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a b s t r a c t

The Fog computing paradigm, offering cloud-like services at the edge of the network, has become
a feasible model to support computing and storage capabilities required by latency-sensitive and
bandwidth-hungry Internet of Things (IoT) applications. As fog devices are distributed, heterogeneous
and resource-constrained, efficient application scheduling mechanisms are required to harvest the full
potential of such computing environments. Due to the rapid evolution in IoT ecosystems and also to
better suit fog environment characteristics, IoT application development has moved from the mono-
lithic architecture towards the microservices architecture that enhances scalability, maintainability and
extensibility of the applications. This architecture improves the granularity of service decomposition,
thus providing scope for improvement in QoS-aware placement policies. Existing application placement
policies lack proper utilisation of these features of microservices architecture, thus failing to produce
efficient placements. In this paper, we harvest the characteristics of microservice architecture to
propose a scalable QoS-aware application scheduling policy for batch placement of microservices-based
IoT applications within fog environments. Our proposed policy, QoS-aware Multi-objective Set-based
Particle Swarm Optimisation (QMPSO), aims at maximising the satisfaction of multiple QoS parameters
(makespan, budget and throughput) while focusing on the utilisation of limited fog resources. Besides,
QMPSO adapts and improves the Set-based Comprehensive Learning Particle Swarm Optimisation
(S-CLPSO) algorithm to achieve better convergence in the fog application placement problem. We
evaluate our policy in a simulated fog environment. The results show that compared to the state-
of-the-art solutions, our placement algorithm significantly improves QoS in terms of makespan
satisfaction (up to 35% improvement) and budget satisfaction (up to 70% improvement) and ensures
optimum usage of computing and network resources, thus providing a robust approach for QoS-aware
placement of microservices-based heterogeneous applications within fog environments.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The growing popularity of the Internet of Things (IoT)
aradigm has resulted in the rapid increase of IoT applications
nd the number of smart devices that are connected to such
ata analytic platforms. For the processing and storage of the
ata generated by the smart devices, first, Cloud computing was
dentified as a viable solution. But transmitting large amounts
f data from IoT devices towards the cloud results in higher
etwork congestion and higher latency due to cloud data centres
eing multiple hops away from the data sources. As a solution
o these issues, the Fog computing paradigm emerged, where
loud-like services are provided at the edge of the network
y using devices with computational, storage, and networking
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167-739X/© 2022 Elsevier B.V. All rights reserved.
capabilities that reside within the path connecting IoT devices
to the cloud data centres [1]. Fog computing resources are dis-
tributed, heterogeneous and resource-constrained compared to
cloud resources, which has resulted in driving application de-
velopment towards modular, decoupled architectures such as
microservices architecture so that limited edge resources can
be utilised for latency-critical and bandwidth-hungry application
modules while placing the rest of the modules on the cloud
resources. In literature, the Osmotic computing paradigm also
follows this concept [2,3].

Microservices architecture enables the design and develop-
ment of applications as a collection of small and modular com-
ponents known as ‘microservices’ that communicate through
lightweight protocols to perform end-user requested services [4].
In this paper, we use the term ‘service’ to refer to functional-
ities of the IoT application, accessed by end-users. In contrast
to this, a ‘microservice’ represents a fine-grained application
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Fig. 1. Example scenarios for IoT application placement.
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omponent. As a result, each service can be defined as a com-
osition of one or more microservices. Being a fine-grained,
calable, and extensible design, microservices architecture not
nly aids the agile development of IoT applications but also
elps in achieving elasticity and reliability with ease in the
esource-constrained and heterogeneous fog computing environ-
ents [5,6]. A microservices-based IoT application would con-

ain multiple services with heterogeneous quality requirements
nd characteristics (i.e., latency-critical, latency tolerant, high
andwidth, etc.). Moreover, due to the fine granularity of the
rchitecture, a single end-user service can consist of multiple
icroservices with data dependencies among them and microser-
ices can also be part of more than one service. Such application
esign enables the definition of per service quality requirements
n terms of parameters like makespan, budget, and throughput.
y properly utilising this information and handling the complex-
ties introduced by the granularity of inter-connected microser-
ices, application placement policies can harness both fog and
loud resources optimally to maximise Quality of Service (QoS)
atisfaction.
Due to latency and bandwidth improvements at the edge of

he network, resource providers can charge higher prices for fog
esources compared to the cloud resources [7,8], which has led
any existing placement policies to consider minimising total

atency and cost to reach a trade-off between the two [9–11].
ut due to limited resources, makespan and budget aware pri-
ritising is crucial to distribute fog resources among competing
pplications or services. Per service makespan and budget ex-
ectations defined for microservice applications along with batch
lacement can enable this. Moreover, throughput expectations
f the services can be used to reap the benefits of vertical and
orizontal scalability of the microservices to make maximum use
f heterogeneous fog resources to minimise the effect of resource
imitations on application performance.

As a motivating scenario, Fig. 1 presents a smart health care
pplication for patient monitoring (A1) [12] and a smart city
pplication for parking occupancy detection (A2) [13]. A1 consists

of three microservices that communicate together to provide two
services to the user. m1, m2 form a latency-critical emergency
alert service, whereas m1, m3 form a latency tolerant service that
enerates long term analysis reports for the user. A2 consists of
hree microservices forming a single service that detects parking
pot occupancy in real-time. Due to the microservice-based de-
omposition of the applications, QoS requirements (i.e, makespan,
udget, throughput etc.) can be defined separately for each ser-
ice. Using this knowledge, placement decisions can be made to
atisfy the QoS requirements of each service by utilising both fog
nd cloud resources (i.e, m1 and m2 are mapped to fog layer

devices to satisfy stringent latency requirements; m4 is mapped
o fog layer to reduce the amount of data sent towards the cloud;
3, m5 and m6 are mapped to the cloud to satisfy their high

omputation resource requirements). Furthermore, microservices

122
placed in fog can be horizontally scaled to satisfy the throughput
requirements of the services under resource limitations of fog
devices (i.e, two instances of m1 placed on two separate fog
devices when a single device does not have enough processing
power to support the request rate). A1 and A2 represent two
heterogeneous applications trying to utilise fog resources. In the
example scenario, the service S1 in A1 is more latency-critical
compared to the service S3 in A2 and due to the resource-
constrained and heterogeneous nature of the fog devices, batch
placement of applications has the potential to prioritise S1 over
3 to ensure QoS satisfaction.
Although fog application placement has been studied exten-

ively, microservices architecture provides a novel perspective,
here per service quality requirements and independently scal-
ble nature of the microservices can enable harnessing the power
f both the fog devices and cloud data centres to improve appli-
ation performance through batch placement. Research on this
s still at its early stages and has much room for improvement.
herefore, in this work, we propose a QoS-aware placement algo-
ithm that improves the total QoS satisfaction considering multi-
le QoS parameters (makespan, cost, and throughput) and at the
ame time, ensures optimum resource usage through collabora-
ion among fog and cloud resources. The key contributions of
ur work are as follows:

1. We formulate the fog application placement problem as
a Lexicographic Combinatorial Optimisation Problem con-
sidering QoS satisfaction (in terms of makespan, budget,
and throughput) as the primary objective and optimum
resource usage as the secondary objective.

2. We propose an IoT application batch placement technique
based on Set-based Comprehensive Learning Particle
Swarm Optimisation (S-CLPSO). To improve the conver-
gence rate, we introduce a heuristic-driven swarm initial-
isation and fitness parameter normalisation method and
further incorporate a priority-based particle construction
technique to overcome premature convergence due to the
resource constraints of the fog devices.

3. We implement our policy using iFogSim2 [14] simulated
fog environment and compare it against existing schedul-
ing approaches based on their resultant QoS satisfaction
and balanced fog and cloud resource usage.

The rest of the paper is organised as follows. Section 2 high-
ights related research followed by Section 3, which presents
ystem architecture. In Section 4, the fog application placement
roblem and our proposed solution is detailed. Section 5 presents
erformance evaluation and Section 6 concludes the paper and
raws future work and research directions.

. Related work

In this section, we summarise existing work on fog applica-
ion placement, compare them based on their key features and
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lso provide a detailed background on Particle Swarm Optimi-
ation (PSO) algorithm and its derivatives used in designing our
lacement policy.

.1. Application placement in fog environments

Existing research propose numerous algorithms to schedule
pplications within fog environments. They mainly fall under
wo categories: application offloading and application service
lacement, where offloading deploys application modules from
lient devices to the fog to be used by each client separately
hile service placement refers to the deployment of application
ervices in the fog so that multiple clients can use them [15].
ince our work focuses on the latter, in this section we summarise
esearch related to the application service placement in fog.

