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a b s t r a c t

In recent years, several cloud services have proliferated that conspicuously result in providing similar
services having same functionality by multiple service providers, but varying in Quality of Service
(QoS) properties. Thus, providing a cloud service composition with optimal QoS values that satisfy the
requirements of an user becomes complex and challenging in a cloud environment. Severalmetaheuristics
proposed in solving this problem. However, many of them fail to maintain a suitable balance between
exploration and exploitation. We propose a novel Eagle Strategy with Whale Optimization Algorithm
(ESWOA) that ensures the proper balance between exploration and exploitation.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Cloud computing is a way of delivering IT enabled capacities
to the consumers in the form of ‘services’ with elasticity and
scalability, where consumers can make use of resources, platform,
or software on-demand without having to possess and manage
the underlying complexity of the technology [1,2]. Nowadays, sev-
eral cloud services with comparable functionality are available to
consumers at different prices and performance levels (together
refereed as Quality of Service (QoS) parameters). Consumers often
find it difficult to select an optimal cloud service that satisfies
their requirements, as a single service cannot make them com-
placent [3], that result in rejecting the service out rightly. Due to
this, it becomes imperative to perform composition of different
available services that bridge together to build a composite service
that satisfies the requirements of the consumers.

As there are multiple concrete services for each abstract service
(task) that provides same functionalities, the decision needs to
be taken on which concrete service needs to be selected for the
respective abstract service. Selection of a concrete service needs to
be done on the basis of Quality of Service (QoS) parameters because
these services exhibit same functional properties.

As we wade through the service composition process, we en-
counter several potential solutions that would take exponential
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time for processing all solutions. For example, if there are m ab-
stract services and n candidate services, the number of possible
service composition would be nm [4]. Since it is an NP-Hard prob-
lem, we need to find an amicable solution i.e., a near optimal solu-
tion that satisfies both the functional and non-functional attributes
of the service, that turned out to be an optimization problem.

1.1. Metaheuristics

Near-optimal solutions can be found through highly effective
algorithms, often called Metaheuristics [5]. These search methods
are highly recommended for getting the good solutions, that are
optimal and may be sub-optimal in few cases, in polynomial time
instead of exponential time which happens when we solve these
problems using conventional methods.

Most of the Metaheuristic algorithms are population based and
inspired by the natural phenomena. These algorithms capture the
intelligent behavior of the species and try to integrate into the
domain specific problems that are related to scheduling, planning,
finance and engineering design.

1.2. Using metaheuristics for service composition

All the nature inspired metaheuristics algorithms strive to at-
tain the global optimal solution by inspecting the most favor-
able locations in their domain search space, based on the natural
mechanism that the species possess. The process of this inspection
varies among various algorithms. Few algorithms may work well
for certain problems, while not-so-good for other problems. This is
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due to the randomization or stochastic strategies that are used in
solving those NP-Hard problems. As we could expect the presence
of multiple local minima or local maxima in our search space,
metaheuristic algorithms need to forage and try to explore asmany
regions as possible to find the global solution.

1.3. Motivation and contribution

Since cloud service composition is an NP-Hard problem, it is
essential to use meta-heuristic algorithms to get the near global
optimal solutions. Researchers have been using algorithms that
are inspired from biological evolution or from nature like us-
ing the intelligence behavior of a group (swarm) of animals and
achieved considerably good results to these complex
problems.

However, though these algorithms work better in certain con-
ditions, there are few intrinsic issues from the existing ones when
they fail to maintain the proper balance between two important
yet contrasting components exploration and exploitation. A de-
cent degree of diversity has to be preserved in a population of
solutions to reflect exploration and exploitation in the progressing
population. Issues such as premature convergence, occur when an
intensive local exploitation is applied if the population has very
low diversity, thus losing the possibility of reaching a globally
optimal solution. Also, if the diversity of population solutions is
too high, it may be good for global exploration but results in slow
convergence rate [6]. Hence it is critical to maintain the balance
between these components to ensure better results [5,7].

In this work, we propose an algorithm that uses Eagle Strat-
egy allowing us to authorize both exploration and exploitation
in an effective way to balance the foraging process. Our experi-
mental results show that our method outperforms the standard
algorithms like GA (Genetic Algorithm), WOA (Whale Optimiza-
tion Algorithm), DGABC (Discrete Guided Artificial Bee Colony),
HGA (Hybrid Genetic Algorithm), and GRASP (Greedy Randomized
Adaptive Search Procedure).

The remainder of this paper is organized as follows. In Section
2, we present the related works on QoS-aware cloud service com-
position using bio-inspired andmeta-heuristic algorithms. Section
3 discusses modeling of service composition using QoS attributes
and related concepts. Section 4 presents our proposed Eagle Strat-
egy with Whale Optimization Algorithm (ESWOA) to achieve the
balance between exploration and exploitation. Section 5 reports
the experimental analysis of our proposed algorithm, followed by
concluding remarks in Section 6.

2. Related work

Many approaches have been proposed for QoS-aware cloud
service composition problem in cloud and web services. These
approaches generally use optimization methods based on bio-
inspired and meta-heuristics algorithms.

Canfora et al. [8] introduced Genetic Algorithm (GA) for per-
forming QoS-aware web service composition. Maolin and Feng [9]
proposed a hybrid genetic algorithm by considering conflict and
dependency constraints within services to solve web service com-
position. Yue et al. [10] proposed an improved Genetic Algorithm
for web service composition that results in an enhanced conver-
gence rate. Zhi-peng et al. [11] utilized Simulated Annealing and
Genetic Algorithm to propose a new approach QQDSGA (QoE/QoS
driven simulated annealing based genetic algorithm) to perform
QoS-aware web service composition. Gao et al. [12] and YangYu
et al. [13] developed tree-coded genetic algorithms to solve QoS-
aware web service composition. Yilmaz et al. [14] proposed im-
provedGA-based approaches such asGAwith SimulatedAnnealing

and GA with Harmony search for QoS-aware service composi-
tion. Bao et al. [15] developed an orthogonal GA for QoS-aware
web service composition, where the initial population is designed
based on an orthogonal design and crossover operator. Quanwang
et al. [16] designed a novelmethod to optimize the overall QoS val-
ues using a backtracking-based algorithm and an extended GA for
QoS-aware web service composition. Although genetic algorithms
are widely used in finding QoS-aware web service composition,
genetic algorithms have some inherent shortcomings including a
lowpremature convergence rate in local optimumand increase the
search space due to fixed predetermined crossover and mutation
rates.

Particle Swarm Organization (PSO) and its variants are applied
for solving service composition by several researchers [17]. Wang
et al. [18] developed a Chaos PSO method supporting global con-
straints to solve QoS-aware service composition. Liu et al. [19]
developed a hybrid quantum PSO algorithm to solve the combi-
natorial optimization problem for web service composition. Zhao
et al. [20] designed an improved discrete immune optimization
method based on PSO that combines proportional clone and prolif-
eration of immune optimization algorithm for QoS-awareweb ser-
vice composition. However, these PSO based methods are trapped
at local optima in some circumstances and are not often good at
diversification. Parejo et al. [21] developed a hybrid greedy ran-
domized adaptive search procedure (GRASP) and Path-Relinking
algorithm to solve QoS aware web service composition problem. It
attempts at merging good solutions found earlier into the current
search iteration. However, it takes more execution time than other
algorithms.

