J Grid Computing (2019) 17:385-417
https://doi.org/10.1007/s10723-017-9424-0

@ CrossMark

Resource Provisioning Based Scheduling Framework
for Execution of Heterogeneous and Clustered Workloads
in Clouds: from Fundamental to Autonomic Offering

Sukhpal Singh Gill 2 . Rajkumar Buyya

Received: 1 August 2017 / Accepted: 20 December 2017 / Published online: 19 January 2018
© Springer Science+Business Media B.V., part of Springer Nature 2018

Abstract Provisioning of adequate resources to cloud
workloads depends on the Quality of Service (QoS)
requirements of these cloud workloads. Based on
workload requirements (QoS) of cloud users, discov-
ery and allocation of best workload-resource pair is an
optimization problem. Acceptable QoS can be offered
only if provisioning of resources is appropriately con-
trolled. So, there is a need for a QoS-based resource
provisioning framework for the autonomic schedul-
ing of resources to observe the behavior of the ser-
vices and adjust it dynamically in order to satisfy the
QoS requirements. In this paper, framework for self-
management of cloud resources for execution of clus-
tered workloads named as SCOOTER is proposed that
efficiently schedules the provisioned cloud resources
and maintains the Service Level Agreement (SLA)
by considering properties of self-management and
the maximum possible QoS parameters are required
to improve cloud based services. Finally, the per-
formance of SCOOTER has been evaluated in a
cloud environment that demonstrates the optimized
QoS parameters such as execution cost, energy con-
sumption, execution time, SLA violation rate, fault

S. S. Gill (<) - R. Buyya

Cloud Computing and Distributed Systems (CLOUDS)
Laboratory, School of Computing and Information Systems,
The University of Melbourne, Melbourne, Australia
e-mail: sukhpal.gill@unimelb.edu.au

R. Buyya
e-mail: rbuyya@unimelb.edu.au

detection rate, intrusion detection rate, resource uti-
lization, resource contention, throughput and waiting
time.

Keywords Cloud computing - Cloud workloads -
Resource provisioning - Resource scheduling -
Quality of service - Autonomic computing - Service
level agreement - Self-management - Self-healing -
Self-configuring - Self-optimizing - Self-protecting -
Quality of service - Resource management -
Autonomic cloud - E-commerce as a cloud service

1 Introduction

Cloud computing is a new paradigm that provides on-
demand services over the Internet. Cloud services are
viewed as a composition of distributed components
and are offered as: Infrastructure (hardware, storage,
and network), Platform or Software [1]. As cloud
offers these three types of services, it requires Quality
of Service (QoS) to efficiently monitor and measure
the delivered services and further needs to follow Ser-
vice Level Agreements (SLAs). However, providing
dedicated cloud services that ensure user’s dynamic
QoS requirements and avoid SLA violations is a big
challenge in cloud computing [2]. Currently, cloud
services are provisioned and scheduled according to
resources’ availability without ensuring the expected
performances [3]. The cloud provider should evolve
its ecosystem in order to meet QoS requirements of

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-017-9424-0&domain=pdf
http://orcid.org/0000-0002-3913-0369
mailto:sukhpal.gill@unimelb.edu.au
mailto:rbuyya@unimelb.edu.au

386

S. S. Gill, R. Buyya

each cloud component. To realize this, there is a
need to consider two important aspects which reflect
the complexity introduced by the cloud management:
QoS-aware and autonomic management of cloud
services [4]. QoS-aware aspect expects a service to be
aware of its behavior to ensure the high availability,
reliability of service, minimum execution cost, mini-
mum execution time, maximum energy efficiency and
so forth. Autonomic management implies the fact that
the service is able to self-manage itself as per its envi-
ronment needs. Thus, maximizing cost-effectiveness
and utilization for applications while ensuring
performance and other QoS guarantees, requires
leveraging important and extremely challenging trade-
offs [5]. Based on human guidance, an autonomic
system keeps the system stable in unpredictable con-
ditions and adapts quickly in new environmental con-
ditions like software, hardware failures and so forth.
Intelligent autonomic systems work on the basis of
QoS parameters and are inspired by biological sys-
tems that can easily handle the problems like uncer-
tainty, heterogeneity and dynamism. Autonomic cloud
computing system can be autonomic model that con-
siders four steps of autonomic system (Monitor, Ana-
lyze, Plan and Execute) in a control loop and the goal
of intelligent autonomic system is to execute applica-
tion within deadline by fulfilling QoS requirements as
described by user with minimum complexity. Based
on QoS requirements, an intelligent autonomic system
provides self-management of resources which consid-
ers following properties [1-5] of self-management: a)
self-healing is a capability of an autonomic system to
identify, analyze and recover from unfortunate faults
automatically, b) self-configuring is a capability of
an autonomic system to adapt to the changes in the
environment, c¢) self-optimizing is a capability of an
autonomic system to improve the performance and d)
self-protecting is a capability of an autonomic system
to protect against intrusions and threats.

1.1 Previous Contributions

In earlier work [6—18], different cloud workloads have
been identified and categorized based on their QoS
characteristics and QoS metrics have been identi-
fied for each workload and have been analyzed for
creating better application design [6]. Next, various
research issues related to QoS and SLA for man-
agement of cloud resources for workload execution

@ Springer

have been identified [7]. To develop a resource pro-
visioning technique, methodical survey [8] has been
done to evaluate and uncover the research challenges
based on available existing research in the field of
cloud resource provisioning and based on these chal-
lenges, a QoS based resource provisioning technique
(Q-aware) has been developed to map the resources
to the workloads based on user requirements [9]. The
main aim of Q-aware is to analyze the workloads, cat-
egorize them on the basis of common patterns and
then provision the resources for execution of cloud
workloads before actual resource scheduling. The sim-
ulation based experimental results demonstrate that
Q-aware is efficient in reducing execution time and
execution cost of cloud workloads along with other
QoS parameters.

Further, the resource scheduling algorithms have
been explored in detail [10] through methodical sur-
vey and compared the resource scheduling algorithms
based on important aspects of resource schedul-
ing to identify research issues and open challenges
still unresolved. Based on research issues and open
challenges, resource scheduling framework (QRSF)
has been proposed, in which resources have been
scheduled by using different resource scheduling poli-
cies (cost, time, cost-time and bargaining based) [11].
The simulation based experimental results show that
the QRSF gives better results in terms of energy
consumption, execution cost and execution time of
different cloud workloads as compared to exist-
ing scheduling frameworks. In QRSF, there was
direct scheduling of resources which further needs
lot of work every time to schedule resources to
execute workloads by fulfilling their QoS require-
ments due to the absence of QoS-based resource
provisioning before actual scheduling of resources. To
solve that problem, the concept of QRSF has been fur-
ther extended by presenting QoS based Resource Pro-
visioning and Scheduling (QRPS) Framework [12].
In QRPS framework, QoS based resource provision-
ing technique (Q-aware) is used for resource provi-
sioning in which: i) clustering of workloads is done
using k-means clustering algorithm after assigning
weights to quality attributes of each workload and
ii) resources are provisioned based on their QoS
requirements. Further, four different resource schedul-
ing policies are used to schedule the provisioned
resources. Further, the performance of QRPS has been
tested using QoS parameters such as execution time,

Resource Provisioning based Scheduling Framework for Execution of Heterogeneous... 387

execution cost and energy consumption. Moreover, Q-
aware has been extended by proposing BULLET i.e.
Particle Swarm Optimization (PSO) based resource
scheduling algorithm [19], which execute cloud work-
loads and improves the execution cost and time as
compared to QRSF.

In QRPS, there was manual provisioning based
resource scheduling, which further needs lot of human
work every time to schedule resources to execute
workloads by fulfilling their QoS requirements. To
realize this, there is a need to consider an important
aspect that reflects the complexity introduced by the
cloud management: QoS-aware autonomic manage-
ment of cloud services [13, 16]. To design a QoS based
autonomic resource management framework, which
can manage resources automatically and provides reli-
able, secure and cost-efficient cloud services, a com-
prehensive investigation has been conducted [14] to
study various existing autonomic resource manage-
ment techniques and properties of self-management
(self-healing, self-configuring, self-optimizing, and
self-protecting). Based on existing research challenges
in the area of autonomic resource management, QRPS
has been further extended by proposing energy-aware
autonomic resource scheduling technique (EARTH),
in which IBM’s autonomic computing concept [21]
has been used to schedule the resources automati-
cally by optimizing energy consumption and resource
utilization, where user can easily interact with the sys-
tem using available user interface [15]. But, EARTH
can execute only homogenous cloud workloads and
the complexity of resource scheduling in EARTH
increases with the increase of number of workloads.
To address this issue, SOCCER [20] is proposed
which clusters the heterogeneous cloud workloads
and executes them with minimum energy consump-
tion, but SCOEER only focuses on one aspect of
self-optimization i.e. energy consumption. Further,
SLA-aware autonomic resource management (STAR)
technique [17] is proposed, which mainly focuses on
other important aspect of self-optimization i.e. SLA
violation rate and also analyzed the impact of QoS
parameters on SLA violation rate. Next, QoS-aware
autonomic resource management approach (CHOP-
PER) [18] has been proposed, which offers self-
configuration of applications and resources, self-
healing by handling sudden failures, self-protection
against security attacks and self-optimization for max-
imum resource utilization.

In this research work, CHOPPER is extended
by proposing a resource management framework
called SCOOTER (Self-management of ClOud
resOurces for execuTion of clustEred woRkloads)
that efficiently schedules the provisioned cloud
resources and maintains the SLA by considering four
properties of self-management and the maximum pos-
sible QoS parameters (execution cost, energy, exe-
cution time, SLA violation rate, fault detection rate,
intrusion detection rate, resource utilization, resource
contention, throughput and waiting time) required
to improve cloud based services. Finally, the pro-
posed framework has been verified with the help of
a case study of e-commerce in a cloud environment
that demonstrates the optimized QoS parameters.
SCOOTER improves user satisfaction and, increases
reliability and availability of services. The rest of
the paper is structured as follows: Section 2 presents
related work of cloud resource management. Pro-
posed framework is presented in Section 3. Section 4
describes the experimental setup used for perfor-
mance evaluation and experimental results. Section 5
presents conclusions and future work.

2 Related Work

Provisioning and scheduling of resources in cloud
has been done through different techniques existing
in literature but QoS parameters are important fac-
tor that it is challenging to optimize automatically. To
optimize QoS parameters, researchers proposed dif-
ferent techniques. Resource provisioning is defined
as identifying adequate resources for a given work-
load based on QoS requirements described by cloud
consumer [8] whereas resource scheduling is map-
ping and execution of cloud consumer workloads on
provisioned resources through resource provisioning
[10]. The objective of resource scheduling is to sched-
ule the provisioned resources to the suitable work-
loads on time, so that applications can utilize the
resources effectively [11]. In other words, the amount
of resources should be minimum for a workload to
maintain a desirable level of service quality, or max-
imize throughput (or minimize workload completion
time) of a workload. The goal of autonomic resource
provisioning and scheduling is to execute application
within their deadline by fulfilling QoS requirements
as described by user in SLA. Autonomic computing

@ Springer

388

S. S. Gill, R. Buyya

systems have capability to deal with all the situations
dynamically and manage the situation in unpredictable
environment [14]. Autonomic Cloud Computing Sys-
tems (ACCSs) control the working of cloud based sys-
tems and applications without human intervention.
ACCSs check, monitor and respond according to the situ-
ation like self-healing, self-protecting and self-configur-
ing and self-optimizing. This section is presenting the
related work of resource provisioning and scheduling
along with self-management in cloud computing.

2.1 QoS based Resource Provisioning

Andres et al. [22] proposed a Distributed Resource
Management Framework (DRMF) to determine
resource provisioning of workload on innovativeness
clouds. To handle with erroneous request for resource
that causes to over utilization of resources deliv-
ered by cloud workload request, their framework has
revealed a design-based technique for approximating
the workload execution time specified it’s schedul-
ing but the behavior of a particular workload was not
identified. Christian et al. [23] proposed a Deadline
based Resource Provisioning (DRP) technique using
dynamic reallocation for execution of scientific work-
loads through Aneka in hybrid cloud environment.
This technique decreases the makespan of workloads
only without considering execution cost of resources.
Nikolas et al. [24] proposed a Self-Adaptive Resource
Provisioning (SARP) framework to find the appropri-
ate predicting ways for a given perspective through
the use of decision tree. This framework optimizes
QoS parameters like relative error and SLA violation
but does not consider execution time and execution
cost as a QoS parameter. Hamid et al. [25] proposed
a Dynamic Behavior based Resource Provisioning
(DBRP) framework to assign adequate number of
resources to workloads. This framework reduces the
execution cost of resources only without considering
execution time.

