
ADRL: A Hybrid Anomaly-Aware Deep
Reinforcement Learning-Based Resource

Scaling in Clouds
Sara Kardani-Moghaddam ,Member, IEEE,

Rajkumar Buyya , Fellow, IEEE, and Kotagiri Ramamohanarao,Member, IEEE

Abstract—The virtualization concept and elasticity feature of cloud computing enable users to request resources on-demand and in

the pay-as-you-go model. However, the high flexibility of the model makes the on-time resource scaling problem more complex. A

variety of techniques such as threshold-based rules, time series analysis, or control theory are utilized to increase the efficiency of

dynamic scaling of resources. However, the inherent dynamicity of cloud-hosted applications requires autonomic and adaptable

systems that learn from the environment in real-time. Reinforcement Learning (RL) is a paradigm that requires some agents to monitor

the surroundings and regularly perform an action based on the observed states. RL has a weakness to handle high dimensional state

space problems. Deep-RL models are a recent breakthrough for modeling and learning in complex state space problems. In this article,

we propose a Hybrid Anomaly-aware Deep Reinforcement Learning-based Resource Scaling (ADRL) for dynamic scaling of resources

in the cloud. ADRL takes advantage of anomaly detection techniques to increase the stability of decision-makers by triggering actions in

response to the identified anomalous states in the system. Two levels of global and local decision-makers are introduced to handle the

required scaling actions. An extensive set of experiments for different types of anomaly problems shows that ADRL can significantly

improve the quality of service with less number of actions and increased stability of the system.

Index Terms—Cloud computing, anomaly detection, deep reinforcement learning, performance management, vertical scaling

Ç

1 INTRODUCTION

CLOUD model is a widely used computing paradigm for
today’s data and computing-intensive applications. The

main concepts of virtualization and elasticity help the users
to share computing resources on a pay-as-you-go model,
taking into account the dynamicity of the workloads.
Although the inherent characteristics of the cloud model
offer the required flexibility for running dynamic applica-
tions, it can bring new challenges for the effective manage-
ment of resources. The efficacy of resource management
solutions can be interpreted from the level of user happi-
ness; however, a combination of heterogeneity of applica-
tions, resource sharing conflicts, workload patterns, etc. can
contribute to the violation of service level agreements (SLA)
and users’ Quality of Service (QoS). Therefore, proper scal-
ing of resources depends on the comprehensive under-
standing of environmental changes and dynamic factors
that can affect the performance of the system.

On the other hand, the workloads in the cloud are
dynamic and uncertain. This is especially highlighted in
applications that involve humans as their client-side users

and therefore all the uncertainty from user’s actions and
their environment affects the application performance.
Therefore, the prediction of the future workload is not easy
and depends on many factors including human behaviors
as users of the system (number of users, usage patterns,
etc.), or application specifications and functionalities (new
releases, bugs in the codes, etc.), some out of the knowledge
of system administrators. Dynamic threshold-based solu-
tions, time-series based analysis or machine learning-based
techniques are proposed to address these problems [1], [2],
[3], [4]. However, considering the uncertainty of the envi-
ronment, it is critical to have a solution with a policy for
updating the base assumptions, parameters, and learning
models. Therefore, having an updatable decision-maker is
an essential part to have an adaptable system with regard to
the scaling of resources to ensure QoS satisfaction in the
presence of various performance-related problems.

We have investigated adaptive learning frameworks
such as reinforcement learning (RL) and how they can fit
into our problem. In RL, continuous interaction of agents
with surroundings develops an up-to-date knowledge base
by collecting dynamic measurable metrics of the system.
The knowledge is formulated as a set of states that define an
abstract representation of the target system. RL is modeled
as a control loop and gradual learning happens in a process
of trial and error. The feedback-based gradual learning help
to increase the autonomousness of the system and the abil-
ity to adapt to the changes. This feature is especially impor-
tant in an uncertain environment, where the prior
knowledge is not very clear. Therefore, at each step, the

� The authors are with Cloud Computing andDistributed Systems (CLOUDS)
Laboratory, School of Computing and Information Systems, The University
of Melbourne, Parkville, VIC 3010, Australia. E-mail: skardani@student.
unimelb.edu.au, {rbuyya, kotagiri}@unimelb.edu.au.

Manuscript received 19 June 2019; revised 31 July 2020; accepted 15 Sept.
2020. Date of publication 22 Sept. 2020; date of current version 8 Oct. 2020.
(Corresponding author: Sara Kardani-Moghaddam.)
Recommended for acceptance by R. Tolosana.
Digital Object Identifier no. 10.1109/TPDS.2020.3025914

514 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on October 09,2020 at 23:48:11 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4967-5960
https://orcid.org/0000-0002-4967-5960
https://orcid.org/0000-0002-4967-5960
https://orcid.org/0000-0002-4967-5960
https://orcid.org/0000-0002-4967-5960
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
mailto:skardani@student.unimelb.edu.au
mailto:skardani@student.unimelb.edu.au
mailto:rbuyya@unimelb.edu.au
mailto:kotagiri@unimelb.edu.au

available knowledge is used to select actions that may
change the environment. Then, the knowledge base is
updated with the recent feedback from the environment.

While the RL paradigm seems to fit our problem, when the
action should be triggered and the type of the selected actions
are two main challenges that make the problem difficult in
terms of the complexity and dimensionality of the state/
action space. First of all, the level of resource control granular-
ity considered in RL can target different types of performance
problems. Despite many RL based attempts in the literature,
the possibility of having a range of scaling actions including
vertical and horizontal for different states of the system are
not investigated. Second, the majority of RL based solutions
do not consider the possibility of reaching a stable state where
no action is required to move toward new states. In fact, the
inherent characteristic of RL which learns from the results of
triggered actions in the environment along with the highly
dynamic nature of cloud and constraints on available resour-
ces can push the system to constantly change its state to
observe the consequences of combinations of states and
actions. While recent developments in Deep learning-based
RL frameworks (DRL) try to utilize the learning capability of
deep networks for modeling the value of state/action pairs,
their focus is more on improving the efficiency of RL in
searching larger state/action tables rather than the evaluation
of the state value and the needs for taking new actions. Partic-
ularly, in the context of cloud computing resource manage-
ment, the actions are meant to be triggered as a response to
the performance problems in terms of resource utilization and
QoS. These actions have consequences in terms of both cost
and time and should be carefully selected considering the per-
formance state of the system. This requirement highlights the
need for more customized solutions that integrate the perfor-
mance-related knowledge in the RL decisionmaking process.

To address the above-mentioned challenges, we propose
a deep reinforcement learning resource scaling framework
that combines two levels of vertical and horizontal scaling
to respond to the identified problems in the web-based
applications under various performance anomaly issues
that affect resource consumptions. The proposed solution
utilizes an anomaly detection module to detect the persis-
tent performance problems in the system as a trigger for the
decision-making module of RL to perform a scaling action
for correcting the problem. The deep learning part helps to
increase the quality of decision making in large state space
of the problem while the anomaly detection module
addresses the timely trigger of scaling decisions. Two levels
of scaling are proposed to address various types of perfor-
mance problems including local VM-level resource shortage
and system-level load problems. Accordingly, the contribu-
tions of this paper are as follows:

� Proposing an anomaly-based controller for RL deci-
sion-maker based on an isolation-based method to
increase awareness of the performance state of the
environment.

� Proposing a two-level scaling decision-maker as part
of the action set in the RL framework.

� Proposing a Deep Q-learning based RL model to
respond to the local anomalies of the system such as
CPU and memory bottleneck problems. Accordingly,

we propose state-based penalties of scaling decisions
to speed-up the learning curve of RL.

� Performing extensive experimental evaluation of the
proposed system under various loads and anoma-
lous events. The experiments demonstrate ADRL
ability to improve performance compared to the
benchmark and state-of-the-art methods.