Huo et al. [22] proposed a discrete gbest-guided artificial bee
colony algorithm to find out the optimal composition path. Seghir
et al. [23] proposed a hybrid approach using genetic and fruit fly
optimization algorithms for QoS-aware cloud service composition.
Where GA is used for global search and Fruit fly optimization is
used for local search. Karimi et al. [24] proposed an approach for
composition that reduces the search space while performing local
service selection by using association rules and service cluster-
ing and genetic algorithm to get the global optimal solution. Liu
et al. [25] proposed a method that simulates the human intelli-
gence evolution process, named as specific Social Learning Opti-
mization (S-SLO) to solve QoS-aware cloud service composition.
Younes et al. [26] proposed amodel that integrates the strengths of
Memetic algorithm which is gene-based and PSO which is swarm
based, to a formShuffled Frog LeapingAlgorithm that accomplishes
the task of finding global optimum. Seghir et al. [27] proposed
a discrete imperialistic competitive algorithm using artificial bee
colony algorithm for global exploration. However, the said ap-
proaches still have some intrinsic defects such as low premature
convergence rate and increase the search space in local optima
due to an exponential increase in Pareto front size due to num-
ber of cloud services in composition. Zhang et al. [28] proposed
a GA with improved crossover and mutation operator to solve
QoS-aware Service Composition for geo-distributed Multi-Cloud
environment. Yu et al. [29] presented a greedy based QoS-aware
web service composition based on greedy and ant colony optimiza-
tion algorithms to solve service composition in cloud computing
environments. Kurdi et al. [30] discuss a novel method COM-
binatorial optimization algorithm for cloud service COMposition
(COM2) to solve multiple cloud service composition. Jula et al. [31]
proposed improved Imperialist competitive algorithm for service
time optimization in cloud service composition. Jula et al. [32]
developed a hybrid method of an improved Gravitational attrac-
tion search with an Imperialist Competitive Algorithm for cloud
computing service composition. Wang et al. [33] proposed a GA
to solve QoS-aware service composition in geo-distributed cloud
environment.



S.K. Gavvala et al. / Future Generation Computer Systems 90 (2019) 273–290 275

2.1. Meta-heuristics

Recently, many researchers proposed several exciting meta-
heuristics algorithms which work aggressively to find out global
optima. A comprehensive review of various versions of KH al-
gorithm had been listed out by [34]. One of those algorithms is
Krill algorithm proposed by [35] based on herding behavior of the
Krill individuals. The position of the new Krill will be calculated
based on the factors that simulates their behavior such as (i) krill
individual movement under the influence of other krills (ii) its for-
aging activity and (iii) random dispersion of krills. Wang et al. [36]
proposed a Chaotic particle swarm krill herd algorithm based
on mutation operator from the APSO [37], integrated to enhance
the global convergence speed while maintaining its true flavor of
original algorithm. Wang et al. [38] proposed a Chaotic krill herd
algorithm that incorporates chaotic strategies to update the inertia
weights into the KH optimization process with the aim of acceler-
ating its global convergence speed. The chaotic KHmethod adjusts
the three main movements of the krill in the optimization process.
Further, Wang et al. [39] proposed a novel chaotic cuckoo search
(CCS) optimization algorithm by incorporating chaotic theory into
CS algorithm. In this algorithm, chaos characteristics are combined
with the CS for further enhancing its performance. Then, the elitism
scheme is incorporated into CCS to find the best cuckoos. Guoa
et al. [40] proposed a new Improved krill herd (IKH) algorithm that
concentrates on improving the process of updation of Krill individ-
ual newpositions. In IKH, Levy flight distribution and elitismmech-
anism are integrated for calculating the KH motion among the top
krills that in turn enhances the convergence speed.Wang et al. [41]
proposed a new improved firefly algorithm for global numerical
optimization. In this algorithm, the functionality of information ex-
change between the top fireflies is incorporated during the process
of the light intensity updating unlike in standard firefly algorithm.
Wang et al. [42] developed a novel hybrid approach combining KH
and Quantum based PSO to enhance the capability of local search,
there by hindering the chances of premature convergence. Wang
et al. [43] proposed a technique to surmount the bad exploitation
phase by introducing a hybrid differential evolution technique
while KH does the exploration bit, balancing the two vital yet
contrasting components in the stochastic world. Wang et al. [44]
developed aMouth Search algorithm (MS) based on phototaxis and
Lévy flights of the moths. Wang et al. [45] developed a multi-stage
krill herd (MSKH) algorithmbased on the standard KH and the local
mutation, crossover (LMC) operator to balance the exploration and
exploitation stages. Wang et al. [46] developed a Lévy-flight krill
herd algorithm for solving global optimization problem. A new
Opposition based KHwith Cauchymutation and position clamping
is introduced into for avoiding the trapping into local minima
for some complex benchmark functions [36]. Simulated Annealing
based KH algorithm is proposed to fine tune the performance of
KH by adopting new krill selecting (KS) operator and the elitism
strategy [47]. A StudKrill Herd (SKH) technique is proposed by [48],
where stud krill shares optimal information to all krills instead
of randomly selected krills. Wang et al. [49] developed a method
for tuning better parameter settings and finding out the effective
coefficients for three krill motions and for crossover and selection
operators that hinders the chances for trapped in local optimum.
Gaige et al. [50] proposed a novel hybrid KH and harmony search
to solve global optimization problem. Wang et al. [51] proposed
a biogeography-based krill herd algorithm to solve complex op-
timization tasks consisting of a new Krill migration operator for
updating the krill individuals. Heqi et al. [52] introduced a hybrid
KH and ABC (KHABC) algorithm to solve global optimization.

Monarch butterfly optimization (MBO) is a new metaheuristic
algorithm that mimics the migration of butterflies [53]. Wang
et al. [54] proposed a new version of MBO that uses a crossover

Fig. 1. AWorkflow of service composition.

operator and a greedy strategy that ensures only better individuals
to move to next generation. Yanhong et al. [55] solved the famous
0–1 knapsack problem by proposing the novel binary monarch
butterfly optimization method. Wang et al. [56] developed a hy-
brid differential evolution accelerated particle swarm optimiza-
tion (DPSO) algorithm to solve numerical optimization problems.
Wang et al. [57] proposed a hybrid model HS/CS to solve nu-
merical optimization algorithm. Cui et al. [58] presented an ori-
ented cuckoo search algorithm to improve DV-Hop performance
for cyber–physical systems. Gaige et al. [59] proposed a hybrid
method harmony search (HS) with biogeography based optimiza-
tion to solve global numerical optimization. [60] presented an im-
proved version of bat algorithm in combination with a differential
evolution to solve the uninhabited combat air vehicles (UCAV) 3-
D path planning. Guohua et al. [61] developed a novel variable re-
duction for derivative unconstrained optimization and constrained
optimization problems with equality and active inequality con-
straints.

Rizk-Allah et al. [62] proposed a multi-objective fruit fly op-
timization algorithm for addressing multi objective optimization.
Rizk-Allah et al. [63] developed a parallel hurricane optimization
algorithm for solving economic emission load dispatch problem in
modern power systems. Liu et al. [64] proposed a multi-objective
optimization model for gesture segmentation based on a two-
phase estimation of distribution algorithm. Guohua et al. [65]
presented a multi-population based framework to realize the en-
semble of multiple DE variants. Wang et al. [66] proposed an
evolutionarymulti-objective optimization algorithms (B∗-tree and
a multistep simulated annealing) to solve high performance com-
puting for cyber–physical social systems. By combining the Earth
observation resources, a coordinated architecture is planned to
enhance the utilization of its resources by proposing the highest-
weight-first allocated and tabu list based simulated annealing al-
gorithms [67]. Zhang et al. [68] developed a new bat algorithm
with mutation and used for enhancing the global convergence
speed in the image matching problem. Rui et al. [69] proposed a
novel reference-inspired coevolutionary algorithm to solve many
optimization models. Wang et al. [70] developed a self-adaptive
extreme learning machine to solve classification problems.