2.2 QoS based Resource Scheduling

Varalakshmi et al. [26] proposed an Optimal Workflow
based Scheduling (OWS) framework to discover a
solution that tries to meet the user-desired QoS con-
straint i.e. execution time. This framework shows
slight improvement in resource utilization is attained.
But it did not consider cost and energy as QoS

@ Springer

parameters. Li et al. [27] proposed an Ant Colony
Optimization based Job Scheduling (ACOJS) frame-
work, which adapts to dynamic characteristics of
cloud computing and incorporates particular ben-
efits of ACO in NP-hard problems. This frame-
work reduced only job completion time based on
pheromone. Topcuoglu et al. [28] presented the Het-
erogeneous Earliest Time First (HEFT) framework to
discover the average execution time of each work-
load and also the average communication time among
the resources of two workloads. Then workloads in
the workflow are well-ordered based on a rank func-
tion. The workload with higher rank value is given
higher priority. In the resource selection stage work-
loads are scheduled in priorities and each workload
is allocated to the resource that complete the work-
load at the earliest time. But it did not consider cost
and time as QoS parameters. Pandey et al. [29] intro-
duced a Particle Swarm Optimization based Heuristic
(PSOH) framework to schedule the applications to
cloud resources that proceeds both computation and
data transmission cost. It is used for workflow applica-
tions by changing its computation and communication
costs. The assessment results show that PSOH can
reduce the cost and good sharing of workload onto
resources, but it did not consider execution time of
workloads.

2.3 QoS Based Autonomic Resource Provisioning
and Scheduling

Self-management in cloud computing has four prop-
erties: a) self-healing, b) self-configuring, c) self-
optimizing and d) self-protecting. It is a challenge
to implement all the properties of self-management
together and based on requirements and goals of an
autonomic system, mostly some of the properties are
considered.

2.3.1 Self-healing

The aim of self-healing is to make the necessary
changes to recover from the faults occurred to main-
tain the working of system without any disruption.
System must ensure that the successful execution of
workloads or application without affecting its per-
formance even in case of software, network and
hardware faults. Software fault may occur due to
unhandled exception occurs in high resource intensive

Resource Provisioning based Scheduling Framework for Execution of Heterogeneous... 389

workloads; other reasons may be deadlock, lesser stor-
age space, unavailability of resources etc. Hardware
fault may occur due to problem in hardware compo-
nents like processor, RAM, HDD etc. Network faults
may occur due to lack of scalability, physical dam-
age, network breakage in case of distributed networks.
Application Service Provider (ASP) [30] uses WSDL
(Web Service Description Language) and Web Inter-
face (HTTP) to design proactive and reactive heuristic
policies to get an optimal solution. All the important
QoS parameters are mentioned in SLA document. In
this autonomic system, performance history is used to
resolve the alerts generated at runtime due to some
QoS parameters. ASP provides the feature of load
balancing and VM allocation at runtime through the
use of fully controlled autonomic loop. In this sys-
tem, lease cost and SLA violations are reduced but
very large execution time. Linlin at al. [31] proposed
SLA-based Resource Allocation (SRA) mechanism
to map the user requests to available resource, fulfill
QoS requirements of user application at runtime and
implemented in virtual environment. Further, SRA
considers QoS parameters like response time, service
time, cost and SLA violations. But SRA failed to analyze
the effect of QoS parameters on SLA violation rate.

2.3.2 Self-configuring

The main aim of self-configuring is installation of
missed or outdated components based on the alert gen-
erated by system without human intervention. Some
components may be reinstalled in changing conditions
and other components need updates. Self-configuring
is also taking care of cost, which includes cost of
resource and penalty cost in case of SLA viola-
tion. Case Base Reasoning (CBR) based framework
uses human based interaction to make an agreement
between user and provider called SLA for success-
ful execution of workloads by considering resource
utilization and scalability as a QoS requirement. In
this system, various elastic levels are defined, and a
control loop is used to enable the autonomic comput-
ing in virtual environment. Knowledge base stores the
rules used in decision making after monitoring data
(real and synthetic workloads) for resource configura-
tion. This system executes in four steps: a) retrieves
the most similar case, b) solves the problem through
similar case, c) revises the solution and d) stores
the key-features of solution into knowledge database

for future use. SLA violations and resource utiliza-
tion are improved in this autonomic system without
considering basic QoS parameters like cost, time,
energy etc. Self-COnfigured, Cost-based Cloud qUery
Services (COCCUS) [33] used centralized architec-
ture to provide the query based facility, in which user
can ask query regarding scheduling policies, priorities
and budget information. CloudDBMS is used to store
the information about the scheduling policies and user
queries for further use. Main objectives of COCCUS
are: 1) to get and execute the user queries, ii) to store
the queries in the data structure and iii) to minimize
the maintenance cost of query execution but it has
large execution time.

2.3.3 Self-optimizing

The main aim of self-optimizing is to map the tasks
or workloads on appropriate resources using dynamic
scheduling technique. Dynamic scheduling continu-
ally checks the status of execution and improves the
system performance based on the feedback given by
autonomic element. For data intensive applications,
adaptive scheduling is used, which can be easily
adapted in changing environment. Self-optimizing is
affected by various QoS parameters such as execution
time, execution cost, resource utilization, availabil-
ity of service, reliability of service, energy efficiency
and resource contention. Cloud Auto Scaling (CAS)
[34] schedules activities of VM instance start up and
shut-down automatically to improve the performance.
CAS enables user to finish the execution of workloads
or tasks within their deadline with minimum cost.
Window Azure Platform is used to implement this
autonomic system. CAS contains four components:
history repository, performance monitor, VM manager
and auto-scaling decider. Performance monitor checks
the processing time, execution time and arrival time
of workload. History repository is used to store the
particular information about workload. VM manager
maintains a relation between cloud providers and auto-
scaling mechanism and executes plan of auto-scaling
to finish the execution of workloads. CAS did not con-
sider heterogeneous cloud workloads with different
QoS parameters.

Autonomic Workload Manager (AWM) [35] used
distributed provisioning and scaling decision making
system to distribute the workloads on resources based
on their common QoS characteristics. AWM divides

@ Springer

390

S. S. Gill, R. Buyya

resources into two categories: coarse-grained and
fine-grained resources. AWM allocates the resources
based on minimum response time and high through-
put. This autonomic system executes in three steps:
1) allocate resources to workloads, 2) minimize exe-
cution time and 3) check execution status (if executes
within time and budget then continues execution oth-
erwise provide more resources). AWM is not able
to determine the cost of execution of workloads.
Mehdi et al. [36] proposed Autonomic Resource Con-
tention Scheduling (ARCS) technique for distributed
system to reduce resource contention in which more
than one job shares same resource simultaneously.
ARCS have four main components: i) front end
policies (it performs admission control and queu-
ing of jobs), ii) scheduler (it contains backfilling
scheduling algorithm), iii) information service (infor-
mation about scheduler) and (iv) back end policies
(mapping of resources with jobs). ARCS established
a relationship among layers of distributed resource
management. ARCS did not check the variation of
resource contention along with number of work-
loads. Energy-aware autonomic resource scheduling
(EARTH) [15] is an autonomic resource management
technique which schedules the resources automati-
cally by optimizing energy consumption and resource
utilization. Scheduling rules have been designed using
the concept of fuzzy logic to calculate the priority of
workload execution. Large number of rules is gener-
ated for every request, so it is very difficult to take an
effective decision in timely manner. EARTH always
executes the workloads with highest priority (which
has earliest deadline), in which workloads with lowest
priority is facing the problem of starvation.

2.3.4 Self-protecting

The main aim of self-protecting is to protect the sys-
tem from malicious and intentional actions by tracking
the doubtful activities and respond accordingly to
maintain the working of system without any disrup-
tion. System should have knowledge about legal and
illegal behavior to make distinction and apply oper-
ation accordingly to block the attack. Attack may be
DDoS, R2L, U2R and Probing. In DDoS (Distributed
Denial of Service) attack, huge traffic is generated
by attackers to cause damage by flooding the vic-
tim’s network. It includes SMUREF (to create denial
of service, attackers use Internet Control Message

@ Springer

Protocol (ICMP) echo request by pointing packets
toward broadcast IP address), LAND (Local Area Net-
work Denial - when source and destination address
is same, then attackers send spoofed SYN packet in
TCP/IP network) and SYN Flood (attackers send-
ing IP-spoofed packets which can crash memory). In
Remote to Local (R2L), attackers access the system
locally without authorization to damage the network
by executing their commands. It includes attacks like
IMAP (Internet Control Message Protocol), Password
Guessing and SPY.

In User to Root (U2R), attackers get root access of
the system to destroy the network. It includes attack
like buffer overflow and rootkits. In Probing, attack-
ers use programming language to steal the private
information. It includes attacks like port sweep and
NMAP (Network MAPper). Rainbow Architecture
based Self-Protection (RASP) [37] is an autonomic
technique in which security threats are detected at
runtime through the use of patterns. RASP reduces
the security breaching and improves the depth of
defense. Detection rate of attacks in RASP is not as
required. Self-Healing And self-Protection Environ-
ment (SHAPE) [38] is an autonomic system to recover
from various faults (hardware, software, and network
faults) and protect from security attacks (DDoS, R2L,
U2R, and probing attacks). SHAPE is based on com-
ponent based architecture, in which new components
can be added or removed easily. Open source tech-
nologies are used to implement this autonomic sys-
tem, but SHAPE is unable to execute heterogeneous
workloads.

All the above research works have presented
resource provisioning and scheduling in cloud compu-
ting without considering the important QoS parameters
of self-management in a single autonomic resource
management framework. In addition, SCOOTER
needs to consider the basic features of cloud com-
puting in order to execute the heterogeneous cloud
workloads automatically optimize QoS parameters,
which is not considered in other existing work.

3 SCOOTER: Self-Management of Cloud
Resources for Execution of Clustered Workloads

Provisioning and scheduling of resources in cloud is
an important part of resource management system.
Mapping of cloud workloads to appropriate resources

Resource Provisioning based Scheduling Framework for Execution of Heterogeneous... 391

is mandatory to improve the performance of QoS
parameters like execution time, execution cost and so
forth. Based on QoS requirements, scheduling finds
and maps the resources and workloads for execu-
tion. The existing scheduling frameworks execute the
workloads without self-management. But in present
scenario, there is a need of cloud based framework,
which provisions and schedules computing resources
automatically as well as adapt on the current sit-
uation dynamically by considering execution time,
cost, energy, SLA violation rate, security, resource
contention and so forth as a QoS parameters.

3.1 Problem Statement

A cloud provider needs automated and integrated
intelligent strategies for provisioning of resources to
offer services that are available, reliable and cost-
efficient and thus achieve maximum resource utiliza-
tion [1]. Resource provisioning in cloud is a complex
task that is often compromised due to non-availability
of the desired resources. The cloud services deliv-
ered by heterogeneous and dynamic nature of the
cloud resources depend on the QoS [2]. Provision-
ing helps in identifying the kind and exact amount
of resources. Once resources are provisioned, then
scheduling can be done with the help of resource
scheduling techniques. Literature reported that lot of
work still needs to be done for optimal resource usage
[3, 4]. Autonomic resource provisioning and schedul-
ing technique can provide one of the solutions for
optimal resource allocation by maximizing provider’s
revenues while satisfying customers QoS constraints,
handle unexpected runtime situations automatically
(e.g., unexpected delays in scheduling queues or unex-
pected failures) and thus minimizing resource usage
cost and execution time. Maximizing the efficiency,
dispersion, heterogeneity and uncertainty of resources
brings challenges to resource allocation, which can-
not be satisfied with traditional resource management
techniques in cloud environment. To consider this
problem, a set of self-regulating/independent cloud
workloads {w, w2, w3, . . . ,w,} to map on a set of
dynamic and heterogeneous resources {r1, 72,73, . .
.} has been taken. R = {ry, 1 < k < n} is the
collection of resources and n is the total number of
resources. w = {w;|l < i < x} is the collection of
cloud workloads and x is the total number of cloud
workloads.

3.1.1 Objective and Commitments

The main objectives of this research work are:

a) To extend the existing research work and dev-
elop an autonomic resource provisioning frame-
work for cloud resources based on user’s QoS
requirements.

b) To develop a resource scheduling approach
that efficiently schedules the provisioned cloud
resources and maintains the SLA.

¢) To validate the developed framework in a cloud
environment through a case study of E-commerce
as a Cloud Service.

3.1.2 Objective Function

The goal of cloud provider is to minimize the SLA
violation rate. The cloud workload will be executed
only when the SLA violation rate is less than its
threshold value (maximum SLA deviation agreed
between cloud provider and user). SLA Violation Rate
is the product of Failure Rate and Weight of SLA
[17] and can be calculated as (1). List of SLA =
A T my>, where y is total num-
ber of SLAs

m is not violtated, Failure (m) =1

Failure (m) =0

Fail =
ailure (m) [m is violated,

y .
Failure (m;
Failure Rate = E (M)
‘ y
i=1

y
SLA Violation Rate = Failure Rate x Z (w;)
i=1

(D
Where w; is weight for every SLA.