The rest of this paper is organized as follows: Section 2
overviews some of the relatedwork in the literature. Section 3
discusses the motivation and assumptions in our modelings.
Section 4 overviews the basics of Reinforcement Learning
architecture. Section 5 presents a general discussion of the
main components followed by the details of ADRL frame-
work in Section 6. Section 7 presents the experiments and
validation results. Finally, Section 8 concludes the paper
with a summary and future works.

2 RELATED WORK

While the dynamicity of the cloud environment with on-
demand resources is bringing higher levels of flexibility for
end-users, it makes the problem of resource management
more complex. Resource scaling decisions are usually a
response to the performance degradations of the system.
However, a variety of factors at different levels of granular-
ity from the workload and application-level characteristics
to software and hardware functionality can affect the per-
formance. Therefore, a proper solution should exploit
adaptable models and decision-makers to create a self-
directed learning environment.

The problem of autonomous scaling of resources can be
easily mapped to MAPE-K architecture (Monitor, Analyze,
Plan, and Execute over a shared, regularly updated Knowl-
edgebase) of the autonomic systems. Following this archi-
tecture, [4] proposes a cost-aware auto-scaling framework
with the focus on possible improvements at the execution
level. The planning is done based on the threshold-based
rules on monitored metrics to change the number of VMs in
the system. While a threshold-based decision-maker is sim-
ple and convenient in terms of interpretation and imple-
mentation, the lack of the flexibility to adapt to the changes
in the environment makes that a sub-optimal solution for
these types of problems. To achieve higher adaptability at
the decision-making level, Reinforcement Learning intro-
duces a self-adaptable framework that can easily be
matched by the phases of MAPE architecture. RL has been
used for various types of resource management in the
cloud. [5] utilizes Q-learning as part of the planning phase
of the MAPE loop. The decisions are made as a combina-
tion of Markov decision table and Q-table to decide on
adding/removing of VMs in the system. A fuzzified ver-
sion of Q-learning and SARSA learning is introduced in
[6]. They use the fuzzy rules on the monitored metrics as a
solution to reduce the number of states and as a result the
size of the Q-table. While these works use threshold and
rule-based techniques to decrease the number of states, we
take a modeling approach and create deep learning-based
models to support a higher number of states. Moreover,
the focus of our proposed is to investigate the efficacy of
combining two levels of horizontal and vertical scaling for
local anomalous behaviors.

KARDANI-MOGHADDAM ETAL.: ADRL: A HYBRID ANOMALY-AWARE DEEP REINFORCEMENT LEARNING-BASED RESOURCE SCALING IN CLOUDS 515

Authorized licensed use limited to: University of Melbourne. Downloaded on October 09,2020 at 23:48:11 UTC from IEEE Xplore. Restrictions apply.

Megh [8] is another RL-based system which targets the
energy and performance efficiency of resource during live
migrations of VMs in the system. The actions are defined as
selecting the destination host of themigrated VMs. They use a
projection method to reduce the state space complexity of
their problem to a polynomial dimensional space with a
sparse basis. Alternatively, Q-learning is used in [9] to sched-
ule the live migrations of VMs. A combination of waiting and
migrating actions are used to decide on the order of VMmove-
ments in the presence of network congestions to ensure hav-
ing enough available bandwidth for on-time migrations. In
contrast to these works, our work focuses on resource scaling
actions that change the configuration of resources as a
response to the performance problems in the system. [10]
introduces an adaptive state-space partitioning technique to
overcome the high dimensional state problem. The environ-
ment is represented as a global state at the beginning. Then, as
more data is available, new states are created which maps the
new observed behaviors of the system. This technique is espe-
cially important when the amount of training information is
limited and the cost of collecting new data is high in terms of
the time and operational costs. Alternatively, our work
addresses this problem by having a distributed approach and
utilizing Deep Reinforcement Learning to handle the local
state of the VMs. Moreover, our work also focuses on the tim-
ing of decision making and the importance of using knowl-
edge from local performance analytics to distinguish between
global and local problems. VCONF [11] and VScaler [12] are
two other frameworks that use the RL paradigm for vertical
scaling of resources. VScaler uses a parallel learning technique
where agents can share their experiences from the environ-
ment to speed-up the convergence. VCONF exploits neural
networks (NN) learning to model the relation of ðs; aÞ pairs
with their corresponding rewards. The same parallelization

technique as VScaler is also used by RLPAS for managing the
number of VMs in the system [7]. The work presented in [15]
targets temporal performance issues from co-located VMs by
designing a parallel Q-learn model to decide on horizontal
scaling actions. They consider both costs andQoS inmodeling
the reward function. The parallel agent assigned to each VM
communicates with other agents to share the observations
from the environment. Our work, however, targets the local
and global performance problems and investigate the efficacy
of proactive horizontal and vertical scaling actions in response
to these problems.

The general idea of model-based RL as discussed in
VCONF and the concept of Deep-RL enables the system to
adaptively learn in complex problems with high dimen-
sional space and low actions. Introduction of DRL techni-
ques and their success in playing Atari offers new
directions for the problem of dynamic, continuous-time
state-space of resource management. Accordingly, DRL-
cloud [13] is proposed to minimize the long-term energy
cost of the data centers. The problem is formulated as a two-
level task scheduling. The first level assigns tasks to a clus-
ter of servers and the second phase chooses the exact VM
on the selected server. Another work by [14] leverages DRL
in a two-level VM allocation and power management
framework. The DRL agent is used at the global layer for
allocating VMs to hosts while RL and workload analysis are
used in local VMs to manage the power. Our model is
inspired by such models, but focuses on the hybrid scalings
as part of the action set as well as anomaly-based triggering
of the decision maker for decreasing the amount of oscilla-
tion resulted from sequential actions. Table 1 compares
some of the RL based works in the literature considering
their resource management actions and techniques for han-
dling high dimensional state space.

TABLE 1
Related Works on RL-Based Cloud Performance Management

Work Base RL Resource Management
Problem

Dimensionality Solution Decision
Level

Anomaly
aware

Scaling
Method

[5] RL(Q-learn) Scaling Fuzzy states Global X H
[6] RL(SARSA, Q-learn) Scaling Fuzzy states Global X H
[7] RL(SARSA) Scaling Parallel agents, Function

approximation
Global X H

[8] RL(least-square policy
iteration (LSPI))

Migration Management Sparse Projection Global X -

[9] RL(Q-learn) Migration management - Local
(Host-
level)

X -

[10] RL(Model-based
approach)

Scaling Decision-Tree based Models
(Adaptive state partitioning)

Global X H

[11] RL(SARSA) Scaling Model-based Environment Local
(Host-
level)

X V

[12] RL(Q-learn) Scaling Parallel agents Local
(Host-
level)

X V

[13] RL(Q-learn) Task Scheduling Deep RL , Multi-level Decision
Maker

Global X -

[14] RL(Q-learn) VM to Server Mapping,
Power Management

Deep RL, Representation Learning Global,
Local

X -

Proposed
work

RL(Q-learn) Scaling Deep RL, Multi-level Decision
Maker

Global,
Local

@ H, V

516 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

Authorized licensed use limited to: University of Melbourne. Downloaded on October 09,2020 at 23:48:11 UTC from IEEE Xplore. Restrictions apply.

3 MOTIVATION AND ASSUMPTIONS

The elasticity feature of the cloud environment which
allows to scale resources dynamically based on the perfor-
mance of the system brings the flexibility to handle dynamic
applications with constantly changing requirements. How-
ever, the dynamic adjustment of resources in accordance
with the state of the system requires self-adaptable techni-
ques that can interact with the environment and learn the
effect of resource changes in a variety of load and resource
configurations. To achieve this goal, the proposed solution
should be able to answer three main questions.

