedback which the CloudSim does not
have. The scheduling logic of CloudSim is offline, it submits
all the cloudlets firstly, then deals with them later. The policy
is not able to the feedback mechanism. At the same time,
submitting all tasks at one time will also bring a lot of unfavor-
able factors, such as high computer memory requirements and

TABLE I: Gateway Tests

Case Load
Pod CPU
utilization

Throughput
Average response

Time
Bandwidth

1 1500 vu 38.5 cores 10000 calls/s 50ms 300 Mbps

2 2000 vu 46 cores 11300 calls/s 75ms 342 Mbps

3 3000 vu 47 cores 11600 calls/s 158ms 352 Mbps

Load generator SLB GW GW K8S

Redis

SLB NFR Mockservice

Fig. 5: Simulation Process

difficulty to control time accuracy. Similarly, CloudSim has
virtual machine migration and container migration in resource
scheduling, these are not suitable for our scenario. We have
made improvements and simplifications on the basis of these,
making scheduling more suitable for this scenario, and finally
implementing our system.

V. PERFORMANCE EVALUATION

Siemens has deployed their services on Alibaba cloud to
realize the operation of the entire business by using its Mind-
Sphere system. The Siemens scenario is shown in Fig. 5. The
load generator is the service that generates the loads for the
stem. SLB GW is used as the Siemens MindSphere task sched-
uler, which is responsible for maintaining the load balancing
and performing task distribution. The VMs and containers are
responsible for processing the loads among different services,
and performing database storage and reading operations on
Redis. SLB NFR is used to monitor various metrics in the
entire system, and Mockservice BlackBox component that
generates as a fixed processing delay component, e.g. 300 ms.
Gw k8s is the core service that connects the outside and inside
of the system.

In our simulations, each unit time represents one second
by default, and the time accuracy can be adjusted to make
it more fine-grained. However, if the accuracy is improved,
the simulation takes longer running time and consumes more
memory resources. To balance the trade-offs between accuracy
and running costs, we simulate and collect the CPU usage,
bandwidth usage every unit time. And then, we draw the result
based on the obtained metrics values. After a series of tuning
and parameters updating, the variance of simulated results and
real data are reduced to be small enough. The simulation is
completed for the situation under this configuration.

Based on the results, we can roughly know when the
bottleneck will exist under the specific loads and then adjust
the program configuration file according to the corresponding
load size where the bottleneck occurs. In this way, the number
of the loads when CPU resources reach the bottleneck or



TABLE II: Hardware Configuration

Case Load ECS number Pod number ECS cores Pod cores Bandwidth Other service response time
1 1500 vu 9 18 8 cores 3 cores 350 Mbps about 100 ms

2 2000 vu 9 18 8 cores 3 cores 350 Mbps about 100 ms

3 3000 vu 9 18 8 cores 3 cores 350 Mbps about 100 ms

4 3020 vu 20 40 8 cores 3 cores 650 Mbps about 100 ms

5 4000 vu 16 32 8 cores 3 cores 800 Mbps about 100 ms

6 4000 vu 20 40 8 cores 3 cores 610 Mbps about 100 ms
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Fig. 6: The metrics of different loads under Siemens specification

the Bandwidth reach the bottleneck can be obtained in this
configuration. Additionally, we can use IRBS to predict some
scenarios without evaluations under real tests, for example
in what CPU configuration or bandwidth configuration the
QPS will reach 20000, and optimize resource planning without
changing hardware specifications, only change the cores or the
max bandwidth.

In the scenario provided by Siemens, GW K8S is the core
component to be evaluated, as the whole data is confidential,
only the key data is shown in Table I. In this scenario, there
are 9 ECS and 18 pods in total for the resource provisioning.
Each ECS is equipped with 8 cores, each pod has 3 cores, and
the bandwidth is 350 Mbps. The detail configuration is shown
in Table II. In the same hardware configuration, there are two
cases in general, which are non-full load and full load.

A. Non-full load

The case is when the cloud service mostly runs in the real
scenario, both the CPU and the inbound and outbound traffic
have not reached the bottleneck, and all loads can respond in
time to the cloud service.

