

Prepartition: Load Balancing Approach for Virtual Machine
Reservations in a Cloud Data Center

Wen-Hong Tian1, 2 (), Senior Member, CCF, Member, ACM, IEEE
Min-Xian Xu3, * (), Member, CCF, IEEE, Guang-Yao Zhou1 ()
Kui Wu4 (), Senior Member, IEEE, Cheng-Zhong Xu5 (), Fellow, IEEE, and
Rajkumar Buyya6, 1, Fellow, IEEE

1 School of Information and Software Engineering, University of Electronic Science and Technology of China
Chengdu 610054, China

2 Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
3 Institute of Advanced Computing and Digital Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of

Sciences, Shenzhen 518055, China
4 Department of Computer Science, University of Victoria, Victoria, BC, V8W 3P6, Canada
5 State Key Laboratory of Internet of Things for Smart City, University of Macau, Macau 999078, China
6 School of Computing and Information Systems, University of Melbourne, Melbourne 3010, Australia

E-mail: tian_wenhong@uestc.edu.cn; mx.xu@siat.ac.cn; guangyao_zhou@std.uestc.edu.cn; wkui@uvic.ca; czxu@um.edu.mo
rbuyya@unimelb.edu.au

Received December 10, 2020; accepted April 26, 2022.

Abstract Load balancing is vital for the efficient and long-term operation of cloud data centers. With virtualization,

post (reactive) migration of virtual machines (VMs) after allocation is the traditional way for load balancing and consoli-

dation. However, it is not easy for reactive migration to obtain predefined load balance objectives and it may interrupt ser-

vices and bring instability. Therefore, we provide a new approach, called Prepartition, for load balancing. It partitions a

VM request into a few sub-requests sequentially with start time, end time and capacity demands, and treats each sub-re-

quest as a regular VM request. In this way, it can proactively set a bound for each VM request on each physical machine

and makes the scheduler get ready before VM migration to obtain the predefined load balancing goal, which supports the

resource allocation in a fine-grained manner. Simulations with real-world trace and synthetic data show that our proposed

approach with offline version (PrepartitionOff) scheduling has 10%–20% better performance than the existing load balanc-

ing baselines under several metrics, including average utilization, imbalance degree, makespan and Capacity_makespan.

We also extend Prepartition to online load balancing. Evaluation results show that our proposed approach also outper-

forms state-of-the-art online algorithms.

Keywords cloud computing, physical machine (PM), virtual machine (VM), reservation, load balancing, Prepartition

1 Introduction

Cloud data centers have become the foundation

for modern IT services, ranging from general-purpose

web services to many critical applications, such as on-

line banking and health systems. The service opera-

tor of a cloud data center always faces with a diffi-

cult trade-off between high performance and low oper-

ational cost[1, 2]. On the one hand, to maintain high-

quality services, a data center is usually over-engi-

neered to be capable of handling peak workload. Such

up-bound configuration can bring high expense on

Regular Paper

This work was supported by Shenzhen Industrial Application Projects of undertaking the National Key Research and Develop-

ment Program of China under Grant No. CJGJZD20210408091600002, the National Natural Science Foundation of China under

Grant No. 62102408, and Shenzhen Science and Technology Program under Grant No. RCBS20210609104609044.
*Corresponding Author

Tian WH, Xu MX, Zhou GY et al. Prepartition: Load balancing approach for virtual machine reservations in a cloud da-

ta center. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 38(4): 773−792 July 2023. DOI: 10.1007/s11390-

022-1214-x

Institute of Computing Technology, Chinese Academy of Sciences 2023

maintenance and energy as well as low utilization to

data centers[3]. On the other hand, to reduce cost, the

data center needs to increase server utilization and

shut down idle servers[4]. The key tuning knob in

making the above trade-off is data center load balanc-

ing.