Wang et al. [71] proposed six information feedback models
based on improved metaheuristic algorithms. Wang et al. [72]
presented a hybrid method based on cuckoo search and krill herd
algorithms to solve global optimization problems. Feng et al. [73]
proposed a binary moth search algorithm to solve Discounted 0-
1 Knapsack Problem. Wang et al. [74] presented a novel elephant
herding optimization and a novel Earthworm optimization algo-
rithm [75] to solve global optimization problems. Feng et al. [76]
proposed a method chaotic monarch butterfly optimization algo-
rithm with Gaussian mutation to solve 0–1 knapsack problems.
Yi et al. [77] discussed a variant of probabilistic neural network
with self-adaptive strategy to solve transformer fault diagnosis
problem. Rui et al. [78] proposed a multiobjective evolutionary
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Table 1
List of QoS attributes and their description.
S.no Attribute name Description

1 Price It defines the amount needed to pay by user for requesting a service
2 Reliability It tells how frequent a service is available during the user request
3 Response Time Time taken in seconds to serve a request once the request is received
4 Reputation Based on user experience, a service is evaluated in terms of certainty
5 Throughput In certain time period, the number of requests served is defined as Throughput
6 Security It defines on how much the service is offering privacy by verifying the users involved in it

algorithm based on decomposition (MOEA/D) to solve optimiza-
tion problems. Rui et al. [79] presented a multiobjective evolu-
tionary algorithmbased ondecomposition LWS (MOEA/D-LWS) for
many-objective optimization. Guohua et al. [80] proposed a novel
population-based across neighborhood search to solve numerical
optimization. Wang et al. [81] proposed a hybrid firefly-inspired
krill-herd optimization algorithm based on firefly and krill herd
algorithms to solve optimization problems.

3. Modeling of QoS-aware cloud service composition

3.1. Service composition model

In service oriented computing (SOC), service providers often
find difficulty in providing a service to the request of an user due
to its complexity. In such cases, the complex task is decomposed
into sub-tasks. Those candidate services that perform sub-tasks is
later composed to accomplish the initial request.

Let T be the initial user request. Now, T = {T1, T2, T3, . . . , Tn}
where n is the number of sub-tasks. Each sub-task is performed by
the abstract service Si which is the collection of candidate services
{wsi,1, wsi,2, wsi,3, . . . , wsi,ni} where ni refers to the number of
candidate services for that particular Si. These candidate services
possess different Quality of Services (QoS) values but same func-
tionalities.

QoS attributes play a vital role in deciding the candidate service
for each abstract service as they exhibit similar roles. These QoS
attributes for each candidate service is represented as QoS(wsi,j) =

{q1, q2, q3, . . . , qr}, where qk denotes the kth number of QoS at-
tribute, i denotes the ith abstract service and j denotes the jth
candidate service for Si. We denote the QoS Attributes set of a
composite service by Q (cs), which is calculated by using the ag-
gregation functions as shown in Table 3.

This aggregation is done based on structure of a workflow [4,
82]. A typical workflow that comprises of various structures is
shown in Fig. 1. It has four basic structures such as (a) sequential,
(b) loop, (c) parallel, and (d) conditional. In a sequential structure,
all the tasks are processed in sequential order. In a parallel struc-
ture, all parallel tasks are executed to proceed to the subsequent
tasks. In a conditional structure, at least one task is executed among
multiple branches to proceed further. In a loop structure, a task
executes multiple times. If we were to compose different services
into a single composite service (CS), their respective QoS values
need to be aggregated according to the aggregate functions by
using a fitness function (Section 3.2). The final value that we obtain
after applying composite service to fitness function is the final
fitness value (csQoS), that needs to be optimized. This value is used
to evaluate the importance of the composite service with respect
to other composition paths.

A single abstract service has multiple candidate services that
has the same functionalitieswith differentQoS values. Hence, it be-
comes tedious to select an optimal service that fulfills the require-
ments of user. To overcome this issue, QoS attributes help to rescue,
as each candidate service is associatedwith theQoS attributes such
as Availability, Response time, Reliability, Throughput etc. These
QoS attributes are used to select a service which contributes in

Table 2
QoS attributes.
Positive attributes Negative attributes

Availability Response time
Throughput Cost
Reliability Execution time

attaining an optimal candidate service for each abstract service.
The QoS attributes and their description are presented in Table 1.

While calculating the value of csQoS, we need to examine the
composition workflow that comprises of sequential, parallel, con-
ditional, and loop structures, as shown in Fig. 1. We have consid-
ered only sequential structure in this work, while other structures
can be effortlessly transformed to sequential. For instance, we
could transform a conditional structure by using the conditional
probability to a sequential structure, and a loop structure can also
be easily remodeled by using loop peeling, as explained in [4].

There are two categories in QoS attributes, such as positive
and negative attributes [82]. If a high value is desirable for a QoS
value, it is termed as the positive attribute, and if a low value is
desirable, it is termed as the negative attribute. The classification of
QoS attributes is shown in Table 2. Based on the characteristics of
QoS attributes, they are aggregated using aggregations functions.
The formula of these functions for particular QoS attributes in
various composition structures are shown in Table 3. Where n is
the number of abstract services in a composition path andm is the
number of parallel cloud services. In conditional composition, we
have

∑n
i=1 Pri = 1 where n is the number of choices and Pri is the

probability of selecting a conditional service. As these QoS values
rangewidely, we need to normalize all the attribute values to fetch
them in the same range [0, 1], so that no attribute dominates the
other attributes. As we have two categories of attributes, we need
to manage them individually while being normalized.

The formula for normalization of positive attributes is as fol-
lows:

UniQk =

⎧⎨⎩
Qk − minQk

maxQk − minQk
maxQk − minQk ̸= 0

1 maxQk − minQk = 0
(1)

The formula for normalization of negative attributes is as fol-
lows:

UniQk =

⎧⎨⎩
maxQk − Qk

maxQk − minQk
maxQk − minQk ̸= 0

1 maxQk − minQk = 0
(2)

where maxQk and minQk denote the highest and lowest QoS value
of the kth dimension attribute for all the composition paths. The
normalized value will be 1 if they are same.

3.2. Fitness function

This function is used to evaluate the fitness (csQoS) of the
particular composition path. If we are solving the standard max-
imization problem, then we have to be more inclined to find out
the composition path that has the maximum fitness value. Else if
we are solving the standard minimization problem, then we try
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Table 3
QoS aggregation functions with various composition structures.

QoS attributes Sequence Parallel Loop (call wsji service k times) Conditional(Pri)

Availability
n∏

i=1

(qavail,i)
m∏
i=1

(qavail,i) k ∗

n∏
i=1

(qavail,i)
n∏

i=1

qavail,i ∗ Pri

Response Time
n∑

i=1

(qrt,i) min(qrt,i) k ∗

n∑
i=1

(qrt,i)
n∑

i=1

qrt,i ∗ Pri

Reliability
n∏

i=1

(qrel,i) max(qrel,i) k ∗

n∏
i=1

(qrel,i)
n∏

i=1

qrel,i ∗ Pri

Throughput min(qtp,i) min(qtp,i) k ∗

n∏
i=1

qtp,i
∏n

i=1 qtp,i ∗ Pri

to find out the composition path that has the least fitness value
when compared to others. In thisway,weuse this function to select
our required composition path. The formula for fitness function is
stated in Eq. (3).