3.2 SCOOTER Architecture

SCOOTER efficiently schedules the provisioned cloud
resources and maintains the SLA by considering four
important properties of self-management and the max-
imum possible QoS parameters required to improve
cloud based services. Architecture of SCOOTER is
shown in Fig. 1, which comprises following units:

® Cloud Workload Management Portal (CWMP)
acts as an interface for consumer to interact with

@ Springer

S. S. Gill, R. Buyya

eﬁ ®

Cloud Users

[|
7 Resource Manager | |
1
Workload Manager ¢ J/ ! H
i

1
\1, QoS Manager SLA Manager 1 :
P 1| ! :
= | Dispatch Workload = | : !
< I
Monitor Analyse Plan Executor H
Matchmaker Security > Alert > Select an > Execute Action : :
Monitoring Analysing Action 1 :
: 1
1
Autonomic Service Manager : :
| Sensors Effectors—l 1 :

1
1
Cloud Resource S Resource Resource Resource : 1
. re L. H
Repository > | Provisioner) Scheduler | Exceutor i
1l
1
\ N\ AN / : 1
'

; 1
Q-aware QRSF Performance Monitor X :
Alert Generator : :
1
__ 1

__ B

Middleware Middleware
&
~

Resource Usage Monitor

Fig. 1 SCOOTER architecture

SCOOTER for registration, login, ask queries and
to submit workload details as shown in Figure 2.
Based on the requirements of user, cloud provider
generates schedule for workload execution.

The aim of cloud Workload Manager is to look
at different QoS requirements of cloud workloads
to determine the feasibility of their execution. The
different cloud workloads have different set of
QoS requirements and characteristics. Workload

@ Springer

Cloud Resources

manager also provides an input to SLA manager
to find the required amount of cloud resources
for workload execution. It also clusters the cloud
workloads based on their QoS parameters.

QoS Manager assesses the QoS requirements of
the workloads. Based on the key QoS require-
ments of a specific workload, the QoS manager
puts the workload into critical and non-critical
queues through QoS assessment [18].

Resource Provisioning based Scheduling Framework for Execution of Heterogeneous... 393

Fig. 2 Interaction of cloud
user with CWMP

:Consumer_Handler

1. Registration
3. Update
information

2. User Registered
4. Information Updated

11. Submit Workload Detail

:Cloud_Consumer

12. View Workload Schedule

:Workload Handler

5. Login
7. Enter Query|

6. Login Successful
10. Get Answer

13. Workload Schedule displayed

13. Generate Workload | | 12. Get Workload
Schedule Detail

8. Ask Queries

:Query_Handler

:Cloud_Provider

9. Answer Queries

e SILA Manager prepares SLA document based
on SLA information, which contains information
about SLA violation (penalty rate and allowed
maximum SLA deviation) and keep the record of
urgent cloud workloads that would be placed in
priority queue for earlier execution [17].

® Matchmaker identifies the required type of
resources for provisioning of resources using the
data available in cloud resource repository.

® (Cloud Resource Repository contains the resource
details including the number of CPUs used, size
of memory, cost of resources, type of resources
and number of resources. It also maintains the
other description of resources (resource name,
resource type, configuration, availability informa-
tion, usage information and price of resource).

® Autonomic Service Manager comprises of six
components of MAPE-K Loop: sensor, moni-
tor, analyze, plan, executor and effector and the
function of these components is described in
Section 3.3.1.

® Resource Provisioner provisions the cloud
resources, in which, suitable resources are iden-
tified for a specific workload based on their
QoS requirements as designated by Matchmaker.
These resources are then said to be provisioned
as per the user requests (workloads).

® Resource Scheduler schedules the provisioned
resources with maximum optimization of QoS
parameters.

® Resource Executor executes the workloads using
the scheduled resources.

® Performance Monitor measures the value of QoS
parameters during workload execution and gener-
ate the alert in case of performance degradation.

® Middleware makes an interaction between res-
ource manager and cloud infrastructure for execu-
tion of workloads. Resource Usage Monitor mea-
sures the value of resource utilization of different
resources participating in execution of workloads.

3.3 Resource Provisioning and Scheduling

The process of resource provisioning and scheduling
in cloud is shown in Fig. 3 and it contains following
two phases of resource management:

a) Phase-1: Resource Provisioning

The objective of Phase 1 is to provision the cloud res-
ources using Q-aware [9] i.e. QoS based resource pro-
visioning technique. Initially, cloud consumer submits
the workload detail to workload analyzer for workload
analysis along with workload information like QoS
attributes, SLA and so forth. All the submitted work-
loads are considered as bulk of workloads. All the
workloads should have their key QoS requirements,
based on that, the workload is executed with some user
defined constraints such as deadline, budget etc.

The types of workload that have been identified
during workload analysis [6], are web apps, technical
computing, endeavor software, performance testing,
online transaction processing, e-commerce, central
financial services, storage and backup services, pro-
duction applications, software/project development
and testing, graphics oriented, critical internet applica-
tions and mobile computing services. Workload Ana-
lyzer clusters the submitted cloud workloads based on
workload patterns [6, 9] and Table 1 shows the out-
come of pattern based clustering of workloads along
with their QoS requitements.

@ Springer

394

S. S. Gill, R. Buyya

Workload Detail

Cloud Consumer

Workload Information

(SLA and QoS Info)

Resource Provisioning Result

Resource Info

Resource Information

Resource
Provisioning
Agent (RPA)

SLA Database
SLA Info

Cloud Resource

Resource Detail

“

Cloud

Repository Provider

Phase 1:
Resource
Provisioning

Submit Workload

3
Resource Executor O

Resources

‘ Resource Mapping ‘

‘ Assign Resources |

‘ Schedule Resources ‘

| Execute Resources [E] I—

Resource Monitor

Check SLA Violation
Rate (SVR) [M]

[Yes]

SVR <TH

[No]

©,

Analysis and Plan [AP]

| Generate Alert ‘

’ Negotiate SLA ‘ O
5

Release of Resources @

Execute Resources
Successfully

Resources Automatically
Scaled Back

Ready for new
Allocation

Phase 2:
Resource
Scheduling

Fig. 3 Resource provisioning and resource scheduling in cloud

QoS metrics for every QoS requirement of each
workload are identified [6]. Based on importance
of the attribute, weight for every cloud workload is

Table 1 Pattern based clustering of workloads and their QoS requirements

calculated [9]. After that, workloads are re-clustered
based on k-means based clustering algorithm for bet-
ter provisioning of resources. Final set of workloads is

Type of Workload

QoS Requirements

Web Apps

Reliable storage, High network bandwidth, High availability

Technical Computing
Endeavor Software
Performance Testing

Online Transaction Processing
E-Com

Central Financial Services
Storage and Backup Services
Productivity Applications
Software/Project Development and Testing
Graphics Oriented

Critical Internet Applications
Mobile Computing Services

Computing capacity, Reliable storage

Security, High availability, Customer Confidence Level, Correctness
Execution time, energy consumption and execution cost
Security, High availability, Internet accessibility, Usability
Variable computing load, Customizability

Security, High availability, Changeability, Integrity
Reliability, Persistence

Network bandwidth, Latency, Data backup, Security

User self-service rate, Flexibility, Testing time

Network bandwidth, Latency, Data backup, Visibility
High availability, Serviceability, Usability

High availability, Reliability, Portability

@ Springer

Resource Provisioning based Scheduling Framework for Execution of Heterogeneous... 395

Table 2 Final set of clustered workloads

Cluster Cluster Name ‘Workloads

Cl Compute Technical Computing, Performance Testing

C2 Storage E-Com and Storage and Backup Services

C3 Communication Web Apps, Critical Internet Applications, Mobile Computing Services

C4 Administration Endeavor Software, Online Transaction Processing, Central Financial Services, Pro-
ductivity Applications, Software/Project Development and Testing and Graphics
Oriented

based on

Fig. 4 Class diagram describes different interactions in SCOOTER

@ Springer

396

S. S. Gill, R. Buyya

distributed among four clusters (C1, C2, C3 and C4)
as shown in Table 2.

Resource Provisioning Agent (RPA) uses the final
set of clustered workloads as an input, it accesses the
cloud resource repository, which contains the informa-
tion about all the resources given by resource provider
and obtains the result based on QoS requirements of
workload as specified by user in SLA. QoS Man-
ager will calculate the execution time of workload
and the expected execution time of the workloads can
be derived from workload task length or historical
trace data [18]. If the execution time is lesser than
the desired deadline, then RPA considered workload
as an urgent and put workload into Critical Queue.
Further, QoS manager assigns priority to those work-
loads based on SLA information for provisioning of
cloud resources. On the other hand, if the workload
is not urgent then RPA put workload into non-Critical
Queue for waiting [7]. In case of urgent workloads, if
the deviation is more than the allowed, then penalty
will be imposed (it will provision the available reserve
resources to the particular workload for compen-
sation). SLA contain details about QoS parameters
considered for a particular workload and SLA devi-
ation for provisioning of resources without violation

: Resource_Provisioner

of SLA. SLA also specifies the SLA deviation, in
which workloads are executed with SLA violation rate
is lesser than its threshold value [18]. RPA sends the
resource provisioning result back to cloud consumer
and SLA information stored in SLA database. It pro-
visions the demanded resources to the workload for
execution. Figure 4 shows the interaction of differ-
ent active classes for the process of provisioning of
resources. Figure 4 contains eight classes, in which
there are two types of users: Cloud Consumer and
Cloud Provider.

Resources and workloads details have been pre-
sented in two different classes (Resource and Work-
load) along with their basic description. Matchmaker
class is used to collect the SLA information from user
through another class named “SLA Database”. Based
on SLA, Matchmaker Class maps the workloads with
appropriate resources and returns the provisioning
information to cloud user and checks the conditions
of policies simultaneously. Cloud provider and cloud
consumer can interact with each other through the
use of Query class. If user requirements fulfill and
required resources are available, then SCOOTER pro-
visions the resources immediately to cloud user oth-
erwise RPA requests to submit the workload again

:Resource_Scheduler

Loop schedulér loop J

saveMapping()

mpP getResourceToSchedule() Next set of
b Resources workloads to
__________________________ > schedule

Loop foreach workload J |

' P getReadyResources() :
- resources
__________________________ >

i <<create>>

D; :decideMapping()

Fig. 5 Interaction between resource provisioner and resource scheduler

@ Springer

Resource Provisioning based Scheduling Framework for Execution of Heterogeneous... 397

with new QoS requirements as a SLA document.
After successfully provisioning of resources [Phase-
1], workloads are submitted for resource scheduling
[Phase 2].

b) Phase-2: Resource Scheduling

The objective of Phase 2 is to schedule the pro-
visioned resources using QRSF [11] i.e. QoS based
resource provisioning technique as shown in Fig. 3.
The resource scheduler schedules the incoming cloud
workloads based on the QoS and resource details.
Figure 5 shows the interaction between resource
provisoner and resource scheduler for scheduling
of resources. Two loops are used in scheduling of
resources. First loop for scheduling i.e. get cloud
resources to schedule and second loop is used to ask
resources repeatedly and available resources and cloud
workloads mapped efficiently based on the scheduling
policies as described in Fig. 6.

In QRSF [11], four resource scheduling policies
[Compromised Cost - Time Based (CCTB) Schedul-
ing Policy, Time Based (TB) Scheduling Policy,
Cost Based (CB) Scheduling Policy and Bargaining
Based (BB) Scheduling Policy] have been consid-
ered based on different QoS parameters like cost,
time and energy. Based on the scheduling policy, the
resources are scheduled to the cloud workloads. Each
workload is characterized by their deadline, estimated
budget and policy. The QoS of each cloud work-
load is also represented in the scheduling request of
the cloud workload. Figure 6 shows the decision tree
based scheduling criteria, which is used to select a
specific scheduling policy based on consumer work-
load details using predefined rules. Note: Pseudocode

of four resource scheduling policies and their corre-
sponding rules have been described in previous work
[11, 12] respectively.

After successful scheduling of resources, Resource
Executor executes the workload(s) on scheduled
resources using selected resource scheduling policy.
Resource Executor needs to retain the adequate num-
ber of resources for successful execution of workload
during peak load. Figure 7 shows the process of
resource execution and monitoring, and there are two
loops used during resource execution and monitor-
ing. First loop is scheduler loop, for computing the
resource requirement for a particular cloud workload.
Second loop is discovering processor properties like
processing cost, speed and MIPS (Million Instruc-
tions Per Second) rating to measure resource usage.
After execution of every cloud workload, the proces-
sor properties are saved for future purpose. Resource
monitoring is used to monitor the performance of QoS
parameters during workload execution of both phys-
ical and virtual infrastructure. The resources that are
utilized by the physical and virtual infrastructures and
the workloads executing on them must be measured
efficiently. During execution of a particular cloud
workload, Resource Monitor (RM) checks the status
of current workload execution.

As shown in Fig. 3, during execution of cloud
workloads, performance monitor measures the perfor-
mance in terms of SLA Violation Rate to maintain
the efficiency of SCOOTER and generates alert in
case of performance degradation. If the problem is not
resolved, then information will be send to Autonomic
Service Manager for further investigation and resolu-
tion. The working of Autonomic Service Manager is
described in Section 3.3.1.