Due to the importance of data center load balanc-

ing, tremendous research and development have been

devoted to this domain in the past decades[5]. Yet,

load balancing for cloud data centers is still one of the

prominent challenges that need more attention. The

difficulty is compounded by several issues such as vir-

tual machine (VM) migration, service availability, al-

gorithm complexity, and resource utilization. The

complexity in cloud data center load balancing has

fostered a new industry dedicating to offer load bal-

ance services[6].

Ignoring the subtle differences in detailed imple-

mentation of load balancing, let us first have a high-

level view of how cloud data centers perform resource

scheduling and load balancing. The process is illus-

trated in Fig.1, which includes the following main

steps.

Fig.1. A high-level view on resource scheduling/load balancing
in cloud data centers.

1) Initializing Requests. A user submits a VM re-

quest through a provider's web portal.

2) Matching Suitable Resources. Based on the us-

er's features (such as geographic location, VM quanti-

ty and quality requirements), the scheduling center

sends the VM request to an appropriate data center,

in which the management program submits the re-

quest to a scheduling domain. In the scheduling do-

main, a scheduling algorithm is performed and re-

sources are allocated to the request.

3) Sending Feedback (e.g., Whether or Not the Re-
quest Has Been Satisfied) to Users.

4) Scheduling Tasks. This step determines when a

VM should run on which physical machine (PM).

5) Optimization. The scheduling center executes

optimization in the back-end and makes decisions

(e.g., VM migration) for load balancing.

In the above process, most existing work on load

balancing is reactive, i.e., performing load balancing

with VM migration when unbalancing or other excep-

tional things happen after VM deployment. Reactive

migration of VMs is one of the practical methods for

load balancing and traffic consolidation such as in

VMWare. Nevertheless, it is well known that reactive

VM migration is not easy to obtain predefined load

balance objectives and may interrupt services and

bring instability[5]. Our observation is that if load bal-

ancing is considered as one of the key criteria before

VM allocation, we should not only reduce the fre-

quency of (post) VM migration (thus less service in-

terruption), but also reach a better balanced VM allo-

cation among different physical machines (PMs).

Motivated by the above observation, we propose a

new load balancing approach called Prepartition. By

combining interval scheduling and lifecycles charac-

teristics of both VMs and PMs, Prepartition handles

load balancing from a different angle. Starkly differ-

ent from previous approaches like in [7] and [8], it

handles the VM load balancing in a more proactive

way.

Fig.2 shows the illustrative example based on the

above observation and motivation. At the requests

submission stage, the users firstly submit their re-

served VM requests, including the capacity and dura-

tion information. Based on the information, then the

service provider can generate the original VM request

at the requests generation stage (e.g., VM1, VM2 and

VM3). Our approach focuses on the prepartition stage

where the original VM requests can be partitioned in-

to sub-requests and allocated to PMs before the VM

migration stage, for instance, VM1 is partitioned into

VM1-1 and VM1-2, and allocated to PM1. And final-

ly, to further optimize VM locations, VM migration

can be further applied.

As the prepartition process happens before the fi-

nal requests generation stage, and it does not need to

execute the jobs, the costs are rather low compared

with the overall job execution. The prepartition costs

774 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

will not be the bottleneck of the system if the algo-

rithm complexity is low. The prepartition operations

can be done on the master node with powerful capa-

bility in a short time (e.g., several seconds), which is

much shorter compared with the execution time of

jobs.

The novelty of Prepartition is that it proactively

sets a process-time bound (as per Capacity_makespan

defined in Section 3) by pre-partitioning each VM re-

quest and therefore helps the scheduler get ready be-

fore the VM migration to achieve the predefined load

balancing goal. Pre-partitioning here means that a

VM request may be partitioned into a few sub-re-

quests sequentially with start time, end time and ca-

pacity demands, where the scheduler treats each sub-

request as a regular VM request and may allocate the

sub-requests to different PMs . In this way, the

scheduler can prepare in advance, without waiting for

the VM migration signals as in traditional VM alloca-

tion/migration schemes. In addition, the resources can

be allocated at the fine granularity and the migration

costs can be reduced.

