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Abstract

The increasing demand for services offered by cloud providers results
in a large amount of electricity usage by their data center sites and a high
impact on the environment. This has motivated many cloud providers to
move towards using on-site renewable energy sources to partially power
their data centers using sustainable sources. This way, they can re-
duce their reliance on brown electricity delivered by off-site providers,
which is typically drawn from polluting sources. However, most sources
of renewable energy are intermittent and their availability changes over
time. Therefore, having short-term prediction helps the cloud provider to
make informed decisions and migrate the virtual machines (VMs) between
data center sites in the absence of the renewable energy. In this chapter,
we propose a short-term prediction model using Gaussian mixture model
(GMM). The model uses the previously observed energy levels to train
itself and predict the energy level for many-steps ahead into the future.
We analyzed the accuracy of the proposed prediction model using real
meteorological data. The experiment results show that the GMM model
can predict up to 15 minutes ahead into the future with nearly 98% ac-
curacy around +10% of the actual values. This helps the cloud provider
to perform online VM migration with performance close to the optimal
offline algorithm, which has the full knowledge of renewable energy level
in the system. Moreover, the accuracy of the model has been verified
using the workload data from Amazon biggest region in US East (N. Vir-
ginia). However, due to the confidentiality of that data set, we only rely on
the results of the carried experiments using real meteorological renewable
energy traces.

Keywords— Cloud computing, Green computing, Renewable energy,
Data center, Renewable Prediction



1 Introduction

Cloud computing is a paradigm focused on the realization and long held dream
of delivering computing as a utility [1]. It enables businesses and developers ac-
cess to hardware resources and infrastructure anytime and anywhere they want.
Nowadays, the number of individuals and organizations shifting their workload
to cloud data centers is growing more than ever. Cloud services are delivered
by data center sites each containing tens of thousands of servers, which are dis-
tributed across geographical locations. The geographical diversity of computing
resources brings several benefits, such as high availability, effective disaster re-
covery, uniform access to users in different regions, and access to different energy
sources.

Over the recent years the use of services offered by cloud computing sys-
tems has been increased and different definitions for cloud computing have been
proposed. According to the definition by the National Institute of Standards
and Technology (NIST) [2]: “Cloud computing is a model for enabling ubig-
uitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal management effort
or service provider interaction”.

Cloud addresses the issue of under provisioning of resources for a running
service and lose the potential users at the peak times or even over provisioning
of resources that leads to wastage of capital costs. This definition highlights
a major feature for cloud computing that is called elasticity of resources. By
delivering computing as a utility to users and providing the resources based on
the users’ request, the users will be charged on a pay-as-you-go manner, such as
other utility pricing models (e.g., electricity and water). In other words, users
need not pay any upfront cost and the billing will be based on the usage (e.g.
hourly) of the cloud resources.

Cloud delivers three main services to users as shown in Figure 1 and discussed
in the following.

e Software as a Service: At the highest level there is Software as a Service
(SaaS). SaaS service model, which is an old idea of cloud computing de-
livers on-demand software to users. Google Apps [3] and Salesforce [4] are
examples of services offered in SaaS model. In this model, the control,
support, and maintenance of the hardware, platform, and software of the
cloud environment is shifted from the end-user to the cloud provider.

e Platform as a Service: Platform as a Service (PaaS) provides computing
platform with pre-installed operating system, in order to enable the de-
velopers create their own software. By using PaaS, the developers need
not concern about the underlying hardware and the operating system.
Users can have scalable resources anytime and anywhere. Google App
Engine [5], Microsoft Azure[6], and Manjrasoft Aneka [7] are examples of
PaaS environment.
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Figure 1: Cloud computing services.

e Infrastructure as a Service: Infrastructure as a Service (IaaS) located at
the lowest layer of the cloud service stack offers computing physical re-
sources such as servers, storage, hardware, networking, and virtual ma-
chines (VMs) to users. In this model, users have control over the operating
system, storage, and applications while they need not manage the underly-
ing infrastructure. Amazon EC2 [8], Google Cloud [9], and Rackspace [10]
are some of the well-known TaaS providers.