Brogi et al. [16] present a placement policy to place multi-
omponent applications within a fog environment when inter-
omponent link bandwidth and latency requirements are defined.
hey propose a heuristic placement algorithm consisting of two
teps, where it first searches for all eligible nodes to host each
pplication component based on its software and hardware re-
uirements and then employs a greedy backtracking algorithm
o place each component considering inter-component latency
nd bandwidth requirements. Yousefpour et al. [10] implement
framework that supports dynamic deployment and release of

oT services. Their work presents two separate greedy algorithms
or minimising delay violation and minimising total cost for IoT
ervices with delay constraints. In their work, each service is an
ndependent task with an expected deadline for its completion
nd applications are built as a collection of such independent
ervices. Skarlat et al. [11] propose a deadline-aware policy using
nteger Linear Programming (ILP) to place applications within
icro data centres know as fog colonies. They model applications
s a set of independent tasks and define a deadline for the
ntire application. Their placement policy prioritises applications
ased on the deadline and tries to maximise the placement of
pplications within the fog layer such that for each applica-
ion, the total deployment and execution time of the tasks does
ot exceed the application deadline. Skarlat et al. [17] extend
he work proposed in [11] and solve the proposed optimisation
roblem using GA. GA based approach is evaluated against a
athematical programming based optimisation method. Results

ndicate that the GA algorithm can reduce deployment delays. Xie
t al. [9] present a workflow application scheduling algorithm
ased on Particle Swarm Optimisation aiming to minimise the
eighted sum of total latency and cost. They propose a non-local
onvergent PSO algorithm introducing a non-linear inertia weight
alculation method along with a directional search process.
Deng et al. [18] form the microservices-based application

cheduling problem in fog to minimise the cost of application de-
loyment adhering to resource constraints and expected response
ime of the mobile services. The placement problem is solved
hrough ILP. Their placement algorithm handles only the place-
ent of a single application each turn. Thus, prioritising applica-

ions based on their latency requirements is not captured in their
ork. Guerrero et al. [15] compare three evolutionary algorithms;
eighted Sum Genetic Algorithm (WSGA), non-dominated sort-

ng genetic algorithm (NSGA-II) and multi-objective evolutionary
lgorithm based on decomposition (MOEA/D), for solving fog
ervice placement focusing on optimising latency, service spread
nd use of resources.
Chen et al. [19] apply Set-based Comprehensive Learning

article Swarm Optimisation (S-CLPSO) algorithm for workflow
pplication scheduling in cloud environments to satisfy user-
efined QoS constraints in terms of deadline, budget and relia-
ility. The proposed algorithm allows the user to select one of
123
the QoS parameters as the optimisation objective while keeping
the other two as constraints. Meta-heuristic algorithm combined
with multiple heuristics to speed up the search process provides
better results in satisfying QoS requirements. Verma et al. [20]
propose a non-dominated sorting based PSO for minimisation
of execution time, cost and energy consumption for workflow
scheduling in cloud environments.

Table 1 compares features of the related works with our work
in terms of three main categories; application model, placement
properties and algorithm type. Features analysed under the appli-
cation model aim to capture the granularity of the components
(i.e., microservices, modules) of the application and their data
dependencies. Application composition analyses each application
model based on the number of services and service composition
based on the collaboration pattern of the components that work
together to perform a service. In literature, the term ‘‘service’’
is used for modules, microservices, components, processes etc.
In our work, we define service from a user perspective where
it represents a business functionality accessed by the user. Due
to the fine-grained design of microservices, a service can consist
of multiple microservices communicating together to perform a
service. As existing works do not capture these features properly,
we model our application placement problem to represents the
granularity of the microservice design.

Placement properties characterise the works based on their
ability to perform batch placement, decision parameters, fog/
cloud balanced resource utilisation and scalability of applica-
tion components. Decision parameters are analysed under two
categories: QoS-aware parameters that represent quality expec-
tations of the services in terms of makespan, budget and through-
put, QoS-unaware parameters which focus on total makespan
and budget of the placement irrespective of their QoS expecta-
tions. Due to resource constraints within fog environments, fog
application placement can benefit from batch placement, QoS-
awareness and optimum use of fog resources, which allow pri-
oritising of services with stringent QoS requirements to achieve
a balance between fog and cloud resource usage. Moreover, de-
veloping applications as microservices enables each microservice
to scale independently, so that each microservice can be verti-
cally or horizontally scaled based on the resource availability of
heterogeneous fog devices.

Considered related works use three main types of algorithms
to solve the application placement problem; heuristic, meta-
heuristic and mathematical programming. As heuristic and
greedy algorithms are unable to handle multiple objectives,
[10,16] propose multiple heuristic algorithms where each focuses
on one of the decision parameters. Mathematical programming-
based approaches can only obtain the optimum solution when
search space is small and not suitable for batch placement prob-
lems. Thus, due to the ability to handle multiple objectives and
also to reach near-optimum solutions faster, meta-heuristic al-
gorithms have become a popular approach in solving multi-
objective optimisation problems. Meta-heuristics such as Genetic
Algorithm (GA), Ant Colony Optimisation (ACO), Particle Swarm
Optimisation (PSO) are popularly used in solving scheduling prob-
lems in both single objective and multi-objective scenarios. How-
ever, one of the main challenges when adapting meta-heuristics
to the fog application placement is handling fog resource con-
straints without trapping the algorithm to a local optimum. This
issue is not properly addressed in existing works in both fog
and cloud placements. Proper use of heuristics to populate the
initial solution and efficiently normalise weighted parameters
is another area with scope for improvement. So in our work,
we propose a placement technique based on Set-based Com-
prehensive Learning Particle Swarm Optimisation (S-CLPSO) and
improve it to reach a near-optimum solution for batch placement
of microservices-based IoT applications.



S. Pallewatta, V. Kostakos and R. Buyya Future Generation Computer Systems 131 (2022) 121–136

h
o
I
m
r
i
I
b
c
s
c
d
a
m

t
t
D
S
O
s
s

p
i
s
o
Ω

p
d

V

X

w
t
o
a
u
t
f
t
P
v

Table 1
Comparison of existing application placement policies.
Work Environment Application model Placement properties Algorithm

Cloud Fog/ µservice QoS Application composition Batch Decision parameters Scalability type

Edge architecture granularity Services Service composition placement QoS-aware QoS-unaware Resource

per app Single Chained Aggregator Makespan Budget Throughput Total
makespan

Total
budget

usage

[16] � Per link Multiple � � � � Heuristic
[10] � Per service Multiple � � � � Heuristic
[11] � Per app Single � � � � ILP

solver
[17] � Per app Single � � � � Meta-

heuristic
[9] � Per app Single � � � � � Meta-

heuristic
[18] � � Per app Single � � � � � � ILP

solver
[15] � � Per app Multiple � � � � � Meta-

heuristic
[19] � Per app Single � � � � � Meta-

heuristic
[20] � Per app Single � � � � � Meta-

heuristic
Our
work

� � Per service Multiple � � � � � � � � � Meta-
heuristic
w
t
o
o
d
o
t
c
f

o

2.2. Particle swarm optimisation

Particle swarm optimisation (PSO) is a population-based meta-
euristic algorithm [21], which was originally introduced for the
ptimisation of problems defined in continuous solution space.
n PSO, a set of solutions identified as a swarm of particles
oves within the solution space using not only its own expe-

ience but also the experiences of other particles. Each particle
s characterised based on two factors; its position and velocity.
n each iteration, particles update their velocity taking their own
est position (pbest) and best position of the swarm (gbest) into
onsideration and modify their position to move towards a better
olution within the solution space. PSO is simple in concept,
omputationally inexpensive and has a higher convergence rate
ue to social sharing of information among particles in the swarm
nd use of previous experiences of particles for the decision
aking process.
As the traditional PSO is not designed for solving discrete op-

imisation problems, multiple approaches have been introduced
o adapt PSO for discrete cases, including Binary PSO (BPSO),
iscrete PSO (DPSO) etc. Among these, Chen et al. [22] propose a
et-based PSO (S-PSO) that can be used for solving Combinatorial
ptimisation Problems (COPs) in the discrete space and demon-
trate that this approach can efficiently navigate within discrete
olution space and successfully solve COPs.
S-PSO employs a set-based representation of particles where

article position is depicted as a crisp set, whereas the velocity
s a set with possibilities. In [22], COP is formulated as ‘‘finding a
et of candidate solutions X which is a subset of the universal set
f elements E, such that X satisfies some pre-defined constraints
and optimises the objective function f ’’.
For a universal set E divided into N dimensions, velocity and

osition updating functions for nth dimension of kth particle are
efined as,
n
k = ωV

n
k + c1.rn1 .(pbest

n
k − Xn

k )+ c2.rn2 .(gbest
n
k − Xn

k ) (1)

n
k = Xn

k + V n
k (2)

here, ω is the inertia weight that controls the momentum of
he particle, c1 and c2 are learning factors related to particle’s
wn experience and swarm’s experience respectively and r1, r2
re random values in the range [0,1]. Eq. (1) depicts the velocity
pdating rule proposed by the original PSO algorithm. This tends
o get trapped in local optimum solutions, specially when applied
or discrete optimisation problems. Thus, [23], shows that for
heir proposed S-PSO for discrete space, Comprehensive Learning
article Swarm Optimisation(CLPSO) algorithm [24], which is a
ariant of PSO, gives better performance.
124
CLPSO uses the following equation for velocity updating:

V n
k = ωV

n
k + c.rn1 .(pbest

n
fk(n) − Xn

k ) (3)

here fk(n) depicts the particle whose pbest is used by kth par-
icle for updating its nth dimension. In this approach, instead
f using gbest of the swarm, pbest of any particle including its
wn can be used. CLPSO uses tournament selection to select fk(n)
epending on a probability (Pc) known as learning probability
r uses its own pbest . To ensure that particles do not move
owards poor directions, these exemplars are updated after a
ertain number of iterations (refreshing gap m), if the particle
itness fails to improve.