[Scheduling Policy]

|

v

Min Max
Cost Time

Fig. 6 Resource scheduling policies

v v

[Bargaining Based

Compromised Cost Time Based]

I

Tl

Cost Time Min Min
Agreed Agreed Cost Time

@ Springer

398

S. S. Gill, R. Buyya

:Resource Executor

:Resource Monitor

:Resource

getAllResource()
resources
>

[Resource]:discoverProps

[Resource]: Available

Lo(')p scheduler loop

~ getComputeResource() : :ProcessorlnfoServw'e
D ~ ComputeResources
------------------- > :
Lioop discover processor props J ; :
E QueryProcessingSpeedProperties() _
: MIPS rating, cost =
| €-m oo STETER
saveProcessorProps() : :
I saved | _ __ _____ > D

Fig. 7 Process of resource execution and monitoring

3.3.1 Autonomic Service Manager

This component is working based on IBM’s auto-
nomic model [21] that considers four steps of auto-
nomic system: 1) Monitor, 2) Analyze, 3) Plan and
4) Execute and two external interfaces: a) Sensor and
b) Effector, as shown in Fig. 1. Autonomic service
manager comprises following components:

Sensors Sensors get the information about perfor-
mance of current state nodes in terms of QoS param-
eters. Firstly, the updated information coming from
processing nodes transfers to manager node then man-
ager node transfers this information to Monitors.
Updated information includes value of QoS param-
eters (execution time, execution cost, resource uti-
lization, availability of service, reliability of service,
energy efficiency, SLA violation rate and resource
contention), faults (network, software and hardware),
new updates regarding component status (outdated
or missing) and security attacks (intrusion detection
rate). For example: energy consumption of workload

@ Springer

execution. Sensors continually monitor the value of
energy consumption and compares with threshold
value of energy consumption [49]. If the value of
energy consumption is less than threshold value then
continues its execution otherwise add new resources
in these consecutive steps: [i) current node is declared
as dead node, ii) remove dead node, iii) add new
resource(s) and iv) reallocate resources and start exe-
cution] and transfers updated information to manager
node.

Monitor [M] Initially, Monitors are used to collect
the information from manager node for monitoring
continuously performance variations by comparing
expected and actual performance. Expected perfor-
mance is the threshold value of QoS parameters,
which also includes maximum value of SLA deviation
and stored already in SLA Database. Actual informa-
tion about performance is observed based on the fail-
ures (network, software and hardware), new updates
of resources (outdated or missing), security attacks,
change in QoS parameters and SLA violation, and

Resource Provisioning based Scheduling Framework for Execution of Heterogeneous... 399

transfers this information to next module for further
analysis.

For self-optimizing, QoS agent is installed on all
processing nodes to monitor the performance. We
have considered the set of workloads (Wg =
(Wi, Wo, oo Wi }) placed in workload
queue and consider some or all the workloads for
execution based on the availability of resources
and QoS requirements of workloads. After this,
resources are allocated to the workloads then Exe-
cution Time (ET), Average Cost (C) and Energy
Consumption (Ecyyy,q) for every workload will be
calculated. If any of the condition ([ET < D; &&
C< Bgl or [Ecioud = EThreshold]) will be
false then alert will be generated otherwise sched-
ule resources for execution, where D; is deadline
time, Bp is allocated budget and Erpreshoid 18
threshold value of energy consumption.

For self-protecting, security agents are installed
on all the processing nodes, which are used to
trace the unknown and known attacks. Based on
the existing database in the system, new anoma-
lies are captured in SCOOTER using State Vector
Machine (SVM) [39]. SCOOTER captures an
anomaly by detecting system intrusions and mis-
use of system by using its monitor and classifying
it as either normal or anomalous by compar-
ing its properties with data in SNORT database
[39]. New anomalies are captured by security
agent and information about anomalies is stored
in database. SCOOTER protects the system from
various attacks as discussed earlier such as DDoS
[Smurf, LAND, SYN Flood and Teardrop], R2L
[SPY, Password Guessing, IMAP], U2R [Rootk-
its, Buffer Overflow] and Probing [Ports sweep
and NMAP]. SNORT anomaly detector is used
to protect the system from attacks [39]. We have
used detection engine to detect the attacks and
maintain the log about attack as described in
Fig. 8. Detection engine detects the pattern of
every packet transferring through the network and
compares with the pattern of packets existing in
database to find the current value. Alert will be
generated if current value is out of range [Range
(Min, Max)]. SVM is used in SCOOTER to make
a network profile for attack detection and it is
designed based on training data [40] to detect and
recognize input data (testing data) and based on

the closed match to the data defined in classes,
output is decided.

For self-healing, software, network, hardware and
hardware hardening agents are used to detect the
corresponding faults. Hardware hardening agent
scans drivers and checks the replica of origi-
nal drivers when new node in cloud is added.
After verification of new node by device driver,
node is added. If the node already exists in the
system, then it will generate alert. SCOOTER
performs the hardening [41] of new driver into
cloud to avoid the degradation of performance
in case of faults and generates reports about the
failure. After successful hardening of new driver,
hardened driver replaces the existing drivers. If
any alert is generated after hardening of driver,
then original driver replaces the hardening driver
and log is updated. After hardening of driver,
hardware agents are using to monitor the perfor-
mance of hardware components. Machine check
log is used in SCOOTER to resolve hardware fail-
ures and generate alert in case of any internal
error and store the information regarding alert into
database. SCOOTER uses fields for Log infor-
mation [Event Type (type of event occurred i.e.
CRITICAL OR ‘ERROR’), Event Id (Event has
unique identity number) and Time Stamp (Time
of occurrence of error in that event)]. Database
is updated by using log information [Node_Name
and MAC_Address] and alert will be generated.
Software agents monitor the usage of memory
and CPU. SCOOTER fixes some threshold value
usage for both CPU and memory [18]. If the value
of usage of memory and CPU is more than thresh-
old value, then system generates alert. Network
agents are used to measure the rate of data transfer
from source to destination in a particular network.
SCOOTER checks the data transfer continuously;
manager node asks status from processing nodes.
Manager node considers network failure if node
does not respond.

For self-configuring, software component agent
and hardware component agent are used to moni-
tor the performance. For all the software compo-
nents using at different processing nodes, status
of active component is retrieved by software com-
ponent agent. In SCOOTER, two types of status
are defined in database: ‘MISSING’ or ‘OUT-
DATED’. If software component agent shows

@ Springer

S. S. Gill, R. Buyya

)
Resource Resource
Information ! Generator
!
!

Workload Information
(EaaCS)

! Workload
Generator
——

Resource

Security Manager

SNORT DB

Attack Generator

Fig. 8 Cloud testbed

status is ‘MISSING’ (due to missing files) then
uninstall the existing software component and
reinstall the component. New version of com-
ponent is to be installed if the component sta-
tus is ‘OUTDATED’. For hardware components,
SCOOTER uses fields for log information [Event
Type (type of event occurred i.e. ‘CRITICAL’ OR
‘ERROR’), Event Id (Event has unique identity
number) and Time Stamp (Time of occurrence of
error in that event)]. For all the hardware compo-
nents using at different processing nodes, status of
active component is retrieved by hardware com-
ponent agent. If any of the event (‘CRITICAL’
OR ‘ERROR’) occurs, then database is updated
by using log information [Component_Name and
Compoenent_Id] and alert will be generated.

@ Springer

Workload

Matchmaker

Fault Manager

Fault Detection

)

- / JAL

Cloud Resource 1

l
- J /JAZ
Cloud Resource 2

-/

Cloud Resource 3

JA3

Analyze and Plan [AP] Analyze and plan module
start analyzing the information received from moni-
toring module and make a plan for adequate actions
for corresponding alert. Alerts are categorized in seven
categories: QoS alert, security alert, software alert,
hardware alert, network alert, software component
alert and hardware component alert.

For self-optimizing, the analyzing unit starts ana-
lyzing the behavior of QoS parameters of a par-
ticular node after alert is generated by QoS agent.
That particular node is declared as ‘DOWN’ and
restarts the failed node and starts it again and mea-
sures the status of that node. If the node status
changes to ‘ACTIVE’, then continue its execution
otherwise add new resources in these consecutive
steps: [i) current node is declared as dead node,

Resource Provisioning based Scheduling Framework for Execution of Heterogeneous... 401

ii) remove dead node, iii) add new resource(s) and
iv) reallocate resources and start execution].

For self-protecting, the analyzing unit starts ana-
lyzing the log information of attacks after alert is
generated by security agent to generate signature.
SCOOTER performs following function to gen-
erate signature: a) Collect all the new alerts gen-
erated by AE [Autonomic Element], b) Use Java
utility to perform parsing to get URL, Port and
Payload detail, c) Categorize data based on URL,
Port and Payload, d) To find largest common
substring apply LCS (Longest Common Subse-
quence) and e) Construct new signature by using
payload string identified by LCS.

For self-healing, the analyzing unit starts analyz-
ing the behavior of hardware and software of a
particular node after the alert is generated by hard-
ware and software agent respectively. If alert is
generated at runtime when workload is executing
on some node N, then set the status of node N
as ‘DOWN’ and restart the failed node and start it
again and measure the status of that node. If the
node status changes to ‘ACTIVE’, then continue
its execution otherwise use another stable node
after resubmission of workload. Stability of node
is more if lesser number of alerts generated in past
are reported from log, chance of selection of that
node is more in case of failure. If workloads takes
more time to execute or usage of CPU or memory
is more than threshold value at a particular node
then 1) set the status of that node as ‘DOWN’, ii)
restart the node, iii) identify the problem and iv)
perform verification to check whether the prob-
lem is resolved or not. Network agent identifies
the current status of network and to reduce failure
rate, network agent takes right decision based on
network log.

For self-configuring, the analyzing unit starts ana-
lyzing the behavior of hardware and software
component of a particular node after the alert is
generated by hardware and software component
respectively. If the status of hardware compo-
nent is ‘CRITICAL” OR ‘ERROR’, then declare
that component as ‘DOWN’ and restart the failed
component and start it again and measure the sta-
tus of that component. If the component status
changes to ‘ACTIVE’, then continue its execution
otherwise add new component in these consec-
utive steps: [i) current component is declared as

INACTIVE, ii) remove INACTIVE component,
iii) add new component (s) and iv) start exe-
cution]. If the status of hardware component is
[Event Type is ‘MISSING’ or ‘OUTDATED’)],
then use following steps: i) replace the component
with updated version if Event Type is ‘OUT-
DATED’ and ii) reinstall the component if Event
Type is ‘MISSING’. Once data has been ana-
lyzed then this framework executes the actions
corresponding to the alerts automatically.

Executor [E] Executor implements the plan after
analysis of current status of system.

For self-optimizing, main goal of executor is
to optimize the performance of QoS parameters
and execute the workloads without degradation
in resource utilization. Based on the information
provided by analyzer, executor will add new node
from resource pool with minimum execution time,
cost and energy consumption. If the resources are
not available in resource pool then add new node
from reserve resource pool with minimum exe-
cution time, cost and energy consumption after
negotiating SLA by intimating user.

For self-healing, if the selected node is not a sta-
ble node then select another different node which
has maximum stability among the available nodes.
If the error occurred during workload execution,
then save the state of that workload and restart the
node.

For self-protecting, SNORT [39] is used to refine
the signature received from analyzer and com-
pares new signatures with existing signature in
SNORT database. If signatures are new, then they
are added to SNORT database and if signatures
are existing then they are merged.

For self-configuring, if the new component is
added then bind component by exchange mes-
sages with other existing components and start
execution on that component. If the component
executes the workload with minimum execution
time, cost and energy consumption as required
then continue execution otherwise replace with
another qualified component. If error is generated
in existing component, then save the state of exe-
cution and restart the component. If still compo-
nent is not performing as required, then reinstall
the component or install an updated version to
resolve issue.

@ Springer

402

S. S. Gill, R. Buyya

Effector Effector is acting as an interface between
nodes to exchange updated information and it is used
to transfer the new policies, rules and alerts to other
nodes with updated information. Note: Pseudocode of
monitoring unit, analyzing and planning unit and exe-
cuting unit is described in previous work [18]. The
procedure of designing new rules using fuzzy logic is
described in previous work [15].

After successful execution of cloud workloads,
releases the free resources to resource pool and sched-
uler is ready for execution of new cloud workloads.

4 Experimental Setup and Results

Figure 8 shows the cloud testbed, which is used to
evaluate the performance of SCOOTER. We modeled
and simulated a cloud environment using CloudSim
toolkit [42]. JADE Platform [50] establishes the
communication among different autonomic elements
deployed at different systems using JADE Agents
(JA). To measure the value of Intrusion Detec-
tion Rate, Security manager utilizes the services of
SNORT with required modifications. SNORT [39]
is signature-based detector and it works on Internet
Protocol Networks to examine the real-time network
for identification of malicious activity. It generates
the “analysis signatures” by comparing with already
stored signature in SNORT database and further it
is refined, finalized and stores as new signatures in
SNORT database. While, SVM [40] is used to detect
the abnormal behavior (unknown attacks). The differ-
ent tools (NMAP for probing, NetCat for L2R, Hydra
for R2L and metasploit for DDoS) are used in this
research work to launch different attacks [39, 40]. The
concept of Carburizer [41] is used to harden the device
drivers are used in Fault Manager to manage differ-
ent types of software, network and hardware faults.
Note: The detailed description of experimental setup
is described in previous research work [18, 19].

