
 

Prepartition: Load Balancing Approach for Virtual Machine
Reservations in a Cloud Data Center

Wen-Hong Tian1, 2 ( ), Senior Member, CCF, Member, ACM, IEEE
Min-Xian Xu3, * ( ), Member, CCF, IEEE, Guang-Yao Zhou1 ( )
Kui Wu4 ( ), Senior Member, IEEE, Cheng-Zhong Xu5 ( ), Fellow, IEEE, and
Rajkumar Buyya6, 1, Fellow, IEEE

1 School of Information and Software Engineering, University of Electronic Science and Technology of China
Chengdu 610054, China

2 Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
3 Institute of Advanced Computing and Digital Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of

Sciences, Shenzhen 518055, China
4 Department of Computer Science, University of Victoria, Victoria, BC, V8W 3P6, Canada
5 State Key Laboratory of Internet of Things for Smart City, University of Macau, Macau 999078, China
6 School of Computing and Information Systems, University of Melbourne, Melbourne 3010, Australia

E-mail: tian_wenhong@uestc.edu.cn; mx.xu@siat.ac.cn; guangyao_zhou@std.uestc.edu.cn; wkui@uvic.ca; czxu@um.edu.mo
rbuyya@unimelb.edu.au

Received December 10, 2020; accepted April 26, 2022.

Abstract Load balancing is vital for the efficient and long-term operation of cloud data centers. With virtualization,

post (reactive) migration of virtual machines (VMs) after allocation is the traditional way for load balancing and consoli-

dation. However, it is not easy for reactive migration to obtain predefined load balance objectives and it may interrupt ser-

vices and bring instability. Therefore, we provide a new approach, called Prepartition, for load balancing. It partitions a

VM request into a few sub-requests sequentially with start time, end time and capacity demands, and treats each sub-re-

quest as a regular VM request. In this way, it can proactively set a bound for each VM request on each physical machine

and makes the scheduler get ready before VM migration to obtain the predefined load balancing goal, which supports the

resource allocation in a fine-grained manner. Simulations with real-world trace and synthetic data show that our proposed

approach with offline version (PrepartitionOff) scheduling has 10%–20% better performance than the existing load balanc-

ing baselines under several  metrics,  including average utilization,  imbalance degree,  makespan and Capacity_makespan.

We also extend Prepartition to online load balancing. Evaluation results show that our proposed approach also outper-

forms state-of-the-art online algorithms.
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1 Introduction

Cloud  data  centers  have  become  the  foundation

for modern IT services, ranging from general-purpose

web services to many critical applications, such as on-

line  banking  and  health  systems.  The  service  opera-

tor  of  a  cloud  data  center  always  faces  with  a  diffi-

cult trade-off between high performance and low oper-

ational  cost[1, 2].  On the one hand,  to  maintain  high-

quality  services,  a  data  center  is  usually  over-engi-

neered to be capable of handling peak workload. Such

up-bound  configuration  can  bring  high  expense  on
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maintenance and energy as  well  as  low utilization to

data centers[3]. On the other hand, to reduce cost, the

data  center  needs  to  increase  server  utilization  and

shut  down  idle  servers[4].  The  key  tuning  knob  in

making the above trade-off is data center load balanc-

ing.

Due to the importance of data center load balanc-

ing, tremendous research and development have been

devoted  to  this  domain  in  the  past  decades[5].  Yet,

load balancing for cloud data centers is still one of the

prominent  challenges  that  need  more  attention.  The

difficulty is compounded by several issues such as vir-

tual machine (VM) migration, service availability, al-

gorithm  complexity,  and  resource  utilization.  The

complexity  in  cloud  data  center  load  balancing  has

fostered  a  new industry  dedicating  to  offer  load  bal-

ance services[6].

Ignoring  the  subtle  differences  in  detailed  imple-

mentation of load balancing, let us first have a high-

level view of how cloud data centers perform resource

scheduling  and  load  balancing.  The  process  is  illus-

trated  in Fig.1,  which  includes  the  following  main

steps.

Fig.1. A high-level view on resource scheduling/load balancing
in cloud data centers.

1) Initializing Requests. A user submits a VM re-

quest through a provider's web portal.

2) Matching Suitable Resources. Based on the us-

er's features (such as geographic location, VM quanti-

ty  and  quality  requirements),  the  scheduling  center

sends the VM request to an appropriate data center,

in  which  the  management  program  submits  the  re-

quest  to  a  scheduling  domain.  In  the  scheduling  do-

main,  a  scheduling  algorithm  is  performed  and  re-

sources are allocated to the request.

3) Sending Feedback (e.g., Whether or Not the Re-
quest Has Been Satisfied) to Users.

4) Scheduling Tasks. This step determines when a

VM should run on which physical machine (PM).

5) Optimization.  The  scheduling  center  executes

optimization  in  the  back-end  and  makes  decisions

(e.g., VM migration) for load balancing.

In the above process,  most existing work on load

balancing  is  reactive,  i.e.,  performing  load  balancing

with VM migration when unbalancing or other excep-

tional  things  happen after  VM deployment.  Reactive

migration of VMs is one of the practical methods for

load  balancing  and  traffic  consolidation  such  as  in

VMWare. Nevertheless, it is well known that reactive

VM  migration  is  not  easy  to  obtain  predefined  load

balance  objectives  and  may  interrupt  services  and

bring instability[5]. Our observation is that if load bal-

ancing is  considered as one of  the key criteria before

VM  allocation,  we  should  not  only  reduce  the  fre-

quency of  (post)  VM migration (thus  less  service  in-

terruption), but also reach a better balanced VM allo-

cation among different physical machines (PMs).

Motivated by the above observation, we propose a

new load  balancing  approach  called  Prepartition.  By

combining  interval  scheduling  and  lifecycles  charac-

teristics  of  both VMs and PMs, Prepartition handles

load  balancing  from  a  different  angle.  Starkly  differ-

ent  from  previous  approaches  like  in  [7]  and  [8],  it

handles  the  VM  load  balancing  in  a  more  proactive

way.

Fig.2 shows the illustrative example based on the

above  observation  and  motivation.  At  the  requests

submission  stage,  the  users  firstly  submit  their  re-

served VM requests, including the capacity and dura-

tion information. Based on the information, then the

service provider can generate the original VM request

at the requests generation stage (e.g., VM1, VM2 and

VM3). Our approach focuses on the prepartition stage

where the original VM requests can be partitioned in-

to sub-requests  and allocated to PMs before the VM

migration stage, for instance, VM1 is partitioned into

VM1-1 and VM1-2, and allocated to PM1. And final-

ly,  to  further  optimize  VM  locations,  VM  migration

can be further applied.

As the prepartition process happens before the fi-

nal requests generation stage, and it does not need to

execute  the  jobs,  the  costs  are  rather  low  compared

with the overall job execution. The prepartition costs
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will  not  be  the  bottleneck  of  the  system if  the  algo-

rithm complexity  is  low.  The  prepartition  operations

can be done on the master node with powerful capa-

bility in a short time (e.g., several seconds), which is

much  shorter  compared  with  the  execution  time  of

jobs.

The novelty  of  Prepartition  is  that  it  proactively

sets a process-time bound (as per Capacity_makespan

defined in Section 3) by pre-partitioning each VM re-

quest and therefore helps the scheduler get ready be-

fore the VM migration to achieve the predefined load

balancing  goal.  Pre-partitioning  here  means  that  a

VM  request  may  be  partitioned  into  a  few  sub-re-

quests sequentially with start time, end time and ca-

pacity demands, where the scheduler treats each sub-

request as a regular VM request and may allocate the

sub-requests  to  different  PMs .  In  this  way,  the

scheduler can prepare in advance, without waiting for

the VM migration signals as in traditional VM alloca-

tion/migration schemes. In addition, the resources can

be allocated at the fine granularity and the migration

costs can be reduced.