For the calculation of the new velocity, the following set-based
perations are defined,

• Coefficient × Set with possibilities
For a coefficient c ⩾ 0 and a set with possibilities defined
on universal set E, depicted as V = {e/p(e)|e ∈ E}, product
of the two is a set of possibilities cV = {e/p′(e)|e ∈ E}
calculated as,

p′(e) =
{
1 if c × p(e) > 1
c × p(e) otherwise

(4)

• Crisp Set - Crisp Set
For two crisp sets X1 and X2, minus operator between the
two (X1−X2) is defined as the crisp set of elements that are
available in X1, but not in X2.
• Coefficient × Crisp Set

For a coefficient c ⩾ 0 and a crisp set X ∈ E, product of
the two results in a set of possibilities, cX = {e/p′(e)|e ∈ E}
calculated as,

p′(e) =

⎧⎨⎩
1 if e ∈ X and c> 1
c if e ∈ X and c≤1
0 if e /∈ X

(5)

• Set with Possibilities + Set with Possibilities
Plus operator between two sets with possibilities generates
a set with possibilities containing larger possibility for each
element.

Updated velocity is used to adjust the position. Since solutions
in discrete space should meet a pre-defined set of constraints,
feasible positions are obtained using two main strategies; step-
by-step construction, build and repair [23]. ω is used to achieve
exploitation and exploration to overcome local optimums and
move towards the global optimum of the problem. As larger val-
ues of ω supports global search whereas local search is supported

by small ω values, changing ω from larger values to smaller values
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hrough iterations enables the algorithm to converge into the
lobal optimum value. The most common method of achieving
his is by linearly changing ω over the iterations. But, [9] presents
non-linear function for varying ω that results in improved

onvergence.
Set-based CLPSO (S-CLPSO) is a successful method for solving

OPs in discrete space with a higher convergence rate and simple
mplementation. In our work, we base our placement policy on
-CLPSO, integrate a lexicographic fitness function and further
mprove its performance by integrating multiple heuristics and
ropose a prioritised particle construction method to handle fog
esource constraints to mitigate the issue of converging to a local
ptimum solution.

. System model and architecture

This section details the microservices-based application model,
og architecture along with the pricing model used in this work.

.1. Application model

To support the rapid modifications and agile development
f IoT applications, microservices architecture is used to design
nd develop these applications. As microservices are designed as
ndependently deployable modules adhering to a single business
apability, the number of components that builds a single applica-
ion increases. Due to the higher level of granularity presented by
icroservices architecture, a single service can consist of multiple
icroservices that collaborate to complete end-user requests.
oreover, a single microservice can be used by multiple services
s well. So, higher flexibility and agility can be achieved by
efining QoS parameters at these composite service level, instead
f at the microservice or application levels.
Fig. 2.a shows the general representation of a microservices-

ased IoT application. Application is depicted using a Directed
cyclic Graph (DAG) where vertices represent microservices and
dges denote the data dependencies among microservices. The
tarting point of the arrow indicates the client microservice and
he arrowhead indicates the microservice invoked by the client
icroservice. Each application consists of a front-end denoted as
lient Module that is always placed within client devices such

as mobile phones, tablets, laptops that connect directly with
IoT devices. The rest of the application consists of microservices
that are placed either on fog or cloud resources based on the
placement policy. Each application, a ∈ A can be depicted as a
tuple containing a set of microservices, data flows among them
and a set of services where microservices collaborate to perform a
function useful to the end-user; ⟨Ma, df a, Sa⟩. Each microservice
is characterised by its resource requirements; ⟨Φm,Ωm,Γm, rm⟩
indicating CPU, RAM and storage requirement of microservice
m ∈ Ma to support the request rate of rm. This resource definition
is used as the basic deployment unit of the microservice container
and it is scaled horizontally or vertically based on the expected
rate of the requests received by the microservice.

Based on the collaboration patterns among microservices, we
have identified 3 types of service representations; Chained, Aggre-
ator and Hybrid representation (Fig. 2.b). In a chained pattern,
ata flow within the service can be represented as a single chain
hereas in an aggregator pattern, multiple data paths are invoked
nd the aggregator microservice waits for the processed data
rom those paths and aggregates them to return a single response.
ggregator microservice can invoke chains of microservices as
ell, which results in a hybrid representation. Thus, the com-
letion time of each service differs based on the collaboration
attern of the microservices in the service. Microservices use the
synchronous Request–Reply pattern, so once a request is made
125
client microservice proceed to process other incoming requests
until the response arrives. Each service s ∈ Sa is denoted by a
tuple containing a set of microservices creating the service and all
possible data paths of the service; ⟨Ms

a, P
s
a⟩. The number of data

paths in each service depends on the collaboration pattern of the
microservices in the service.

The QoS profile of each application consists of QoS parameters
that are defined separately per each service within the applica-
tion. Our work considers makespan: end-to-end completion time
of the service, budget: the amount the user expects to pay for the
service and throughput: supported request rate by the service, as
QoS requirements.

3.2. Fog architecture

Fog computing environment is a multi hierarchical environ-
ment consisting of IoT/client devices, fog layer and cloud layer.
The fog layer is an intermediate layer that resides between the
IoT and cloud layer, thus providing computational, networking
and storage capabilities closer to the edge of the network. Fig. 3
depicts the architecture followed in this work. The fog layer
consists of clusters of fog nodes deployed by multiple service
providers. IoT sensors and actuators that connect to client de-
vices (i.e., mobile phone, tablets) access fog clusters through
Fog Gateway Devices (i.e., wireless access points, base transmis-
sion systems) and further connection to the cloud is maintained
through a Fog Cloud Gateway node. We refer to this node as the
Fog Orchestration Node (FON), as it is responsible for monitoring
fog nodes in the cluster and scheduling applications within them.

The fog layer consists of heterogeneous devices in terms of
resource availability and access technologies. Each fog device (f ∈
F ) is characterised by its resources in terms of CPU (φf ), RAM (ωf )
and storage (γf ). Fog nodes within the same cluster communicate
with each other using Local Area Network (LAN) links which
have considerably high bandwidths when compared with the
Wide Area Network (WAN) links that connect fog clusters to the
cloud. Multiple IoT and client devices use Wireless Area Network
(WLAN) to connect to Fog Gateway Devices.

3.3. Pricing model

Due to distributed, scalable and independently deployable na-
ture of the microservices, container technology has become the
best-suited method of packaging and deploying microservice ap-
plications. Cloud service providers have server-less compute en-
gines to support easy container deployment, by relieving the
users of the responsibility to provision and manage servers. Such
server-less platforms provide flexible pricing where users pay
only for the amount of resources used by the containers. AWS
Fargate [25] and Azure Container Instances [26] determine the
pricing based on requested vCPUs, memory and storage amount
where all three can be configured independently. In our work, we
use the on-demand pricing models used by the above server-less
platforms where the price of each fog/cloud device is defined as
the total price for vCPUs, memory and storage.

4. QoS-aware application placement

We formulate the microservices-based application placement
in fog environments as a ‘‘Lexicographic Multi-objective Combi-
natorial Optimisation Problem’’, which aims at minimising QoS
violation of services and ensures optimum use of fog and cloud
resources while adhering to the resource requirements of the
microservices. The proposed policy explores batch placement of
services and also incorporate independently scalable nature of
the microservices to obtain a more efficient placement. Relevant
notations used in system model and problem formulation are
represented in Table 2.
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Fig. 2. Microservices-based IoT Application Architecture (a) DAG representation, (b) Service composition patterns.
Fig. 3. An overview of the fog architecture.

.1. Problem formulation

The fog application placement problem needs to focus on
oth application and fog resource heterogeneity. Thus, we for-
ulate the placement problem to support the placement of a
atch of applications (A) onto a set of devices (D) within the

fog environment. As microservices are independently scalable,
multiple instances of each microservice can be deployed. For each
microservice m, number of instances is denoted by insm where mi
represents the ith instance. Resultant placement is expressed by
xdmi

where xdmi
= 1 depicts that the ith instance of microservice m

is mapped to d ∈ D.
The main goal of the placement is to achieve maximum possi-

ble QoS satisfaction considering makespan, budget and through-
put requirements. The throughput requirement of each service
is satisfied by scaling the microservices. Throughput aware in-
stance calculation for the microservices is discussed in detail in
Section 4.1.1. Makespan and budget satisfaction are achieved by
the first objective of the optimisation problem (Eq. (6)). Due to re-
source limits in the fog layer, it is not guaranteed that makespan
and budget requirements of all services can be satisfied. Thus, we
formulate Eq. (6) to minimise the weighted sum of normalised
makespan violation (η(vl)) and budget violation (η(vb)) so that
ervices with stringent QoS requirements are prioritised.
The purpose of the fog layer is twofold: to support latency-

ritical services and to reduce network usage by supporting
andwidth-hungry services. While the first objective handles
atency-critical services, the second objective is introduced to
ove bandwidth-hungry microservices towards the edge of the
etwork. Due to the resource-constrained nature of fog devices,

t is important to strike a balance between fog and cloud resource

126
Table 2
Notations.
Symbol Definition

F Set of all devices available in Fog layer.
C Cloud.
E Set of all client devices that connects to Fog Gateways.
D All available devices. (F ∪ C ∪ E)
A Set of all requested applications for placement.
Ma Set of all microservices of application a ∈ A.
Sa Set of all services defined for application a ∈ A.
Ms

a Set of microservices of service s ∈ Sa .
P s
a Set of data paths in service s ∈ Sa .

df sp Set of all data flows in path p ∈ P s
a .

∆mm′ Size of data transmitted from m to m′ .
imm′ Number of instructions to process data sent from m to m′
Rmm′ Access rate among microservices m&m′ .
dpij Network propagation delay among device i, j ∈ D
ls makespan requirement of service s ∈ Sa .
bs Budget requirement of service s ∈ Sa .
rs Throughput requirement of service s ∈ Sa .
φd Processing capacity of device d ∈ D
ωd RAM of device d ∈ D.
γd Storage capacity of device d ∈ D.
Φm Processing capacity required by microservice m ∈ a.
Ωm RAM required by microservice m ∈ a.
Γm Storage capacity required by microservice m ∈ a.
vls makespan violation of service s ∈ Sa .
vbs Budget violation of service s ∈ Sa .
vl Total makespan violation.
vb Total budget violation.
η(vl) Normalised makespan.
η(vb) Normalised budget.
τnw Total network usage due to placement.
τr Total active devices due to placement.