The first question is when the decision should be made.
Time-basedmonitoring anddecisionmaking [5], [12] is a com-
mon approach that helps the system to continuously adjust
the amount of resources according to the load and perfor-
mance state of the system. However, in the context of cloud
resource management, the dynamicity of the environment
can push the system to make unnecessary actions in response
to the temporal performance problems. For example, a short
spike in load can over-utilize the resources for a short amount
of time. A proper response to over-utilization is to increase
the amount of resources. While this is a correct action at the
time of the observation, the problem is a temporal spike and
the system quickly goes back to the normal load while the
mount of resources is increased which may cause an under-
utilized state. On the other hand, depending on the applica-
tion, only some states require direct actions. For example, in
the case of cloud-hosted applications, reaching a high
resource utilization (close to defined thresholds) without SLA
violations is recognized as a desirable state and requires no
action. If there is no action, the system will continue working
with the same amount of resources and the same pattern of
workload until a change occurs. This change can be a result of
workload variation, resource availability dynamics, or appli-
cation behavior. When such change occurs, the learning con-
tinues by triggering new actions and observing changes of the
states until another stable state is reached. Second question is
which types of scaling should be actioned. Twomain types of
scaling in the context of VM resources are vertical and hori-
zontal scaling. Vertical scaling changes the amount of allo-
cated resources for one VM and horizontal scaling changes
the number of VMs in the system. This decision is especially
important for web-based applications which are shown to be
prone to many local performance problems that impact CPU
andmemory resources [16]. While horizontal scaling can help
for general load problems, it is shown that local problems can
benefit more from vertical scalings in terms of the perfor-
mance maintenance and resource utilization [17]. Finally, we
should decide how to select an action for each state of the sys-
tem. A common solution for this problem is a combination of
if-then-else rules and threshold-based methods that describe
the system in two main states of over-utilized and under-uti-
lized and adjust the amount of resources accordingly. How-
ever, for a highly dynamic cloud environment, there are
many internal and external factors such as CPU hog and
memory leak problems that can affect the performance of the
VMs. These types of problems require complex rules and ana-
lyzingmethods to be properlymanaged. Considering the con-
stant changes in application requirements as well as the
limitation of physical resources which affect the amount of

available resources, self-adaptable solutions show potential
for automating the process of resource management. These
systems can learn from the environment and tune their
parameters, update their models, and adjust their decisions
based on themost recent feedback from the system.

Given the above explanation, we define our problem as
the dynamic reconfiguration of resources in the cloud in
response to the performance issues for applications under
the local and global resource pressures which are discov-
erable from resource-level performance indicators and pat-
terns. Particularly, we target web-based applications when
the performance of their components are impacted by the
client-side(human) behavior and cloud environment
dynamics. These components can be individually scaled
(stateless and loosely coupled components) as part of the
cloud scaling solutions to respond to the increase in the
workload. This work also addresses the experiences of
end-users and considers QoS as a measure for validating
the violations of user-level expectations. QoS metrics are
application and user-dependent and are selected based on
common indicators of user satisfaction. In this work, the
solution is targeting service level providers who have
access to the VM resources and VM-level performance
metrics and define their SLA based on the user-perceived
service response times.

4 PRELIMINARY ON DEEP REINFORCEMENT

LEARNING FRAMEWORK

Fig. 1 shows a general view of the RL framework for a prob-
lem which manifests the target environment. An agent is
responsible to continuously monitor the environment and
make observations of the important features. Collected
observations are translated to one of the states si from the
set S ¼ ðs1; s2; . . . ; sNÞ. Each state represents an abstract
description of the main features of the system. The goal of
RL is to gradually learn how to move between states to max-
imize a long-term objective function in terms of the total
rewards from each action. Each movement is done by select-
ing an action ai from set A ¼ ða1; a2; . . . ; aMÞ. At each deci-
sion time t, the agent decides to perform action at based on
the obtained knowledge from previous movements and the
current state st. The environment sends back a scalar feed-
back (reward rt) as the value of the action and its impact on
the state of the system. These feedbacks are then used to
update cumulative value of ðst; atÞ pairs table. The gradual
learning happens as a result of the many trial and rewards
in the form S �A � > R over time to achieve an optimal
policy for the agent.

Q-learning is a type of RL for continuous time Semi-Mar-
kov Decision Problems (SMDP) with the goal to obtain an

Fig. 1. Main components of general reinforcement learning framework.

KARDANI-MOGHADDAM ETAL.: ADRL: A HYBRID ANOMALY-AWARE DEEP REINFORCEMENT LEARNING-BASED RESOURCE SCALING IN CLOUDS 517

Authorized licensed use limited to: University of Melbourne. Downloaded on October 09,2020 at 23:48:11 UTC from IEEE Xplore. Restrictions apply.

optimal policy P to maximize value function QPðs; aÞwhich
estimates the accumulative discounted value of being in
state s and performing action a under the policy P. Suppose
that at decision epoch t, action at is selected. At the next
decision epoch tþ 1 and having the reward rðst; atÞ, the Q
function value can be updated as follows:

Qðst; atÞ ¼ Qðst; atÞ þ a½rðst; atÞ þ dmaxa0Qðstþ1; a0Þ�
Qðst; atÞ�;

(1)

where a 2 ð0; 1� is the learning rate and d 2 ½0; 1� is the dis-
count factor. This formula defines a mapping table between
state/action pairs to their expected values. However, defin-
ing and updating this table for large scale problems can be
challenging as the size of the table exponentially increases
with increasing states and action spaces. Deep reinforce-
ment learning combines the goal-directed optimization of
RL approach with Deep Neural Net (DNN) based approxi-
mation of expected values. DNN based function approxima-
tors are used to learn to predict the value of those actions
with regard to our environment. Networks can be trained
and modeled offline to iteratively find proper weights and
minimize the loss functions. Trained models are then used
during online RL execution to select best actions based on
the state of the environment.

5 SYSTEM DESIGN

Fig. 2 depicts a high-level view of the main components of
ADRL and their interactions with the external user and
cloud environment. The users send their requests to the
load balancer component which distributes them among
existing active VMs. Fig. 3 shows the details of 4 main mod-
ules in each VM as described in the following:

� Monitoring Module which is responsible for monitor-
ing the measurable features of the environment. In
the context of VM monitoring, these features can be
resource utilization measurements such as CPU and
memory.

� Data Analyzer (DA) performs data cleaning and
behavior modeling of the VM. The aim is to create
and continuously update an abstract model of VM
performance and detect unexpected violations. The

detected anomalies identify the occurrence of perfor-
mance problems and the need for corrective actions.

� DRLAgent is themain decision-maker that is triggered
after identifying an existing anomaly in the system by
the data analyzer module. It takes the observations
from the monitoring module of the system as input.
The output of this module is an action that defines
some changes in the configurations of resources. The
selected action is fed to the local scaler or sent back to
the global layer for further processing.

� Local Scaler is responsible for performing actions that
define some type of change in resource configura-
tions of corresponding VM.

Algorithm 1 shows the main steps of the ADRL frame-
work. Each VMmonitors the performance of its resources by
collecting resource utilization metrics at regular time inter-
vals. The collected data are fed into both local DA and RL
agent for processing. DA utilizes feed-forward Neural Net-
works to perform a prediction of the future values of each col-
lected metric. Then, the predicted values are used as input of
an anomaly detection algorithm to decide if the system is
behaving abnormal compared to the performance models
from previous observation of VM. If an anomaly event
is detected, the DRL component is triggered to decide on a
corrective action based on the observed state of the system. In
this work, the performance anomaly detection is defined in
favor of end-users and points to the events that can violate the
expected Quality of Service objectives. As a result, the anom-
aly event is defined as continuous and unusual changes in the
values of VM performance metrics such as CPU and memory
utilization which can affect the ability of the machine to pro-
cess user requests in an acceptable time. Finally, it should be
noted that the DRL agent can also be triggered as a result of
exceeding the maximum Time Between Actions (TBA). This
condition is included for cases when the performance is in a
normal state, but the resources are under-utilized. Although
no anomaly is triggered during normal times, wewant to give
the decision-maker a chance to move toward states with
higher utilization (possibly by removing extra resources).

Upon receiving the selected action from DRL, it is
checked that the action is a local resource scaling request or
not. If the answer is yes, the local scaler is called to adjust
the amount of allocated resources based on the requested
changes. On the other hand, if the action is a global scaling
request, the results are sent back to the global scaler which

Fig. 2. General architecture of ADRL.
Fig. 3. The interaction among local ADRL components.