Services offered by cloud computing are delivered by data centers distributed
across the world. One major issue with these data centers is that they are en-
ergy intensive, which makes them responsible for 2% of the world’s total CO»
emission [11]. To overcome the problem of high energy consumption and en-
vironmental concerns due to the high CO; emission of energy sources, there
are possible solutions such as improving the data center’s efficiency or replac-
ing the polluting (brown) energy sources with clean energy sources. By making
data centers aware of energy sources and better utilizing renewable energy, cloud
providers are able to reduce the energy consumption and carbon footprint sig-
nificantly [12].

Further in this section, we elaborate more on our motivation, which is one
of the biggest challenges a cloud provider faces, high energy consumption and
carbon footprint, and the need to better utilize renewable energy sources.
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Figure 2: Cloud provider with distributed data center sites with different energy
sources.

1.1 Motivation

Data centers are the backbone of the Internet that consist of thousands of
servers. They are one of the fastest growing industries that offer different types
of services to users around the world. However, data centers are known to
consume huge amount of electricity. According to a report by NRDC [13], US
data centers in 2013 alone consumed 91 billion kilowatt-hours of electricity. This
is equivalent to two-year power consumption of New York City’s households and
by 2020 is estimated to increase to 140 billion kilowatt hours. This could be
equivalent to nearly 150 million tons of carbon pollution. Therefore, many cloud
service providers focused on reducing their reliance on electricity driven from
fossil fuels and transition to renewable energy sources.

Recently, large cloud providers started building their on-site renewable en-
ergy sources. Companies, such as Amazon [14], Facebook [15, 16], Google [17],
and Microsoft [18] all have their own on-site solar/wind farms. Renewable en-
ergy sources have intermittent nature. This means that their availability changes
during the day and based on time of the year. However, since all the large cloud
providers have geographically distributed data center sites, as depicted in Fig-
ure 2, they can benefit from this location diversity. This helps them to migrate
the user requests (e.g., VMs) in the absence of renewable energy in a data center
to a site with excess renewable energy.

Since, most sources of renewable energy have intermittent nature knowing
the future level of energy helps the cloud provider to make informed decision
on when to migrate the VMs to maximize renewable energy usage. The cloud



provider can benefit from short-term prediction of renewable energy to perform
future-aware online algorithms to migrate the VMs, as it has been stated in our
previous work [19]. This helps the provider to increase the performance of the
online algorithms close to the optimal offline, which has full knowledge of the
future level of renewable energy.

In this chapter, we propose a short-term prediction model based on the
Gaussian mixture model [20]. The proposed model predicts renewable energy
level for many-steps ahead into the future. A primary requirement to perform
prediction is knowing the current and previous states of the renewable energy
levels, since the future level can be inferred from current and previous states
and their correlation. The GMM model uses history data to train itself. We use
renewable energy measurements reported by NREL [21], that have been used in
our previous work [19] as real meteorological data, as history and test data in
our experiments. Moreover, we verified the accuracy of the proposed prediction
model using workload demand collected from AWS biggest region, US East,
Virginia. However, due to the confidentiality of that data set, we only rely on
the analysis carried out using renewable energy traces collected from NREL.

The rest of the chapter is organized as follows: Section 2 describes the
prediction model objective. The formulation and component estimation of the
prediction model is explained in Section 3. Section 4 elaborates on the required
steps to construct the model. The approaches and methodologies to train the
history data is explained in Section 5. Experiment results are presented in
Section 6 and Section 7 provides a summary of the chapter.

2 Prediction Model Objective

Energy production at a data center within time period [1,T] is time-series data
and can be shown as y = [y1,%2, .., yr]?, where y; is the energy production at
time ¢. We show the predicted renewable energy production in a data center at
time t as §;. The closer the predicted energy g; is to the observed production
energy vy, the more accurate the prediction.