Y Set of devices Y ⊂ D, that are not eligible for placement of
any microservice

xdmi
∈ {0,1} Equals to 1 if ith instance of microservice m is mapped to

d ∈ D, 0 otherwise.

actf ∈ {0,1} Equals to 1 if at least one microservice is placed on f ∈ F ,
0 otherwise.

usage to avoid over-use of limited fog resources. So we formulate
the second objective (Eq. (7)) to achieve a trade-off between total
fog resource usage (τr ) and total network resource usage (τnw).

As QoS satisfaction is the primary objective of the placement,
the second objective can be considered as a further improvement
on the schedule proposed by the first objective. To ensure this,
the placement problem is solved as a lexicographic optimisation
where Eq. (6) is the primary objective and Eq. (7) is the secondary
objective.

minimise [ωl η(vl)+ ωb η(vb)] (6)

minimise [ω η(τ )+ ω η(τ )] (7)
nw nw r r
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ubject to,∑
∀d∈D

xdmi
= 1; ∀i ∈ [1, insm],∀m ∈ Ma,∀a ∈ A (8)

∑
∀d∈Y

insm∑
i=1

xdmi
= 0; ∀m ∈ Ma,∀a ∈ A (9)

∑
∀a∈A
∀m∈Ma

insm∑
i=1

xdmi
Φm ≤ φd; ∀d ∈ D (10)

∑
∀a∈A
∀ma∈Ma

insm∑
i=1

xdmi
Ωm ≤ ωd; ∀d ∈ D (11)

∑
∀a∈A
∀m∈Ma

insm∑
i=1

xdmi
Γm ≤ γd; ∀d ∈ D (12)

Both objectives are optimised under multiple constraints;
placement constraints where each microservice instance is
mapped to a single device (Eq. (8)) and each microservice is
mapped only to eligible devices (Eq. (9)), resource constraints of
all fog devices in terms of CPU, RAM and storage (Eqs. (10), (11),
(12) respectively).

4.1.1. Throughput aware instance count calculation
In our proposed system model, resource requirements of each

microservice are defined to support a certain request rate (rm).
e take this as the base instance and scale each microservice ver-

ically or horizontally according to the expected service through-
ut (rs per service s) in the application’s QoS profile. Using the
AG representation of the microservice application, the expected
equest rate of each microservice (r ′m) can be calculated using the
ollowing equations:
′

m =
∑

∀m′∈CM(m)

Rm′m (13)

m′m =

{
rs m′ is Client Module
α.r ′m′ otherwise

(14)

Function CM(m) calculates all the client microservices of mi-
roservice m, that sends requests towards m. Thereby, Eq. (13)
alculates access rate of the microservice m by taking summation
f the request rates of all incoming edges of m. α ∈ [0, 1] rep-
esents the relationship between incoming and outgoing request
ates of m′.

Accordingly, instance count for the microservice m is calcu-
ated as:

nsm =
r ′m
rm

(15)

.1.2. Primary objective - QoS violation
The first objective of the multi-objective fog placement is de-

icted in Eq. (6). Here the aim is to minimise the total violation of
oS in terms of makespan and budget requirements for a batch of
ervices. Since QoS parameters are of different units, normalised
alues of each QoS parameter violation are used. The weighted
um of normalised sub-objectives forms the objective function.
eights are chosen to prioritise among the two parameters,
aintaining ωl + ωb = 1.
1. Makespan violation -
Calculation of the makespan of a service depends on the data

flow pattern of the service. For a service representing chained
microservices, makespan can be calculated as the total processing
time of each microservice and the data communication delay
127
among microservices. But for aggregator and hybrid service pat-
terns, aggregator microservice cannot complete the processing
until results from all the data paths invoked by aggregator mi-
croservice are completed. Thus, the makespan of such services
depends on the data path that takes the longest to complete.

Accordingly, makespan violation of service s ∈ Sa where Sa
ndicates the set of services of application a ∈ A, can be calculated
s,
l
s = max{L(df sp ); ∀p ∈ P s

a} − ls (16)

q. (16) calculates the difference between makespan defined in
he QoS profile of the service (ls) and makespan due to proposed
lacement. L(df sap ) is the function used to calculate the makespan
f the datapath p of service s due to proposed placement. Data
ath with maximum makespan is equal to the makespan of the
ervice irrespective of the data dependency pattern of the service.
This calculation considers both processing latency and net-

ork latency. Network latency includes transmission latency as
ell as propagation latency among different fog/ cloud nodes
here microservices are placed. Since each microservice m has

nsm instances, we consider that for the dataflow among m and
′, requests generated from insm are equally load balanced among

ns′m microservices. So, Eq. (17) aims to find the highest latency
f the path considering all instances of a microservice.

(df sp ) = Lnw(df sp )+ Lproc(df sp ) (17)

nw(df sp ) =
∑

∀mm′∈df sp

max
[ ∑
∀dd′∈D

xdmi
xd
′

m′j
(dpdd′ + Ltr ); ∀i, j

]
(18)

here 1 ≤ i ≤ insm and 1 ≤ j ≤ insm′ .

tr (d, d′) = ∆mm′ [
ρ

bwWLAN
+

σ

bwLAN
+

ψ

bwWAN
] (19)

ρ, σ and ψ contains binary values (0 or 1) depending on the d
and d′ device types.

ρ =

{
1 if (d ∈ E)⊕ (d′ ∈ E)
0 otherwise

(20)

σ =

{
1 if (d ∈ F ) ∧ (d′ ∈ F ) ∧ d ̸= d′

0 otherwise
(21)

ψ =

{
1 if (d ∈ C)⊕ (d′ ∈ C)
0 otherwise

(22)

Lproc(df sp ) =
∑

∀(m,m′)∈df sp

imm′

Φm′
(23)

Total makespan violation of the placement is calculated taking
he sum of violations as follows,

l
=

∑
∀a∈A

∑
∀s∈Sa

max
[
vls, 0

]
(24)

2. Budget violation -
Budget violation of service s ∈ Sa, where Sa indicates the set

f services of application a ∈ A, can be calculated as,

b
s =

⎛⎜⎝ ∑
∀m∈Ms

a
∀d∈D

insm∑
i=0

xdmi
Cd
m

⎞⎟⎠− bs (25)

ost of executing microservice m on device d, Cd
m is calculated

ased on the pricing model presented in Section 3.3. Total bud-
et violation of the placement is calculated taking the sum of
iolations as follows,

b
=

∑ ∑
max

[
vbs , 0

]
(26)
∀a∈A ∀s∈Sa



S. Pallewatta, V. Kostakos and R. Buyya Future Generation Computer Systems 131 (2022) 121–136

4

s
w
l

a
e
t
n
r
p
f
h
a

τ

s
m
s
p
l

τ

τ

4

a
S
v
n
o
(

e
i
v
m

T

.1.3. Secondary objective - Resource utilisation
The second objective function (Eq. (7)) handles resource utili-

ation under two sub-objectives, computation resources and net-
ork resources. Similar to the primary objective, this also calcu-

ates the weighted sum of the two normalised sub-objectives.
1. Computation resource usage:
The fog layer consists of resource-constrained devices that

re heterogeneous in their resource capacities. Thus within fog
nvironments, it is important to place applications in such a way
hat limited computation power is utilised by using a minimum
umber of fog nodes so that only the services with stringent QoS
equirements use limited fog resources. This provides fog service
roviders with the ability to host more applications within their
og infrastructure. Besides, this encourages a balance between
orizontal and vertical scaling, thus reducing the carbon footprint
s well.

r =
∑
∀f∈F

actf (27)

2. Network resource usage:
Fog resources can be used to reduce the amount of data

ent towards cloud data centres by hosting bandwidth-hungry
icroservices. To this end, our placement policy introduces this
ub-objective to reduce network usage, thereby increasing the
lacement of bandwidth-hungry microservices within the fog
ayer.

a
nw =

∑
∀mm′∈df a
∀dd′∈D

insm∑
i=1

insm′∑
j=1

xdmi
xd
′

m′j

dpdd′ ∆mm′ Rmm′

insm insm′
(28)

nw =
∑
∀a∈A

τ anw (29)

.2. QoS-aware multi-objective S-CLPSO (QMPSO )

To solve the fog application placement problem, we propose
placement policy based on the S-CLPSO algorithm described in
ection 2.2 and integrate multiple heuristics to improve the con-
ergence rate by proposing novel approaches for multi-objective
ormalisation and particle construction. Algorithm 1 presents the
verview of our proposed QoS-aware Multi-Objective S-CLPSO
QMPSO) placement policy.