To the best of our knowledge, we are the first to

introduce the concept of pre-partitioning VM re-

quests to achieve better load balancing performance

in cloud data centers. This paper has the following

key contributions:

• proposing a modeling approach to schedule VM

reservation with sharing capacity by combining inter-

val scheduling and lifecycles characteristics of both

VMs and PMs;

• designing novel prepartition-based algorithms for

both offline and online scheduling which can prepare

migration in advance and set process time bound for

each VM on a PM; thus the resource allocation can

be made in a more fine-grained manner;

• deriving computational complexity and quality

analysis for both offline and online prepartition-based

approaches;

• carrying out performance evaluation in terms of

average utilization, imbalance degree, makespan, time

costs as well as Capacity makespan (a metric to rep-

resent loads, whose details will be given in Section 3)

by simulating different algorithms with trace-driven

and synthetic data.

The organization of the remaining paper is as fol-

lows. Section 2 presents related work on load balanc-

ing in cloud data centers, and Section 3 introduces

problem formulation. Section 4 presents the preparti-

tion-based approach in detail for both offline and on-

line algorithms. Performance evaluations are demon-

strated in Section 5. Finally, conclusions and future

work are given in Section 6.

2 Related Work

As introduced in several popular surveys, re-

source scheduling and load balancing in cloud com-

puting have been widely studied. Xu et al.[9] had a

survey for the state-of-the-art VM placement algo-

rithms. Ghomi et al.[10] have recently made a compre-

hensive survey on load balancing algorithms in cloud

computing. A taxonomic survey related to load bal-

ancing in cloud is studied by Thakur and Goraya[11].

Noshy et al.[7] reviewed the latest optimization tech-

nology dedicated to developing live VM migration.

They also emphasized a further investigation, which

aims to optimize the VMs migration process. [12] dis-

Fig.2. Illustrative example for Prepartition

Wen-Hong Tian et al.: Prepartition: Load Balancing Approach for Virtual Machine Reservations 775

Note that in practice we need to copy data and running state information from a VM (corresponding to a sub-request) to an-

other VM (corresponding to the next sub-request), i.e., the operations for VM migration. But since the scheduler knows the informa-

tion of all sub-requests, it can prepare early so that the VM state/data transition can be finished smoothly. The implementation de-

tail is beyond the focus of this paper.

cusses the issues and challenges associated with exist-

ing load balancing techniques. In general, approaches

for VM load balancing can be categorized into two

categories: online and offline. The online ones assume

that only the current requests and PMs status are

known, while the offline ones assume all the informa-

tion is known in advance.

Online Approach for VM Loading Balancing. Song

et al.[8] proposed a VM migration method to dynami-

cally balance VM loads for high-level application fed-

erations. Thiruvenkadam and Kamalakkannan[13]

showed a hybrid genetic VMs balancing algorithm,

which aims to minimize the times of migration. Cho

et al.[14] tried to maximize the balance of loads in

cloud computing by combining ant colony with parti-

cle swarm optimization. Xu et al.[15] proposed iAware,

which is a lightweight interference model for VM mi-

gration. iAware can capture the relationship between

VM performance interference and the important fac-

tors. Zhou et al.[16] presented a carbon-aware online

approach based on Lyapunov optimization to achieve

geographical load balancing. Mathematical analysis

and experiments based on realistic traces have vali-

dated the effectiveness of the proposed approach. Liu

et al.[17] proposed a framework to characterize and op-

timize the trade-offs between power and performance

in cloud platforms, which can improve operating prof-

its while reducing energy consumption.