Table 3 Configuration details

We simulated computing nodes that resembles con-
figuration of resources shown in Table 3. The exe-
cution cost is calculated based on user workload and
deadline (if deadline is too early (urgent) it will
be expensive because we need a greater processing
speed and free resources to process particular work-
load with urgency. Their individual price is fixed
(artificially) for different resources because all the
resources are working in coordination manner to ful-
fill the demand of user (demand of user is changing
dynamically). Experiment setup using 3 servers in
which further virtual nodes (12 = 6 (Server 1) +4
(Server 2) 42 (Server 3)) are created. Every vir-
tual node has different number of Execution Com-
ponents (ECs) to process user workload and every
EC has their own cost (C$/EC time unit (Sec)).
Table 3 shows the characteristics of the resources used
and their Execution Component (EC) access cost per
time unit in Cloud dollars (C$) and access cost in
C$ is manually assigned for experimental purposes.
The access cost of an EC in C$/time unit does not
necessarily reflect the cost of execution when ECs
have different capabilities. The execution agent needs
to translate the access cost into the C$ for each
resource. Such translation helps in identifying the rel-
ative cost of resources for executing user workloads on
them.

The workload is modeled as processing of user
requests coming from different users for execution
through as case study of E-Commerce as a Cloud
Service (EaaCS), which reflects the management of
resources similar to cloud environment. In this out-
come, we suppose that each cloud workload which
is admitted to the SCOOTER may need fluctuating
input size and execution time of workload and such
type of cloud workloads in the form of Cloudlets are
described. To validate SCOOTER, a case study of
EaaCS is used, which also requires autonomic man-
agement of cloud resources [43] for execution of user
requests to optimize its performance.

Resource_Id Configuration Specifications Operating Number of ~ Number of Price (C$/EC
System Virtual Node ECs time unit)

R1 Intel Core 2 Duo - 2.4 GHz 1 GB RAM and 160 GB HDD Windows 6 18 2

R2 Intel Core i5-2310- 2.9GHz 1 GB RAM and 160 GB HDD Linux 4 12

R3 Intel XEON E 52407-2.2 GHz 2 GB RAM and 320 GB HDD Linux 2 6

@ Springer

Resource Provisioning based Scheduling Framework for Execution of Heterogeneous... 403

4.1 Case Study: E-commerce as a Cloud Service
(EaaCS)

EaaCS easily adapts and scales to the unique sell-
ing and buying scenarios for your specific user needs
[43]. EaaCS offers personalized, engaging and con-
sistent service and shopping experience on any device
like laptops, tabs, mobiles etc. Enable multichan-
nel e-commerce as a service for B2C (Business to
Customer) and B2B (Business to Business) busi-
nesses by seamlessly connecting e-commerce with
order management within your device to include cus-
tomer service, inventory, merchandizing, marketing,
and financials. To get an e-commerce as a service
on your handheld device/system, link your handheld
device/system directly to EaaCS operational business
systems with a single cloud-based platform designed
specifically to integrate seamlessly with your hand-
held device/system.

Leading e-commerce providers have built large
and complicated systems to provide countrywide or
even worldwide services. However, there have been
few substantive studies on e-commerce systems in
real world. With the technological advances on Web,
cloud computing, and mobile Internet, electronic com-
merce (e-commerce) becomes increasingly popular in
recent years. It is estimated that in 2015, the retail
e-commerce sales worldwide amounted to $1:67 tril-
lion, and in India, 11:1% of the retail sales were on
the Internet [43—45]. For enabling large volume of
online transactions and providing countrywide or even
worldwide services, leading e-commerce providers
such as Amazon and Alibaba have built large and com-
plicated systems. In e-commerce, service availability
and system’s performance are critical to providers, as
it is estimated that for a leading e-commerce Web-
site like Amazon, one second of service latency is
worth tens of thousands of US dollars. However,
there have been few substantive studies on large-scale
e-commerce systems in real world [44].

In this paper, we select Flipkart [44] and Snapdeal
[45], which are the top-two most popular e-commerce
websites in India, and investigate their systems with
a measurement approach [46, 47]. We analyze the
workloads upon Flipkart and Snapdeal that are col-
lected from campus network of Thapar University,
India, and investigate the behaviors and performances
of the e-commerce infrastructures with passive and
active measurements. In particular, we characterize

the flash crowd in the Dewali Shopping Day, which is
the biggest online shopping festival in India, and eval-
uate the e-commerce system’s performances under the
flash crowd. As far as we know, this work is the first
measurement study on large-scale e-commerce sys-
tems in real world. We find that the Dewali Shopping
Day impose a massive workload on e-commerce sys-
tems; it is a challenging for e-commerce providers
to accommodate the service requests during the flash
crowd; and users have poor service experiences. We
developed a peer-assisted architecture for e-commerce
content delivery and a local-database strategy for
e-commerce cloud service, and show that there is
considerable room for an e-commerce provider to
improve its service qualities.

We presented the first characterization study on the
e-commerce workload, in particular, the massive flash
crowd in the Dewali Shopping Day. We found that
Dewali Shopping Day attracts many users, who are
more willing to buy than usual, and the rush buying
behaviors at the very beginning of the shopping festi-
val impose a massive flash crowd on the e-commerce
systems. We investigated the behaviors and perfor-
mances of the e-commerce infrastructures, including
the Content Delivery Network (CDN) and the cloud.
We find that both Flipkart and Snapdeal have decent
CDN throughputs, but the throughputs degrade sig-
nificantly under the Dewali flash crowd, despite that
several efforts, such as expanding CDN footprint and
scheduling oversea servers, have been made to accom-
modate the massive content requests. We observe
that Flipkart’s ecommerce CDN adopts a proactive
bandwidth throttling to provide low but guaranteed
throughputs under the Dewali flash crowd, while
Snapdeal still follows the best-effort way to provide
service. As for the e-commerce clouds, both Flipkart
and Snapdeal do not have sufficient capacities during
the busy hours, and users suffer extraordinarily long
latencies in their ecommerce transactions. We analyti-
cally show that our proposed framework (SCOOTER)
can effectively manage workloads on e-commerce
infrastructures, thus enable provider to improve its
service qualities under massive flash crowd.

Flipkart and Snapdeal provide most of their ser-
vices on Web. Roughly speaking, the e-commerce
services can be categorized into two kinds: the content
service and the cloud service. As shown in Fig. 9, the
content service is provided with a content delivery net-
work (CDN). Both Flipkart and Snapdeal build their

@ Springer

S. S. Gill, R. Buyya

End Users
CDN Services

|

E-Commerce CDN

Cloud Services

r
1

1

1

1

1

1

1

1

1

1

1

1

1

: 'ﬁd Autonomic
H .
: > .8) Service
1

1

1

1

1

1

1

1

1

1

1

1

1

1

L

Fig. 9 E-Commerce as a cloud service

dedicated CDNs for distributing e-commerce con-
tents, such as static Web pages, javascripts, and high-
resolution images. The e-commerce CDN consists of
many content servers that are deployed at locations
and ISP networks that are proximate to users. Both
Flipkart and Snapdeal run their private e-commerce
clouds, which provide services such as search engine,
recommendation, shopping cart, billing, etc. As shown
in Fig. 9, an e-commerce cloud is composed of at
least one cloud datacenter and many front-end Web
servers. The cloud datacenter maintains elastic com-
puting/database/storage capacities, and runs applica-
tions for all back-end jobs, such as handling users’
database reads/writes/queries regarding their shopping
carts, maintaining sales and inventory databases, exe-
cuting ranking and recommendation algorithms, etc.
The front-end server’s proxy between end users and
the cloud data center. More specifically, a front-end
server receives a user’s service request in HTTP or
JSON, processes and forwards it to the cloud datacen-
ter; when a response is returned from the datacenter,
the front-end server generates a dynamic Web page
containing the service response and sends it back to
the user. To provide nationwide services in India,
both Flipkart and Snapdeal employ DNS redirection
to assign content and front-end servers to users.

In this section, we describe proposed framework in
the measurement study on Flipkart and Snapdeal’s e-
commerce systems. For the passive measurements on
Flipkart and Snapdeal, we collect traffics of the two e-
commerce websites at the gateway of campus network
[46], which connects tens of thousands of computers

@ Springer

e <t

E-Commerce Ci;;)ud

from offices, laboratories, student dormitories, etc. We
employ a high-performance network traffic analyzer
named iProbe to collect the e-commerce traffics [48].

For each HTTP flow, iProbe keeps a record in the
log file that contains the fields such as HTTP method
and URL, source/destination addresses and ports, flow
size in terms of Bytes and packets in both directions,
etc. With iProbe, we have collected two datasets:

e One dataset contains all the HTTP flows asso-
ciated with Flipkart and Snapdeal in a week
between 00:00 July 31, 2017 and 23:59 August 6,
2017. The dataset covers five weekdays and two
weekends on August 5 and August 6 and refer to
this dataset as WEEK.

e We also collect in 2016’s Dewali Online Shop-
ping Day from 00:00 to 23:59 on October 30,
2016. We refer to this dataset as D30. For each
HTTP flow recorded by iProbe, we look up its
domain name to decide which e-commerce ser-
vice the flow is about. Our datasets contain all the
flows between campus users and Flipkart, as all
Flipkart’s e-commerce traffics are on the HTTP
protocol.

Unfortunately for Snapdeal, the datasets do not
include all its traffics, as many Snapdeal flows
are encrypted and carried on the HTTPS protocol.
The performance of a case study (E-commerce as
a Cloud Service) is evaluated in a cloud environ-
ment by considering QoS parameters such as execu-
tion cost, energy, execution time, SLA violation rate,
fault detection rate, intrusion detection rate, resource

Resource Provisioning based Scheduling Framework for Execution of Heterogeneous... 405

utilization, resource contention, throughput and wait-
ing time as discussed in next section.

4.2 Experimental Results

In this experiment work, user request considers as a
cloud workload and experiment has been conducted
with different number of workloads (1000-5000) for
verification of performance of SCOOTER through a
case study (EaaCS). The existing autonomic resource
management frameworks such as EARTH [15], SRA
[31], ARCS [36] and SHAPE [38] are considered to
validate the SCOOTER and existing frameworks are
discussed in Section 2. The various metrics used to
calculate the values of different QoS parameters (exe-
cution cost, energy consumption, execution time, SLA
violation rate, fault detection rate, intrusion detec-
tion rate, resource utilization, resource contention,
throughput and waiting time) are described in previous
research work [6, 9, 11, 12, 15-20].

Test Case 1: Execution Time - As shown in
Fig. 10, the execution time increases with increase
in number of workloads in SCOOTER, SHPAE,
ARCS, SRA and EARTH. The average execution
time in SCOOTER is 12.17% less than SHAPE,
14.76% less than ARCS, 21.69% less than SRA and
27.96% less than EARTH. After 3000 workloads,
execution time increases abruptly due to increase in
user workloads suddenly, but SCOOTER performs
better than SHPAE, ARCS, SRA and EARTH and
this is expected as the SCOOTER is keeping track

of the state of all resources at each point of the time
automatically which enables it to take an optimal
decision than other existing frameworks.

Test Case 2: Execution Cost - With the increase in
number of workloads, execution cost increases as
shown in Fig. 11. As per the number of workloads
increases, SCOOTER performs better than SHAPE,
ARCS, SRA and EARTH. The average value of
execution cost in SCOOTER is 17.25%, 18.36%,
24.35% and 28.65% less than SHAPE, ARCS, SRA
and EARTH respectively. The reason is that exist-
ing frameworks does not consider the effect of
other workloads in the resource scheduler at the
time of workload submission but in SCOOTER,
resource manager considers the effect of workloads
in resource scheduler before execution of workload
according to both user and resource provider’s per-
spectives. The other reason is that with the provi-
sioned approach (Q-aware), due to the large number
of workloads, these and latter workloads had to be
executed on left out resources, which may not be
very cost effective.

Test Case 3: Fault Detection Rate - Figure 12
shows the capability of SCOOTER to detect the
failures by injecting different number of faults in
the system with different number of workloads.
Fault detection rate is decreasing with increase in
number of workloads. The value of fault detection
rate is reducing in SCOOTER, SHAPE, ARCS,
SRA and EARTH, but SCOOTER performs bet-
ter. The average fault detection rate in SCOOTER
is 22.66%, 24.12%, 24.98%, 27.71% more than

Fig. 10 Number of 1600
workloads vs. execution
time 1400 -
1200 -
2
2 1000 - —
@
= 800 —
=
g —
L]
g 600 ——SCOOTER
= —#— SHAPE
400 -
ARCS
200 4 SRA
== EARTH
0
2000 3000 4000 5000

Number of Worklods

@ Springer

406

S. S. Gill, R. Buyya

Fig. 11 Number of 160 -
workloads vs. execution
cost 140 1
120
8 /
=100 —
Z
O 80
g
£ 4 | —4— SCOOTER
2 —#— SHAPE
& 40 ARCS
SRA
20 - —%—EARTH
0
2000 3000 4000 5000
Number of Worklods
SHAPE, ARCS, SRA and EARTH respectively. Test Case 4: Intrusion Detection Rate - For new

SCOOTER performs effectively because it hardens
the system so as to reduce the frequency of fault
occurrence. It uses the concept of Carburizer [41]
to harden the device drivers, in which the driver
works correctly even though faults occur in the
device that it controls or other faults originating
outside the device.