Algorithm 1 QMPSO Algorithm
Input: Placement Requests and Meta-data
Output: Microservices to devices mapping

1: Calculate the number of instances per microservice
2: Initialise Min/Max sub-objective values using heuristics
3: Set iteration count i← 1
4: Initialise population of N particles using SWARM_INIT
5: while i ≤ Iterations do
6: Calculate fitness values of all sub-objectives for each particle
7: Update Min/Max of sub-objectives
8: Obtain the normalised fitness values for each sub-objective
9: Calculate fitness values of the two main objectives for each particle using

normalised values
10: Update pBest position of each particle
11: Update gBest position of the swarm
12: Select exemplar dimensions for each particle
13: Update velocity of each particle
14: Update position for each particle using CPPC_VA
15: Set i← i+ 1

return gBest of the swarm

QMPSO algorithm first derives the number of instances per
ach microservice (line 1) using Eq. (15), which calculates the
nstance count based on the throughput requirement of each ser-
ice (rs). Then the algorithm initialises the minimum and maxi-
um possible values for each sub-objective of the multi-objective
128
Fig. 4. QMPSO particle representation.

fitness function formulated in Section 4.1 (line 2). QMPSO uses
multiple heuristics to obtain estimates for these values. In our
multi-objective optimisation problem, these values are used to
calculate the normalised sub-objectives. Then an initial popula-
tion is created using both heuristic-based and random placements
(line 4), which is explained in detail in the Algorithm 2. After
creating the initial population, the algorithm calculates fitness
values for each sub-objective for all particles (line 6) and ac-
cordingly update the minimum and maximum values of each
sub-objective (line 7). This enables the normalisation calcula-
tions to become more accurate as the swarm progresses through
solution space in each iteration. Afterwards, normalised fitness
values are calculated for each particle (line 8). Based on the
values obtained for the two main objectives (line 9), the personal
best (pBest) of each particle and the global best (gBest) of the
swarm are updated using lexicographic comparison (lines 10–11).
Then, the velocity matrix is updated using exemplar dimensions
according to the S-CLPSO algorithm (lines 12–13). Finally, the
new position of each particle is updated using the velocity matrix
of the particle (line 14). Each created particle should adhere
to the resource constraints of the fog devices. To satisfy this
constraint, QMPSO proposes a novel particle construction process
as Constraint-aware Prioritised Particle Construction (CPPC).
his contains two algorithms; CPPC_INIT for random construction

of particles during swarm initialisation and CPPC_VA for velocity
aware construction of particles after updating the velocity of the
particle during each iteration. After executing these steps for a
pre-defined number of iterations, the algorithm returns the global
best position of the swarm as the placement mapping.

Integral steps of the QMPSO algorithm, which includes prob-
lem mapping, initial swarm, fitness calculation and particle posi-
tion update are described in detail in the following sub-sections.

4.2.1. Mapping microservice application placement problem to S-
CLPSO

As per the S-CLPSO, each particle representing a possible so-
lution to the problem is characterised by a position vector and
velocity matrix (Fig. 4). For the considered microservice place-
ment problem, the position vector is a crisp set that maps each
microservice instance to a device. Number of microservice in-
stances are calculated at the start of the Algorithm 1 according
to Eq. (15). The dimension of the position vector is equal to the
total number of microservice instances that are to be placed.
Velocity matrix is a set of possibilities that contains the possibility
of each microservice instance being placed on each device. All po-
sition and velocity related basic calculations follow the concepts
introduced in Section 2.2.

4.2.2. Initial swarm
Initial position vectors of the particles are generated using two

methods: heuristic-based particle generation and random particle
construction (Algorithm 2). We propose a novel makespan and
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Algorithm 2 SWARM_INIT
Input: numParticles
Output: Swarm

1: Swarm← {}
2: pv← create position vector from OHPP placement
3: vm← initialise velocity matrix
4: particle← createParticle(pv, vm)
5: Swarm.add(particle)
6: particleCount ← 1
7: while particleCount < numParticles do
8: pv← random construct using CPPC_INIT
9: vm← initialise velocity matrix
10: particle← createParticle(pv, vm)
11: Swarm.add(particle)
12: particleCount ← particleCount + 1

return Swarm

budget aware heuristic named, Osmotic Heuristic Placement
olicy (OHPP) to seed the initial population (lines 2–4). The

rest of the particles are generated using the random particle
construction path of the CPPC process (lines 7–12).

OHPP: For the swarm to reach global optimum position faster,
we introduce Osmotic Heuristic Placement Policy (OHPP). This
policy follows the concept of Osmotic computing and tries to
move latency-sensitive services to the fog layer (Algorithm 3).
The algorithm starts by placing all microservices on the cloud
and afterwards calculates the latency violation of each service
using Eq. (16) (line 1–2). Makespan violated services are sorted
from minimum to maximum budget requirement (line 3–4) and
matched on to fog devices sorted from minimum to maximum
pricing (line 5–22). Other than providing a feasible placement,
OHPP is also used to prioritise microservices for placement within
the fog layer (lines 23–24). OHPP algorithm derives all microser-
vices of the FogServices and outputs them as prioritised microser-
vices to be placed on fog (ToFogM), while the rest of the microser-
vices are added to a separate list (ToCloudM). This prioritisation
lays an important role in the particle construction process of the
PPC (in both CPPC_INIT and CPPC_VA).

Algorithm 3 OHPP
Input: Placement Requests and Meta-data
Output: Microservices to devices mapping

1: Place all microservice instances in Cloud
2: Calculate deadline violation using Eq. (16)
3: FogServices← get all deadline violated services
4: sorted← sort FogServices from min to max budget requirement
5: FogDevices←sort from min to max pricing
6: for each service s in sorted do
7: Minst ← topologically sorted µservice instances of s from meta-data
8: for each m in Minst do
9: if m.predecessor in Cloud then
0: d← Cloud
1: else
2: d← FogDevices.first
3: while m is not placed do
4: if d.availResources ≥ m.resources then
5: place m in d
6: update availResources of d
7: else
8: if d = FogDevices.last then
9: d← Cloud
0: else
1: d← FogDevices.next
2: Place the rest on Cloud
3: ToFogM ← microservices of FogServices
4: ToCloudM ← microservices not included in FogServices
5: return microservice placement, ToFogM , ToCloudM

CPPC_INIT: For the creation of the rest of the particles, the ran-
om construction path of the CPPC Algorithm is used (Algorithm
129
4). CPPA_INIT uses microservice prioritisation for the construction
of placements under resource constraints. The algorithm priori-
tises latency-critical microservices in ToFogM for the placement
within resource-constrained fog devices (lines 2–9). Afterwards,
the algorithm proceeds with mapping ToCloudM microservices
(line 10–16).

The above methods together populate the initial swarm with
diverse and feasible solutions, thus improving the ability of the
swarm to reach its global optimum solution within less amount
of time. For the initialisation of the velocity matrix, a value in the
range [0,1] is assigned for the mapped device of each microservice
instance and the rest of the devices are assigned 0 for the said
microservice.

Algorithm 4 CPPC_INIT Algorithm
Input: D devices, ToFogM , ToCloudM
Output: PositionVector

1: PositionVector ← {};
2: devices ← D.getFogDevices();
3: devices.add(D.getCloudDevices());
4: for each microservice m in ToFogM do
5: for each device d in devices do
6: if d.availResources ≥ m.resources then
7: PositionVector.add(m, d)
8: update availResources of d
9: break;
10: devices.shuffle();
11: for each microservice m in ToCloudM do
12: for each device d in devices do
13: if d.availResources ≥ m.resources then
14: PositionVector.add(m, d)
15: update availResources of d
16: break;

return PositionVector

4.2.3. Normalised fitness calculation
The placement problem is modelled with two main objectives

where each is calculated as the weighted sum of its two sub-
objectives (Section 4.1). As each sub-objective value has different
units and has different ranges of values, a normalised weighted
sum is required to reach a proper trade-off between the sub-
objectives. The best approach for this would be to minimise and
maximise each sub-objective separately to obtain the range of
values for each. But due to the higher time consumption of this
method, we propose a heuristic driven normalisation approach to
initialise minimums and maximums for each sub-objective.

We use the following heuristics to initialise maximums and
minimums for each sub-objective with close enough estimates:

Deadline-aware heuristic placement: Services are sorted from
minimum to maximum makespan requirement and placed start-
ing from fog layer and move to cloud-only if non of the fog
devices have enough resources to host the microservice. This
placement provides an estimate for minimum latency violation
and minimum network usage.

Budget maximisation placement: To find an estimate for max-
mum cost violation, we propose a heuristic where devices are
orted from maximum to minimum unit price, services are sorted
rom minimum budget to maximum budget requirement and
icroservices from ordered services are matched with ordered
evices.
Cloud only placement: All microservices are placed in the cloud

roviding an estimate for maximum latency violation, maximum
etwork usage and minimum budget violation.
Moreover, for fog resource usage, the minimum is set to 0

nd maximum is determined as min(fog device count, microservice
nstance count).

During each iteration of the QMPSO algorithm, minimum and
aximum values are updated based on the fitness values of
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he particles in the swarm. Updated minimum and maximum
alues are used to calculate Min–Max Normalisation, which scales
he value of each objective to the range 0–1. For an objective i
obji), with current value of x, normalised value using Min–Max
Normalisation is calculated as follows:

η(x) =
x−min(obji)

max(obji)−min(obji)
(30)

This approach enables the QMPSO algorithm to avoid prema-
ure convergence and reach a fair trade-off between the weighted
ub-objectives.

.2.4. Position update - Constraint-aware prioritised particle con-
truction (CPPC)

Position updating undergoes three main steps; (1) selection of
xemplar dimensions for the particle (2) update particle velocity
3) construct new particle position.

Selection of exemplar dimensions is the process of selecting
hich particle’s pBest should be followed by each dimension for
elocity updating as depicted in Eq. (3). Particle position update
s carried out using the updated velocity matrix. Due to resource
onstraints of the fog resources, updated particle positions have
o adhere to resource constraints, which is one of the main
hallenges of fog service placement, as mending particles based
n resource constraints can considerably hinder the convergence
o the global optimum position.