Offline Approach for VM Load Balancing. Tian et
al.[18] presented an offline algorithm on VM allocation

within the reservation mode, in which the VM infor-

mation is known before placement. Derived from the

ant colony optimization, Wen et al.[19] proposed a dis-

tributed VM load balancing strategy with the goals of

utilizing resources in a balanced manager and mini-

mizing the times of migration. By estimating re-

source usage, Chhabra and Singh[20] developed a VMs

placement method for loading balancing according to

maximum likelihood estimation for parallel and dis-

tributed applications. Bala and Chana[21] presented an

approach to improving proactive load balancing by

predicting multiple resource types in the cloud. Ebad-

fard and Babamir[22] developed a task scheduling ap-

proach derived from a particle swarm optimization al-

gorithm and the tasks are independent and non-pre-

emptive. Ray et al.[23] presented a genetic-based load

balancing approach to distribute VM requests uni-

formly among the PMs. Deng et al.[24] introduced a

server consolidation approach to achieve energy effi-

cient server consolidation in a reliable and profitable

manner.

Different from all the above approaches, 1) we in-

vestigate the reservation model where makespan and

VM capacity are considered together for optimization

instead of considering them separately; 2) our ap-

proach can be applied to both online and offline sce-

narios rather than a single scenario; 3) we also per-

form theoretical analysis for the proposed approach;

4) we evaluate comprehensive performance in terms of

metrics. A qualitative comparison between our ap-

proach and others is listed in Table 1.

TTable 1. Comparison of Closely Related Work

Approach Algorithm

Type

VM

Type

Resource

Type

Theoretical

Analysis

Metric

Song et al.[8] Online Homogeneous Single No Utilization

Thiruvenkadam and

Kamalakkannan[13]

Online Heterogeneous Multiple Yes Utilization, service level agreement violations

Cho et al.[14] Offline Heterogeneous Multiple No Utilization

Xu et al.[15] Online Heterogeneous Multiple No Utilization, total cost

Zhou et al.[16] Online Heterogeneous Single Yes Service level agreement violations

Liu et al.[17] Online Heterogeneous Single Yes Total cost

Tian et al.[18] Offline Heterogeneous Multiple Yes Imbalance degree, makespan

Wen et al.[19] Offline Heterogeneous Multiple No Service level agreement violations

Chhabra and Singh[20] Online Heterogeneous Single No Utilization, imbalance degree

Bala and Chana[21] Offline Heterogeneous Multiple No Utilization, imbalance degree, service level

agreement violations

Ebadfard and Babamir[22] Offline Homogeneous Multiple Yes Utilization, makespan

Ray et al.[23] Offline Heterogeneous Multiple No Imbalance degree

Deng et al.[24] Offline Homogeneous Multiple No Total cost, service level agreement violations

Our approach

(Prepartition)

Online,

offline

Heterogeneous Multiple Yes Utilization, imbalance degree, makespan, total

cost, Capacity_makespan

776 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

3 Problem Description and Formulation

VMs reservation is considered as that users sub-

mit their VM requests by specifying required capaci-

ty and duration. The VM allocations are modeled as a

fixed processing time problem based on a modified in-

terval scheduling problem (MISP). Details on tradi-

tional interval scheduling problems with fixed process-

ing time are introduced in [25]. In the following, a

general formulation of the MISP is introduced and

evaluated against some known algorithms. The key

symbols used throughout this work are summarized in

Table 2.

TTable 2. Key Notations in This Paper

Notation Definition

T Whole observation time period

sl0 Length of each time slot

n Maximum number of requests

si iStart time of request

fi iFinishing time of request

A(i) iSet of VMs requests scheduled to PM

dj jCapacity demand of VM

CMj jCapacity_makespan of VM request

CMi iCapacity_makespan of PM

PCPUi iCPU capacity of PM

PMemi iMemory capacity of PM

PStoi iStorage capacity of PM

V CPUj jCPU demand of VM

VMemj jMemory demand of VM

V Stoj jStorage demand of VM

Tj jStart time of VM request

Tj jFinishing time of VM request

Tr tr−1 trTime span between time slot and

CM Maximum Capacity_makespan of all PMs

IMD Imbalance degree

k Partition value

P0 Lower bound of the optimal solution OPT

B Dynamic balance value based on

Capacity_makespan

L Amount of VM requests that have already arrived

m Number of PMs in use

I Set of VM requests

CM Predefined Capacity_makespan threshold for

partition

f Constant value to avoid too frequent partitions

3.1 Assumptions

The key assumptions are as follows.