To find the value of csQoS,we employ the SAW (Simple Additive
Weighting) method as used in [20,83], based on Q (cs). Initially,
different weights are assigned to each QoS attribute based on its
level of importance.

Let wk be the weight of the kth QoS attribute. Now,
∑r

k=1 wk =

1, where wk is fixed by the user within the range [0, 1] based on
their interests. The service compositionmodel for maximization of
csQoS is defined as follows:

Max csQoS =

r∑
k=1

UniQk ∗ wk (3)

where r denotes the number of QoS attributes. Thus, the efficiency
of our algorithm is calculated by the quality of the composition
path thrown by ourmethod. This quality is often termed as ‘fitness’
of the whole path that is formed by selecting certain concrete
services from the respective abstract services.

4. Eagle Strategy withWhale Optimization Algorithm (ESWOA)

This section describes our proposed Eagle Strategy with Whale
Optimization Algorithm (ESWOA).

4.1. Eagle strategy

Eagle strategy technique was developed by Yang and Deb [84]
that does optimization in two phases, preserve the balance be-
tween exploration and exploitation. In this strategy, the explo-
ration is done similar to how an eagle searches for its prey initially.
Once the prey is found the eagle changes its behavior in chasing
the prey to intensive attacking. This has been imitated by this
strategy in the exploitation phase, by integrating an optimization
technique that does a rigorous local search such as downhill sim-
plex or Nelder–Meadmethod [85]. Evidently, we could use various
efficient meta-heuristic algorithms like Particle Swarm Organiza-
tion, Firefly Algorithm [86], Differential Evolution or Artificial Bee
Colony to do a strenuous local search. In [84], Levy walk and Firefly
algorithm have been coupled to draft a Eagle Strategy technique.
The pseudocode for Eagle strategy is presented in Algorithm 1.

The parameter Pe enables us to authorize in an iterativemanner
between the exploration and exploitation. To start with, initial
solutions are mounted from a large search space as these solu-
tions often constitute high diversity. These instances undergo an
evolution by an intensive metaheuristic algorithm that leads to a
converged state, the state in which solutions have low diversity.
Subsequently, a new set of solutions are acquired again from the
larger search space, that again comprises of high diversity, for

Algorithm 1: Eagle Strategy.
1: Objective function f (x)
2: Initialization of sample space
3: While(t < maximumnumberofiterations)
4: Do Global Exploration by randomization
5: Fitness Evaluation and finding a promising solution
6: if(Pe < rand), do
7: Local exploitation by efficient local optimizer
8: if(a better solution is found)
9: current best solution is updated
10: end
11: end
12: t = t + 1;
13: end

another round of intensive iteration stage [87]. In a similarmanner,
exploration and exploitation have been utilized to preserve the
superior degree of diversity in the entire population.

Eagle strategy has been popularly used by researchers to en-
hance the efficiency of metaheuristic algorithms. Eagle strategy
with cuckoo search is proposed in [88] for the optimal balance be-
tween intensification and diversification. They provided a practical
estimate based on the intermittent search theory. Similarly, Eagle
Strategy using Flower Algorithm [89] has been proposed to prove
the effectiveness of technique. An improved artificial bee colony
algorithmwith two stage eagle strategy (ETABC) is proposed in [87]
where cuckoo search has been used in the first stage as it uses Levy
Flights.

4.2. Whale optimization algorithm (WOA)

WOA is one of the latest metaheuristic algorithms introduced
byMirjalili et al. [90] in 2016.WOA algorithmmimics the behavior
of the Humpback whales. Usually, these whales wander in groups
and often behave intelligently to catch their prey, which is called
the bubble-net attacking method as shown in Fig. 2, a strategy
that hunts small fishes by trapping them in self-created distinctive
bubbles along a circle or 9-shaped path. This foraging has been
mimicked in the WOA algorithm.

To replicate this behavior in WOA, there is 50% probability that
the whale follows any of the two paths (circle or 9-shaped paths)
mentioned to update the position of the whale during optimiza-
tion. Themathematical representation of theWOAstrategy is given
as follows:

4.2.1. Encircling prey mechanism
In WOA, we make an assumption that the current best solution

is the target prey or near optimal solution,while otherwhales try to
update their positions in the direction of this current best solution.
This is represented as follows:

D⃗ = |C⃗ · X⃗∗(t) − X⃗(t)| (4)
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Fig. 2. Bubble-net hunting behavior of humpback whales.

Fig. 3. Shrinking encircle mechanism.

Fig. 4. Spiral updating position.

X⃗(t + 1) = |X⃗∗(t) − A⃗ · D⃗| (5)

where X⃗∗ denotes the position of best whale found till now, X⃗ is
the position of the whale at current iteration and t represents the
current iteration.

A⃗ = 2.a⃗ · r⃗ − a⃗ (6)

C⃗ = 2 · r⃗ (7)

a⃗ will be decreased from 2 to 0 linearly in every iteration and r⃗ is
the random number in the range [0, 1].

4.2.2. Bubble net attacking method (exploitation)
• Shrinking Encircling: We decrease the value of a linearly

that in turn decreases A⃗ value, as it ensures that the newly
updated whale will fall in the range of [−a, a]. Now, the
new possible positions of the individual whale that will be

Table 4
Mapping between Whale Foraging and service composition.
Whale Foraging Service composition

Search Agent (Whale) Service composition solution
Leader Whale Optimal service composition solution
Speed of searching and foraging Speed of algorithm optimization
Fitness of whale Fitness of composite service

determined in between the current whale position and best
whale position is shown in Fig. 3 in a 2-Dimensional space.
where (X, Y ) denotes the position of current selected whale
and (X∗, Y ∗) represents the best whale position.

• Spiral Updating Position: The current whale follows the
best whale by moving in an helix shaped path as shown in
Fig. 4. This figure also shows the new possible positions of
whale that is going to be updated. A mathematical equation
represented for this helix shaped behavior, which is used to
update the position between the currentwhale and the target
whale (current best found till now) is stated in Eq. (8).

X⃗(t + 1) = D⃗′ · ebl · cos(2π l) + X⃗∗(t) (8)

where l represents a randomnumberwithin the range [−1, 1],
b ensures the logarithmic shape and D⃗′ is the distance the
between current whale and the prey.

4.2.3. Search for prey (exploration)
Unlike in encircling prey mechanism that updates the current

whale position based on the best whale, here updating is done
based on the random whale which is decided by the vector A⃗.
Exploration follows the Eqs. (9) and (10).

D⃗ = |C⃗ · X⃗Rand − X⃗ | (9)

X⃗(t + 1) = |X⃗Rand − A⃗ · D⃗| (10)

where X⃗Rand is the random whale selected. This whale is used as a
reference to update the current selected whale. The pseudocode of
Whale Optimization Algorithm is presented in Algorithm 2.