To overcome this issue, we propose CPPC_VA, which is the
elocity aware path of our proposed CPPC process. It is a par-
icle construction algorithm that checks resource constraints at
he time of particle position update based on the velocity ma-
rix. CPPC_VA uses two main features to improve convergence
Algorithm 5):

Use of prioritised microservices: Similar to CPPC_INIT, this al-
orithm also uses microservice prioritisation into two groups as
oFogM and toCloudM. The idea behind this is to enable toFogM
icroservices a higher chance of being assigned to the devices

ndicated by its velocity matrix (lines 1–2).
Velocity aware device selection: For each microservice, the al-

orithm tries to determine the new fog device in a velocity
onscious manner. First, all devices with higher or equal veloc-
ty values are identified (lines 5–7) and each selected device
s considered for placement until a device with the required
esource amount is met (lines 8–12). If all selected devices are
nfeasible for placement, microservice is added to a separate list
notMapped) for placement later (lines 13–14). After iterating
through all microservices, each microservice in notMapped list
re mapped to feasible devices randomly (lines 15–20). Here all
evices are considered irrespective of the velocity value. This
ethod provides a proper balance between exploitation and ex-
loration, thus generating a diverse solution set and improving
lgorithm convergence.

. Performance evaluation

We evaluated the performance of our QMPSO algorithm
hrough simulation of synthetic workloads of microservices-
ased IoT applications, that have heterogeneous QoS require-
ents in terms of makespan, budget and throughput. Evaluations
re completed under two main categories:
QMPSO Performance Evaluation: Section 5.3.1 evaluates the

erformance of the QMPSO algorithm in terms of convergence
mprovement against two adaptations of the S-CLPSO algorithm
or fog application placement problem.

1. No-Heuristics: Directly adapts the S-CLPSO algorithm to
fog application placement problem without incorporating
any heuristics.
130
Algorithm 5 CPPC_VA Algorithm
Input: D devices, particle P , ToFogM , ToCloudM
Output: updated particle P

1: microservices← ToFogM
2: microservices.add(ToCloudM)
3: notMapped← {}
4: for each microservice m in microservices do
5: currDevice← P .positionVector.get(m);
6: currVelocity← P .velocityMatrix.get(currDevice)
7: D′ ← get devices with velocities ≥ currVelocity
8: for each device d in D′ do
9: if d.availResources ≥ m.resources then
10: P .PositionVector.add(m, d)
11: update availResources of d
12: break;
13: if m is not mapped to a device then
14: notMapped.add(m)
15: for each microservice m in notMapped do
16: D′ ← get all possible devices from D
17: r = random(1,D′.size)
18: d← D′.get(r);
19: P .PositionVector.add(m, d)
20: update Avail_Resources

return updated particle P

2. No-Prioritised-Construct: Heuristics are used in this ap-
proach for swarm initialisation and fitness normalisation.
But particle construction does not prioritise microservices
during the construction process, but randomly select mi-
croservices.

QMPSO Placement Evaluation: Section 5.3.2 compares QMPSO
with four other fog application placement approaches in terms
of QoS satisfaction and optimum fog-cloud resource usage. These
approaches are selected to cover different types of algorithms
including optimisation-based, meta-heuristic and heuristic ap-
proaches to solve application placement problem within fog en-
vironments.

1. Constraint Programming based Placement Algorithm
(CPPA) - Placement problem introduced in Section 4.1 is
solved using a Constraint Programming solver.

2. OHPP - Algorithm which is used in generating our ini-
tial swarm of particles. We use this to demonstrate how
the incorporation of improved S-CLPSO results in better
placement decisions.

3. FSPP - Fog service placement approach proposed in [15],
where service spread (scale microservices to evenly spread
them within fog environment), latency (minimise commu-
nication delay among microservices) and resource usage
(maximise fog device usage) are the focus of placement
decision making.

4. DNCPSO - Algorithm proposed in [9] for workload schedul-
ing in cloud–edge environments to minimise the total la-
tency and cost of the placement.

Out of the existing works analysed in Section 2.1, FSPP and
DNCPSO are the only works that can be adapted and applied
to the batch placement of microservices-based applications ad-
dressed in our work. So, they are chosen for the performance
comparison.

5.1. Implementation of the algorithms

For the performance evaluation, all placement algorithms
were implemented using iFogSim2 [14] simulator, which is a
toolkit for the simulation of fog computing environments.
iFogSim2 extends iFogSim [27] simulator and provides support
for simulation of microservice application placement through its

advanced features such as service discovery and load balancing.
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Table 3
Simulation parameters.

Parameter Value

Communication links LAN 0.5 ms, 1 Gbps
(latency, bandwidth) WAN 30 ms, 100 Mbps
[30–33] WLAN 2 ms, 150 Mbps

Fog device resources CPU (MIPS) 1500–3000
[34,35] RAM (GB) 2–8

Storage (GB) 32–256

Cost model CPU (Cloud) $0.040480 per 150 MIPS per hour
parameters RAM (Cloud) $0.004445 per GB per hour
[25] Storage (Cloud) $0.000111 per GB per hour

Increase factor for fog 1.2–1.5

QoS parameters Makespan (ls) 20–150 ms
[36,37] Budget (bs) $0.25–1.50 per hour

Throughput (rs) 200–800 requests/s
(
e
m
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5.1.1. QMPSO implementation
To support the simulation of the proposed system architecture

long with the QMPSO algorithm, we extended the iFogSim2 sim-
lator by integrating features to support multiple service com-
osition patterns and QoS profiles containing per service QoS
efinitions. Afterwards, the QMPSO algorithm was developed and
imulated on top of that.

.1.2. CPPA implementation
An optimised solution for the placement problem can be

btained by solving the problem modelled in Section 4.1 us-
ng a solver. In this work, we have used the Constraint Pro-
ramming(CP) engine of IBM ILOG CPLEX 12.10.0 solver [28] for
btaining the optimum solution for fog application placement.
FogSim2 is used for the implementation of the placement policy
y using Java API available in the solver.
CPPA approach uses lexicographic optimisation with objec-

ives ordered as, minimising QoS violation as first objective (Eq.
6)) and resource utilisation as second objective (Eq. (7)). Nor-
alised values of each objective (η(vl), η(vb), η(τnw), η(τr )) is cal-
ulated by taking ‘‘Nadir point’’ as minimum value and ‘‘Utopia
oint’’ as maximum for each objective [29] . These two points are
alculated by optimising each objective separately. Afterwards,
he placement problem is solved using multi-objective optimi-
ation. To obtain the results within a reasonable time limit, the
ailure limit parameter is set to 107 failures during the search
process.

5.1.3. DNCPSO and FSPP
DNCPSO and FSPP were implemented and simulated in

iFogSim2 based on the algorithms described in [9,15] respec-
tively. Necessary adaptations were made to the algorithm to
adapt it to our proposed system model and IoT application batch
placement scenario while maintaining core principles and fitness
functions as proposed in the said works.

5.2. Experimental configurations

5.2.1. Simulation environment
To evaluate the performance of the algorithms, we created

synthetic workloads based on the microservices-based applica-
tion model proposed in Section 3.1. Each workload consists of
multiple applications, including Smart health monitoring and
Smart Parking application presented in the motivation scenario
along with synthetic DAG-based applications created to represent
all service composition patterns introduced in this work. Hetero-
geneity within the workloads is further ensured by modelling
the diversity of microservices in terms of computation cost of
the microservices (300–900 MIPS) and bandwidth usage among
microservices (200–1500 bytes/packet). Moreover, when defining
131
resource requirements of each microservice, the request rate
supported by the basic deployment unit (rm) is chosen between
100–200 requests/s. All the above parameter values are deter-
mined based on the IoT simulation benchmarks presented in
previous simulation studies [14,38]. Diversity among services is
maintained in terms of QoS by varying makespan, budget, and
throughput requirements.

The fog environment is constructed according to the archi-
tecture proposed in Section 3.2. Table 3 lists the configurations
used in constructing the simulated fog environment. Parameters
of the fog network such as communication link latency and band-
width represent novel network technologies like Wi-Fi 6 [30],
5G [31] for WLAN, and gigabit Ethernet [32] for LAN connections,
acquired from edge network performance studies. Fog resources
are modelled as a pool of heterogeneous devices with varying re-
source capacities similar to [34,35] which include heterogeneous
fog devices such as Raspberrypi 4B, Jetson Nano, Dell PowerEdge,
etc. Cost of execution of the microservices is modelled according
to AWS Fargate pricing [25] defined for CPU, RAM, and storage
separately. Due to service level improvements provided by the fog
environment, fog resource prices are determined by multiplying
on-demand prices of cloud resources by an increase factor be-
tween 1.2–1.5 according to [7], which models on-demand pricing
within fog environments. vCPU to MIPS mapping for the simula-
tion is obtained based on Microsoft Azure industrial benchmark
where 150MIPS estimates to 1vCPU [39].

QoS parameters are varied to ensure makespan and budget
limits of the services span from the edge of the network to the
cloud. Makespan requirement is varied within 20–150 ms, fol-
lowing the IoT application latency requirements discussed in the
previous studies [36,37]. The budget requirement is set based on
the resource requirements of each microservice in the synthetic
workload and cost parameters of the environment in such a way
that the values span both cloud and fog deployment. Moreover,
the budget parameter is adjusted so that latency-critical and
bandwidth-hungry services have higher budget limits to enable
their placement within the fog layer. For throughput require-
ment of services (rs), we have considered a wide range of values
200–800 requests/s) compared to rm of each microservice, to
valuate how the placement algorithm handle the scalability of
icroservices.