To the best of our knowledge, we are the first to

introduce  the  concept  of  pre-partitioning  VM  re-

quests  to  achieve  better  load  balancing  performance

in  cloud  data  centers.  This  paper  has  the  following

key contributions:

• proposing a modeling approach to schedule VM

reservation with sharing capacity by combining inter-

val  scheduling  and  lifecycles  characteristics  of  both

VMs and PMs;

• designing novel prepartition-based algorithms for

both offline and online scheduling which can prepare

migration in advance and set process time bound for

each  VM on  a  PM;  thus  the  resource  allocation  can

be made in a more fine-grained manner;

• deriving  computational  complexity  and  quality

analysis for both offline and online prepartition-based

approaches;

• carrying out performance evaluation in terms of

average utilization, imbalance degree, makespan, time

costs as well as Capacity makespan (a metric to rep-

resent loads, whose details will be given in Section 3)

by  simulating  different  algorithms  with  trace-driven

and synthetic data.

The organization of the remaining paper is as fol-

lows. Section 2 presents related work on load balanc-

ing  in  cloud  data  centers,  and Section 3 introduces

problem formulation. Section 4 presents the preparti-

tion-based approach in detail for both offline and on-

line  algorithms.  Performance  evaluations  are  demon-

strated  in Section 5.  Finally,  conclusions  and  future

work are given in Section 6.

2 Related Work

As  introduced  in  several  popular  surveys,  re-

source  scheduling  and  load  balancing  in  cloud  com-

puting  have  been  widely  studied.  Xu et  al.[9] had  a

survey  for  the  state-of-the-art  VM  placement  algo-

rithms. Ghomi et al.[10] have recently made a compre-

hensive survey on load balancing algorithms in cloud

computing.  A  taxonomic  survey  related  to  load  bal-

ancing in cloud is  studied by Thakur and Goraya[11].

Noshy et  al.[7] reviewed  the  latest  optimization  tech-

nology  dedicated  to  developing  live  VM  migration.

They  also  emphasized  a  further  investigation,  which

aims to optimize the VMs migration process. [12] dis-

Fig.2. Illustrative example for Prepartition
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cusses the issues and challenges associated with exist-

ing load balancing techniques. In general, approaches

for  VM  load  balancing  can  be  categorized  into  two

categories: online and offline. The online ones assume

that  only  the  current  requests  and  PMs  status  are

known, while the offline ones assume all the informa-

tion is known in advance.

Online Approach for VM Loading Balancing. Song

et al.[8] proposed a VM migration method to dynami-

cally balance VM loads for high-level application fed-

erations.  Thiruvenkadam  and  Kamalakkannan[13]

showed  a  hybrid  genetic  VMs  balancing  algorithm,

which  aims  to  minimize  the  times  of  migration.  Cho

et  al.[14] tried  to  maximize  the  balance  of  loads  in

cloud computing by combining ant colony with parti-

cle swarm optimization. Xu et al.[15] proposed iAware,

which is a lightweight interference model for VM mi-

gration. iAware can capture the relationship between

VM performance  interference  and  the  important  fac-

tors.  Zhou et  al.[16] presented  a  carbon-aware  online

approach based on Lyapunov optimization to achieve

geographical  load  balancing.  Mathematical  analysis

and  experiments  based  on  realistic  traces  have  vali-

dated the effectiveness of the proposed approach. Liu

et al.[17] proposed a framework to characterize and op-

timize the trade-offs between power and performance

in cloud platforms, which can improve operating prof-

its while reducing energy consumption.

Offline Approach for VM Load Balancing. Tian et
al.[18] presented an offline algorithm on VM allocation

within the reservation mode, in which the VM infor-

mation is  known before placement.  Derived from the

ant colony optimization, Wen et al.[19] proposed a dis-

tributed VM load balancing strategy with the goals of

utilizing  resources  in  a  balanced  manager  and  mini-

mizing  the  times  of  migration.  By  estimating  re-

source usage, Chhabra and Singh[20] developed a VMs

placement method for loading balancing according to

maximum  likelihood  estimation  for  parallel  and  dis-

tributed applications. Bala and Chana[21] presented an

approach  to  improving  proactive  load  balancing  by

predicting multiple resource types in the cloud. Ebad-

fard and Babamir[22] developed a task scheduling ap-

proach derived from a particle swarm optimization al-

gorithm and  the  tasks  are  independent  and  non-pre-

emptive.  Ray et  al.[23] presented a genetic-based load

balancing  approach  to  distribute  VM  requests  uni-

formly  among  the  PMs.  Deng et  al.[24] introduced  a

server  consolidation  approach  to  achieve  energy  effi-

cient  server  consolidation in  a  reliable  and profitable

manner.

Different from all the above approaches, 1) we in-

vestigate  the  reservation model  where  makespan and

VM capacity are considered together for optimization

instead  of  considering  them  separately;  2)  our  ap-

proach can be applied to both online and offline sce-

narios  rather  than  a  single  scenario;  3)  we  also  per-

form  theoretical  analysis  for  the  proposed  approach;

4) we evaluate comprehensive performance in terms of

metrics.  A  qualitative  comparison  between  our  ap-

proach and others is listed in Table 1.
 

TTable 1.  Comparison of Closely Related Work

Approach Algorithm

Type

VM

Type

Resource

Type

Theoretical

Analysis

Metric

Song et al.[8] Online Homogeneous Single No Utilization

Thiruvenkadam and

Kamalakkannan[13]

Online Heterogeneous Multiple Yes Utilization, service level agreement violations

Cho et al.[14] Offline Heterogeneous Multiple No Utilization

Xu et al.[15] Online Heterogeneous Multiple No Utilization, total cost

Zhou et al.[16] Online Heterogeneous Single Yes Service level agreement violations

Liu et al.[17] Online Heterogeneous Single Yes Total cost

Tian et al.[18] Offline Heterogeneous Multiple Yes Imbalance degree, makespan

Wen et al.[19] Offline Heterogeneous Multiple No Service level agreement violations

Chhabra and Singh[20] Online Heterogeneous Single No Utilization, imbalance degree

Bala and Chana[21] Offline Heterogeneous Multiple No Utilization, imbalance degree, service level

agreement violations

Ebadfard and Babamir[22] Offline Homogeneous Multiple Yes Utilization, makespan

Ray et al.[23] Offline Heterogeneous Multiple No Imbalance degree

Deng et al.[24] Offline Homogeneous Multiple No Total cost, service level agreement violations

Our approach

(Prepartition)

Online,

offline

Heterogeneous Multiple Yes Utilization, imbalance degree, makespan, total

cost, Capacity_makespan
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3 Problem Description and Formulation

VMs  reservation  is  considered  as  that  users  sub-

mit  their  VM requests  by specifying required capaci-

ty and duration. The VM allocations are modeled as a

fixed processing time problem based on a modified in-

terval  scheduling  problem  (MISP).  Details  on  tradi-

tional interval scheduling problems with fixed process-

ing  time  are  introduced  in  [25].  In  the  following,  a

general  formulation  of  the  MISP  is  introduced  and

evaluated  against  some  known  algorithms.  The  key

symbols used throughout this work are summarized in

Table 2.