In Fig. 6 we give a specific example to illustrate. The input
loads follow this trend. After 11 minutes, the loads reach the
peak point, then the input controller component keeps the peak
load for another 10 minutes, and then the loads gradually

decrease in the last 2 minutes.
Under the above non-full load situation, the comparison

between the chart in the test report provided by Siemens and
the test chart obtained through system simulation is shown in
Fig.6. When the load reaches 1500 users, the CPU utilization
is about 70%, the number of corresponding cores usage is
about 38.5 cores, and the outbound traffic (Upstream and
downstream directions are opposite) is about 300 Mbps. Since
Siemens did not provide a specific image about the response
time but provided a reference value of 50ms, this value is also
well reflected. QPS also showed a rising straight line, and
reached the peak when the load reached the peak.

B. Full load

Considering the fully loaded bandwidth is fully loaded as
another example. The case is shown in Fig. 6, which is as
same as the case of non-full load, except that the number of
loads at the peak becomes 2,000 and 3,000. In this case, we
can observe that the CPU utilization has not reached the full
load, but the bandwidth rate has reached the full load earlier
and reached 350 Mbps, which means bandwidth can be the
bottleneck rather than CPU in this case.

Observing the evaluations, we can also find that when the
outbound traffic reaches the bottleneck and the saturation
happens, the loads which arrive latter can’t enter the service.
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Fig. 7: The metrics of different loads when QPS is 20000 calls/s.

Although CPU is not fully loaded, the CPU utilization also
reaches the peak which becomes about 90% and the QPS also
reaches 11600 calls/s.

The results obtained by the simulation system is nearly
the same as the real test results. Considering that resource
competition will occur when resource usage approaches the
bottleneck value, resulting in performance degradation, the
average response time tends to rise in advance. Meanwhile,
it is observed that when the bottleneck point is reached, the
QPS remains at its peak, but the load is still rising at this
time, so the increase in response time at this time must be
consistent with the load. The linearity of the response time is
restricted by this restriction. So we can calculate regression
parameters. Finally, a relatively good simulation effect was
obtained. According to the results, it can be observed that
when the load is close to 1,800, it is the bottleneck in this
configuration.

C. Bottleneck Prediction

In the above cases, they have demonstrated how to identify
the bottleneck in specific configurations. IRBS can predict the
satisfaction of various metrics based on the parameters of the
current specifications, that is, only the core and number of
ECS and pods and the bandwidth are changed. Taking QPS
as an example, in Fig. 7 shows various situations when the
QPS reaches 20,000, and the configuration of each situation
is shown in TableII.

The first case is that the CPU and bandwidth are not fully
loaded. In this case, we can notice that when the number of
loads reaches 3020, the QPS is close to 20,000 calls/s. At
this time, the peak response time of GW service is 50ms,
and other services are also at In the case of not fully loaded,
the total response time of the other parts is close to 100ms,
so the total response time is about 150ms. According to

Equation (4) calculation, we can conclude that the prediction
result is accurate.

The second and third cases are when the CPU or bandwidth
reaches full load. In these cases, the CPU or bandwidth
utilization is about 100%. Under this situation, the peak
response time of the GW service is about 100ms. And the total
response time is about 200ms, which shows that the results
are also accurate. Then the companies can use these results to
optimize their infrastructure configuration.

D. Scalability

Finally, we want to show that this system is not only suitable
for the discussed scenario. In another scenario proposed by
Siemens, there are only three services, namely load genera-
tion, GW, and mockservice. Due to changes in the hardware
resources for support services, we can re-adjust the parameters,
select different parts by adjusting the VM and container
capacity, and control the execution order by adjusting the id.
The results are shown in Fig. 8.

The difference from the above is that only the properties
configuration file is changed, which changes the number, type,
and order of cloud services. By comparing data with a real
scenario, the data from our simulated results can fit the data
in the table well.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a data-driven approach called
IRBS, which can predict resource and service bottlenecks
in multiple service interaction scenarios. We also developed
a generic modeling process to ensure good accuracy while
having good reusability and scalability. Based on the dataset
provided by Siemens MindSphere system, our simulated re-
sults show that our approach can effectively identify the
potential bottlenecks and achieve good accuracy for adopted
metrics. The dominant advantage of the proposed approach is
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Fig. 8: Extended scenario

easy to operate and provides a good basis for the customers’
ability to configure hardware resources.

As future work, we would like to reduce the consumption
of computer resources as much as possible under the condition
of improving the accuracy of simulation time. It is intended
that each resource pool uses two arrays to alternately or other
better way process the load, and the purpose of optimizing
the scheduling process is achieved by deleting the resources
occupied by the expired processed load. We also would like
to investigate other datasets or a broad range of conditions to
evaluate our proposed approach.
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