518 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

Authorized licensed use limited to: University of Melbourne. Downloaded on October 09,2020 at 23:48:11 UTC from IEEE Xplore. Restrictions apply.

is responsible for controlling the number of VMs. The global
scaler can decide on adding new VMs to reduce the total
amount of resource utilization in the system or shutting
down the existing VMs to reduce under-utilized VMs and
resource wastage. While the action is executing, the system
enters a Locked state when no new action is performed. This
strategy gives the system enough time to adapt to new con-
figurations and reach a stable state. The details of each step
and corresponding algorithms are explained with more
details in the following section.

Algorithm 1. ADRL: General Procedure

1: Initialize Qðs; aÞ table with profiled transitions from testing
experiments;

2: Initialize anomaly detection Models;
3: while The system is running and at the beginning of perfor-

mance-check interval do
/* This part of the code is executed locally in

each VM */

4: up
t Predict the performance indicators for vmi at time t

based on the monitored data at time t� 1
5: st Identify the performance state for vmi at time t

based on the predicted values up
t

6: if st shows an anomaly then
7: Increase the counter by 1;
8: end
9: if (counter � L AND vmi is not in Locked state) OR

Timeðat�1Þ � TBAmax then
10: Call DRL Agent for a new Action at;
11: Execute at following Algorithm 2;
12: Schedule an update for learning model to be done

according to Algorithm 3;
13: end
14: end

Algorithm 2. ADRL: Execution Phase

input : At: Selected action at time t
1: while The system is running and at the beginning of perfor-

mance-check interval do
/* This part of the code is executed locally in

each VM */

2: if At is local then
3: Initialize all indicators in f to 0;
4: for aj 2 At do
5: if aj is a request of change for resource j then
6: Rnew

j ¼ Rold
j þ aj �Runit

j

7: if Rmin
j � Rnew

j � Rmax
j then

8: Apply the change
9: end
10: end
11: end
12: end
13: else

/* This part of the code is executed in the

master node */

14: Add new VMs or Remove from existing VMs based on
acceptable utilization and state of the environment.

15: end
16: end

Algorithm 3. ADRL: DRL Agent

/* Select an Action */

1: st Performance state at time t based on monitored data
2: Choose an action from set A randomly with � probability,

otherwise select an action with maximum Q value;
/* Perform scheduled learning */

3: if Learning schedule is triggered then
4: stþ1 Performance state at time tþ 1;
5: Calculate rt based on Equation (5);
6: Store stransition (st, at ,rt, stþ1) in VM profile memoryM ;
7: Update Q according to Equation (1);
8: end

6 ADRL: A DEEP RL BASED FRAMEWORK FOR

DYNAMIC SCALING OF CLOUD RESOURCES

In this section, we detail the main components of the ADRL
framework. As explained in Section 3 and Algorithm 1,
ADRL is composed of three main parts to address the iden-
tified challenges in an adaptable resource management
solution. We should note that this is a general architecture
and each part can be easily extended to new data analysis
techniques, more advanced resource management solutions
such as migrations of VMs, and other mapping techniques
to select among state/action pairs. Table 2 presents a list of
notations used in this paper.

6.1 Deep Reinforcement Learning (DRL) Agent

The DRL module addresses the mappings of states to actions
where a proper scaling action should be selected for the current
state of the system. Let us assumewehave a pool of active VMs
V ¼ ðv1; v2; . . . ; vP Þ as our global environment. Each vmi is
describedwith a tupleU ¼ ðui1; ui2; . . . ; uiKÞwhere uij is a sca-
lar value representing the utilization of resource type j on vmi.
For each resource type j, an action aj can be performed. If aj is
greater than zero, it corresponds to increasing resource j by
amount aj; If it is zero, it means the resource is unchanged and
negative values correspond to amount of released resources.
Therefore, depending on the total number of types of resour-
ces, the final set of the actions for eachVM is defined as theCar-
tesian product of the sub-action sets of its resources as follows:

A ¼ PK
j¼1Aj

where Aj is the set of all possible actions for resource j.

TABLE 2
Description for Notations

Notation Description

Rj Amount of resource j
Runit

j Unit of change for resource j. For example, one core
for CPU resources

TBAmax Maximum allowed time between actions
V ðstÞ Value of the state st
uj Utilization of resource j.
at Action at time t
rt Response Time
L Minimum number of violations before the system

reacts to an anomalous event

KARDANI-MOGHADDAM ETAL.: ADRL: A HYBRID ANOMALY-AWARE DEEP REINFORCEMENT LEARNING-BASED RESOURCE SCALING IN CLOUDS 519

Authorized licensed use limited to: University of Melbourne. Downloaded on October 09,2020 at 23:48:11 UTC from IEEE Xplore. Restrictions apply.

Accordingly, the purpose of the DRL agent is to find a
proper configuration of resources by continuing changes of
respective resources and receiving feedback on the out-
comes of the changes. However, the changes of resources
on vmi are limited to the minimum amount of allocated
resources for a VM as well as the available resource of the
host machine. Suppose a scenario where the environment
V ¼ ðv1; v2Þ is handling the daily load of a web application
with normal utilization of resources. The dynamics of work-
load during the day is handled by adding/removing
resources for each VM asynchronously. Then, during a peak
period, the load drastically increases which causes unex-
pected over-utilization of resources. In this scenario, the sys-
tem is facing a situation that adding resources at the local
level may not be enough. Therefore, we add a special action
aglobal to the action set A where aglobal corresponds to a
request for help from global layer. Section 6.3 discusses
these actions in more details.

DRL Agent � > Action Selection: Upon receiving an
anomaly alert, DRL agent is called to choose an action in
response to the detected performance problem. Let us
assume that st is the observed state of the performance
anomaly. In order to choose an action from the action set,
we need a policy that exploits the available knowledge from
the feedback of previous decisions (exploitation) and also
tests new actions to improve the knowledge of state/action
relations (exploration). We use a dynamic version of
�-greedy policy which is a standard policy for having a
trade-off between exploration and exploitation policies.
�-greedy policy selects a random action with a probability
equal to �, otherwise it selects an action with maximum Q
value in the table. In order to have a dynamic policy with a
higher exploration at the start, � is initialized with 1 and as
the number of observed states increases the value of �
decreases until it reaches a minimum value [13].

DRL Agent � > Learning-Model Update: When the system
applies an action, a waiting time is required so the effect of
changes can be reflected in the environment. At this time,
the DRL agent calls for an update based on the newly
observed state stþ1. The agent first stores the transition
ðst; at; rt; stþ1Þ in a profile memory. Then, the reward is cal-
culated for the pair ðst; atÞ to evaluate the goodness of the
selection.

The final purpose of ADRL is to improve the QoS and
utilization of services. Therefore, the reward is formulated
according to this goal and is composed of three components
as follows:

� QoS: The Quality of Service describes the level of sat-
isfaction from the user perspective. Considering web
application characteristics, performance problems
that cause unexpected changes at the resource-level
can eventually impact the response time of the whole
system. Therefore, the goal of the system is to track
the resource-level performance patterns and trigger
actions that avoid the degradations of user-level
experience. Depending on the application and user
agreements, there are a variety of QoS metrics such
as availability, reliability, throughput, makespan,
etc. We choose response time (RT) as a measure for
this metric. RT represents the waiting time for each

request from the submission to the completion
including runtime and queuing times. Therefore,
the processing delays caused by resource shortages
are dynamic parts of delay values which are
included in the metric and should be minimized.
Let rt be the average response time of requests dur-
ing time interval t to tþ 1. Then, the reward of rt
ðRrtÞ is calculated based on Equation (2) where
RTmax and RTmin are maximum and minimum
acceptable values. The minimum value condition is
added to consider cases that an application goes
into an unresponsive or overloaded state and no
request can be accepted and as a result, RT drops to
a near-zero value. When rt is a value between the
min and max thresholds and therefore satisfying
SLA, the reward will always be 1. When rt violates
the thresholds, the utility function will decay to
zero. In other words, Rrt utility function punishes
any action that causes SLA violations.