Algorithm 2: Whale Optimization Algorithm (WOA)
1: Generate initial whale population randomly;
2: Determine fitness of every search agent;
3: Store X∗ as best search agent;
4: while t < MAX_Iter do
5: for Each search agent do
6: Update a, A, C, l, p;
7: if p < 0.5 then
8: if |A|< 1 then
9: Update individual position using
10: shrinking encircling mechanism (Equation (4));
11: else if |A|>= 1 then
12: Select a random whale;
13: Update current whale by Equation (7);
14: end if
15: else if p >= 0.5 then
16: Update the whale position through spiral updating mechanism
17: through (Equation (5));
18: end if
19: end for
20: Update X∗ if there is a better search agent;
21: Update t = t + 1;
22: Stop, if Halting condition is TRUE;
23: end while

Before proceeding to proposed method, we present the corre-
spondence (Mapping) between Whale Foraging and service com-
position for better understanding as shown in Table 4.
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Table 5
Initial population.
S.no Population csQoS

1 [1, 1, 3, 4, 3] 0.9097
2 [3, 2, 1, 2, 2] 1.5791
3 [1, 3, 2, 4, 1] 1.1330
4 [2, 4, 3, 3, 2] 1.4181
5 [4, 2, 4, 3, 3] 1.4714
6 [3, 2, 3, 1, 2] 1.5587

4.3. Eagle Strategy with Whale Optimization Algorithm (ESWOA)

In our proposed technique, we apply the exploitation process of
theWOA algorithm (Section 4.2.2) to performonly the local search,
that ensures the intensification part of the Eagle strategy.We apply
a new approach for the exploration purpose (described in Section
4.3.4) that performs the diversification part of our Eagle Strategy.
We explain the phases starting from encoding to obtaining optimal
solution as follows.

4.3.1. Encoding
In traditional WOA algorithm, the whale position represents

the feasible solution to an optimization problem that is denoted
as a m-dimensional vector. The whale that has the highest fitness
represents as a Leader Whale, and the fitness is denoted by the
Leader score (X∗), and its position is represented as the Leader
Position (LP).Weneed tomaintain the ranges of eachdimension for
our candidate solutiondepending on the requirement,with respect
to our service composition problem. Therefore, the encoding of
whale position should consider the procedure for producing the
candidate solutions according to our necessity.

The main goal of QoS-aware cloud service composition is to
select a service from a pool of candidate services wsi,1, wsi,2, wsi,3,
. . . , wsi,nm of each abstract service Si, obeying the QoS constraints,
which finally result in the maximizing the quality of composite
service. We adopted an integer encoding scheme similar to [22],
as depicted in Fig. 5 that maps an integer to the concrete ser-
vice. A whale position xd is represented as a m-dimension vector
xd = {x1d, x

2
d, x

3
d, . . . , x

m
d }. In this array of numbers, each element xij

represents the value of the jth concrete service from the ith abstract
service. This value is bound to be in the range of [lb, ub], where lb
is 1 and ub is number of concrete services in the pool Si.

4.3.2. Initialization
In WOA, we generate SN number of whale positions randomly,

represented as {x1, x2, x3, . . . , xSN } according to the Eq. (11).

xid = lb + ⌊rand(0, 1) ∗ (ub − lb)⌋ (11)

where SN represents the number of candidate solutions in our
search space (population). Now, for every candidate solution, we
calculate their fitness values csQoS using the Eq. (3) (Line 1 and
2 in Algorithm 3). We will get SN fitness values, out of which
the highest fitness value is treated as Leader score (X∗) (Line 3 in
Algorithm 3) and the corresponding whale position is treated as
Leader position.

Let us assume that we have m = 5 and ni = 5 where 1 ≤

i ≤ 5 and SN is 6. The sample population is generated randomly
satisfying the said constraints and their respective fitness values
(csQoS) are calculated by Eq. (3), as in Table 5. For example [3,
2, 1, 2, 2] means the selection of ws1,3, ws2,2, ws3,1, ws4,2, ws5,2.
From these, the highest csQoS is 1.5791 and is stored in X∗ and its
corresponding position is stored as the Leader position.

4.3.3. Iteration process
After initialization, the candidate solutions will undergo explo-

ration and exploitation processes for MAX_Iter times in search of

Algorithm 3: Eagle Strategy With WOA (ESWOA)
1: Generate initial population randomly;
2: Determine fitness of all individuals using Eq. (6);
3: Store X∗=best fitness individual;
4: while t < MAX_Iter do
5: for Each individual in population do
6: Calculate probability prob according to (12);
7: Generate another random number q;
8: if q < prob then, do
9: Update individual position by Eq. (13);
10: end if
11: Update X∗ if there is a better solution;
12: end for
13: Determine random number rand;
14: if Pe < rand then {Here Pe=0.2}
15: Do Local Search, go to STEP 19;
16: else
17: Do Global Search, go to STEP 30
18: end if
19: for Each individual in population do
20: Update a, A, C, l, p
21: if p < 0.5 then
22: if |A|< 1 then
23: Update the position of individual using
24: shrinking encircling mechanism
25: end if
26: else if p >= 0.5 then
27: Update the individual position by spiral updating mechanism
28: end if
29: end for
30: Update X∗ if there is a better solution
31: Update t = t + 1
32: Stop, if Halting condition is TRUE
33: end while

better solutions than X∗. LetMAX_Iter be themaximum number of
iterations that the algorithm runs.

4.3.4. Exploration phase in eagle strategy
In this phase of our proposed algorithm, each dimension of

the whale position is changed according to the probability prob as
mentioned in the Eq. (12).

prob = 0.3(1 −
iter

MAX_Iter
) (12)

where iter is the current iteration number and MAX_Iter is the
maximum number of iterations specified initially.

Now, for a currently selected whale, we generate a random
number within the range of [1, dim], to determine which dimen-
sion should be randomly changed. Another random number q is
extracted within the interval [0, 1] and is compared with the prob-
ability prob. If q<prob, then amodification is done to the dimension
according to the Eq. (13).

Xj = Xjmin + rand.(Xjmax − Xjmin) (13)

where rand is a random number generated within the range [0,
1]. Xj is the selected dimension that is to be altered, Xjmax is the
maximum of dimensions from the currently selected whale, Xjmin
is the minimum of dimensions.

For this modified whale that we get after performing Eq. (10),
its fitness value is calculated based on the Eq. (3). We compare it
with the best value(X∗), and update X∗ if the new fitness value is
greater than the earlier value and its corresponding Leader Position
too. This process is illustrated in Algorithm 3 from lines 5–12.

To illustrate the said process, we take the earlier example. For
initial iteration, iter value will be 0 (MAX_Iter = 500). So, the
probability generated from the Eq. (9) would be 0.3 (prob = 0.3).
Let us assume that the fourth candidate solution(x4) is the current
selected whale. Now, we generate a new random number, in this
case, say q = 0.2038. Since q < prob, we have to update the
randomly generated dimension which is within the range [1, 5]
through the Eq. (5). So, the new whale position after updation
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Fig. 5. Integer coding scheme.

Table 6
Population after exploration phase.
S.NO Population csQoS

1 [1, 1, 3, 4, 3] 0.9097
2 [3, 1, 1, 2, 2] 1.5815
3 [1, 3, 2, 4, 1] 1.1330
4 [2, 4, 3, 3, 2] 1.4181
5 [4, 2, 4, 3, 2] 1.6760
6 [3, 2, 3, 1, 2] 1.5587

would be x4 = [4, 2, 4, 3, 2] and its fitness value is fitness (x4)
= 1.6760. As it is greater than the previous fitness value, we will
update the fitness value and its position in population.