Whenever the node is registered, the SCOOTER
driver hardening agent pushes the code on that
node. Once the hardening process is over, the sta-
tus of nodes is forwarded to the monitor component
(autonomic service manager) to prevent from future
faults. This monitoring component keeps track over
the proper functioning of driver automatically. If
any alerts is raised because of the misbehavior of
the driver, the hardened driver is replaced with the
original driver and the manager node is updated to
avoid same kind of future faults.

Fig. 12 Number of 100 -
workloads vs. fault
detection rate 90 -
80
70
D
3 60
=
£ 50
-
é‘ 40 A
Z 30
=
20
10
0

attack or intrusion detection, database is updating
with new signatures and new polices and rules are
generated to avoid same attack. We have conducted
experiment for known attacks (DDoS, R2L, U2R
and Probing) and it is clearly shown in Fig. 13 that
SCOOTER performs better than SHAPE, ARCS,
SRA and EARTH. We have removed signatures
of some known attacks from database to verify
the effectiveness of SCOOTER. Average Intrusion
Detection Rate (ITR) in SCOOTER is 16.71%,
18.22%, 21.58% and 25.26% more than SHAPE,
ARCS, SRA and EARTH respectively. SCOOTER
is using the SNORT anomaly detector version [39]
to self-protect the system from security attacks.
SNORT has been optimized to be integrated with
SCOOTER. Security agents run on each node
participating in the cloud and logs the details
in database on Manager node of that autonomic

\

\

== SCOOTER
== SHAPE

ARCS
SRA

=== EARTH

@ Springer

2000 3000 4000 5000

Number of Worklods

Resource Provisioning based Scheduling Framework for Execution of Heterogeneous...

407

Fig. 13 Number of
workloads vs. intrusion
detection rate

90 4

80 4

70 A

60 -

50 A

40

30 A

Intrusion Detection Rate (%)

20 A

10 -

——¢— SCOOTER

==i— SHAPE
ARCS
SRA

=== EARTH

service manager. Detection Engine in SCOOTER
uses SNORT as signature based intrusion detection
system to find out the signatures of known attacks
in the database (SNORT DB) and uses State Vec-
tor Machine (SVM) based anomaly detector [40] to
analyze the abnormal activities (unknown attacks).
The training dataset is used to design SVM to find
and diagnose input network traffic data to identify
the attack. An action is taken once the attack is
detected and it is stored into the database as shown
in Fig. 8. The quick detection and removal of attack
increases the intrusion detection rate.

Test Case 5: Throughput - Figure 14 shows the
comparison of throughput of SCOOTER, SHAPE,
ARCS, SRA and EARTH at 5000 workloads and
it is clearly shown that SCOOTER performs better
than SHAPE, ARCS, SRA and EARTH. In our
experiment, we found the maximum value of
throughput for SCOOTER at fault percentage 40%.

Fig. 14 Number of 80 1

1000 2000 3000 4000 5000

Number of Worklods

The average throughput in SCOOTER is 13.25%,
14.18%, 18.66% and 20.36% more than SHAPE,
ARCS, SRA and EARTH respectively. This is
because, SCOOTER identifies the software, hard-
ware and network faults automatically and it also
prevents system from security attacks as discussed
in Test Case 3 and 4, which improves the through-
put of SCOOTER as compared to SHAPE, ARCS,
SRA and EARTH.

Test Case 6: Waiting Time - We have injected fail-
ures to verify the performance in terms of waiting
time of workloads in SCOOTER with different fault
percentage (10-40%). Figure 15 shows the com-
parison of waiting time for SCOOTER, SHAPE,
ARCS, SRA and EARTH at 5000 workloads and
it is clearly shown that SCOOTER performs bet-
ter. In our experiment, we found the maximum
difference in waiting time with fault percentage
(30%) i.e. 8.92% and at 10% fault percentage,

== SCOOTER
workloads vs. throughput SHAPE
[5000 Workloads] 70 1 ARCS
60 - SRA
o === EARTH
=X
< 50 4
E]
£ 40
o0
=
=
g 30
-
20 A —X
10 - =
0
10 20 30 40

Fault Percentange (%)

@ Springer

408

S. S. Gill, R. Buyya

Fig. 15 Number of 700
workloads vs. waiting time
[5000 Workloads] 600 -
_ 500 -
¢
.E 400 -
=
£ 300
=
z
200 -
100 4

== SCOOTER

=== SHAPE
ARCS
SRA

== EARTH

difference is just 2.71% as compared to SHAPE.
Average waiting time in SCOOTER is 7.11%,
8.65%, 10.85%, 13.26% and 16.78% less than
SHAPE, ARCS, SRA and EARTH respectively.
The cause is that SCOOTER adjusts the provi-
sioned resources dynamically according to the QoS
requirements of workload to fulfill their required
deadline, which reduces the waiting time of work-
load in queue. Waiting time is increasing with
increase in fault percentage but SCOOTER has a
capability to correct the faults automatically that
also reduces waiting time.

Test Case 7: Energy Consumption - With increas-
ing the number of cloud workloads, the value of
energy consumption is increasing. The minimum
value of energy consumption is 61.27 kWh at
1000 cloud workloads in SCOOTER. SCOOTER
performs better than EARTH, SHAPE, ARCS and
SRA in terms of energy consumption at different

Fig. 16 Number of
workloads vs. energy
consumption

180 4
160 -
140 -
120 4
100 4
80 4
60 -

Energy Consumption (kWh)

40 -
20 -

20 30 40

Fault Percentage (%)

number of cloud workloads as shown in Fig. 16.
The average energy consumption in SCOOTER is
19.87%, 23.75%, 24.65% and 28.45% less than
EARTH, SHAPE, ARCS and SRA respectively.
With the capability of automatically turning on and
off resources according to demands, SCOOTER
provisions and schedules resources efficiently and
intelligently for execution of clustered workloads
instead of individual workloads. Further, work-
load clustering reduces significant amount of net-
work traffic due to processing similar workloads
together that leads to reducing the number of active
switches, which also reduces the wastage of energy.
Test Case 8: Resource Utilization - With increase
in number of cloud workloads, the percentage of
resource utilization is increasing. The percentage
of resource utilization in SCOOTER is more than
EARTH, SHAPE, ARCS and SRA at different
number of workloads as shown in Fig. 17. The

== SCOOTER

@ Springer

= EARTH
SHAPE
ARCS
i SRA
1000 2000 3000 4000 5000

Number of Worklods

Test Case 9: SLA Violation Rate

Resource Provisioning based Scheduling Framework for Execution of Heterogeneous... 409
Fig. 17 Number of 100 -
workloads vs. resource 90 1 . °
utilization ~— ¢ ¢ v
80 -
= e —
S M
< 70 A
=
2
.§ 60 -
Z 50 4
=)
S 40 1 —— SCOOTER
)
] —#— EARTH
2 30 4
& SHAPE
20 - ARCS
10 4 === SRA
0
1000 2000 3000 4000 5000

maximum percentage of resource utilization is
91.26% at 5000 cloud workloads in SCOOTER.
The average resource utilization in SCOOTER is
8.72% more than EARTH, SHAPE, ARCS and
SRA respectively. Initially, resource provisioning
takes slight more time to identify the best resources
based on QoS requirements of a particular work-
load, but later on it improves overall efficiency of
resource management. Thus, the queuing time and
over-utilization and under-utilization of resources
will be avoided or be assuaged.

- At 1000 work-
loads, SLA Violation Rate (SVR) in SCOOTER
is 14.39% less than SRA but SLA violation rate
is suddenly decreased at 4000 workloads. SLA
violation rate is in SCOOTER at 3000 work-
loads is 25.47% less than SRA, SHAPE, EARTH
and ARCS but at 5000 workloads, SLA violation

Test Case 10: Resource Contention -

Number of Worklods

rate is 39.47% less than SRA. The SLA viola-
tion rate in SRA, SHAPE, EARTH and ARCS
is more than SCOOTER as shown in Fig. 18.
The average SLA violation rate in SCOOTER is
26.17%, 26.98%, 27.71% and 33.56% less than
SRA, SHAPE, EARTH and ARCS respectively.
This is because, SCOOTER uses admission control
to reserve resources for execution of workloads in
advance based on the QoS requirements specified
in SLA document. Further, SCOOTER outperforms
as it adjusts the resources at runtime according to
the new QoS requirements of workload during its
execution to avoid SLA violation.

We have
also analyzed the effect of resource contention on
number of workloads as shown in Fig. 19. With
increase in number of workloads, the value of resource
contention is increasing from 1000 workloads

Fig. 18 Number of 60 -
workloads vs. SLA ——t=— SCOOTER
violation rate S0 —3— SRA
SHAPE
S EARTH
e 40 === ARCS
I
z /
£
£ 30 -
E /
2
>
% 20 - —
-
75}
10 _ —
° *> v
0
1000 2000 3000 4000 5000

Number of Worklods

@ Springer

410 S. S. Gill, R. Buyya

Fig. 19 Number of 8000 -
wortklotz.ids VS. resource 7000 | o— SCOOTER
contention —m— ARCS
é 6000 - e~ EARTH
et SHAPE
2 5000 1 —— SRA
P
E 4000 -
&)
£ 3000
=
=
g 2000 -
1000 -

to 5000 workloads. The value of resource con-
tention at 1000 workloads in SCOOTER is
13.39%, 15.66%, 17.81% and 20.40% less than
ARCS, EARTH, SHAPE and SRA respectively.
At 5000 workloads, the value of resource con-
tention in SCOOTER is 19.76%, 23.75%, 26.45%

1000 2000 3000 4000 5000
Number of Worklods

of workload, clustering of workloads is performed,
and resources are provisioned for effective schedul-
ing. This is also because of the low variation in
execution time across various resources as the
resource list that is obtained from the resource
provisioning unit is already filtered using Q-aware.

and 29.45% less than ARCS, EARTH, SHAPE

and SRA respectively. From 1000 workloads to Every virtual node has different number for Execu-
4000 workloads, value of resource contention tion Components (ECs) to process cloud workload.
increases with same proportion in SCOOTER, In this experiment, six type of ECs are consid-
ARCS, EARTH, SHAPE and SRA, but SCOOTER ered: 6 Resources, 12 Resources, 18 Resources, 24
performs better. This is expected as the workload Resources, 30 Resources and 36 Resources to measure
execution is done using SCOOTER, which is based the variation of important QoS parameters such as exe-
on QoS parameters based resource provisioning cution time, execution cost and energy consumption
policy (Q-aware). Based on deadline and priority as shown in Figs. 20, 21 and 22 respectively.

Fig. 20 Variation of SCOOTER e—

execution time with number

of resources

24 Resources

Execution Time (Sec)

1000 2000 3000 4000 5000
Number of Workloads

@ Springer

Resource Provisioning based Scheduling Framework for Execution of Heterogeneous... 411

Fig. 21 Variation of
execution cost with number

SCOOTER e——

of resources
500
400
I~
£
Z 300
O
g
& 200
100
1000 2000 3000 4000 5000
Number of Workloads
4.3 Statistical Analysis analysis of performance of the framework used for
creating the statistics. It states the deviation of the data
Statistical significance of the results has been ana- as a proportion of its average value, and is calculated

lyzed by Coefficient of Variation (Coff. of Var.), a as follows (2):
statistical method [18]. Coff. of Var. is used to com- SD
pare different means and furthermore offer an overall Coff. of Var. = Y2 x 100 @)

Fig. 22 Variation of energy
consumption with number
of resources

SCOOTER m—
500

450

400

(o)
wn
(=}

300

250

200

Energy Consumption (kWh)

—_
wn
(=3

100

50

1000 2000 3000 4000 5000
Number of Workloads

@ Springer

412

S. S. Gill, R. Buyya

Fig. 23 Coefficient of
e D 25 -
variation for waiting time WEARTH
with respect to number of
workloads SRA
~ 20 1 ARCS
2
b BSHAPE
Q
g 15 | ®SCOOTER
s
>
Gy
=]
50
5
=)
8
5 -
E.;.:':L
0
1000 2000 3000 4000 5000
Number of Workloads

Where SD is a standard deviation and M is a mean.
Coff. of Var. of waiting time of SCOOTER, SHAPE,
ARCS, SRA and EARTH is shown in Fig. 23. Range
of Coff. of Var. (0.58% - 1.16%) for waiting time
approves the stability of SCOOTER.

Coff. of Var. of resource contention of SCOOTER,
SHAPE, ARCS, SRA and EARTH is shown in Fig. 24.
Range of Coff. of Var. (0.71% - 1.39%) for resource
contention approves the stability of SCOOTER. Value
of Coff. of Var. increases as the number of workloads
is increasing. Small value of Coff. of Var. signifies
SCOOTER is more efficient and stable in resource
management in the situations where the number of
cloud workloads are changing. SCOOTER attained
the better results in the cloud for waiting time and
resource contention has been studied with respect to
number of workloads.