Therefore, our objective is to minimize the prediction error over time interval
[t1,t2] where t; < o, and is stated as follows:

minimize g —
i Z e[(gr —yt)l,
tefty,ta]

(1)

subject to 9 >0,
and predictionModelCost < ThresholdCost .

The first constraint guaranties the predicted energy production always has non-
negative value. Finally, the second constraint guaranties the computation cost
of running the prediction, in terms of running time, CPU, and memory usage,
over a certain time period will not exceed a predetermined threshold.



3 Prediction Model Formulation

We use the current and previous states of the energy production to perform
prediction. The next state of energy production has strong but not deterministic
relationship with the current and previous states. This relationship could be
shown as a conditional probability. If we denote the current state of the energy
production as y; then the probability of the next state can be denoted as:

p(yt+1|ytayt—17 ---vyt—N—H)v (2)

where N is considered as the number of previous states taken into account for
the prediction. For the sake of simplicity, we show the previous states considered
in the prediction as x = [y¢, ¥s_1,...,¥t_n+1]” . Therefore, to obtain the energy
production prediction we need to compute the following conditional estimation:

Ge+1 = Elyei[x] . (3)

3.1 Prediction Using Gaussian Mixture Model

To perform the prediction in near future using historical renewable energy pro-
duction, we use Gaussian mixture models (GMM). In order to obtain the pre-
diction value, first we need to compute p(y;11|x). Since the aforementioned
probability is unknown, we use GMM to approximate it, assuming it is a com-
bination of multiple Gaussian components [20]. GMM is a powerful tool for
data analysis and is characterized by M number of mixtures/components, each
with a given mean p, variance X, and weight w. The GMM probability density
function can be written as follows:

M
p(x|0) = ZWjN(X§ s %) (4)

where

O = {(w1, py, B1), (W2, o, Ba), ... (war, pgs X))}

M
E wj:1,
j=1

(X_Nj)2

1 T 9y,
N @, 2)= ———e J
Geimg 3) = o

GMM parameters, ©, can be estimated wusing the expectation-
maximization (EM) algorithm [22]. EM is the most popular approach being
used and it iteratively optimizes the model using maximum likelihood maxi-
mization.



As we mentioned before, the next energy production value has a conditional
probability with the current and previously observed production:

/ (y|x)dy 0

Since p(y|x) in the Equation (6) is not known, we use Bayes’ Theorem for
its estimation stated as follows:

=, (7)

and the joint probability distribution for y and x, p(y, x), could be derived using
GMM. Therefore, Equation (7) could be restated as:

S Wi (% B s )N (43 iy 57 iy |x)
M
Zj:l N(x; Hjxr s X jxx)

p(ylx) =

zN(ya Hiy|xT > z}zy|x) )

Il
iM=
=

where
WiV (X; Hjxer s Bixx)
Zjle wj-/\/(x§ HixT), szX) 7 9)
Myt = Hiy — Diyx S (Hixr — X) .
Finally, by substituting Equation (8) into Equation (6), we have:

M
> i/yN(y;/J'iy|xTaEiy\xT)dy

i=1

= Z /Bip‘iy\xT :

i=1

B =

Y
(10)

S

3.2 Optimal GMM Components Estimation

We use expectation maximization (EM) algorithm to estimate GMM param-
eters ©. EM is an iterative method to find the maximum likelihood esti-
mate (MLE) of the parameters. In order for EM to perform the two steps
of expectation (E) and maximization (M), it needs to receive the number of
GMM mixtures as an input.

There have been several studies and different methods to obtain the optimal
number of mixtures and selecting the efficient model, rather than simply taking
a random or educated guess. Bayesian information criterion (BIC) [23] is a
criterion introduced for model selection and is penalized based on the model
complexity. BIC maximizes the maximum likelihood function for each model.
It is based on the increasing function of an error and the model with the lowest
BIC, the more efficient in terms of predicting the demand.
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Figure 3: Renewable energy production prediction model.