.2.2. Algorithm parameter tuning
Table 4 lists parameters and their values for QMPSO, DNCPSO

nd FSPP algorithms. For QMPSO algorithm preliminary experi-
ents were carried out to observe the fitness value achieved by

he algorithm for different values of swarm size, iteration count
nd refreshing gap. Based on the observations, we set particle
ount to 50, iteration count to 300 and refreshing gap to 0.
urther improvements to the fitness values can be obtained by
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Fig. 5. Variation of fitness values for different adaptations of S-CLPSO.
Table 4
Parameters for placement algorithms.
Parameter QMPSO DNCPSO FSPP

No. of particles in swarm 50 50 100
No. of iterations 300 300 400
Mutation rate – 0.25 0.25
ωmin - ωmax 0.4–0.9 0.4–0.9 –
c1 , c2 – 2 –
c 1.49445 – –
m (refresh gap) 0 – –
ωl , ωb , ωnw , ωr 0.5 – –

increasing particle and iteration counts at the cost of increased
algorithm execution time. Values for inertia weight ω and coeffi-
ient c are chosen based on previous studies on PSO algorithm [9,
4] conducted to determine the optimum values for these pa-
ameters. ω is changed from ωmax (0.9) to ωmin (0.4) over the
terations, according to the non-linear equation proposed in [9].
oefficient c is set to 1.49445 as per [24]. For the performance
valuation, we consider all sub-objectives are equally important.
ue to objective normalisation used in the QMPSO algorithm, this
s achieved by setting all weights to 0.5.

For DNCPSO and FSPP algorithms, parameters are set accord-
ng to [9,15] respectively.

.3. Results and analysis

.3.1. QMPSO performance evaluation
This section evaluates the performance of QMPSO by analysing

ow the values for the two main objectives gradually evolve
ith iterations. For the evaluation, three synthetic workloads are
reated according to the specifications detailed in Section 5.2.1,
here Workload1, Workload2 and Workload3 consist of 5, 7
nd 10, microservice-based applications respectively. For place-
ent of the workloads, a fog environment with 17 fog devices is
onsidered. For each workload, placement is generated using No-
euristics, No-Prioritised-Construct and QMPSO algorithms and
he fitness values for Objective1 (QoS violation) and Objective2
Resource usage) are recorded over 300 iterations. Each algorithm
s repeated 100 times and the average fitness values are obtained.

Fig. 5 depicts the variations of fitness values while Table 5 lists
he average fitness value of each algorithm after 300 iterations.
132
Results show that the QMPSO algorithm outperforms the other
two approaches in reaching the global optimum solution within
a lesser number of iterations. For both objectives, No-Heuristics
demonstrates a higher fluctuation in fitness value during early it-
erations. In No-Prioritised-Construct and QMPSO algorithms, this
behaviour is not present for Objective1 due to heuristics based
minimum and maximum initialisation. No-Heuristics algorithm
updates minimum and maximum values for each sub-objective
only based on the particles available in the swarm. So it takes
the algorithm a larger number of iterations to obtain accurate
values, which results in the fluctuations. Besides, the use of
OHPP in the initial swarm provides No-Prioritised-Construct and
QMPSO with a better starting point. Moreover, both No-Heuristics
and No-Prioritised-Construct tend to converge to local-optimum
positions. QMPSO has overcome this with the proposed particle
construction algorithm, CCPC. The use of prioritised microservices
in CCPC ensures a proper balance between exploitation and ex-
ploration to make sure that the algorithm moves towards the
global-optimum solution for Objective1. As solution space is a
discrete space limited by resource constraints, there is a higher
chance of algorithms converging to a local optimum solution. But
prioritised particle construction in QMPSO helps the algorithm to
traverse the discrete solution space successfully without getting
stuck in local optimums.

As the placement problem is modelled as a lexicographic
optimisation, fluctuations are expected to occur in the Objective2
value until Objective1 converges. This explains the increase in
Objective2 during early iterations in all three approaches. In
No-Heuristics, the increase and fluctuations in the value are con-
siderably higher because it takes more time for this approach
to obtain the accurate minimum and maximum values for the
sub-objectives without the use of heuristics. Thus, faster con-
vergence in Objective1 results in better results of Objective2 as
well. This is evident in the behaviour of the QMPSO algorithm.
Objective values denoted in Table 5 shows that QMPSO reaches
lower objective values for both objectives. Besides, the standard
error of the achieved values is also lower in QMPSO when com-
pared with other approaches. This indicates that the performance
of QMPSO is consistent over multiple runs. The above results
demonstrate that the proposed QMPSO algorithm can reach bet-
ter performance due to multiple features we have incorporated
with the algorithm, including OHPP-based swarm initialisation
(SWARM_INIT), heuristic-driven fitness value normalisation and
prioritised particle construction (CCPC).
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Table 5
Mean fitness values and standard error of the objectives for different adaptations of S-CLPSO to fog placement
problem.

QMPSO No-Prioritised-Construct No-Heuristics

Obj1 Obj2 Obj1 Obj2 Obj1 Obj2

Workload1 0 0.5544 ± 0.0271 ± 0.5633 ± 0.0297 ± 0.649 ±
0.0025 0.0020 0.0068 0.0012 0.0074

Workload2 0 0.5389 ± 0.0293 ± 0.5429 ± 0.0262 ± 0.6183 ±
0.0017 0.0007 0.0040 0.0013 0.0072

Workload3 0.0010 ± 0.5271 ± 0.0019 ± 0.5738 ± 0.005 ± 0.6395 ±
6.145E−06 0.0018 0.0007 0.0049 0.0015 0.0067
Fig. 6. Performance for different device counts.
Fig. 7. Performance for different application/microservice counts.
.3.2. QMPSO placement evaluation
In this section, we evaluate the placement generated by our

lgorithm using several performance metrics: makespan satisfac-
ion percentage and budget satisfaction percentage are used to
valuate the QoS satisfaction of the placement, network usage
nd the total number of active fog devices to evaluate the fog
esource usage.

Makespan Satisfaction: This metric is calculated as the number
f service requests that meets makespan requirements of the said
ervice, as a percentage of all the service requests received by the
og environment.

Budget Satisfaction: A metric reflecting budget satisfaction per-
entage of the fog environment. This metric is calculated as the
ifference between the cost violation after placement and the
aximum possible cost violation of the environment for the

equested placement, as a percentage of the maximum possible
iolation.
Network Usage: Indicates network occupancy as a measure-

ent of packet size (kilobytes) x link delay (ms) within the du-
ation of the simulation for all packets sent through the fog
nvironment.
Active Fog Devices: Depicts the number of devices with at least

ne microservice deployed onto the device. Optimum usage of
og computing resources can be evaluated based on two main as-
ects; balanced use of fog and cloud where fog resources are used
nly for latency-critical and bandwidth-hungry services which
itigates overuse of limited fog resources, and the ability to avoid
nnecessary dispersion of microservices within highly distributed
og environments. Active fog device count is a quantitative metric
hat can provide accurate insight on both of these aspects.
133
Solution Space Analysis: Experiments are conducted to ob-
serve the performance of each algorithm as the solution space
grows. The size of the solution space depends on two param-
eters; the number of microservice instances to be placed and
the number of devices considered for placement of the microser-
vices. Fig. 6 depicts the performance for different device counts
(15, 20 and 25 fog devices) keeping microservice count a con-
stant (8 Applications, 30 microservices) whereas Fig. 7 is for
the scenarios where the microservice count is changed keeping
device count a constant (20 fog devices). Microservice count is
increased by increasing the number of applications considered
for placement (5, 7 and 10 applications). Moreover, it varies the
degree of heterogeneity within the batch of services available for
placement.

For QoS satisfaction, QMPSO and CPPA achieve the highest
satisfaction percentage in both makespan and budget for all sce-
narios. But for network usage and fog resource usage which
indicate the ability of the algorithm to obtain a proper balance
between fog and cloud usage, QMPSO outperforms CPPA. As the
solution space grows, network usage and active device count for
CPPA placement increase. Due to the NP-complete nature of the
fog application placement problem, CPPA is limited by a failure
limit of 107 to obtain a solution within reasonable time limits.
Thus, QMPSO with its meta-heuristic approach outperforms CPPA.
Fig. 8 compares the execution time of QMPSO and CPPA algorithm
as solution space grows. Both the execution time and increase in
execution time with solution space growth is considerably higher
in CPPA.

OHPP, which is our proposed heuristic for QMPSO initialisation
can achieve high makespan satisfaction but lacks budget satis-
faction. OHPP prioritises services based on stringent makespan
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Fig. 8. Execution time of the QMPSO and CPPA algorithms.

nd budget requirements but fails to handle the complexity in-
roduced due to data dependencies among microservices. As a
esult, OHPP shows a decrease in budget satisfaction as the num-
er of applications increases. Moreover, OHPP only focuses on
oving latency-critical service to the fog and place the rest of

he service in the cloud. As a result, bandwidth-hungry microser-
ice of latency tolerant services are placed in the cloud, which
nder-utilises fog resources and increases network usage.
The fitness function of the DNCPSO algorithm is designed to

inimise the weighted sum of total latency and cost of the place-
ent. Moreover, DNCPSO aims to re-arrange particles to place
ll latency-critical microservices in the fog layer which results in
igh makespan satisfaction. However, the budget satisfaction of
he algorithm drops significantly (up to 70%), as the fitness cal-
ulation does not contain budget awareness, but try to minimise
he total cost. This approach lacks prioritisation of services with
tringent budget requirements which moves more services to the
og to reduce total latency. This results in lower network usage,
ut over utilises fog resources and reduces budget satisfaction
ignificantly.
Similarly, FSPP tries to minimise the latency of the services

ithout taking their makespan requirements into consideration.
s this approach does not prioritise latency-critical microservices,
akespan satisfaction reduces up to 35% within a resource-
onstrained fog environment. As the number of devices increase,
ore latency-critical microservices are placed inside the fog

ayer, which results in a slight increase in makespan satisfaction.
SPP aims to increase the fog resource usage by placing repli-
as of the microservices without imposing a budget constraint,
hich results in closer to zero budget satisfaction. FSPP tries
o maximise fog resource usage irrespective of the throughput
equirements of the services. As a result, all fog devices are active
n all placement scenarios. As FSPP scale microservices randomly
n the fog layer, the number of microservices pushed to the cloud
ncreases due to the resource constraints of fog devices. This
esults in a significant increase in network usage as well.