TTable 2.  Key Notations in This Paper

Notation Definition

T Whole observation time period

sl0 Length of each time slot

n Maximum number of requests

si iStart time of request 

fi iFinishing time of request 

A(i) iSet of VMs requests scheduled to PM 

dj jCapacity demand of VM 

CMj jCapacity_makespan of VM request 

CMi iCapacity_makespan of PM 

PCPUi iCPU capacity of PM 

PMemi iMemory capacity of PM 

PStoi iStorage capacity of PM 

V CPUj jCPU demand of VM 

VMemj jMemory demand of VM 

V Stoj jStorage demand of VM 

Tj jStart time of VM request 

Tj jFinishing time of VM request 

Tr tr−1 trTime span between time slot  and 

CM Maximum Capacity_makespan of all PMs

IMD Imbalance degree

k Partition value

P0 Lower bound of the optimal solution OPT

B Dynamic balance value based on

Capacity_makespan

L Amount of VM requests that have already arrived

m Number of PMs in use

I Set of VM requests

CM Predefined Capacity_makespan threshold for

partition

f Constant value to avoid too frequent partitions
 

3.1 Assumptions

The key assumptions are as follows.

T (sl0)

1) The time is given in a discrete fashion; all data

is  given  deterministically.  The  whole  time  period  [0,

] is partitioned into equal-length , and the total

t T/sl0 si
fi

sl0 = 10

(12− 5)× 10 = 70

number  of  slots  is  then = .  The  start  time 

and  the  end  time  are  the  multiples  of  the  mini-

mum  slot.  Then  the  interval  of  demand  can  be  ex-

pressed in a slot fashion with (start time, end time).

For instance, if  min, an interval [5, 12] repre-

sents that the task starts at the 5th time slot and fin-

ishes  at  the  12th  time  slot.  The  duration  of  this  de-

mand is  min.

2)  For  all  VM requests  generated  by  users,  they

have  the  start  time  and  the  end  time  to  represent

their  life-cycles,  and  the  capacity  to  show  the  re-

quired amount of resources.

3) The capacity of a single PM is normalized to be

1 and the required capacity of a VM can be 1/8, 1/4,

1/2  or  other  portions  of  the  total  capacity  of  a  PM.

This is consistent with applications in Amazon EC2[26]

and [27]. 

3.2 Key Definitions

A few key definitions are given here.

{ . . . n} i

si
fi ∀i, si < fi

Definition  1 (Traditional  Interval  Scheduling

Problem  (TISP)  with  Fixed  Processing  Time). In  a
batch  of  demands 1,  2, , ,  the -th  demand
refers to an interval of time starting at  and ending
at  ( ). Besides each demand requires a ca-
pacity  of 100%,  i.e.,  utilizing  the  full  capacity  of  a
server during the interval.

Definition  2 (Interval  Scheduling  with  Capacity

Sharing,  ISWCS). Different  from  TISP,  ISWCS  can
share the capacities among demands if the sum of all
demands scheduled on the single server at any time is
still not fully utilized.

Definition  3 (Compatible  Sharing  Intervals  for

ISWCS,  CSI-ISWCS). A  batch  of  intervals  with  re-
quested  capacities  below  the  whole  capacity  of  a  PM
during the intervals can be compatibly scheduled on a
PM. Compared  against  ISWCS,  the  requests  in  CSI-
ISWCS  can  be  modelled  as  the  ones  with  lifecycles,
which can be represented as sharing the subset of in-
tervals.

In  the  existing  literature[18],  makespan,  i.e.,  the

maximum  total  load  (processing  time)  on  any  ma-

chine, is applied to measure load balancing.

In this paper, we aim to solve the problem based

on  the  ISWCS  manner  and  apply  a  new  metric  Ca-

pacity makespan.

PMi

A(i)

PMi

PMi

Definition 4 (Capacity makespan of ). In the
schedule  of  VM requests  to  PMs,  is  denoted  as
the  set  of  VM  requests  scheduled  to .  With  this
scheduling,  will have load as the sum of the prod-
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CM

uct of each requested capacity and its duration, called
Capacity makespan ( ), as shown in (1): 

CMi =
∑
j∈A(i)

djtj, (1)

dj

VMj

dj

tj j

j

where  is the capacity demand (some portion of to-
tal  capacity) of  from  a  PM where  the  capacity
can  be  CPU or  memory  or  storage  in  this  paper. 
can also be simplified as a capacity based on assump-
tion 3, and  represents the span of demand , being
the length of processing time of the demand .

Similarly, the Capacity makespan of a given VM

request is simply the product of the requested capaci-

ty and its duration. 

3.3 Optimization Objective

m

Then,  the  objective  of  load  balancing  is  to  mini-

mize the maximum load (Capacity makespan) on all

PMs as noted in (2). Considering that  PMs are in

the data center, we can formulate the problem as: (
1�i�m

(CMi)

)
, (2)

 

∀ s,
∑

j∈A(i)

dj � 1, (3)

where (3) shows the sharing capacity constraint that

in any time interval, the shared resources should not

use up all the provisioned resources (100%).

From (1)  amd (2)  ,  we  see  that  lifecycle  and ca-

pacity  sharing  are  key  metrics  different  from  tradi-

tional  ones  like  makespan  which  focuses  on  the  pro-

cess  time.  Traditionally  Longest  Process  Time  first

(LPT)[28] is  widely  adopted  in  offline  multi-processor

load balancing. Reactive migration of VMs is another

way to compensate after allocation. 

3.4 Metrics for ISWCS Load Balancing

The  key  metrics  based  on  [29]  for  ISWCS  load

balancing are given in the following.

PMi(i PCPUi PMemi PStoi)

PCPUi PMemi PStoi

1) PM resources: , , , ,

where , ,  and  are  the  CPU,

memory, and storage capacity that a PM can offer re-

spectively.

VMj(j V CPUj VMemj V Stoj
Tj Tj ) V CPUj VMemj V Stoj

VMj

Tj , Tj

2) VM resources: , , , ,

, ,  where , ,  and  are

the  CPU,  memory,  and  storage  demand  of  re-

spectively,  and  are  the  start  time  and  the

end time respectively.

s

[(t0, t1), (t1, t2), . . . , (ts−1, ts)]

Tr (tr−1, tr)

3)  Discrete  time:  a  time  span  can  be  partitioned

into equal length of slots. The slots with size  can be

considered  as ,  and  each

time slot  represents the time span .

PMi

Ts

4) Average CPU utilization of  during slot  0

and : it is defined in (4): 

PCPUi =

s∑
r=0

(PCPUTr

i × Tr)

s∑
r=0

Tr

, (4)

PCPUTr

i

Tr

Tr

PMemi PStoi

where  is  the average CPU utilization moni-

tored  and  computed  in  slot  which  may  be  a  few

minutes  long,  and  it  can  be  obtained  by  monitoring

CPU  utilization  in  slot .  Average  memory  utiliza-

tion ( ) and storage utilization ( ) of PMs

can  be  calculated  similarly.  Similarly,  the  average

CPU (memory  and  storage)  utilization  of  a  VM can

be calculated.

5) Makespan: it represents the whole length of the

scheduled  VM  reservations,  i.e.,  the  difference  be-

tween the start time of the first request  and the end

time of the last request.

CM6)  The  maximum  Capacity makespan  ( )  of

all PMs is calculated in (5) as below: 

CM =
i

(CMi), (5)

CMi

which  we  can  apply  CPU,  memory  and  storage  uti-

lization to substitute  too.