4 Construction of Prediction Model

Figure 3 shows the required steps towards constructing the prediction model.
Different steps involved in performing the prediction are discussed in the rest of
this section.

4.1 Filling Missing Values in Renewable Energy History
Data

Access to accurate history data is critical for prediction. Since having access
to perfect history data is not always the case, often there are missing points in
time regarding collected history data. Keeping the time-stamp related to each
renewable energy data is important to feed into the prediction model. Filling



the gaps by simply shifting the energy history data back in time changes the
energy data-time mapping. Therefore, we need to fill-up the missing values in
the collected energy data while keeping each renewable energy’s time-stamp.
For each collected solar and wind energy, if there are missing data points in the
beginning or at the end of a time period, we replicate the first or last observed
energy data, respectively. Otherwise, if there are missing energy data in the
middle of the time series, we use linear interpolation between the first and
the last observed energy data. As presented in Figure 3, filling missing values
in the renewable energy history data is part of the preprocessing step, before
performing the prediction.

4.2 Denoising the Renewable Energy Data

Before training the data and performing the prediction, we need to smooth
the collected renewable energy data and remove the sharp acceleration and
deceleration of the energy data to achieve a fair prediction. To smooth the
history data, we use the fast fourier transform (FFT) algorithm [24] to remove
the high frequencies in the energy data and reconstruct it again with only low
frequency information.

4.3 Training History Data

As shown in Figure 3, we need to prepare the history data to feed into the
prediction model. Training set will be constructed according to the following
pattern.

I T2 I3 e N Y1
To I3 Xy N TN+1 Y2

Z= A, (11)
rr Xr41 TT42 ... TTHN YT

where, in our model, y; = xy; for i € [1,T].

To perform the renewable energy production prediction gr41, we use the
previously observed production values. The granularity of the data history
should be equal to the length of the prediction being performed from the last
observed renewable energy upto 1-step ahead in time. We denote the granularity
of the data history as g, which should be equal to performing the prediction for
1-step ahead into the future (g = 1-step ahead prediction length).

4.4 Feature Set Selection

Performing renewable energy prediction requires access to the history data and
training the data to estimate prediction model parameters. As stated earlier,
we use N previously observed states to predict the next energy production.
GMM parameters estimation are driven from running gmm. fit on the training
set Z containing history data. The training set is constructed from multiple



rows, each equal to a z = [x, x411] vector, where X = [z4_n41,.-2¢—1,2¢]. The
elements of z do not necessarily need to be consecutive observed values. Vector z
elements selection have a major effect on the estimation of the prediction model
parameters and accordingly the predicted value of the energy production.

5 Prediction Approach and Methodologies

As we mentioned earlier, training the data and filling the training matrix with
the right feature set is important to lead us to an accurate prediction. Depend-
ing on the time-step ahead into the future that the prediction is taking place,
we consider two different approaches to train the data history. To perform
the energy prediction for the s*P-step ahead into the future, the following two
approaches are considered:

e Short-term approach: Selecting every subsequent s item in the data
history.

e Long-term approach: Selecting every subsequent hour:minute correspond-
ing to the hour:minute of the s*"-step in the data history.

Moreover, in order to construct the training matrix we consider two different
methodologies, as

e Direct multi-step ahead prediction: Direct multi-step ahead prediction
(DMSA) performs the energy prediction for s-steps ahead into the fu-
ture using only the history data. In this approach, the energy production
prediction for ¢4 is independent of the prediction results for energy pro-
duction before time ¢ + s and is made directly using the data available
upto time t.

e Propagated multi-step ahead prediction: Propagated multi-step ahead
(PMSA) prediction uses the predicted energy production as an input to
the model for next energy production prediction. PMSA uses the §;45—1
value as an input to predict the value of ;1. The main aim of propagated
prediction is to use the results of the previous successful predictions for the
next predictions, since prediction results are more accurate for time-steps
closer to the last observed energy data.