Rrt rtð Þ ¼
e�ð

rt�RTmax

RTmax Þ2 rt > RTmax;

e
�ðRTmin�rt

RTmin Þ2 rt < RTmin

1 otherwise;

8
><

>:
: (2)

� Resource Utilization: While having an under-utilized
environment can give the users a high QoS in terms
of the running time of requests, the wastage of
resources is not acceptable for service owners.
Wasted resources increase costs in terms of the mon-
etary value as well as energy wastage in the environ-
ment. Therefore, we need to consider the resource
utilization for each resource j of vmi in the final
reward value. This value helps the decision-maker
to move toward decisions that increase the utiliza-
tion of resources while considering the satisfaction
of user expectations through QoS value introduced
in the previous part. Equation (3) defines this value
as an average of utilization on all resources where
Uj

max defines the maximum acceptable utilization
for corresponding resource j and uj 2 ð0; 1�. Higher
utilization makes positive impacts on the final
reward value. However, if the utilization is violating
the maximum threshold (the second part of the
Equation (3)) the value of Rut starts increasing which
negatively impacts the final reward.

Rut uj

� � ¼
PN

j¼1 Uj
max�uj

N þ 1 uj � Uj
max;

PN

j¼1 uj�Uj
max

N þ 1 otherwise

8
><

>:
: (3)

� State Transitions Value: While running the experi-
ments with ADRL, we noticed that a sequence of
ðs; aÞ transitions can lead the decision-maker to be
trapped in a loop between states. This can happen as
a result of the simultaneous changes of resources by
the actions that are affecting the value of more than
one resource. This is especially important for appli-
cations where changes of one resource have a domi-
nant effect in terms of the utilization compared to

520 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

Authorized licensed use limited to: University of Melbourne. Downloaded on October 09,2020 at 23:48:11 UTC from IEEE Xplore. Restrictions apply.

the others. Suppose we have vmi with two resources
CPU and memory in an under-utilized state. Action
a ¼ f�a;þag is triggered and one unit of CPU is
removed while one unit of memory is added. Since
the application is a CPU sensitive one, the utilization
of CPU significantly increases while memory shows
a small change. Although the utilization of memory
is still in the under-utilized state, this action can
result in good reward value. Therefore, differentiat-
ing among transitions with utilization improvements
of one resource can be challenging. Although this
observation can be dependent on the units of
changes and the characteristics of applications, con-
sidering the dynamicity and heterogeneity of cloud-
hosted applications this behavior can be expected.
As a solution for this problem, ADRL introduces a
state value function and transition penalty as Equa-
tion (4) where function V assigns manual weights to
the states. The aim is to include some domain knowl-
edge on top of the environmental feedbacks from the
system. The definition is in accordance with the con-
cept of reward shaping for boosting the learning
phase with application-dependent information [18],
[19]. The undiscounted potential-style shaping helps
to evaluate the value of transition from one state to
another based on the P : S �A� S� > R form. If
an action is causing a transition from a higher value
state to lower ones, a penalty value is considered in
the final reward function. In contrast, moving from a
lower state to higher states affects the reward value
positively. Accordingly, the penalty function is
defined as follow:

P st; stþ1ð Þ ¼
1 ifV ðstÞ < V ðstþ1Þ;
�1 ifV ðstÞ > V ðstþ1Þ;
0 otherwise

8
<

:
: (4)

Finally, Equation (5) shows the final value of rðst; atÞ pair
as the total rewards in terms of the QoS, utilization and state
value changes. Higher values of Rrt and lower values of Rut

increase the final reward.

rðst; atÞ ¼ Rrt rtð Þ
Rut utilð Þ þ P st; stþ1ð Þ: (5)

Having all the information from transition ðst; at; rt;
stþ1Þ ready, updating of the Q-table can be done based
on the new information and Equation (1). In order to
improve the stability of learning and parameter updating
in the presence of anomaly and temporal spikes which
introduce abnormal transitions, we leverage experience
replay as a sampling technique during training. This tech-
nique uses the profile of the past transitions to randomly
select mini-batches of records to be used for training the
learning networks. Random selection of records also helps
to overcome the correlation among sequential experiences
as well as improving the efficiency by using each experi-
ence in many of the updates [20].

6.2 Anomaly-Aware Decision Making

In the context of cloud resource management, the actions
are triggered as a response to the performance problems in
the system. However, the base DRL loop usually works as a
periodic decision-maker with iterative selection and updat-
ing steps to gradually adapt to the environment. Proactive
event-based decision making is another approach where the
decisions are made as a response to possible predicted per-
formance problems. This helps the system to reduce the fre-
quency of decision makings which also reduces the
possibility of oscillation among states. In order to achieve
this goal, we choose a fast and memory-efficient anomaly
detection algorithm called IForest [21]. IForest is based on
isolation-tree (iTree) data structures where each tree is con-
structed by randomly choosing attributes and dividing the
instances based on a random value for the corresponding
attribute. To better understand the iTree structure, suppose
we have the performance observations of vmi for last t log-
ging intervals asX ¼ ðU1; U2; . . . ; UtÞ. The first step is to ran-
domly select a sample of c instances from X where
c < < t. This sample is used to build the first iTree. To cre-
ate the root node, a random attribute from U is selected and
the sample instances are divided into two subgroups based
on their value for the selected attribute. The new subgroups
create two sub-nodes of the root node. This process contin-
ues for each sub-node until a termination criterion is
reached. It is shown that the iTree structure isolates anom-
aly instances in shorter branches of the tree and therefore
the path length of the tree from root to the leaf nodes repre-
sents a comparable value for evaluating the degree of anom-
alousness for each instance [22].

IForest model is built based on an ensemble of many
iTrees and the anomaly scores are average of path length on
all trees. Having a worst time and space complexity O(Tc2)
and O(Tc) for the training of T iTrees, IForest is a promis-
ing option for dynamic environments where the models
require regular updates to capture the latest state of the sys-
tem. Moreover, iTrees can be built independently which
makes it easy to have parallel implementations of algo-
rithms to have more efficient anomaly detection. ADRL lev-
erages IForest as the core of anomaly detection module
where the performance observations are used to train and
initialize models and future performance values are tested
to identify the states that are violating the recently observed
behavior of the system.

One point worth mentioning here is that the triggering of
an anomaly state can be a result of a change between states
in terms of the values of monitored metrics from workloads
and VMs. Three problems arise as a result of this transition
to be addressed.

First, the transitions among states can be a result of tem-
poral spikes which can be expected in highly dynamic envi-
ronments. To address this problem, one anomaly alert is not
taken as a serious anomaly event. In fact, the DRL agent is
triggered for making a decision when a continuous anomaly
event is identified by receiving at least L consecutive alerts
(Algorithm 1, Lines 4-7). Therefore, the system ignores the
first few alerts to avoid unnecessary reactions to transient
changes. The value of L can be decided based on a combina-
tion of factors such as system logging interval, application
characteristics, and the degree of fault tolerance.

KARDANI-MOGHADDAM ETAL.: ADRL: A HYBRID ANOMALY-AWARE DEEP REINFORCEMENT LEARNING-BASED RESOURCE SCALING IN CLOUDS 521

Authorized licensed use limited to: University of Melbourne. Downloaded on October 09,2020 at 23:48:11 UTC from IEEE Xplore. Restrictions apply.

Second, if the transitions are real, the trained anomaly
detection models may not reflect the new states and there-
fore there will be many false anomaly alerts. To solve this
problem, we use an idea introduced in [17] for deciding the
proper time for updating of the models. The idea is that the
system can be classified into three separate states of transi-
tion, changed, and normal. In the transition state, the system
observes many anomaly alerts and newly collected data are
different in pattern/value compared to the training data.
When the transition completes and system observes higher
stability in monitored data, the system has moved to a new
changed state. In our case, an update will happen in the
changed state and therefore the new observations are repre-
senting new behavior of the system.