(IMD)7)  Imbalance  degree :  it  is  a  metric  that

measures how far a set of values are spread out from

each other  in  statistics.  Imbalance  degree  is  the  nor-

malized  variance  (regarding  its  average)  of  CPU,

memory  and  storage  utilization  for  all  PMs.  It  mea-

sures load imbalance effect and is defined as shown in

(6): 

IMD=

( m∑
i=0

(
(Avgi − CPUu)

2

3
+

(Avgi −Memu)
2

3
+

(Avgi − Stou)
2

3

))/
m, (6)

Avgiwhere  is defined in (7) as: 

Avgi =
PCPUi + PMemi + PStoi

3
, (7)

CPUu Memu Stouand , ,  are the average utilization of

CPU, memory and storage in a cloud data center re-
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spectively  and  can  be  computed  using  utilization  of

all PMs in a cloud data center.

TTheorem  1. Minimizing  the  makespan  in  the  of-
fline scheduling problem is NP-hard[29].

The  proof  was  provided  in  our  previous  work[29]

and we omit it here. Our approach in this paper dif-

fers  from [29]  in  several  perspectives:  1)  we  consider

that the multiple VM requests are allowed to be exe-

cuted on the same host simultaneously rather than a

single VM request in [29]; 2) our objective is minimiz-

ing  the  Capacity_makespan  rather  than  the  longest

processing  time;  3)  we  extend  [29]  to  be  suitable  for

both  the  offline  and  online  scenarios  rather  than  for

only the online one.

Combining  the  properties  of  both  fixed  process

time  intervals  and  capacity  sharing,  we  present  new

offline and online algorithms in Section 4. 

4 Prepartition Algorithms

In  the  following,  we  introduce  one  algorithm  for

the offline scenario and two algorithms for the online

scenario.  These  algorithms  can  handle  both  the  of-

fline  and  online  requests,  and  achieve  good  perfor-

mance in load balancing. 

4.1 Algorithm PrepartitionOff

First,  we introduce  the  PrepartitionOff  algorithm

that aims to partition the VM requests under the sit-

uation  that  the  information  of  all  VM  requests  is

known  in  advance.  The  processed  order  of  VM  re-

quests  and  the  prepartition  operations  can  be  man-

aged by the algorithm.
m

OPT

Considering a set of VM reservations, there are 

PMs in a data center and we denote  as the opti-

mal  solution  with  regard  to  minimizing  Capacity

makespan. Firstly we define 

P0 =
1

m

J∑
j=1

CMj � OPT, (8)

J

P0 OPT

where  denotes the total  number of  allocated VMs,

and  denotes the lower bound for  as shown in

(8).

m

k

�P0/k�

Algorithm 1 gives the pseudocodes of the Prepar-

titionOff algorithm which measures the ideal load bal-

ancing  among  PMs.  The  algorithm  firstly  calcu-

lates the balancing value by (8), sets a partition val-

ue ( ) and computes the length of each partition, i.e.,

, representing the maximum VM's CM that can

be  allocated  on  a  PM  (line  1).  For  every  demand,

�P0/k�
P0

PrepartitionOff divides it into multiple  subin-

tervals when its CM is equal to or larger than , and

each  subinterval  is  treated  as  a  new  request  (lines

2–4).  Then  the  algorithm  sorts  the  newly  generated

requests in decreasing order based on the CM for fur-

ther scheduling (line 5). After sorting of requests, the

algorithm will pick up the VM with the earliest start

time, and allocates the VM to the PM with the low-

est average CM and enough available resources (lines

6–8), thus achieving the load balancing objective. The

CM of PM will  also be updated accordingly (line 9).

Finally, the algorithm calculates the CM of each PM

when all requests are assigned and finds the total par-

tition  number  (line  10).  In  practice,  the  scheduler

records  all  possible  subintervals  and  their  hosting

PMs  so  that  the  migration  of  VMs  can  be  prepared

beforehand to alleviate overheads.

Algorithm 1. PrepartitionOff

m n

CMj j CMi

i

Input: : the total number of PMs; : the total number of 

VM requests; : the CM of request ; : the CM of PM

;

Output: assign PM IDs to all requests and their partitions

P0

k
1 Initialization:  computing  the  bound  value  and  partition

value  (e.g., 1, 2,...);

i 1 m2 forall  from  to  ddo

CMi � P03 if  tthen

�P0/k�4 Divide  it  by  subintervals  equally  and  treat
each subinterval as a new request

5 All intervals are sorted in decreasing order of CM, and ties
 are broken arbitrarily;

j 1 n6 forall  from  to  ddo

7 Pick  up the  VM with  the  earliest  start  time in  the  VM
queue for execution;

j8 Allocate  to the PM with the smallest load and enough
capacity;

9 Update load (CM) of the PM;

10 Calculate CM of every PM and find the total number of 
 partitions

O(n m) n

m

Theorem  2. Applying  the  priority  queue  data
structure, the PrepartitionOff algorithm has a compu-
tational complexity of , where  is the num-
ber  of  VM  requests  after  pre-partition  and  is  the
total number of PMs used.

O(n) n

O( n)

O( m)

O(n m) n

Proof. The priority queue is adopted so that each

PM  has  a  priority  value  (average  Capacity

makespan), and each time when the algorithm choos-

es an item from it, the algorithm selects the one with

the highest priority. It costs  time to sort  ele-

ments, and  steps for insertion and the extrac-

tion of minima in a priority queue[25]. Then, by adopt-

ing  a  priority  queue,  the  algorithm picks  a  PM with

the  lowest  average  Capacity makespan  in 

time.  In  total,  the  time  complexity  of  the  Preparti-

tionOff algorithm is  for  demands. □
Theorem 3. The PrepartitionOff algorithm has the
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1 + ε

ε 1/k k

approximation  ratio  of  regarding  the
Capacity_makespan  where =  and  is  the  parti-
tion value (a preset constant).

P0

si fi pi fi−si

T0

CM

CM � OPT i ∈ J

CMi � εOPT

CMm εOPT

CMm εOPT � (1 + ε)OPT

Proof. It  can  be  seen  that  every  demand  has

bounded  Capacity makespan  by  Preparition  apply-

ing the lower bound . Every request has start time

, end time  and process time = . The start

time of the last completion job (later than all the oth-

er  jobs)  is .  We  also  assume  that  all  the  other

servers  are  allocated  with  VM  requests  and  denote

the  maximum  Capacity makespan  as ,  that  is,

.  Since,  for  all  requests ,  we  have

 (by  the  setting  of  the  PrepartitionOff

algorithm  in  (9)),  this  job  finishes  with  load

( + ).  Therefore,  the  schedule  with  Capaci-

ty_makespan +   . □ 

4.2 Algorithm PrepartitionOn1

Apart  from  the  offline  scenario,  the  online  sce-

nario is also quite common in a realistic environment.