6 Prediction Model Evaluation

This section discusses the experiment setup and the validation of the prediction
model. However, as it has been stated before, the accuracy of the prediction
model has been tested using the workload demand collected from AWS biggest
region, US East, Virginia. We used one month of data with granularity 15
minutes as history data to train the model and predict 7 days ahead into the
future. However, due to the confidentiality of the used data-set and also our
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goal to validate the model for renewable energy production, we run a separate
set of experiments based on renewable energy production prediction.

6.1 Experiment Setup
6.1.1 Renewable Energy Traces

We use the renewable energy measurements from NREL [21] to calculate solar
and wind energy production for a data center. The solar and wind energy traces
used in this chapter are the same as the renewable energy used in our previous
work [19]. The measurements are with 1 minute granularity from May, 1st to
May, 29th 2013. We use Global horizontal irradiance (GHI) measurements to
calculate the output of the solar photovoltaic (PV). The GHI measurements are
for PV flat panels on tilted surface at a 45-degree angle and PV efficiency of 30%.
We calculate the solar output based on [25] and the total area for the flat plates
is considered to be 100m?, derived from the configuration by Solarbayer [26].

To calculate wind energy production, we use the proposed model by Fripp et
al. [27]. We feed the wind speed, air temperature, and air pressure, derived from
NREL measurements, to the model to calculate wind power at the data center,
assuming the data center uses a GE 1.5bMW wind turbine.

6.1.2 Benchmark Prediction Models

We compare the results of the prediction model against three different models.
Naive that assumes prediction at each point in time is the same as the previously
observed value, y;31 = yt, linear regression [28] and random forest [29].

6.2 Prediction Analysis Metrics

We investigate the performance of the prediction model by studying the follow-
ing quality metrics:

6.2.1 Bounded Predicted Values

We use bounded predicted values as a measure to quantify the percentage of the
predicted values around x% of the actual values. This is a good measurement
to know for different prediction models, what is the percentage of the predicted
values bounded within an error margin (e.g., £20%).

6.2.2 R-Squared

In analyzing the accuracy of a prediction, a good prediction model would have
the predicted versus actual values as close to the 45-degree line, as shown in the
Figure 5. R-squared is a statistical measure that shows how close the predicted
values are to the actual values. R? gives an intuitive measure of the proportion
of the predicted values that could be explained by the actual values. In other
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words, an R? with value x means that 2% of the prediction variation is explained
by the actual values.

R? value is between 0 and 100%. The higher the R-squared, the better the
prediction fits the actual values. If a prediction model could explain 100% of
the variance, the predicted values would always equal the actual values and
therefore, all the data points would fall on the 45-degree line.

6.2.3 Standard Error

Standard error (S), same as R?, tells us how well the predicted and actual val-
ues would fall on the same line. Standard error is the average distance between
the predicted and the actual values. The smaller the S the better the predic-
tion and indicates that the predicted and actual values fall on the 45-degree
line. Moreover, standard error is a good indication to show the accuracy of the
prediction. A standard error with value s tells that approximately 95% of the
predicted versus actual values fall within +2 x s of the 45-degree line.

6.2.4 Mean Absolute Error (MAE)

Using a metric that measures the average magnitude of the errors is always
useful and indicates how big of an error can be expected from the prediction on
average. A perfect prediction would have a M AFE zero. Since M AFE is skewed
in favor of large errors (prediction outliers), we need to use other metrics, such
as pth-percentile to better validate the accuracy of the prediction model.

6.2.5 P-Percentile

P-percentiles are useful to know the distribution of the prediction error. A p*”
percentile of a distribution shows that roughly p% of the error values are equal to
or less and (1 —p)% of the error values are larger than that number. Percentiles
range in [0,100]. The 0*"-percentile shows the min and 100"-percentile shows
the max value in a distribution. We measure the p** percentiles on the absolute
values of the prediction error (|§—y|). This way we focus on the unsigned errors
and measure how close the prediction and actual values are together, without
considering the direction of the error.