After all thewhales are exploited, the newpopulationwith their
respective fitness along with the updated information (see bold
and underlined numbers) is shown in Table 6. Now, X∗ will be
1.6760.

Then, we need to fix the parameter Pe that authorizes the Ex-
ploration and Exploitation phases. We assign Pe value as 0.2, after
examining numerous experimental results from [88,89]. Now, a
random number is generatedwithin the range [0, 1] and compared
with Pe. If Pe is less than the random number generated, then we
will perform the exploitation phase (Section 4.3.5), else we in-
crease the iteration count and execute exploration phase (Section
4.3.4). This process is described in Algorithm 3 from lines 13–18.

4.3.5. Exploitation phase in eagle strategy
As we have seen two maneuvers (Shrinking encircling mech-

anism and Spiral updating as in Section 4.2.2) by a whale that
inherently performs exploitation in the standard WOA algorithm
from Eqs. (5) and (8), we use the same approach for searching
the best solution whale during exploitation phase of our proposed
method. As there is an equal probability for selection between the
two approaches, we use a random variable p to decide.

X⃗(t + 1) =

{
X⃗∗(t) − A⃗.D⃗ if p < 0.5
X⃗(t + 1) = D⃗′ · ebl · cos(2π l) + X⃗∗(t) if p ≥ 0.5

(14)

Table 7
Population after exploitation phase.
S.NO Population csQoS

1 [1, 1, 3, 4, 3] 0.9097
2 [3, 1, 1, 2, 2] 1.5815
3 [1, 3, 2, 4, 1] 1.1330
4 [2, 4, 3, 3, 2] 1.4181
5 [4, 2, 4, 3, 2] 1.6760
6 [4, 2, 4, 2, 2] 1.6785

After updating the whale position from the Eq. (14), we calcu-
late the fitness of this modified whale and update to X∗ if it has
a greater value and its corresponding Leader Position too. After
performing MAX_Iter number of iterations, our proposed method
produces the final Leader Position that has the best optimal fitness
value (csQoS) and treated as an optimal service composition path.
This process is described in Algorithm 3 from lines 19–30.

We illustrate the exploitation process by the following example.
As first, we calculate the parameters a, A, C, l, p (as given in line 20
of Algorithm 3). To perform the shrinking encircling mechanism,
p should be less than 0.5 (p < 0.5) and |A| < 1. Let us assume
that the first whale is selected for updation. After performing this
mechanism by the Eqs. (4) and (5), the updated whale position is
[3, 1, 2, 1, 1] with the fitness value of 1.2731, which is less than X∗.
So csQoS is not updated. Considering the Encircling mechanism, p
should be greater than or equal to 0.5 (P ≥ 0.5). Let us assume that
the sixth whale has chosen to perform the encircling mechanism.
After updating its position by using Eq. (8), its new position will be
[4, 2, 4, 2, 2] with the fitness value of 1.6785, which is greater than
X∗. So, the new csQoS value will be updated as X∗

= 1.6785. The
updated population at current iteration is shown in Table 7.

Similarly, we perform these two maneuvers for all the whales
to update their fitness and positions if any whale is found to be
greater than the leader whale’s fitness value (X∗). The population
after completing all iterations (MAX_Iter) and their respective fit-
ness values is shown in Table 8. The best optimal composition path
for our example is [4, 1, 1, 1, 2] and its best fitness value X∗ is
1.6923.
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Fig. 6. Convergence curves for Function-F1.

Table 8
Final population.
S.NO Population csQoS

1 [1, 1, 3, 4, 3] 0.9097
2 [4, 2, 1, 3, 2] 1.6890
3 [2, 2, 1, 1, 2] 1.5806
4 [2, 1, 1, 1, 2] 1.5816
5 [4, 2, 4, 3, 2] 1.6760
6 [4, 1, 1, 1, 2] 1.6923

Contrast to other algorithms, ESWOA implements exploration
and exploitation phases by using Pe till we get the possible opti-
mum globally or the algorithm meets the end criterion. The main
intention of using Eagle Strategy for our approach is due to its
unique capability in generating a new search space for each iter-
ation making the population more diverse in nature. This feature
enhances the probability of reaching the global optimum. Because
in an iteration while reaching optimum solutions, we can sense
the search space (population) getting more and more intensified
towards the local optimum (optimal solution in current search
space) that prohibits in reaching the other search space bounded
optimum solutions, which exactly is the problemwith the contem-
porary algorithms.

5. Experiments

5.1. Experimental setup and dataset

In our proposed work, the standard QWS dataset [91] has been
used for performing experiments, that comprises of various QoS
attributes such as Reliability, Availability, Response time, Through-
put, etc. All the experiments have been carried out in a PC with
Intel Core i5, 8GB Ram, Windows 8.1 (64-bit system) and MATLAB
R2013a version.

We have evaluated the performance of our proposed algorithm
in the following ways:

1. Validation against Benchmark functions
2. Comparing ESWOA with contemporary algorithms
3. Statistical Analysis of ESWOA with contemporary

algorithms.

Table 9
Parameter settings.
Variables Values

Population size 30
Number of runs 30
No of Iterations per run 500
Pe value in ESWOA 0.2
ESPSO
c1, c2 2
wmin 0.4
wmax 0.9
λ 2

5.2. Validation against benchmark functions

We have tested our proposed algorithm ESWOA with certain
benchmark functions which include unimodal and multimodal
functions [90]. The unimodal functions test the exploitation capa-
bility of our proposed algorithm as it has only a single global opti-
mum. Themultimodal functionswill test the exploration capability
of our proposed algorithm and how it escapes the local optimum
as it eventually approaches to a global optimum.

These benchmark results have been compared with traditional
WOA algorithm [90] and ESPSO [92]. The parameter settings used
in these algorithms are stated in Table 9. The list of all benchmark
functions and their specifications are presented in Table 10. The
statistical results such as mean and standard deviation obtained
for these benchmark functions are listed in Table 11.

5.2.1. Comparison of convergence curves
The convergence curves of our proposed algorithm and the

compared algorithms are shown in Figs. 6–16 for F1–F11 bench-
mark functions. In the said Figures, y-axis indicates the best fitness
value obtained so far and x-axis represents the maximum number
of iterations. Among the chosen benchmark functions, F1–F3 are
unimodal functions and F4–F11 are multimodal functions. We
observe that our proposed approach converges to global optimum
rapidlywhen comparedwith other algorithms, that shows the high
ability to escape local optimum.

Evaluation of exploitation capability
As F1–F3 are unimodal functions, these functions test the ex-

ploitation capability of algorithms. It is evident from Figs. 6 to 8
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Fig. 7. Convergence curves for Function-F2.

Fig. 8. Convergence curves for Function-F3.