For online VM allocations, scheduling decisions must

be made without complete information about the en-

tire job instances because jobs arrive one by one. We

firstly extend the PrepartitionOff algorithm to the on-

line scenario as the PrepartitionOn1 algorithm, which

can  only  have  the  information  of  VM requests  when

the requests come into the system.

m LGiven  PMs and  VMs (including the one that

just came) in a data center, we can have the dynam-

ic balance value as shown in (9): 

B =

(
1�j�L

(CMj)/2,
L∑

j=1

(CMj)/m

)
, (9)

B

L

B

where  is  one  half  of  the  maximum

Capacity makespan  of  all  current  PMs  or  the  ideal

load balance value of  all  current PMs in the system,

and  is  the  number  of  VMs  requests  that  have  al-

ready arrived. Notice that the reason to set  as one

half  of  the  maximum Capacity makespan of  all  cur-

rent  PMs  is  to  avoid  the  extra  management  costs

caused by a large number of partitions.

k
P

Algorithm 2 shows the pseudocodes of the Prepar-

titionOn1 algorithm.  Since  in  an  online  scenario,  the

requests  come  one  by  one,  the  system can  only  cap-

ture  the  information  of  arrived  requests.  The  algo-

rithm  firstly  predefines  the  prepartition  value  of 

and the total partition number  as 0 (line 1). When

a  new  request  comes  into  the  system,  the  algorithm

picks  up  the  VM with  the  earliest  start  time  in  the

queue  for  scheduling  and  computes  dynamic  balance

B B

�(B /k)�

k

n

value ( ) by (9) (lines 2 and 3). After  is comput-

ed,  if  the  Capacity maskespan of  the  VM request  is

too  large  (larger  than ),  then  the  initial  re-

quest  is  partitioned  into  several  requests  (segments)

based  on  the  partition  value .  In  these  partitioned

requests, if  some requests are still  with large Capaci-

ty maskespan,  they  would  be  put  back  into  the

queue  waiting  to  be  executed,  and  follow  the  same

partition  and  allocation  process  (lines  4  and  5).  The

VM  requests  with  small  Capacity maskespan  after

partition would be executed when their start time be-

gins,  and  will  be  assigned  to  the  PM  that  has  the

minimum  value  of  Capacity makespan  (lines  6–8).

After all  demands are allocated, the PrepartitionOn1

algorithm calculates the Capacity makespan value of

all the PMs and outputs all the partition values for 

demands (line 9). Since the numbers of partitions and

segments  of  each  VM request  are  known at  the  mo-

ment of allocation, the system can prepare VM migra-

tion in advance so that the processing time and insta-

bility of migration can be reduced.

Algorithm 2. PrepartitionOn1

m n

CMj j CMi

i

Input: : the total number of PMs; : the total number of 

VM requests; : the CM of request ; : the CM of PM

;

Output: assign PM IDs to all requests and their partitions
k P1 Set the partition value , total partition number  = 0;

j2 for each arrived job  ddo

CMj

VMj B

3 Pick up the VM with the start time equal to the system
time in the VM queue to schedule; compute  of

 and  using (9);

CMj > �(B /k)�4 if  tthen

VMj �(B /k)�

P = P + �CMj

B /k
�

5 Partition  into  multiple  equal  subinte-

 rvals, treat each subinterval as a new demand and

 add them into the VM queue, , update
 load (CM) of the PM;

6 else

j7 Allocate  to PM with the minimum load and enough
capacity;

8 Update load (CM) of the PM;

P9 Output the total number of partitions 

To analyze algorithm performance based on theo-

retical  analysis,  we  conduct  competitive  ratio  analy-

sis  that  represents  the  performance ratio  between an

online algorithm and an optimal offline algorithm. An

online  algorithm  is  competitive  if  its  competitive  ra-

tio is bounded.

(1 + (1/k)− (1/mk))

Theorem 4. The PrepartitionOn1 algorithm has a
competitive  ratio  of  with  regard-
ing to the Capacity makespan.

OPT

PrepartitionOn1(I)

Proof. Without loss of generality, we label PMs in

order  of  non-decreasing  final  loads  (CM)  in  the

PrepartitionOn1  algorithm.  and

 are  denoted  as  the  optimal  load

balance value of corresponding offline scheduling and
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I PMm

m− 1

∑n

i=1
CMi

j PMm

PMm

m− 1

PMm

k

1�i�n CMi/k

the load balance value of PrepartitionOn1 for a given

set of jobs , respectively. Then the load of  de-

fines the Capacity makespan. Each of the  PMs

processes a subset of the jobs and then experiences an

(possibly none) idle period. All PMs together finish a

total Capacity makespan  during their busy

periods. Let us consider the allocation of the last job

 to .  By  the  scheduling  rule  of  the  Preparti-

tionOn1  algorithm,  has  the  minimum  load  at

the time of  allocation.  Hence,  any idle  period on the

first  PMs  cannot  be  bigger  than  the

Capacity makespan of the last job allocated on 

and  hence  cannot  exceed  the  maximum

Capacity makespan  divided  by  (partition  value),

i.e., . Based on (10), we have 

m×PrepartitionOn1(I)�
n∑

i=1

CMi+(m−1) (CMi)

k
,

(10)

which is equivalent to (11) as below: 

PrepartitionOn1(I) �
n∑

i=1

CMi

m
+ (m− 1)

(CMi)

mk
,

(11)

which is also equivalent to (12): 

PrepartitionOn1(I) �
(
OPT +

(
1

k
− 1

mk

)
OPT

)
.

(12)∑n

i=1 CMi/m OPT (I)

OPT (I) � 1�i�n CMi

PrepartitionOn1(I) � (1 + (1/k)− (1/mk))OPT

Note that  is the lower bound on 

because  the  optimum Capacity makespan  cannot  be

smaller than the average Capacity  makespan on all

PMs.  Besides   since  the

largest job must be processed on a PM. We therefore

have  .

□

O(n m) n

m

TTheorem 5. By using the priority queue, the com-
putational  complexity  of  the  PrepartitionOn1  algo-
rithm is , where  is the number of VM re-
quests after the pre-partition operations and  is the
total number of used PMs.

Proof.  It  is  similar  to  the  proof  for  Theorem  2,

and we omit it here. □ 

4.3 Algorithm PrepartitionOn2

Observing  that  the  PrepartitionOn1  algorithm

may  bring  too  many  partitions  in  some  cases,  we

present  the  PrepartitionOn2  algorithm  by  introduc-

ing a parameter to control the number of partitions in

a  more  flexible  manner.  The  differences  between  the

PrepartitionOn1  algorithm  and  the  PrepartitionOn2

algorithm are the followings.

1) To avoid a large number of partitions, we bring

a constant value f (for instance 0.125, 0.25) for mea-

suring load balancing.

CM

1 + f CM

x

2) Setting a CM bound for each PM, for instance,

each PM has a CM as 1 × 24 in each day within 24 h,

but  we  consider  a  PM  can  at  most  run  with  100

CPU utilization in 16 hours, i.e., we set a CM bound

for each PM for each day as  = 16. If overload-

ing happens to a PM according to predefined thresh-

olds  and ,  then  a  new  request  should  be

partitioned into  (the number of active PMs) subin-

tervals equally and the scheduler allocates each subin-

terval to every PM.

f

The  pseudocodes  of  the  PrepartitionOn2  algo-

rithm are shown in Algorithm 3. The algorithm first-

ly  initializes  the  predefined  Capacity_makespan

bound  of  PMs  and  the  constant  value  as  intro-

duced above (line 1). For the arrived VMs, the algo-

rithm picks up the VM with the earliest start time for

execution,  and  calculates  the  Capacity_makespan  of

both VMs and PMs (lines 2–4).  The picked VM will

be supposed to be allocated to the PM with the mini-

mum  Capacity_makespan  value,  and  the

Capacity_makespan of the PM and the PM with the

minimum  Capacity_makespan  are  calculated  with

that  supposition  (lines  5–7).  If  the  increased  Capaci-

ty_makespan of the PM is too large (line 8), the VM

will  be  partitioned  into  the  number  of  active  PMs,

and the partitioned VMs are allocated to PMs one by

one (line 9).  Otherwise,  the VM can be allocated di-

rectly  to  the  PM  with  the  minimum  loads  (lines  10

and 11). Finally, the scheduling results and the num-

ber of partitions can be obtained (line 12).