Scalability Analysis: Experiments are conducted to analyse
he performance of the placement as throughput requirements
f the services change. To this end, a workload of 5 applications
s considered for two scenarios where throughput requirement
n QoS profile of each application is doubled in scenario2 when
ompared with scenario1 (Fig. 9). For both scenarios, 25 fog
evices are considered for placement.
As throughput requirement increases, microservices are hori-

ontally scaled in QMPSO, CPPA and OHPP placement policies due
o the throughput aware instance count calculation proposed in
ection 4.1.1. This increases the number of microservice instances
134
Table 6
Complexity analysis.

QMPSO DNCPSO FSPP

Initialisation O(Slog(S)+ |D′|log(|D′|)+ S.M.I.|D′|) O(S.M.|D′|) O(S.M.|D′|)
Evolution O(S.M.I.|D′|) O(S.M.|D′|) O(S.M.|D′|)

to be placed, thus expanding the solution space. As a result,
the performance of the CCPA reduces with increased through-
put (scenario2). In scenario1, CPPA is able to reach similar QoS
satisfaction values as our QMPSO algorithm. But in scenario2,
CPPA is unable to reach an optimum solution within the specified
failure limit of the algorithm, which results in the reduction
of makespan satisfaction. Although OHPP is able to achieve full
makespan satisfaction, budget satisfaction drops significantly (up
to 20% reduction) as throughput increases. Thus, as the number
of microservice instances increase heuristic approach fails to pro-
vide satisfactory results. DNCPSO does not consider the scalability
of microservices. So, as throughput increases, resource require-
ments of each microservice increase and resource-constrained
fog devices are unable to handle them. As a result, DNCPSO
moves these microservices towards the cloud, which results in
the increase of latency violation and network usage. Without
using horizontal scalability, DNCPSO is unable to fully utilise
fog devices with limited resources. FSPP scales microservices to
spread them evenly across the fog environment. So, FSPP does
not demonstrate a significant difference in makespan satisfaction
as sufficient microservice instances are available in both scenar-
ios. But, FSPP randomly scales microservices without supporting
throughput aware scalability which result in the overuse of fog
resources.

Compared to other approaches, QMPSO achieves improved
performance in all considered metrics for both scenarios. Our
placement vertically and horizontally scales microservices based
on their throughput requirements, which results in proper utili-
sation of resource-constrained fog devices to maximise makespan
and budget satisfaction. This also indicates the ability of the
QMPSO algorithm to successfully navigate larger solution spaces,
unlike CPPA and OHPP algorithms.

Based on the solution space analysis and scalability analysis,
it is evident that QMPSO significantly improves QoS satisfaction
along with resource utilisation. For the considered scenarios,
QMPSO records up to 35% improvement in makespan satisfaction
and up to 70% improvement in budget satisfaction. These results
indicate the ability of the QMPSO algorithm to navigate large
solution spaces successfully to reach optimum QoS satisfaction.
Moreover, results depict that QoS-awareness in the fitness func-
tion of QMPSO enables it to successfully utilise both fog and
cloud resources to handle heterogeneous QoS requirements. Thus,
QMPSO provides a robust algorithm capable of harvesting fog
and cloud resources to obtain an efficient placement schedule for
heterogeneous microservice-based IoT applications.

5.3.3. Algorithm complexity analysis
We have introduced multiple approaches/algorithms to im-

prove the performance of our QMPSO placement algorithm. In
this section, we evaluate the time complexity introduced by these
novel approaches and compare them with approaches used in
DNCPSO and FSPP algorithms which use PSO and NSGA-II respec-
tively. All three evolutionary algorithms have two main phases
that affect the overall complexity of the algorithms and Table 6
presents their complexities. We consider the number of services
for placement as S with each having a maximum of M microser-
vices along with I instances per microservice for the placement
within |D′| devices where D′ = F∪C . The effect of population size
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Fig. 9. Performance for different throughput requirements.

and iteration count is ignored as they are constants in all three
algorithms.

Initialisation : For QMPSO, initialisation includes the creation
f initial solution space (SWARM_INIT) and heuristic based ini-
ialisation of minimum and maximum values required for nor-
alisation of the sub-objectives. SWARM_INIT consists of OHPP
nd CPPC_INIT algorithms. OHPP contains two main steps; sort-
ng of services and devices which is completed with linearith-
ic time complexity of O(Slog(S)) and O(|D′|log(|D′|)) respec-

ively, and mapping of each microservice instance of the ser-
ice to a device (O(M.I.|D′|)), which results in time complex-
ty of O(S.M.I.|D′|) for all services. CPPC_INIT iterates through
rioritised microservice instances to randomly find the eligi-
le device. As prioritising is already completed by OHPP, the
lgorithm can be completed with worst case time complexity
f O(S.M.I.|D′|). The total time complexity of SWARM_INIT is
(Slog(S)+ |D′|log(|D′|)+ S.M.I.|D′|). Heuristic approaches used

or normalisation (Deadline-aware heuristic placement and Bud-
et maximisation placement) follow the same placement ap-
roach as OHPP with different sorting orders for services and de-
ices, thus resulting in polynomial time complexity of O(Slog(S)+
D′|log(|D′|)+ S.M.I.|D′|). Thus, for the Initialisation phase worst-
ase time complexity of the QMPSO resolves to O(Slog(S) +
D′|log(|D′|)+ S.M.I.|D′|).

Both DNCPSO and FSPP, do not use heuristics when creat-
ng initial population nor use heuristic-based normalisation. Fur-
hermore, these algorithms do not support throughput aware
calability of microservices. Thus, random initialisation of eligi-
le solutions within resource-constrained devices results in time
omplexity of O(S.M.|D′|) for DNCPSO and FSPP.
Evolution: For this phase time complexity of the algorithm is

ominated by the construction of the next solution. For QMPSO,
his consists of velocity update and position update. The time
omplexity of velocity update is equal to the number of el-
ments in the velocity matrix, which is O(S.M.I.|D′|). QMPSO
135
ses CPPC_VA algorithm to update the particle positions. Sim-
lar to CPPC_INIT, CPPC_VA also acquires prioritised microser-
ice instances generated from OHPP, which does not add extra
omputations to the algorithm. To make velocity-aware updates,
lgorithm iterates through devices for each prioritised microser-
ice instance which results in O(S.M.I.|D′|) iterations during the

worst case. This results in time complexity of O(S.M.I.|D′|) for
he Evolution phase. The time complexity of DNCPSO and FSPP
or this phase becomes, O(S.M.|D′|) due to the lack of throughput
ware scalability of microservices.
Although the novel approaches introduced in QMPSO adds

xtra complexity to the algorithm, lack of these features results in
slower convergence rate, convergence to local optimums, lower
oS satisfaction, and lower resource utilisation as demonstrated
n by the results in Sections 5.3.1 and 5.3.2. Thus, this trade-off
etween accuracy and extra computation time is vital in solving
he microservices-based application placement in fog. Moreover,
he added time complexity due to these improvements is limited
o linearithmic increase for sorting operations and an increase
y a factor of I for throughput aware scaling of microservices.
hus, QMPSO reaches a fair trade-off between performance of
he placement and extra time-complexity by maximising QoS
atisfaction and resource usage of the placement while avoiding
drastic increase in time complexity.

. Conclusions and future work

Rapid growth in IoT has resulted in the emergence of di-
erse and complex applications developed using the microser-
ices architecture. Due to the latency critical and bandwidth
ungry nature of these applications, they are scheduled within
istributed, resource-constrained and heterogeneous fog devices.
o fully leverage the capabilities of fog devices to support mul-
iple heterogeneous applications, we exploited the granularity
nd scalability of microservice architecture and formulated the
og application placement problem as a Lexicographic Combi-
atorial Optimisation Problem for batch placement of IoT ap-
lications, where QoS satisfaction and optimum resource usage
re the primary and secondary objectives respectively. To solve
he placement problem, we proposed an algorithm by adapting
nd improving the S-CLPSO technique. Extensive experiments
re carried out to evaluate the effectiveness of the proposed
echnique under two aspects; convergence improvement against
ther adaptations of the S-CLPSO and efficiency of the resultant
lacement against state-of-the-art techniques. Obtained results
epict that our approach successfully navigates large solution
paces and generates placements with higher QoS satisfaction
35% and 70% improvement in makespan and budget satisfaction
espectively) while ensuring optimum fog and cloud resource
sage.
As part of future work, we plan to extend our proposed ap-

roach to explore other research issues including mobility of
oth IoT and fog layer devices; fault tolerance under node fail-
res and communication link failures with emphasise on the
icroservices architecture of applications; dynamic scheduling of
icroservices. We plan to implement the proposed algorithm in
real-world fog framework such as FogBus [40].
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