Fig. 9. Convergence curves for Function-F4.
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Table 10
List of benchmark functions.
Function Dim Range fmin

F1(x) = maxi{|Xi|, 1 ≤ i ≤ n} 30 [−100,100] 0

F2(x) =

n−1∑
i=1

[100(xi+1 − x2)2 + (xi − i)2] 30 [−30,30] 0

F3(x) =

n∑
i=1

ix4i + random(0, 1) 30 [−1.28,1.28] 0

F4(x) = 418.9829 ∗ dim −

dim∑
i=1

xi sin(
√

|xi|) 30 [−100,100] 0

F5(x) = −20exp(−0.2

√ 1
n

n∑
i=1

X2
i ) − exp(

1
n

n∑
i=1

cos(2πxi)) + 20 + e 30 [−32,32] 0

F6(x) =
π

n
{10 sin(πy1) +

n−1∑
i=1

(yi − 1)2[1 + 10 sin2(πyi+1)] + (yn − 1)2} +

n∑
i=1

u(Xi, 10, 100, 4) 30 [−50, 50] 0

F7(x) = 0.1{sin2(3πx1) +

n∑
i=1

(xi − 1)2[1 + sin2(3πxi + 1)] + (xn − 1)2[1 + sin2(2πxn)]}+∑n
i=n u(Xi, 5, 100, 4) 30 [−50, 50] 0

F8(x) = (1.5 − x1 + x1x2)2 + (2.25 − x1 + x1x22)
2
+ (2.625 − x1 + x1x32)

2 2 [−4.5, 4.5] 0

F9(x) = Sin2(πw1) +
∑d−1

i=1 (wi − 1)2[1 + 10sin2(πwi + 1)] + (wd − 1)2[1 + sin2(2πwd)] 30 [-10, 10] 0

F10(x) = −
∑d

i=1 sin(xi)sin
2m

(
ix2i
π

)
30 [0, π ] 2

F11(x) =
1
2

∑d
i=1(x

4
i − 16x2i + 5xi) 30 [−5, 5] 0

Table 11
Benchmark functions results.
Function WOA ESPSO ESWOA

Average Std. Dev Average Std. Dev Average Std. Dev

F1 45.322 24.2993 1.028 0.0667 38 22.2199
F2 28.1684 0.3753 1021.6175 193.6183 28 0
F3 0.0032 0.0039 50.0307 10.4801 8.0316E−06 8.5354E−06
F4 10734.139 115.456 11891.7006 112.389 10661.25 7.40034E−12
F5 5.15143E−15 2.70406E−15 3.4687 0.1258 8.88178E−16 0
F6 0.0179 0.0086 0.5463 0.0769 1.57054E−32 0
F7 0.5584 0.3194 3.1224 0.2916 0.4033 0.2709
F8 38.0716 19.1832 8.0381E−04 8.0124E−04 6.2140E−11 5.9013E−12
F9 40.3801 21.4131 52.1318 24.8014 4.3148E−03 3.1816E−04
F10 2.7432E−0.6 1.8132E−0.2 1.8110E−01 0.1238 3.6183E−10 2.9061E−10
F11 0.8413 0.6186 0.5414 0.2189 2.6018E−03 1.8143E−04

that ESWOA gives reasonably good results when compared with
other algorithms. ESWOA converges faster than other algorithms
for F2 and F3.

Evaluation of exploration capability
Functions F4–F11 are multimodal functions that test the explo-

ration capability of algorithms in reaching multiple global optima
solutions.We observe that ESPSO often gets stuck at local optimum
where as our proposed approach performs well in overcoming the
multiple local optima present in search space and trying to reach
global optima as quickly as possible. Our proposed Eagle Strategy
technique enhances the diversity of population in every iteration
that helps in reaching global optimum faster.

5.3. Comparison with contemporary algorithms

We implemented some standard intelligence optimization al-
gorithms, such as Genetic Algorithm [8], Discrete Gbest-guided
Artificial Bee Colony (DGABC) [22], Standard WOA algorithm [90],
Hybrid Genetic Algorithm (HGA) [23], and Greedy Randomized
Adaptive Search Procedure (GRASP) [21] and compared the results
with our algorithm.

In our assessments, few parameters are fixed to all algorithms
that control the execution time and specify the amount of pop-
ulation. We set the population size as 30, and each experiment
is executed continuously for 30 times, and the mean of each run
has been noted duly. The weights used for each QoS attributes
were: wC = 0.25, wRs = 0.25, wA = 0.20, wRe = 0.15, wTh =

0.15 based on user preferences and AHP with the MNV (mean of
normalized values) method.

For DGABC [22], the limit value was set to 5, which means a
food source that was not updated to 5 trails is abandoned by its
employee bee. For GA [8], the parameters that have been set were
crossover probability=0.7 and the mutation probability=0.05. The
random selection procedure was used to select chromosomes for
crossover and mutation. For HGA [23], the parameters that have
been set in this algorithm were crossover probability = 0.9, the
mutation probability= 0.20. The roulettewheel selection operator
was used to select chromosomes for crossover and mutation. In
GRASP [21], the parameters were set as: α = 0.25, µ = 18, δ = 8,
and other parameters as used in [21]. ForWOA [90] the parameters
were set as: Dim = 30, Lb = 1, Ub = 30, p = [0, 1], search agents
= 30, Maxiter = 500. We have evaluated the performance of our
proposed approaches in the following ways:
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Fig. 10. Convergence curves for Function-F5.

Fig. 11. Convergence curves for Function-F6.

Fig. 12. Convergence curves for Function-F7.
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Fig. 13. Convergence curves for Function-F8.

Fig. 14. Convergence curves for Function-F9.

Fig. 15. Convergence curves for Function-F10.
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Fig. 16. Convergence curves for Function-F11.

Fig. 17. Comparing Average Fitness values for varying number of iterations.

• Evaluate the average fitness values by varying number ab-
stract and candidate services.

• Evaluate the average fitness values of our proposed algo-
rithms against other compared algorithms in terms of iter-
ations.

Figs. 18–21 illustrate a scenario where a composite service
comprising of 25, 50, 75, and 100 abstract services, while for each
abstract service, the number candidate services ranges as 25, 50,
75, and 100. From Figs. 18–21,we observed that the average fitness
values increasewith increase in the number of abstract services but
does not affect the solution quality. From Fig. 18, the best average
fitness values obtained by our proposed ESWOA for 100 candi-
date service is 10.08779, whereas the best solutions obtained by
GA, WOA, DGABC, HGA, and GRASP are 5.59482, 5.6382, 6.08779,
7.9458, and 8.8941 respectively. From Fig. 19, the best average
fitness values obtained by our proposed ESWOA for 100 candi-
date service is 11.62508, whereas the best solutions obtained by
GA, WOA, DGABC, HGA, and GRASP are 7.0281, 7.41052, 8.62508,
9.0245, and 9.9521 respectively. As seen from Fig. 20, the solu-
tion obtained by our proposed ESWOA for 100 candidate service
is 12.62128, whereas the best solutions obtained by GA, WOA,
DGABC, HGA, and GRASP are 7.9038, 8.72924, 9.22749, 10.5631,
and 10.986 respectively. From Fig. 21, the solution obtained by
our proposed algorithm for 100 candidate service is 12.73428,
whereas the best solutions obtained by GA, WOA, DGABC, HGA,

Table 12
Execution time (in seconds).
No of Services GA WOA DGABC HGA GRASP ESWOA

25 56.35 25.56 30.63 28.12 26.14 20.56
50 56.58 20.12 31.45 34.59 34.56 25.15
75 56.35 20.56 33.59 48.12 36.14 29.56

100 56.35 40.56 48.63 40.12 49.14 31.56

and GRASP are 8.1316, 9.7418, 9.8674, 10.3486, 10.962 respec-
tively. Thus, our proposed algorithm is more efficient than other
compared algorithms. The details of remaining experiments (for
varying combinations of abstract services and candidate services)
are omitted, due to the similar experiments.