O(n m)

n

m

Theorem 6. PrepartitionOn2 has  a  computational
complexity of  by applying a priority queue,
where  is  the number of VM requests after the pre-
partition operations and  is the total number of used
PMs.

Proof. It is also similar to the proof for Theorem

2, and we omit it here. □

1 + f

CM

Theorem 7. The competitive ratio of the Preparti-
tionOn2 algorithm is at most  and each PM has
maximum CM as .

CMB

1 + f

Proof. According to Algorithm 3, whenever a PM

has CM larger than  or the competitive ratio of

the algorithm is larger than , the allocating VMs
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1 + f

will  be  pre-partitioned  into  multiple  sub-instances

and allocated. Therefore, the competitive ratio of the

PrepartitionOn2 algorithm is at most . □
Algorithm 3. PrepartitionOn2

m n

CMj j CMi i

Input: :  total  number of  PMs; :  total  number of  VM re-

quests; :  the  CM of  request ; :  the  CM of  PM ;

Output: assign PM IDs to all requests and their partitions

CM
f(� 0.125) P = 0;

1 Initialization: set the CM bound  for each PM, a constant
 value , total partition number 

j2 ffor each arrived job  ddo

3 Pick  up  the  VM  with  the  earliest  start  time  in  the  VM
queue to schedule;

CMj j4 Compute  of VM , and CM of each PM;

CM5 Choose the minimum value CM of PM named ;

j
CM
CM +

6 Suppose  to  allocate  VM  to  the  PM  which  has
 and  compute  its  new  value  of  CM  named
;

CM
7 Get  the  new  minimum  value  of  CM  of  PM  named

;

CM +/CM ) > (1 + f) CM + > CM8 if (  or  tthen

VM j x

P = P + x;

9 Partition  into multiple  (the number of PM
turned on) subintervals equally, and allocate each
subinterval to every PM, 

10 else

j11 Allocate  to PM with the minimum load and available
 capacity;

P12 Output the total number of partitions 
 

5 Performance Evaluation

Notice that there are eight types of VMs in Table 3

and three  types  of  PMs in Table 4,  where  each type

of  VM  occupies  1/16  or  1/8  or  1/4  or  1/2  of  the

whole  capacity  of  the  corresponding  PM  considering

all  three  dimension  resources  of  CPU,  memory,  and

storage.  Therefore  the  three  dimension  resources  be-

come one dimension in this case. In the following, the

simulation results  of  the  Prepartition algorithms and

a  few  existing  algorithms  are  provided.  To  conduct

simulation, a Java simulator called CloudSched (refer

to Tian et al.[30]) is used.
 

5.1 Offline Algorithm Performance Evaluation

All simulations are conducted on a computer con-

figured with an Intel i5 processor at 2.5 GHz and 4 GB

memory. All VM requests are generated by following

normal  distribution.  To  compare  the  offline  algo-

rithms,  Round-Robin  (R-R)  algorithm,  LPT  algo-

rithm  and  post  migration  (PMG)  algorithm  are  im-

plemented.

1) R-R Algorithm.  It is a load balancing schedul-

ing algorithm by allocating the VM demands in turn

to each PM that can offer demanded resources.

2) LPT Algorithm.  LPT  is  one  of  the  best  prac-

tices  for  offline scheduling algorithms without migra-

tion, which has an approximation ratio of 4/3. All the

VM  demands  are  sorted  by  processing  time  in  de-

creasing order firstly. Then demands are allocated to

the  PM with  the  minimum load in  the  sorted  order.

The  minimum  load  indicates  the  minimum

Capacity makespan among all the PMs.

3) PMG  Algorithm.  The  PMG  algorithm  comes

from  the  VMware  distributed  resource  scheduling

(DRS)  algorithm[31],  which  adopts  migration  to

achieve load balancing regarding makespan. In the be-

ginning, it allocates the demands in the same way as

LPT  does.  Here  we  replace  makespan  by

Capacity makespan.  Then  the  algorithm  calculates

the  average  Capacity makespan  of  all  demands.  In

the  PMG  algorithm,  the  up-threshold  and  the  low-

threshold  are  configured  to  achieve  the  load  balanc-

ing  effects,  which  are  configured  based  on  the  aver-

age  Capacity makespan  and  factor.  In  our  experi-

ments,  we  configure  the  factor  as  0.1  (which  can  be

configured dynamically to meet the demands),  which

represents  that  the  up-threshold  is  1.1  times  of  the

average Capacity makespan and the low-threshold is

0.9 times the average Capacity makespan. The algo-

rithm  also  maintains  a  migration  list  containing  the

VMs  on  the  PMs  with  higher  Capacity makespan

values  than  the  low-threshold.  The  VM migration  is

triggered  to  make  the  Capacity makespan  smaller

than  the  low-threshold.  Thereafter,  the  VMs  in  the

migration  list  will  be  re-allocated  to  a  PM with  Ca-

pacity makespan  smaller  than  the  up-threshold.  Mi-

grating  VMs  to  a  new  PM is  triggered  if  the  opera-

tion  would  not  lead  the  Capacity makespan  of  the

Table 3.  Eight Types of VMs Derived from Amazon EC2

VM Type

(No.)

Computing

Capacity (Cores)

Memory (GB) Storage (GB)

1-1(1) 1.0 1.875 211.25

1-2(2) 4.0 7.500 845.00

1-3(3) 8.0 15.000 1 690.00

2-1(4) 6.5 17.100 422.50

2-2(5) 13.0 34.200 845.00

2-3(6) 26.0 68.400 1 690.00

3-1(7) 5.0 1.875 422.50

3-2(8) 20.0 7.000 1 690.00

Table 4.  Three Types of Suggested PMs Specification

PM

Type

Computing Capacity

(Cores)

Memory (GB) Storage (GB)

1 16 30.0 3 380

2 52 136.8 3 380

3 40 14.0 3 380
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PM to be higher than the up-threshold. To be noted,

some VMs can be left in the list; thus finally the algo-

rithm  allocates  the  left  VMs  to  the  PMs  with  the

minimum  Capacity makespan  in  sequence  to  bal-

ance the loads.

VMs  and  PMs  have  the  same  configuration  with

Amazon EC2. The configurations are shown in Table

3 and Table 4, in which one unit (core) of computing

capacity is equivalent to 1.0 GHz–1.2 GHz 2007 Xeon

or 2007 Opteron processors[26].

Remarks. We adopt the typical recommended VM

types suggested by Amazon EC2. Amazon EC2 has a

variety of VM types, and it classifies them into gener-

al  purpose,  compute optimized (computational  inten-

sive  VMs),  memory  optimized  (memory-intensive

VMs), and storage optimized (storage-intensive VMs).

Although  we  adopt  the  Amazon  EC2  classification,

our approach can still be extended to other classifica-

tions. 

5.1.1 Replay with ESL Data Trace

To reflect realistic data generation, we utilize the

data  derived  from  Hebrew  University  Experimental

System  Lab  (ESL)[32] that  has  been  widely  used  for

realistic data. The data with monthly records collect-

ed  by  the  Linux  cluster  has  characteristics  that  can

be  fitted  into  our  reservation  model.  In  the  log  file,

each  line  contains  18  elements  where  we  only  need

parts  of  them,  such  as  the  requested  ID,  start  time,

duration  and  the  number  of  processors  (capacity  de-

mands)  in  our  simulation.  Because  the  time  slot

length mentioned previously is set to 5 min, the time

units of the original data are converted from seconds

to minutes.