It should be noted that when reporting percentiles, we need to consider that
if the data distribution is heavy-tailed (right-skewed), significant outliers could
be hidden, even not reflected in 90" or 99t percentiles. Therefore, we also
report p-100 which shows the maximum error value in the prediction.

6.3 Prediction Results and Analysis

In the following, we validate the accuracy of the proposed prediction model
using the renewable energy measurements from NREL [21]. From the collected
renewable energy levels for May 2013, we consider the first three weeks as the
data history to train the model and the last 8 days as test data to verify the
prediction accuracy. We run the prediction model on the previously observed
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renewable energy production (the data history) to predict the renewable energy
level for the next 15 minutes with the granularity of 1 minute. Then, we move
the data history window 15-minute ahead to predict the next 15 minutes. We
repeat this till we predict 8 days of renewable energy level.

Since the prediction window size is relatively small, 15 minutes, we use the
short-term approach, discussed in Section 5, to fill the elements in the training
matrix. Moreover, we use DMSA methodology, which is independent from the
newly predicted values, for feature set selection and training the data. We defer
applying long-term approach and PMSA methodology for the interested reader.
However, in the carried experiments using AWS data to perform one-week ahead
prediction, we applied short-term approach for predictions up to 36 hours ahead
in time and long-term approach beyond that time.

Figure 4 shows the renewable energy production prediction against the actual
values for 8 days. We also demonstrate the GMM prediction results using scatter
plot, Figure 5. As it can be seen in this figure, we measure the percentage of
the predicted values bounded within +£10% and +20% relative error and each
with considering an absolute error of 5kWh and 10kWh, respectively. Using an
absolute error constraint on top of the relative error margins, prevents small
errors to affect our decision making. This has been stated as bounded predicted
values in Table 1.

We use the previously discussed prediction analysis metrics to evaluate the
accuracy of the prediction. The results are presented in Table 1. The prediction
model column states GMM model and other benchmark models used in our anal-
ysis. The results show that almost all the predicted values in GMM (= 100%),
fall within 20% of observed actual values, whilst linear regression, random forest
and naive model all are lower than GMM. Even checking bounded predictions
bounded within +10% of the actual values is still close to perfect prediction
(97.39%). This means GMM can predict renewable energy with considerably
high precision almost similar to real time measuring.

In the rest of the reported metrics, R?, S, MAE, P-90, P-99, and P-100,
GMM is performing better than the rest of the models. Having R? of 97% shows
that almost all the predicted values are aligned and could be explained by the
actual values. Moreover, as per the measured M AFE, the prediction error on
average is 2.42 kWh, which is a negligible value.

Table 1: Prediction accuracy under different quality metrics.

Prediction Bounded 1 p2 [ g MAE | P90 | P-99 | P-100
Predictions

Model

GMM 99.48% 97% 0.18 2.42 4.16 4.39 21.76

Linear regression 89.81% 86.34%| 0.21 3.97 6.78 8.01 25.72

Random forest 81.27% T7.71%| 0.43 5.45 9.63 11.84 | 31.65

Naive 47.41% 0.01% | 1.7 16.04 | 35.56 | 118.34 | 128.67
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7 Summary

In this chapter, we presented a short-term renewable energy production predic-
tion to predict the renewable energy level for many time-steps ahead into the
future. The proposed model is based on the Gaussian mixture model and uses
history data to train itself and predict the next level of renewable energy in
a data center. Knowing the future level of renewable energy helps the cloud
provider to make an informed decision to migrate the VMs in the absence of the
renewable energy in a data center to a data center with excess renewable energy.
This way, the cloud provider can maximize the usage of renewable energy.

To validate the accuracy of the proposed model, we used renewable energy
measurements by NREL. The prediction results show that GMM model can
predict up to 15 minutes ahead into the future with nearly 98% precision around
+10% of the actual values. This means that cloud provider can perform online
VM migrations with performance close to the optimal offline, that has the full
knowledge of the future level of renewable energy.
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