To ensure the robustness of our proposed ESWOA, we have
executed all the said algorithms formultiple iterations such as 200,
400 and so on. It is to be noted that every iteration number shown
in Fig. 17 had been run for 30 times and their mean is noted. This
has been done for every method that we are comparing with our
algorithm. Based on Fig. 17,we observed that our proposed ESWOA
performsbetter thanother algorithms (GA,WOA,DGABC,HGA, and
GRASP) regarding the average best fitness value and convergence
rate reached. ESWOA has the fastest convergence rate compared to
GA, WOA, DGABC, HGA, and GRASP.

Table 12 presents the execution time of different methods for
25, 50, 75, and 100 abstract services with respect to 100 candidate
services. From Table 12, the execution time for GA, WOA, DGABC,
HGA, and GRASP to evaluate the best solutions were 56.35, 40.56,
48.63, 40.12, and 49.14 s, respectively, and the execution time for
ESWOA was 31.56 s. From Table 12, we observe that our proposed
method ESWOA is more efficient than the other methods com-
pared.

In GA, HGA for each iteration, a new population is generated,
and the individual fitnesses are assessed (based on fixed and pre-
determined crossover and unguided mutation). These processes
causeGA andHGA to converge slowly and to become easily stuck in
local maxima. It takes more time because of the higher number of
parameter turnings and the single-point crossover. In DGABC, for
each iteration, the initial population is generated. This population
is repeated for the cycles of the search processes of the employ-
ees, onlooker, and scout bees respectively. However, this lacks a
centralized processor to guide it towards good solutions, and the
time for convergence remains uncertain [83,93]. In WOA, for each
iteration, the search process starts with creating a set of random
candidate solutions, and the individual fitnesses are evaluated
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Fig. 18. Average fitness values for 25 abstract services.

Fig. 19. Average fitness values for 50 abstract services.

(based on a random spiral path around preys and random bubble
net attacking method) which gets changed in each iteration. The
change decreases the premature convergence rate and increases
the search space, which in turn, consumes more time. In GRASP,
for each iteration, the new population generated based on greedy
search and randomization mechanisms. Hence, each iteration pro-
duce a completely new solution, there is no information added to
the systemwhen a optimal solution is found. The change decreases
the premature convergence rate and increases the search space,
which in turn, consumes more time.

In our proposed method, a balance between exploration and
exploitation is achieved, to overcome the issues like slow con-
vergence rate or premature convergence to a decent degree. An
approach used in exploitation phase of WOA is taken to perform
local search in our ESWOA, whereas for exploration, a newmethod
has been proposed in this context. Experiment results show that
ESWOAhas potential to reach global optimal solutionsmore seam-
lessly compared to other contemporary algorithms.

5.4. Statistical analysis

We have performed statistical analysis tests to ensure that the
results of our proposed algorithm are statistically significant or not
by using parametric and nonparametric tests [94]. Tables 13–15
illustrates the p-values computed by the Friedman [95], Friedman
Aligned [96], and Quade tests [97] for 25 and 100 abstract ser-
vices with 100 candidate services. We have performed Bonferroni
test [98], Holm test [99], and Holland test [100] to perform the
multiple statistical comparison of all algorithms. Based on the

Fig. 20. Average fitness values for 75 abstract services.

Fig. 21. Average fitness values for 100 abstract services.

Table 13
Adjusted p-value for Friedman test for 25 and 100 abstract services.

Friedman Unadjusted Bonferroni Holm Holland

25

GA 0.000314 0.06844 0.07312 0.00234
WOA 0.086138 0.18132 0.16813 0.05857
DGABC 0.08638 0.08181 0.07110 0.07110
GRASP 0.10380 0.15318 0.14913 0.14813
ESWOA 0.8318 1.0 1.0 0.66418
Friedman Unadjusted Bonferroni Holm Holland

100

GA 0.000816 0.07148 0.07813 0.00418
WOA 0.15813 0.19214 0.18138 0.08161
DGABC 0.08861 0.09618 0.07919 0.06984
GRASP 0.20804 0.19498 0.18698 0.17981
ESWOA 0.92801 1.0 1.0 0.88148

experimental results, we observe that the differences between our
approach and GA, WOA, DGABC, HGA, and GRASP are statistically
significant.

Table 14 shows a significant improvement of HGA over GA,
WOA, DGABC, and GRASP for Holland and Holm methods, ex-
cept for the Bonferroni–Dunn one for Friedman Aligned test. The
Bonferroni–Dunn exhibit themost powerful behavior, reaching the
lowest p-values in the comparisons.

Table 15 presents a significant improvement of HGA over GA,
WOA, DGABC, and GRASP for Holland and Holm methods, except
for the Bonferroni–Dunn one for Quade test. The Bonferroni–Dunn
shows the most powerful behavior in this category. Similarly, we
have conducted experiments on ESWOA over other compared al-
gorithms. Based on the experimental results we observed that our
proposed approach statistically significant than other algorithms.
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Table 14
Adjusted p-value for Friedman Aligned test for 25 and 100 abstract services.

Friedman Aligned Unadjusted Bonferroni Holm Holland

25

GA 0.002178 0.08491 0.0791 0.057514
WOA 0.09913 0.28131 0.2541 0.21636
DGABC 0.08389 0.18193 0.17943 0.16918
GRASP 0.20183 0.19034 0.18931 0.17039
EAWOA 0.84734 1.0 1.0 0.56673
Friedman Aligned Unadjusted Bonferroni Holm Holland

100

GA 0.002178 0.08498 0.0796 0.05715
WOA 0.09918 0.28136 0.2452 0.2361
DGABC 0.08390 0.18194 0.17936 0.16920
GRASP 0.20186 0.19036 0.18936 0.18321
EAWOA 0.9403 1.0 1.0 0.59966

Table 15
Adjusted p-value for Quade test for 25 and 100 abstract services.

Quade Unadjusted Bonferroni Holm Holland

25

GA 0.02181 0.18321 0.18321 0.1218
WOA 0.06284 0.38435 0.40181 0.32181
DGABC 0.11961 0.41038 0.9608 0.86432
GRASP 0.16813 0.48310 1.0 0.80181
EAWOA 0.98408 1.0 1.0 0.78432
Quade Unadjusted Bonferroni Holm Holland

100

GA 0.02981 0.20181 0.20181 0.1296
WOA 0.06484 0.39612 0.39612 0.3301
DGABC 0.1282 0.41181 0.42016 0.3301
GRASP 0.18816 0.49162 1.0 0.8143
EAWOA 0.9951 1.0 1.0 0.7892

The details of remaining experiments (for varying combinations of
abstract services and candidate services) are omitted, due to the
similar nature of experiments.

6. Conclusions

Cloud computing delivers IT enables capacities in the form of
services to the consumers in an on-demand manner. Due to the
seamless proliferation of cloud services delivering with varying
quality of service levels. Consumers often find it difficult to se-
lect an optimal cloud service to meet their requirements. Hence,
choosing the service composition, we need to find a near-optimal
solution that satisfies both functional and non-functional require-
ments. In this paper, Eagle Strategy is used for designing QoS-
aware Cloud service composition. By using this, a balance between
exploration and exploitation is achieved, to overcome the issues
like slow convergence rate or premature convergence to a decent
degree. Experiment results show that ESWOA achieves global op-
timal solutions more seamlessly compared to other contemporary
algorithms.

In future, wewish to apply our algorithm for considering the in-
terdependencies and correlations between the cloud services along
with QoS factors. In this paper, we assumed that all services come
from the same repository. Our future work would be considering
multiple service repositories from which composition of services
needs to be done by minimizing the communication between the
number of clouds.
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