The prediction interval should be selected to consider the
delay of actions to be effective in the system. In this case, we
select an interval equal or larger than the maximum time
required to finalize a scaling action which includes starting
a new VM in the system and updating load balancers to
add the new server in the list of active, schedulable resour-
ces. Finally, it should be noted that while the frequency of
decision making is reduced by replacing the periodical trig-
gering with anomaly triggers, we should still consider that
not all decision epochs require a change in the states. If the
performance is in a good state in terms of the reward values,
no-change actions may give a better chance of reaching an
optimal condition. Action aj equal to zero as discussed in
section 6.1 helps the system to experience the no-change
effect on the performance of VMs.

6.3 Two-Level Scaling

As we explained in Section 6.1, two levels of scaling are con-
sidered in this work. The first level is defined for each
resource of VMs. Three types of action as defined by aj are
applied based on the units of change for each resource. Let
us assume one CPU core as the unit of the change for this
resource. Therefore, þa action increases the number of cores
by a while �a action removes a cores from the VM. Simi-
larly, the unit of memory changes can be set as 256 MB and
therefore each action changes the amount of allocated mem-
ory with multiples of this unit. In our work, one unit is
selected for each change. Moreover, the action is valid if the
requested changes are not violating the available resource
of the host machine or minimum acceptable amount of the
allocatable resource to each VM.

The second level of scaling is performing horizontal
changes at the global scaler which is responsible for manag-
ing the units of VMs and can change the number of VMs
according to the state of the system. The global scaler has
access to the utilization of all VMs. ADRL designs the global
layer as a threshold based horizontal scaling algorithm. In
an under-utilized environment, where the total resource
consumption of VMs is lower than the threshold, the global
scaler identifies VMs which have low utilization and starts
deactivation process. Similarly, when the scaler finds an
over-utilized state, where the total resource consumption is
higher than the threshold, new VM is added to help reduce
the load on existing machines.

Combining these actions, the system should be able to
learn the relation between performance states with

appropriate resource management decisions. Let us
assume the anomaly detector module is predicting
impending memory pressures (memory consumption
higher than maximum thresholds) for one VM. Suppose
system selects CPU scaling action as a response. Adding
one new core, if not violating the available resources, is
not helping the memory shortages for the application and
RT will be impacted gradually. Therefore, feedback from
the environment causes negative rewards for the combina-
tion of observed state and action. Similarly, selecting a
global level action will trigger the global scaler which mon-
itors the overall performance of the environment. How-
ever, as the total resource consumption is not violating
thresholds, this state is considered as a local problem and
no action is performed (no horizontal scaling). We expect
to see gradual QoS degradations while moving between
non-memory relevant actions. Finally, when the system
selects a memory scaling action, the system adds 256MB to
the VM memory which helps to respond to the resource
pressures on the VM. Moreover, every action is followed
by a locked-down period (locked state) which allows the
system to reach a stable state and the effects of the selected
action are reflected in the feedback results.

7 PERFORMANCE EVALUATION

In this section, the performance of the proposed framework
is evaluated using CloudSim discrete event simulator [23].
An extension of CloudSim is used that includes analytical
performance models of a web application benchmark [24]
and an anomaly injection module [17]. The simulator helps
us to create a controlled environment for performance
anomaly testing and corresponding validations for different
types of problems. We have tried to make realistic assump-
tions by considering the analytical characteristics of system
behavior and including them in the modeling. These
include the VM booting-time delays, session analytical
models, temporal spikes, etc. Through these experiments,
we demonstrate how the integration of proactive alerts of
anomaly detector, knowledge from feedback-based RL sys-
tem, and also scaling actions can respond to the local and
global anomalous events.

7.1 Experimental Settings

We model the environment as a data center with two types
of application and database server VMs. The configuration
of VM templates for application server is one virtual core,
256 MB of Ram and Linux operating system and the maxi-
mum limit for resources are 5 cores and 3,072 MB, respec-
tively. The workloads are based on the web-based user
requests on Rice University Bidding System (RUBiS) bench-
marking environment which models an auction site follow-
ing ebay.com model. The application models interactive
users performing browsing, searching, and performing
transactions. As a result, it demonstrates the high variable
demands of the cloud. It is also shown that this type of
application is prone to many performance anomalies that
involve CPU and memory resources. We use this character-
istic to create local performance problems resulting from
resource bottlenecks [16]. The modeled workload consists
of both browsing and updating actions which result in a

522 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

Authorized licensed use limited to: University of Melbourne. Downloaded on October 09,2020 at 23:48:11 UTC from IEEE Xplore. Restrictions apply.

modification of the database. Each session of the web work-
loads is modeled based on the monitored resource usages of
real requests on RUBIS [24]. To generate the performance
models of the system, four attributes CPU, memory, disk
utilization, and number of sessions are collected. VM start-
up times are also modeled based on the study done in [25].
The anomaly detection module is initialized by generating
iTrees models for each VM. Unless otherwise specified, the
value of parameters in IForest configurations and model
updating schedules are according to the recommended set-
tings as explained in [17]. A proper value for L can be
selected considering the trade-off between computation
overheads, the stability of the environment, and the perfor-
mance degradation tolerance. Small values of L may cause
the system to perform unnecessary checks of the perfor-
mance or decide on preventive actions for many false
alarms, while large values of L increases the time it takes
for the system to start a scaling action in response to the per-
formance problems. Based on our observation of scaling
action delays to be effective (VM booting times) and system
logging interval in the system, we have selected value L ¼ 6
for this variable. Based on experimental observations, this
gives the system enough time to avoid many temporal
spikes originated from dynamics of the workload. In order
to initialize the Q-table of the DRL agent, we run CloudSim
for 48 hours and record the transitions and corresponding
rewards in a file. These records are then used in a batch
learning process to initialize the Q values [20]. We consider
utilization of two resources, CPU and memory, to create
state space. Unexpected patterns in each variable can repre-
sent a local anomaly involving one metric and the combina-
tion of those two can show load increase performance
problems. The action space is combinations of three levels
of vertical scaling as discussed in Section 6.1 for both CPU
and memory and horizontal scaling action. For Deep Q-
learning we use a constant learning rate a ¼ 0:05 value and
a discount factor g ¼ 0:9. The number of layers is 20 and the
size of mini-batches for profile memory is 50 based on our
experimental evaluations. � is initialized equal to one and
decreased from 1 to 0.1 to give higher exploration capability
in the initial iterations of learning with �-greedy policy. The
threshold values for RT are 0.1 and 2 and are defined based
on the simulated application and workload characteristics.

In order to assign weights to states for penalizing pro-
cess, we follow a simple idea based on the static partitioning
of the state space. Therefore, for each resource, the utiliza-
tion is divided into 5 partitions and the incoming state val-
ues are mapped to the corresponding partition. Partitions
with higher utilization get higher weights. DRL agent is
implemented in the Python environment with TensorFlow
and a wrapper is created to connect Java-based CloudSim
simulator to python codes.

Each experiment has a duration of about 24 to 48 hours.
These values are chosen to sufficiently capture application
behavior for various scenarios. The normal workload is
based on the RUBiS benchmark and the sessions are gener-
ated based on Poisson distribution with a time-based fre-
quency as explained in [24]. Two types of CPU and memory
anomalies are generated in CloudSim to create an increas-
ing trend effect in the consumption of CPU and memory
without significant changes in the normal load of the

system. These anomalies start after the model initializations
and at random times during execution. To create the
increasing load effect, after 10 hours of normal load, the
number of sessions start to increase in two phases by adding
5 and 20 sessions at each time unit, respectively.