4.4 Discussions

We have verified the SCOOTER in cloud environ-
ment through a case study of e-commerce (EaaCS)
and performance of SCOOTER has been compared
with existing autonomic techniques (EARTH, SRA,
ARCS and SHAPE) by considering different QoS
parameters. Table 4 describes the comparison of QoS
parameters (execution cost, execution time, energy
consumption, waiting time, resource utilization, fault
detection rate and throughput) used to process differ-
ent number of workloads (2500 and 5000) on cloud
environment for SCOOTER with different number of
Virtual Machines (VMs). The number of VMs used
to execute the workloads was incremented gradually
showing how the QoS parameters are optimized when
more VMs were added to the cloud. As shown in

Fig. 24 Coefficient of

variation for resource 30 4 BWEARTH
contention with respect to SRA
number of workloads S 25 - ARCS
8 BSHAPE
5207 mscooTER
<
u>-‘ 15
o
5
20 | - —
o2 P
L.g /
O 5 :_l:I
0
1000 2000 3000 4000 5000
Number of Workloads

@ Springer

413

Resource Provisioning based Scheduling Framework for Execution of Heterogeneous...

61'¢8 9T01 11ee 6¢°69C 89°68 0698 'C6 Y49 68°18¥% 11°€0T1 4! [4 14 9 000§
(44 ! Sore 996°65C 8L'L8 896798 8916 299 $6'89% 11°6CI1 11 [4 14 S 000§
9T9L STSI 9eTy 96°661 9¢°18 ¥9°6L €1'e8 Syl 96'89¢ Srogel 14 0 [[4 000§
99'18 0611 61LC 991" 11 10°L8 121°68 91°06 118 1S°Lyy 89°ISI1 01 [4 € S 000§
cro8 687l 196¢ 979°6¢C €98 1678 05°68 °6'8 9 Sy 1T8LIT 6 I € S 000§
0s'6L CI'€l evee SY'LIT A% $69°¢8 7598 §9°01 9¢ely 61°6CCl 8 I € 14 000§
10'8L 6G°¢€l 1LSE £95°60C SY'v8 §9'C8 68°L8 So'11 9T e0r 11°9¢21 L I [4 14 000§
8I'LL 1T¥I £88¢ 912°90C 96'¢8 116'18 7T98 Ly'Cl 15°96¢ 96'89C1 9 0 [4 14 000§
659L €OVl 4104 ¥68°10C 698 961°08 °6'S8 16°¢l ¢S 18¢ LLT6TI S 0 [4 € 000§
G8°GL LI91 (047 SYSILT £€'08 cl6L T8 €961 12°96¢ 99°65¢€1 € 0 I [4 000§
CI'SL S6'91 (4847 86'GS1 1e6L 99°8L 19°¢8 €91 79°Sve 8IILET [0 I 1 000§
99yL TI'LI [4%14 1eorl £6'8L 96'9L 79778 1T°LT 1ecee 1eovl I 0 0 1 000¢
9¢'IL 1YL S (741! 17°88 S9'16 9v'€6 wy 91°60C 919Ly 4! [4 14 9 00S¢
oL ILL 8671 8V v01 C6L798 65°¢6 66C6 96'v 9¢'861 L6'66Y 11 [4 14 S 00S¢
ey vo'L 1091 9966 176°68 8SY'16 ¥ece S9TS Sse16l €0°SIS 01 [4 € S 00S¢
8I°'L9 €18 89L1 ¥6'¢6 69618 9¢T'68 90C6 €r'9 6¢£9L1 1T1€S 6 I € S 00S¢
g9 S6'8 LY81 96168 G96°¢€8 986788 8816 669 ¥9°651 81°S¥S 8 I € 14 00S¢
£€6'¢9 C0'6 LT61 SL'8L 99t°C8 €Ly 60’16 9TS'L 69°Cel 99196 L I [4 14 00S¢
GEe9 S€6 ¥90¢ 99°¢9 y68'18 9t°68 18°06 01°8 9G°LIT 0€°08S 9 0 [4 14 00S¢
G919 €001 evie 126'8S ¥66°08 918 106 068 9¢°101 L1°86S S 0 [4 € 00S¢
§T09 €0l L61T SSL'LY C96°6L 86'¢8 L9°68 L9°6 §9°¢6 SSL09 14 0 [4 [4 00S¢
6986 6501 LETT 65°S¢ 9T LL 69°C8 81°68 ol 96'8L L6819 € 0 I [4 00S¢
cros LOTTI 1LvC SS°LT 9S YL 6s08 L6°88 6911 9¢'19 69°8C9 [0 I I 00S¢
wovs LTI (4454 §C0c 96°IL €CoL 16788 €l 8S°LY C1'9¢9 I 0 0 I 00S¢
(999) (um» (%) (%) oy (999) (999) e
(%) (%) uonuuo) uondwnsuo) uoneZINN) (9%) uondAq auiy, ($D) 180D QWIL], SIDIOp SOIINOSIY/SAUIYIRIA SPRO[NIOM
Adl JAS 20IN0SY AS1oug 201nosyy IndySnoayJ, jnej Suprepy UOHNOAXH — UONNJAXH [e10L, [emIIA JO IRqunN

SIOAISS 92IY) UT PAINQLISIP SPLOPHIOM Pnofd Jo [nq & jo s1ojowelied SoQ) Jo uoneles § qel,

pringer

Qs

414

S. S. Gill, R. Buyya

Table 5 Comparison of SCOOTER with existing frameworks

Category Framework Mechanism Objective Function Merits Future Possible Extensions
Non- DRMF [22] Resource To improve Makespan is reduced More QoS parameters like cost,
Autonomic Provisioning time execution Energy consumption etc. can be
considered.
DRP [23] To improve Makespan is reduced Penalty cost and compensation
execution time can be considered.
SARP [24] To improve Resource uptime Failure prediction can be
relative error is reduced measured more accurately.
DBRP [25] To improve Time, scalability and Can be extended further to add
execution cost cost are improved different cloud providers.
OWS [26] Resource To improve Energy consumption Average decision time can be
Scheduling execution time is reduced reduced.
ACOJS [27] To improve Execution time SLA violation can be reduced.
completion time is reduced
HEFT [28] To improve Energy consumption and ~ Cost can be reduced.
communication time execution time are reduced
PSOH [29] To improve Cost is reduced Execution time can
communication cost be reduced.
Autonomic ASP [30] Self-healing To improve negotiation Reduced SLA violations Decision Delay can
time for SLA and lease cost be improved
SRA [31] To improve execution Execution time and Stabilized API can be
cost and time network traffic are reduced incorporated.
CBR [32] Self-configuring To Reduce Execution CPU Time and SLA More QoS parameters like cost,

COCCUS [33]

CAS [34] Self-optimizing

AWM [35]

ARCS [36]

EARTH [15]

RASP [37] Self-protecting

SHAPE [38]

SCOOTER Self-healing,
Self-configuring,

Self-optimizing
and Self-protecting

time and cost

To reduce
maintenance cost
To optimize resource
utilization and cost
To reduce monetary
cost

To reduce resource
contention

To reduce energy
consumption

To improve security

To improves security,
execution time and
cost

To improve user
satisfaction and
increases reliability
and availability

of services.

Violations are reduced
Cost is reduced

Average CPU time and
Cost are reduced
Makespan is reduced

Time of resource
contention is reduced
Resource utilization
is improved

Reduced security
breaching

Time and cost are reduced,
and availability, reliability
and security are improved
It finds and reacts to
sudden faults, optimizes
QoS parameters, configure/
reconfigure resources and
detects and protects from

cyber-attacks automatically.

time etc. can be considered.
Problem of starvation can

be reduced.

Can be extended for network
intensive applications.
Penalty cost and compensation
can be considered.

Execution time and cost can
be reduced.

Self-protection, Self-healing
and Self-configuration can be
considered.
Self-optimization, Self-healing
and Self-configuration can be
considered.

Self-optimization and Self-
configuration can be
considered.

SCOOTER can be extended
by developing pluggable
scheduler, in which resource
scheduling policy can be
changed easily based

on the requirements.

@ Springer

Resource Provisioning based Scheduling Framework for Execution of Heterogeneous... 415

Table 4, with one virtual node running on Server R1,
execution of 2500 workloads finished in 636.12 sec-
onds. With 12 virtual nodes (6 running on RI1, 4
running on R2 and 2 running on R3), the application
took 476.16 seconds. We note that the execution time
is reduced by adding additional virtual nodes.

Statistical significance of the results has been ana-
lyzed by coefficient of variation, a statistical method
to measure of the distribution of data about the
mean value to find the stability of SCOOTER with
small value of coefficient of variation. Considering
all these experimental results, it is shown that the
SCOOTER delivers a superior autonomic solution for
heterogeneous cloud workloads and approximate opti-
mum solution for challenges of autonomic resource
management.

4.5 Comparison of SCOOTER with Existing
Frameworks

In the proposed framework, autonomic resource pro-
visioning and scheduling has been done on the basis of
different QoS parameters considered for self-healing,
self-configuring, self-optimizing and self-protecting,
which was not considered traditionally. Experimental
results show that SCOOTER is able to schedule the
resources efficiently for workload execution automat-
ically. Table 5 shows the comparison of SCOOTER
with existing frameworks based on different features
(functionally-wise).

Further, the implementation of SCOOTER in a real
cloud environment can be achieved using different
available cloud platforms such as OpenStack, Docker
based Container’s Management System and Amazon
EC2.

e SCOOTER can be deployed on OpenStack for
effective management of cloud resources at IaaS
level. Further, OpenStack based implementation
of proposed framework can enhance scalability of
cloud services. The deployment of SCOOTER can
provision and schedule the cloud resources using
different hypervisors (Xen, VMware or kernel-
based virtual machine (KVM) for instance) and
several virtualization technologies (such as bare
metal or high-performance computing).

e Today’s de facto container technology (Docker),
uses resource isolation features of the Linux ker-
nel such as cgroups and kernel namespaces to

allow independent “containers” to run within a
single Linux instance, avoiding all the heavy over-
head of starting VMs on hypervisors. The VMs
transition based deployment of SCOOTER can
be shifted to container-based deployments, which
can increase realization and lower overheads asso-
ciated with container deployment can be used to
support real-time workloads. The deployment of
SCOOTER on Docker based Container’s Man-
agement System improves the performance due
to following reasons: a) containers start up very
quickly and their launching time is less than a sec-
ond and b) containers have tiny memory footprint
and consume a very small amount of resources.
Compared with VM based cloud testbed, using
containers not only improves the performance of
SCOOTER, but also allows the host to support
more instances simultaneously.

e Amazon Elastic Compute Cloud (Amazon EC2)
also provides scalable computing capacity in the
Amazon Web Services (AWS) cloud by utiliz-
ing its API. The deployment of SCOOTER on
Amazon EC2 reduces the time required to obtain
and boot new server instances to minutes, quickly
scale capacity, both up and down, as computing
requirements change dynamically, which can fur-
ther reduce the SLA violation rate and execution
time of workload execution.

5 Conclusions and Future Work

In this paper, a resource management framework
called SCOOTER has been proposed and it has an
ability to manage resources automatically through pro-
perties of autonomic management, which are self-heal-
ing (find and react to sudden faults), self-optimizing
(maximize resource utilization and energy efficiency
and minimize execution cost, execution time, resource
contention and SLA violation rate), self-configuring
(capability to readjust resources) and self-protecting
(detection and protection of cyber-attacks) automati-
cally with minimum human involvement. SCOOTER
has been validated in cloud environment through a case
study (E-commerce as a Cloud Service) and the
experimental results shows that SCOOTER performs
better than existing autonomic resource manage-
ment frameworks in terms of different QoS parame-
ters. SCOOTER efficiently schedules the provisioned

@ Springer

416

S. S. Gill, R. Buyya

cloud resources automatically for execution of het-
erogeneous workloads and maintains the SLA which
improves user satisfaction.

In future, SCOOTER can also be extended by
developing pluggable scheduler, in which resource
scheduling can be changed easily based on the new
requirements.

Acknowledgements One of the authors, Dr. Sukhpal Singh
Gill [Post Doctorate Fellow], gratefully acknowledges the
Cloud Computing and Distributed Systems (CLOUDS) Lab-
oratory, School of Computing and Information Systems, The
University of Melbourne, Australia, for awarding him the Fel-
lowship to carry out this research work. We thank Adel Nad-
jaran Toosi and anonymous reviewers for their comments on
improving the paper.