Fig.3 shows  the  comparison  of  different  algo-

rithms  in  average  utilization,  imbalance  degree,

makespan and Capacity makespan. According to the

results, we can observe that the PrepartitionOff algo-

rithm can achieve better  performance than the other

algorithms in four aspects. For average utilization, the

PrepartitionOff  algorithm  is  10 –20  higher  than

PMG,  LPT,  and  R-R.  The  reason  for  different  algo-

rithms to  have different  average  CPU utilization lies

in that we consider heterogeneous PMs and different

algorithms  may  use  the  different  numbers  of  total

PMs.  For  makespan  and  Capacity makespan,  the

PrepartitionOff  algorithm  is  10 –20  lower  than

PMG and  LPI,  and  30 –40  lower  than  R-R.  And

for imbalance degree, it is 30 –40  lower than LPT.

Observation 1.  As  shown  in  the  above  perfor-

mance  evaluations,  PMG is  one  of  the  best  heuristic

approaches to balancing loads; however, it cannot as-

sure a bounded or predefined target.

Observation 2.  PMG  does  not  obtain  the  same

good performance as PrepartitionOff in terms of aver-

age  utilization,  makespan  and  Capacity makespan,

no  matter  how  many  times  of  migration  have  been

taken.

k

k

k

The main reason is that PrepartitionOff takes ac-

tions  in  a  much  more  refined  and  desired  scale  by

prepartition based on reservation data while PMG is

just  a  best-effort  trial  by  migration.  In  addition,

PrepartitionOff is much more precise and desired with

the  aid  of  prepartition  while  PMG is  just  a  trial  to

balance load as much as possible. To compare imbal-

ance degree (IMD) change as time goes, we also con-

duct the tests about consecutive imbalance degree us-

ing 1 000 VMs  and 2 000 VMs  among  four  different

offline  algorithms as  shown in Fig.4.  In Fig.4(a)  and

Fig.4(b),  the X-axis  is  for  time and the Y-axis  is  for

imbalance  degree.  We  can  see  that  PrepartitionOff

(with  = 8)  has  the  minimum makespan and mini-

mum imbalance degree most of the time during tests,

except for the initial period. Notice that the value of

 can be set differently. Here we just present the re-

sults for  = 8. 

5.1.2 Results Comparison by Synthetic Data

μ

δ

k

We  configure  the  time  slot  to  be  5  minutes  as

mentioned before; therefore, an hour has 12 slots and

a  day  has  288  slots.  All  requests  are  subject  to  nor-

mal distribution with mean  as 864 (three days) and

standard  deviation  as  288  (one  day)  respectively.

After requests are generated in this way, we start the

simulator to simulate the scheduling effects  of  differ-

ent algorithms and the comparison results are collect-

ed. For data collection, first we set  of the Preparti-

tionOff  algorithm  as  4  (we  configure  the  value  as  4

because  in  previous  research[18],  this  value  has  been

validated  to  be  an  effective  value  to  improve  perfor-

mance).  Besides  the  different  types  of  VMs are  with

equal probabilities. We also vary the number of VMs

from  100  to  200,  400  and  800  to  analyze  the  trend.

Each dataset is an average of 10 runs.

Fig.5 displays  the  comparison  of  different  algo-

rithms  in  average  utilization,  imbalance  degree,

makespan  and  Capacity makespan.  From Figs.5(a)–
5(d),  we  can  know  that  for  average  utilization,  the

PrepartitionOff  algorithm  is  10 –20  higher  than
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Fig.3. Comparison of offline algorithms with ESL trace. (a) Average utilization. (b) Imbalance degree with ESL trace. (c) Makespan
with ESL trace. (d) Capacity makespan.

Fig.4.  Consecutive  imbalance  degree  under  different  numbers  of  VMs  of  four  different  offline  algorithms.  (a) 1 000 VMs.
(b) 2 000 VMs.
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PMG and  LPT,  and  40 –50  higher  than  R-R.  As

for makespan and Capacity makespan, the Preparti-

tionOff  algorithm  is  8 –13  lower  than  PMG  and

LPT,  and  40 –50  lower  than  R-R.  We  also  note

that  the  PMG  algorithm  can  improve  the  perfor-

mance of the LPT algorithm as it configures the up-

threshold  and  low-threshold  based  on  the

Capacity_makespan value. The LPT algorithm is bet-

ter  than  the  R-R  algorithm.  Similar  results  are  ob-

served for the comparison of makespan. 

5.2 PrepartitionOn1 Algorithm Performance

Evaluation

We  demonstrate  the  simulation  results  of  the

PrepartitionOn1  algorithm and  the  other  three  algo-

rithms in this subsection. All VM requests are gener-

2− (1/m) m

ated by following the normal distribution, and the on-

line  algorithms  including  Random,  R-R,  and  Online

Resource Scheduling Algorithm (OLRSA)[33] that has

a  good  competitive  ratio  ( ,  where  is  the

number of PMs) are compared with PrepartitionOn1.

OLRSA calculates the Capacity makespan of  all  the

PMs  and  sorts  PM  by  Capacity makespan  in  de-

scending order,  which assigns the VM request to the

PM  with  the  minimum  Capacity makespan  and  re-

quired resources. 

5.2.1 Replay with ESL Data Trace with

PrepartitionOn1

The  ESL  dataset  aforementioned  is  also  used  in

the  experiments. Fig.6 illustrates  the  comparisons  of

the  average  utilization,  imbalance  degree,  makespan,

Fig.5.  Comparison  of  offline  algorithms  with  normal  distribution.  (a)  Average  utilization.  (b)  Imbalance  degree.  (c)  Makespan.
(d) Capacity_makespan.
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and  Capacity makespan.  According  to Figs.5(a)–
5(d),  we  can see  that  the  PrepartitionOn1 algorithm

demonstrates the highest average utilization, the min-

imum imbalance degree, and the minimum makespan.

As for Capacity makespan, OLRSA shows much bet-

ter  performance  compared  with  the  Random  algo-

rithm  and  the  R-R  algorithm,  and  the  Preparti-

tionOn1 algorithm still out performs 10 –15  in av-

erage  utilization,  20 –30  in  imbalance  degree,  and

5 –20  in makespan than OLRSA. 

5.2.2 Results Comparison by Synthetic

Data with PrepartitionOn1

The  requests  are  configured  as  the  same  as  in

Subsection 5.1 based  on  the  normal  distribution.  We

set  that  VMs with  different  types  have  equal  proba-

bilities,  and  we  modify  the  requests  generation  ap-

proach to produce different sizes  of  requests  to trace

the  tendency.  From Fig.7,  we  can  see  that  the

PrepartitionOn1 algorithm has better  performance in

average utilization,  imbalance degree,  makespan,  and

Capacity makespan.  Compared  with  OLRSA,  the

PrepartitionOn1  algorithm  still  improves  about  10

in average utilization, 30 –40  in imbalance degree,

10 –20  in  makespan,  and  10 –20  in

Capacity makespan.

k

1/k

k

LPT is one kind of the best approaches for offline

load balance algorithms without migration, which has

an approximation ratio of 4/3. Therefore, we suggest

setting the value of  as  4,  which can obtain an ap-

proximation ratio as 1+ = 5/4. Under this config-

uration,  a  better  approximation  ratio  could  be  ob-

tained. With a higher , better load balancing effects

Fig.6.  Comparison  of  online  algorithms  with  ESL  trace.  (a)  Average  utilization.  (b)  Imbalance  degree.  (c)  Makespan.  (d)  Ca-
pacity_makespan.
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k

could  be  achieved.  While  there  exist  trade-offs  be-

tween load balancing effect and time cost. For online

load balance algorithms, we also suggest setting  as

4,  and  cloud  service  providers  could  reconfigure  the

value  to  be  higher  as  suitable  as  the  load  balancing

effects they desired.

m = 100

k

2− (1/m) = 2− (1/100)

1 + (1/k)− (1/mk) = 1 + (1/4)−
(1/400)

Let  us  consider  that  we  have  PMs  and

the value of  is set as 4, and then according to the

analysis  in  [33],  the  complexity  ratio  of  OLRSA  is

,  and  the  complexity  ratio  of

PrepartitionOn1  is 

 based on Subsection 4.2. This proves that the

PrepartitionOn1 algorithm can achieve better  perfor-

mance than OLRSA theoretically.
 