7.2 Experiments and Results

In order to evaluate the performance of ADRL, two static
methods and one DRL based method are considered. In
Under-Utilized method, the VMs are configured so that the
total amount of allocated resources is more than the
demanded ones. Therefore, with an under-utilized method,
the user can experience the best QoS. In Over-Utilized case,
the VMs are set up based on the minimum VM template
configurations as described in Section 7.1 such that during
the run of the experiment and by starting anomaly events
the utilization of resources exceeds the acceptable level and
some violations are allowed. In both cases, no scaling is
done through the experiments, therefore generating a sam-
ple of the best and worst results to evaluate the general
functionality of ADRL. We also implement a non-anomaly
aware RL based algorithm similar to the approaches such as
[11]. To have a fair comparison, we compare with an
enhanced algorithm by implementing a Deep Learning
based RL decision-maker with both vertical and horizontal
scaling actions and name it as DRL to study the effect of
anomaly-based decision making of ADRL.

Fig. 4 presents the results of all methods on a workload
with the CPU hog problem. The first diagram shows the
CPU utilization corresponding to each scenario. As we can
see, the under-utilized environment shows the lowest CPU
utilization while over-utilized one has the highest utiliza-
tion. While CPU consumption is increasing, both DRL and
ADRL try different types of actions. These actions are not
always the optimal choices that are expectable as the system
is observing new states that may have a few historical
records of their transitions before. However, as the system
starts to violate the QoS around t ¼ 800, both algorithms try
to optimize the resource utilization by adding new cores to
the VM. At this point, ADRL observes a transition in the uti-
lization values, updates the anomaly detection model, and
enters a stable state. The stability of the process can be seen
around observation t ¼ 900 and onward where no anomaly
is triggered and therefore no action is performed to change
the states. In contrast, DRL continues time-based decision
making which may return the system back to the violation
state. Although choosing aj ¼ 0 action can help the system
to keep the current state, but some actions which are
resulted from random selections or due to the temporal
spikes of the performance can cause wrong changes of con-
figurations and extra violations. These violations are also
shown in the last graph of Fig. 4. This diagram shows the
cumulative percentage of violations during each time inter-
val. As the picture shows, ADRL can reduce the incremental
results of QoS violations in the presence of anomalous
behavior by performing vertical scalings and keeping the
system in the normal state. In contrast, DRL can not show
stable results in terms of violation reductions as it continu-
ously returns the system back to an abnormal state. As
already mentioned, this behavior is due to not recognizing

KARDANI-MOGHADDAM ETAL.: ADRL: A HYBRID ANOMALY-AWARE DEEP REINFORCEMENT LEARNING-BASED RESOURCE SCALING IN CLOUDS 523

Authorized licensed use limited to: University of Melbourne. Downloaded on October 09,2020 at 23:48:11 UTC from IEEE Xplore. Restrictions apply.

the continuity of the anomaly state and trying to make new
changes to maximize rewards with regard to the resource
utilization.

Fig. 5 shows the utilization and RT diagrams for memory
shortage problems in the system. To generate the anomaly
state, after t ¼ 600, a steady increase of the memory utiliza-
tion is started and the results of each scenario for memory
utilization and RT are presented. The diagrams for the
under-utilized scenario does not show any significant
change as there is still plenty of free memory available. In
contrast, over-utilized execution gets affected immediately
as the utilization exceeds corresponding thresholds which
are reflected in the second diagram where RT shows sudden
increases. These unexpected increases which are shown as
vertical upward lines in the graph happen when the VM
does not have enough memory and therefore becomes unre-
sponsive while rejecting many of the new incoming
requests. However, with the start of memory anomaly and
an increase in RT violations, ADRL decided to add extra
resources which avoid further violations as well as decrease
the number of failed sessions. DRL, in contrast, achieves an

initial decrease of RT violations by adding more resources;
however, the time based triggering of decisions and sudden
spikes of utilization while moving between states cause
wrong actions that release some of the resources. The
sequence of these add/removal of resources causes several
violation spikes and returning the system back to the anom-
aly state. This is again due to the ignoring of the stability of
the system in terms of being in an identified continuous
anomalous state and particularly is expected when the sys-
tem is experiencing higher explorations. For example, this
can happen when the system is observing rarely seen states
such as memory utilization higher than 30 percent in a
CPU-intensive application. ADRL, however, correctly iden-
tifies anomaly states and after two wrong configurations,

Fig. 4. CPU Utilization, Response Time (Log), and violations number for
CPU shortage dataset. Time index indicates the sequence of logging
points in the system. ADRL is able to pro-actively trigger vertical scaling
actions in response to anomaly events (utilization more than 80 percent).
It also shows higher stability in comparison to DRLwith multiple changes
of state between anomalous and normal states.

Fig. 5. Memory Utilization, Response Time, and cumulative violations in
the presence of memory shortage dataset. Time index indicates the
sequence of logging points in the system. ADRL is able to pro-actively
trigger vertical scaling actions in the response to anomaly alerts which
decreases RT violations and rejected sessions.

524 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

Authorized licensed use limited to: University of Melbourne. Downloaded on October 09,2020 at 23:48:11 UTC from IEEE Xplore. Restrictions apply.

around 800 � t � 900 brings the system back to a steady
performance. The last diagram of Fig. 5 demonstrates the
results of the cumulative number of violations which high-
lights the ability of ADRL to reduce the total number of vio-
lations after detecting the anomalous behavior with regard
to the memory utilization.

In order to show the response of the system to high load
problems and triggering of horizontal scaling actions, we
run CloudSim with a workload that increases the load to
saturate resources. Fig. 6 shows the corresponding CPU uti-
lization of this load and the changes made in the system for
static and dynamic scenarios.

As we expect, the under-utilized run shows the lowest
utilization, while the over-utilized configuration soon
reaches the saturation point of resources. Both DRL and
ADRL trigger a mix of vertical and horizontal scalings dur-
ing their run. The horizontal scaling decisions that add new
VMs for DRL and ADRL are shown with red and green
marks on the diagram, respectively. However, the sequence
of decisions made by DRL during the transitions of the sys-
tem from abnormal to normal state weakens the expected
effects of added VM in the system. The reason is due to the
decisions that remove some cores from existing VMs which
can temporally reflect increases of the utilization. However,
the increase is happening during the transition of the sys-
tem when the load is still increasing which as a result causes
the violations of performance. In contrast, ADRL correctly
identifies the continuous anomaly events and the number of
decisions in the presence of temporal spikes is less and
more accurate.

Fig. 7 shows the number of decisions corresponding to
the scaling actions for both methods ADRL and DRL. As we
have mentioned before, DRL includes a periodic decision-
maker while ADRL triggers scaling actions as the response
of detected anomalies. As a result, ADRL can significantly
decrease the number of scaling actions. This reduction is
important in the cloud environment as every scaling is
changing the patterns of the performance in the system and
therefore affecting the accuracy and updating interval of
prediction models.

Finally, to validate the effect of penalty values of the
reward function (Equation (5)) in guiding the decision-
maker to higher value states, we run two versions of ADRL
with penalties included (ADRL_WP) and without that
(ADRL_NP). The results of this experiment are shown in

Fig. 8. As we can see, ADRL_NP selects more action types
that increase resource allocations and moves the system to
the states with lower utilization which as described in
Section 6.1 have lower value in accordance with the reward
function. For example, there are a series of decisions to add
resources around t ¼ 300 or between t ¼ 600 to t ¼ 900
which reduces the utilization. However, by each reduction,
the utilization part of the reward function reflects the nega-
tive effect of these movements which helps the system to
recover (as it is shown around t ¼ 1000) after a few steps.
However, ADRL punishes the decisions that move the sys-
tem to low utilization states while encouraging toward deci-
sions that remove resources when the utilizations have not
reached their maximum thresholds. Therefore, the general
behavior of the system under ADRL management is more
toward high utilization states with higher values as long as
the SLAs are respected. This helps the system to quickly
learn about the actions which configure resources to achieve
higher reward values.

8 CONCLUSION AND FUTURE WORK

In this work, the problem of VM-level resource scaling in
cloud computing is addressed which includes dynamic
changes of resource configurations to regulate the perfor-
mance of the system. A variety of techniques such as
threshold-based rules and time-series analysis are pro-
posed in the literature as a solution to the problem. These
techniques try to define models that determine when and
what type of scaling action should be performed. However,
considering the constantly changing environment of cloud,
self-learning paradigms are required to be able to interact
with the environment. In this work, ADRL is proposed as

Fig. 6. CPU utilization for an overloaded system. Multiple scaling actions
are performed during the running of DRL and ADRL algorithms. Two hor-
izontal scaling actions done by ADRL and DRL methods are shown as
an example.