References

1. Varghese, B., Buyya, R.: Next generation cloud comput-
ing: New trends and research directions. Future Gener-
ation Comput. Syst. 79, 849-861 (2017). https://doi.org/
10.1016/j.future.2017.09.020

2. Qi,Z.T.L., Cheng, Z., Li, K., Khan, S.U., Li, K.: An energy-
efficient task scheduling algorithm in DVFS-enabled cloud
environment. J. Grid Comput. 14(1), 55-74 (2016)

3. de Carvalho, O.A. Jr., Adilson, O., Bruschi, S.M., Santana,
R.H.C., Santana, M.J.: Green cloud meta-scheduling. J. Grid
Comput. 14(1), 109-126 (2016)

4. Jiang, J., Lin, Y., Xie, G., Fu, L., Yang, J.: Time and
Energy Optimization Algorithms for the Static Scheduling
of Multiple Workflows in Heterogeneous Computing Sys-
tem. J. Grid Comput., 1-22 (2017). https://doi.org/10.1007/
$10723-017-9391-5

5. Ebrahimirad, V., Goudarzi, M., Rajabi, A.: Energy-aware
scheduling for precedence-constrained parallel virtual
machines in virtualized data centers. J. Grid Comput. 13(2),
233-253 (2015)

6. Singh, S., Chana, I.: Metrics based workload analysis tech-
nique for IaaS cloud. In: The Proceeding of International
Conference on Next Generation Computing and Commu-
nication Technologies 23 - 24 April 2014, Dubai, pp. 1-6
(2014)

7. Chana, I., Singh, S.: Quality of service and service
level agreements for cloud environments: Issues and
challenges, cloud Computing-Challenges, limitations and
R&D solutions, 51-72 springer international publishing
(2014)

8. Singh, S., Chana, I.: Cloud resource provisioning: survey,
Status and Future Research Directions. Knowl. Inf. Syst.
49(3), 1005-1069 (2016)

9. Singh, S., Chana, I.: Q-aware: quality of service based
cloud resource provisioning. Comput. Electr. Eng. 47, 138—
160 (2015)

10. Singh, S., Chana, I.: A survey on resource scheduling in
cloud computing issues and challenges. J. Grid Comput.
14(2), 217-264 (2016)

@ Springer

20.

21.

22.

23.

24.

25.

. Singh, S., Chana, I.: QRSF Qos-aware resource schedu-

ling framework in cloud computing. J. Supercomput. 71(1),
241-292 (2015)

. Singh, S., Chana, I.: Resource provisioning and scheduling

in clouds: QoS perspective. J. Supercomput. 72(3), 926—
960 (2016)

. Singh, S., Chana, I.: QoS-aware autonomic cloud comput-

ing for ICT. In: The proceeding of International Confer-
ence on Information and Communication Technology for
Sustainable Development (ICT4SD - 2015), Ahmedabad,
India, 3 - 4 July 2015, pp. 569-577. Springer, Singapore
(2016)

. Singh, S., Chana, I.: Qos-aware autonomic resource man-

agement in cloud computing: a systematic review. ACM
Comput. Surv. 48(3), 1-46 (2015)

. Singh, S., Chana, I.. EARTH: energy-aware autonomic

resource scheduling in cloud computing. J. Intell. Fuzzy
Syst. 30(3), 1581-1600 (2016)

. Singh, S., Chana, 1., Singh, M.: The journey of QoS-aware

autonomic cloud computing. IEEE IT Professional 19(2),
42-49 (2017)

. Singh, S., Chana, 1., Buyya, R.: STAR: SLA-aware

autonomic management of cloud resources. In: IEEE
Transactions on Cloud Computing, pp. 1-14 (2018).
https://doi.org/10.1109/TCC.2017.2648788

. Sukhpal S.G., Chana, I., Singh, M., Buyya, R.: CHOPPER:

an Intelligent QoS-aware autonomic resource manage-
ment approach for cloud computing cluster computing, pp.
1-39 (2017). https://doi.org/10.1007/310586-017-1040-z/
Available Online: https://link.springer.com/article/10.1007/
$10586-017-1040-z

. Sukhpal S.G., Buyya, R., Chana, 1., Singh, M., Abrahiam,

A.: BULLET: particle swarm optimization based schedul-
ing technique for provisioned cloud resources, Journal of
Network and Management System, pp. 1-40. Springer,
Berlin (2017). https://doi.org/10.1007/s10922-017-9419-y
Singh, S., Chana, I., Singh, M., Rajkumar, B.: SOC-
CER self-optimization Of energy-efficient cloud resources.
Clust. Comput. 19(4), 1787-1800 (2016)

Kephart, J.O., Walsh, W.E.: An architectural blueprint for
autonomic computing. Technical Report, IBM Corpora-
tion, 1-29, IBM. http://www-03.ibm.com/autonomic/pdfs/
AC%20Blueprint%20White%20Paper%20V7.pdf (2003)
Quiroz, A., Kim, H., Parashar, M., Gnanasambandam, N.,
Sharma, N.: Towards autonomic workload provisioning for
enterprise grids and clouds. In: 2009 10th IEEE/ACM Inter-
national Conference on Grid Computing, pp. 50-57. IEEE
(2009)

Vecchiola, C., Calheiros, R.N., Karunamoorthy, D., Buyya,
R.: Deadline-driven provisioning of resources for scientific
applications in hybrid clouds with Aneka. Futur. Gener.
Comput. Syst. 28(1), 58-65 (2012)

Herbst, N.R., Huber, N., Kounev, S., Amrehn, E.: Self-
adaptive workload classification and forecasting for proac-
tive resource provisioning. Concurrency Comput.: Pract.
Exp. 26(12), 2053-2078 (2014)

Qavami, H.R., Jamali, S., Akbari, M.K., Javadi, B.:
Dynamic resource provisioning in cloud computing: a
heuristic markovian approach. In: Cloud Computing,
Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering,

https://doi.org/10.1016/j.future.2017.09.020
https://doi.org/10.1016/j.future.2017.09.020
https://doi.org/10.1007/s10723-017-9391-5
https://doi.org/10.1007/s10723-017-9391-5
https://doi.org/10.1109/TCC.2017.2648788
https://doi.org/10.1007/s10586-017-1040-z
https://link.springer.com/article/10.1007/s10586-017-1040-z
https://link.springer.com/article/10.1007/s10586-017-1040-z
https://doi.org/10.1007/s10922-017-9419-y
http://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
http://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf

Resource Provisioning based Scheduling Framework for Execution of Heterogeneous...

417

26.

217.

28.

29.

30.

31.

32.

33.

34.

3s.

36.

37.

vol. 133, pp. 102-111. Springer International Publishing
(2014)

Varalakshmi, P., Ramaswamy, A., Balasubramanian, A.,
Vijaykumar, P.: An optimal workflow based scheduling and
resource allocation in cloud. In: Advances in computing
and communications, pp. 411-420. Springer, Berlin (2011)
Li, K., Gaochao, X., Zhao, G., Dong, Y., Wang, D.: Cloud
task scheduling based on load balancing ant colony opti-
mization. In: Sixth Annual Chinagrid Conference (China-
Grid), pp. 3-9. IEEE (2011)

Topcuoglu, H., Hariri, S., Wu, M.-Y.: Task scheduling algo-
rithms for heterogeneous processors. In: Proceedings of the
Eighth Heterogeneous Computing Workshop (HCW’99),
pp. 3-14. IEEE (1999)

Pandey, S., Wu, L., Guru, S., Buyya R: A particle
swarm optimization-based heuristic for scheduling work-
flow applications in cloud computing environments. In:
24th IEEE International Conference on Advanced Informa-
tion Networking and Applications (AINA), Perth, Australia
(2010)

Cardellini, V., Casalicchio, E., Presti, FL., Silvestri, L.:
SLA-aware resource management for application service
providers in the cloud. In: First International Symposium
on Network Cloud Computing and Applications (NCCA),
pp. 20-27. IEEE (2011)

Wu, L., Garg, S.K., Buyya, R.: SLA-based resource allo-
cation for software as a service provider (SaaS) in cloud
computing environments. In: 2011 11th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Comput-
ing (CCGrid), pp. 195-204. IEEE (2011)

Maurer, M., Brandic, 1., Sakellariou, R.: Adaptive resource
configuration for cloud infrastructure management. Futur.
Gener. Comput. Syst. 29(2), 472-487 (2013)
Konstantinou, I., Kantere, V., Tsoumakos, D., Koziris, N.:
COCCUS: self-configured cost-based query services in the
cloud. In: Proceedings of the 2013 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 1041-1044.
ACM (2013)

Mao, M., Li, J., Humphrey, M.: Cloud auto-scaling with
deadline and budget constraints. In: 2010 11th IEEE/ACM
International Conference on In Grid Computing (GRID),
pp. 41-48. IEEE (2010)

Sah, S.K., Joshi, S.R.: Scalability of efficient and dynamic
workload distribution in autonomic cloud computing. In:
International Conference on Issues and Challenges in Intel-
ligent Computing Techniques (ICICT), pp. 12-18. IEEE
(2014)

Sheikhalishahi, M., Grandinetti, L., Wallace, R.M.,
Vazquez-Poletti, J.L.: Autonomic resource contention-aware
scheduling. Softw.: Pract. Exp. 45(2), 161-175 (2015)
Yuan, E., Malek, S., Schmerl, B., Garlan, D., Gennari,
J.: Architecture-based self-protecting software systems. In:

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Proceedings of the 9th International ACM Sigsoft Con-
ference on Quality of Software Architectures, pp. 33—42.
ACM (2013)

Chopra, 1., Singh, M.: SHAPE—An approach for self-
healing and self-protection in complex distributed net-
works. J. Supercomput. 67(2), 585-613 (2014)

Caswell, B., Beale, J.: Snort 2.1 intrusion detection, Syn-
gress (2004)

Boser, B.E., Guyon, .M., Vapnik, V.N.: A training algo-
rithm for optimal margin classifiers. In: Proceedings of
the Fifth Annual Workshop on Computational Learning
Theory, pp. 144-152. ACM (1992)

Kadav, A., Renzelmann, M.J., Swift, M.M.: Tolerating
hardware device failures in software. In: Proceedings of
the ACM SIGOPS 22nd Symposium on Operating Systems
Principles, pp. 59-72. ACM (2009)

Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose,
C.AF, Buyya, R.: Cloudsim: a toolkit for modeling and
simulation of cloud computing environments and evalu-
ation of resource provisioning algorithms. Softw.: Pract.
Exp. 41(1), 23-50 (2011)

Talib, A.M., Alomary, F.O.: Cloud computing based E-
Commerce as a service model: impacts and recommen-
dations. In: Proceedings of the International Conference
on Internet of Things and Cloud Computing, p. 27. ACM
(2016)

Prasad, C.S.D., Rao, S.R.S.: Competition in the indian
E-Commerce sector durga prasad the case of flipkart.
Gavesana J. Manag. 7(2), 1-22 (2015)

Chauhan, P.: A Comparative study on consumer Prefer-
ences towards online retail marketers-with special reference
to Flipkart, Jabong, Amazon, Snapdeal Myntra and fashion
and you. IJAR 1(10), 1021-1026 (2015)

Sebastian, M., Jercinovic, S., Cosmina, T., Simonacarmen,
D., Cosmin, S.: A study regarding online traffic analyt-
ics of websites for profit. Agricultural Management/Lucrari
Stiintifice Seria I. Manag. Agricol 19(1), 81-84 (2017)
Luo, J., Liang, Y., Gao, W., Yang, J.: Hadoop based deep
packet inspection system for traffic analysis of e-business
websites. In: International Conference on Data Science and
Advanced Analytics (DSAA), pp. 361-366. IEEE (2014)
Arora, N., Zhang, H., Rhee, J., Yoshihira, K., iProbe, G.J.:
A lightweight user-level dynamic instrumentation tool. In:
Proceedings of the 28th IEEE/ACM International Confer-
ence on Automated Software Engineering, pp. 742-745.
IEEE Press (2013)

Sukhpal S.G., Buyya, R.: A taxonomy and future directions
for sustainable cloud computing: 360 degree view. http://
www.buyya.com/papers/SustainableClouds360.pdf
Exposito, J.A., Ametller, J., Robles, S.: Configuring the
JADE HTTP MTP. http://jade.tilab.com/documentation/
tutorials- guides/configuring-the-jade-http-mtp/ (2010)

@ Springer

http://www.buyya.com/papers/SustainableClouds360.pdf
http://www.buyya.com/papers/SustainableClouds360.pdf
http://jade.tilab.com/documentation/tutorials-guides/configuring-the-jade-http-mtp/
http://jade.tilab.com/documentation/tutorials-guides/configuring-the-jade-http-mtp/

	Resource Provisioning based Scheduling Framework for Execution of Heterogeneous...
	Abstract
	Introduction
	Previous Contributions

	Related Work
	QoS based Resource Provisioning
	QoS based Resource Scheduling
	QoS Based Autonomic Resource Provisioning and Scheduling
	Self-healing
	Self-configuring
	Self-optimizing
	Self-protecting

	SCOOTER: Self-Management of Cloud Resources for Execution of Clustered Workloads
	Problem Statement
	Objective and Commitments
	Objective Function

	SCOOTER Architecture
	Resource Provisioning and Scheduling
	Autonomic Service Manager
	Sensors
	Monitor [M]
	Analyze and Plan [AP]
	Executor [E]
	Effector

	Experimental Setup and Results
	Case Study: E-commerce as a Cloud Service (EaaCS)
	Experimental Results
	Statistical Analysis
	Discussions
	Comparison of SCOOTER with Existing Frameworks

	Conclusions and Future Work
	Acknowledgements
	References