5.3 Performance Evaluation of the

PrepartitionOn2 Algorithm

In  this  subsection,  we  display  the  simulation  re-

sults  of  the  PrepartitionOn2  algorithm  and  other

three algorithms: Random, R-R, and OLRSA.

We  still  use  the  log  data  from  ESL  and  normal

distribution  for  experiments. Fig.7 and Fig.8 illus-

trate  the  comparisons  of  the  average  utilization,  im-

balance  degree,  makespan,  and  Capacity makespan

between the PrepartitionOn2 and the other online al-

gorithms  and  the  results  show  that  PrepartitionOn2

performs the best in terms of compared metrics.

In Fig.9, we provide the consecutive imbalance de-

gree comparison for four algorithms in online schedul-

Fig.7.  Comparison  of  online  algorithms  with  normal  distribution.  (a)  Average  utilization.  (b)  Imbalance  degree.  (c)  Makespan.
(d) Capacity_makespan.
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ing  with 1 000 VMs  and 2 000 VMs  respectively.  In

Fig.9(a)  and Fig.9(b),  the X-axis  is  for  time  and Y-

axis  is  for  imbalance  degree.  We  can  see  that  the

PrepartitionOn2  algorithm  has  the  minimum

makespan  and  minimum  imbalance  degree  most  of

the time during tests.

k

k k = 3

k = 4

k = 2

k = 4 k

k

The large values of  may bring side effects since

it  will  need  more  partitions.  In Fig.10,  we  compare

the time costs (simulated with ESL data and the time

unit is millisecond) under different partition values of

.  The  PrepartitionOn1  algorithm  with  takes

about  10%  less  running  time  than  that  with ,

and  PrepartitionOn1  with  takes  15%  less  run-

ning  time  than  that  with .  A  larger  value  of 

will  lead to  a  better  load balance  with  a  longer  pro-

cess  time.  We  also  observe  that  a  larger  value  of 

will  induce  a  lower  Capacity makespan  value.  Simi-

klarly, with a larger value of , a larger average utiliza-

tion as well as a lower imbalance degree and a lower

makespan can be obtained.

To evaluate the number of partitions triggered by

different prepartition-based algorithms, Table 5 shows

the  number  of  partitions  during  our  tests.  Since  the

PrepartitionOff  algorithm  is  offline,  the  number  is

much  smaller  than  those  of  the  online  algorithms.

And  the  partitions  of  PrepartitionOn2  are  smaller

than  those  of  PrepartitionOn1,  as  PrepartitionOn2

has brought predefined parameters to avoid too many

partitions as discussed in Subsection 4.3.
 

6 Conclusions

Load balancing for cloud administrators is a chal-

lenging problem in data centers. To address this issue,

Fig.8. Comparison of online algorithms with ESL distribution. (a) Average utilization. (b) Imbalance degree. (c) Makespan. (d) Ca-
pacity_makespan.
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ε

we proposed a novel VM reservation paradigm to bal-

ance the VM loads for PMs. Through prepartition op-

erations before allocation for VMs, our algorithms can

achieve  better  load  balancing  effects  compared  with

well-known  load  balancing  algorithms.  In  this  paper,

we  presented  both  offline  (PrepartitionOff)  and  on-

line (PrepartitionOn1 and PrepartitionOn2) load bal-

ancing algorithms to reveal the feature of fixed inter-

val  constraints  of  VM scheduling  and  capacity  shar-

ing.  Theoretically,  we  proved  that  PrepartitionOff  is

an  algorithm  with  1+  approximation  ratio,  where

ε = 1/k k

k

k

(1/k)

1 + (1/k)− (1/mk)

1 + f f

 and  is a positive integer. It is possible that

the PrepartitionOff algorithm can be very close to the

optimal  solution  via  increasing  the  value  of ,  i.e.,

through setting up , it is also attainable to achieve a

desired  load  balancing  goal  defined  in  advance  be-

cause  PrepartitionOff  is  a  (1+ )-approximation.

As  for  online  algorithms,  PrepartitionOn1 has  com-

petitive ratio  and PrepartitionOn2

has competitive ratio  where  is a constant less

than 0.5. Both the synthetic and trace-driven simula-

tions  validated  theoretical  observations  and  showed

that  the  Prepartition  algorithms  can  perform  better

than  a  few  existing  algorithms  in  terms  of  average

utilization, imbalance degree,  makespan, and Capaci-

ty makespan.  As  such,  other  further  research  issues

can be considered.

k

• Appropriate Choice Between Load Balance and
Total  Partition  Numbers. The  Prepartition-based  al-

gorithm can achieve desired load balance objective by

setting  a  suitable  value  of .  It  may  need  a  large

number  of  partitions  so  that  the  times  of  migration

can be  large  depending  on  the  characteristics  of  VM

requests.  For  example,  in  Amazon  EC2[26],  the  dura-

tion of VM reservations varies from a few hours to a

few  months;  therefore  we  can  classify  different  types

of  VMs  based  on  their  durations  (Capacity makes-

pans) firstly, and then applying Prepartition will not

have a large partition number for each type. In prac-

tice,  we need to analyze traffic patterns to make the

number  of  partitions  (pre-migrations)  reasonable  so

that  the  total  costs,  including  running  time  and  the

times of migration, can be reduced.

Fig.9. Consecutive imbalance degree under different numbers of VMs of five different online algorithms. (a) 1 000 VMs. (b) 2 000 VMs.

Fig.10. Comparison of time costs for PrepartitionOn1 by vary-
ing values of k.

TTable 5.  Number of Partitions in Different Algorithms

Algorithm Number of Partitions

1 000 VMs 2000 VMs

PrepartitionOff 64 109

PrepartitionOn1 159 361

PrepartitionOn2 115 293
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• Heterogeneous Configurations of PMs and VMs.
We mainly consider that a VM requires a portion of

the total capacity from a PM. This is also applied in

Amazon EC2 and [27].  When this is not true, multi-

dimensional  resources,  such  as  CPU,  memory,  and

bandwidth,  have  to  be  considered  together  or  sepa-

rately in the load balance.

• Precedence  Constraints  Among  Different  VM
Requests. In  reality,  some VMs may be more  impor-

tant  than  others  depending  on  applications  running

on them, and we would like to extend the current al-

gorithm to consider this case.

• Application Features Characterization with Mul-
ti-Tenancy  and  Resource  Contention. For  instance,

tightly  coupled  requests/applications  can  be  parti-

tioned  on  the  same  VM  to  reduce  communication

costs. 
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