Fig. 7. Total number of decisions (scaling actions) for both methods DRL
and ADRL for each dataset. ADRL can decrease the number of deci-
sions with an event-based decision-making process. Time index indi-
cates the sequence of logging points in the system.

Fig. 8. A comparison of CPU utilization with two versions of ADRL.
ADRL_WP performs a penalizing process as part of the reward calcula-
tion while ADRL_NP ignores this step.

KARDANI-MOGHADDAM ETAL.: ADRL: A HYBRID ANOMALY-AWARE DEEP REINFORCEMENT LEARNING-BASED RESOURCE SCALING IN CLOUDS 525

Authorized licensed use limited to: University of Melbourne. Downloaded on October 09,2020 at 23:48:11 UTC from IEEE Xplore. Restrictions apply.

a two-level adaptable resource scaling framework. ADRL
models the problem of resource scaling as a Deep Rein-
forcement Learning framework with the capability of
observing the performance of surroundings and taking
actions as a response to the problems. ADRL identifies per-
formance problems by using an anomaly detection model
and the actions are a combination of horizontal and verti-
cal scaling changes. We show that the ADRL framework
can achieve better results in terms of identifying and cor-
recting performance problems with a smaller number of
decisions. Moreover, it is shown that different types of per-
formance anomalies can be addressed by scaling decisions
at various levels of granularity.

As part of the future work, we plan to extend the current
framework to consider the energy consumption and cost of
the resources in their decisions. This can be added as a new
layer of decisions where the amount of the change (positive
or negative) is decided by a low-level decision-maker while
a high-level agent decides on the best choice of the scaling
in terms of the cost and energy considering the global state
of the system. Moreover, the current experiments are work-
ing on a web-based workload benchmark with an auction-
based profile. Other types of applications and more recent
web-based technologies might create different varieties of
resource consumption profiles as well as resource anomaly
signatures. These new profiles and their impacts on the
complexity of the ADRL decision-maker (anomaly detector
module and resource-level actions) needs to be investigated.

REFERENCES

[1] J. Yang, C. Liu, Y. Shang, Z. Mao, and J. Chen, “Workload predict-
ing-based automatic scaling in service clouds,” in Proc. IEEE 6th
Int. Conf. Cloud Comput., 2013, pp. 810–815.

[2] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani, and D. Rajan,
“PREPARE: Predictive performance anomaly prevention for vir-
tualized cloud systems,” in Proc. 32nd IEEE Int. Conf. Distrib. Com-
put. Syst., 2012, pp. 285–294.

[3] X. Li, A. Ventresque, J. Iglesias, and J. Murphy, “Scalable correla-
tion-aware virtual machine consolidation using two-phase
clustering,” in Proc. Int. Conf. High Perform. Comput. Simul., 2015,
pp. 237–245.

[4] M. S. Aslanpour, M. Ghobaei-Arani, and A. N. Toosi, “Auto-
scaling web applications in clouds: A cost-aware approach,” J.
Netw. Comput. Appl., vol. 95, pp. 26–41, 2017.

[5] M. Ghobaei-Arani, S. Jabbehdari, and M. A. Pourmina, “An auto-
nomic resource provisioning approach for service-based cloud
applications: A hybrid approach,” Future Gener. Comput. Syst.,
vol. 78, pp. 191–210, 2018.

[6] H. Arabnejad, C. Pahl, P. Jamshidi, and G. Estrada, “A compari-
son of reinforcement learning techniques for fuzzy cloud auto-
scaling,” in Proc. 17th IEEE/ACM Int. Symp. Cluster Cloud Grid
Comput., 2017, pp. 64–73.

[7] J. V. B. Benifa and D. Dejey, “RLPAS: Reinforcement learning-
based proactive auto-scaler for resource provisioning in cloud
environment,”Mobile Netw. Appl., vol. 24, pp. 1348–1363, 2019.

[8] D. Basu, X. Wang, Y. Hong, H. Chen, and S. Bressan, “Learn-as-
you-go with Megh: Efficient live migration of virtual machines,” in
Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst., 2017, pp. 2608–2609.

[9] M. Duggan, J. Duggan, E. Howley, and E. Barrett, “A reinforce-
ment learning approach for the scheduling of live migration from
under utilised hosts,”Memetic Comput., vol. 9, pp. 283–293, 2017.

[10] K. Lolos, I. Konstantinou, V. Kantere, and N. Koziris, “Adaptive
state space partitioning of Markov decision processes for elastic
resource management,” in Proc. IEEE 33rd Int. Conf. Data Eng.,
2017, pp. 191–194.

[11] J. Rao, X. Bu, C.-Z. Xu, L. Wang, and G. Yin, “VCONF: A rein-
forcement learning approach to virtual machines auto-configu-
ration,” in Proc. 6th Int. Conf. Auton. Comput., 2009, pp. 137–146.

[12] L. Yazdanov and C. Fetzer, “VScaler: Autonomic virtual machine
scaling,” inProc. IEEE 6th Int. Conf. Cloud Comput., 2013, pp. 212–219.

[13] M. Cheng, J. Li, and S. Nazarian, “DRL-cloud: Deep reinforcement
learning-based resource provisioning and task scheduling for
cloud service providers,” in Proc. 23rd Asia South Pacific Des.
Autom. Conf., 2018, pp. 129–134.

[14] N. Liu et al., “A hierarchical framework of cloud resource allocation
and power management using deep reinforcement learning,” in
Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst., 2017, pp. 372–382.

[15] E. Barrett, E. Howley, and J. Duggan, “Applying reinforcement
learning towards automating resource allocation and application
scalability in the cloud,” Concurrency Comput., Pract. Experience,
vol. 25, no. 12, pp. 1656–1674, 2013.

[16] B. Subraya, Integrated Approach to Web Performance Testing: A
Practitioner’s Guide. Pennsylvania, USA: IGI Global, 2006.

[17] S. K. Moghaddam, R. Buyya, and K. Ramamohanarao, “ACAS: An
anomaly-based cause aware auto-scaling framework for clouds,”
J. Parallel Distrib. Comput., vol. 126, pp. 107–120, 2019.

[18] A. Y. Ng, D. Harada, and S. J. Russell, “Policy invariance under
reward transformations: Theory and application to reward
shaping,” in Proc. 16th Int. Conf. Mach. Learn., 1999, pp. 278–287.

[19] S. Devlin and D. Kudenko, “Theoretical considerations of poten-
tial-based reward shaping for multi-agent systems,” in Proc. 10th
Int. Conf. Auton. Agents Multiagent Syst., 2011, pp. 225–232.

[20] V. Mnih et al., “Playing atari with deep reinforcement learning,”
2013, arXiv:1312.5602.

[21] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in Proc.
8th IEEE Int. Conf. Data Mining, 2008, pp. 413–422.

[22] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation-based anomaly
detection,” ACM Trans. Knowl. Discov. Data, vol. 6, no. 1, pp. 3:1–
3:39, 2012.

[23] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose,
and R. Buyya, “CloudSim: A toolkit for modeling and simulation
of cloud computing environments and evaluation of resource
provisioning algorithms,” Softw. Pract. Experience, vol. 41, no. 1,
pp. 23–50, Jan. 2011.

[24] N. Grozev and R. Buyya, “Performance modelling and simulation
of three-tier applications in cloud and multi-cloud environments,”
The Comput. J., vol. 58, no. 1, pp. 1–22, 2013.

[25] M. Mao and M. Humphrey, “A performance study on the VM
startup time in the cloud,” in Proc. IEEE 5th Int. Conf. Cloud Com-
put., 2012, pp. 423–430.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

526 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

Authorized licensed use limited to: University of Melbourne. Downloaded on October 09,2020 at 23:48:11 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