T (sl0)

1) The time is given in a discrete fashion; all data

is given deterministically. The whole time period [0,

] is partitioned into equal-length , and the total

t T/sl0 si
fi

sl0 = 10

(12− 5)× 10 = 70

number of slots is then = . The start time

and the end time are the multiples of the mini-

mum slot. Then the interval of demand can be ex-

pressed in a slot fashion with (start time, end time).

For instance, if min, an interval [5, 12] repre-

sents that the task starts at the 5th time slot and fin-

ishes at the 12th time slot. The duration of this de-

mand is min.

2) For all VM requests generated by users, they

have the start time and the end time to represent

their life-cycles, and the capacity to show the re-

quired amount of resources.

3) The capacity of a single PM is normalized to be

1 and the required capacity of a VM can be 1/8, 1/4,

1/2 or other portions of the total capacity of a PM.

This is consistent with applications in Amazon EC2[26]

and [27].

3.2 Key Definitions

A few key definitions are given here.

{ . . . n} i

si
fi ∀i, si < fi

Definition 1 (Traditional Interval Scheduling

Problem (TISP) with Fixed Processing Time). In a
batch of demands 1, 2, , , the -th demand
refers to an interval of time starting at and ending
at (). Besides each demand requires a ca-
pacity of 100%, i.e., utilizing the full capacity of a
server during the interval.

Definition 2 (Interval Scheduling with Capacity

Sharing, ISWCS). Different from TISP, ISWCS can
share the capacities among demands if the sum of all
demands scheduled on the single server at any time is
still not fully utilized.

Definition 3 (Compatible Sharing Intervals for

ISWCS, CSI-ISWCS). A batch of intervals with re-
quested capacities below the whole capacity of a PM
during the intervals can be compatibly scheduled on a
PM. Compared against ISWCS, the requests in CSI-
ISWCS can be modelled as the ones with lifecycles,
which can be represented as sharing the subset of in-
tervals.

In the existing literature[18], makespan, i.e., the

maximum total load (processing time) on any ma-

chine, is applied to measure load balancing.

In this paper, we aim to solve the problem based

on the ISWCS manner and apply a new metric Ca-

pacity makespan.

PMi

A(i)

PMi

PMi

Definition 4 (Capacity makespan of). In the
schedule of VM requests to PMs, is denoted as
the set of VM requests scheduled to . With this
scheduling, will have load as the sum of the prod-

Wen-Hong Tian et al.: Prepartition: Load Balancing Approach for Virtual Machine Reservations 777

CM

uct of each requested capacity and its duration, called
Capacity makespan (), as shown in (1):

CMi =
∑
j∈A(i)

djtj, (1)

dj

VMj

dj

tj j

j

where is the capacity demand (some portion of to-
tal capacity) of from a PM where the capacity
can be CPU or memory or storage in this paper.
can also be simplified as a capacity based on assump-
tion 3, and represents the span of demand , being
the length of processing time of the demand .

Similarly, the Capacity makespan of a given VM

request is simply the product of the requested capaci-

ty and its duration.

3.3 Optimization Objective

m

Then, the objective of load balancing is to mini-

mize the maximum load (Capacity makespan) on all

PMs as noted in (2). Considering that PMs are in

the data center, we can formulate the problem as: (
1�i�m

(CMi)

)
, (2)

∀ s,
∑

j∈A(i)

dj � 1, (3)

where (3) shows the sharing capacity constraint that

in any time interval, the shared resources should not

use up all the provisioned resources (100%).

From (1) amd (2) , we see that lifecycle and ca-

pacity sharing are key metrics different from tradi-

tional ones like makespan which focuses on the pro-

cess time. Traditionally Longest Process Time first

(LPT)[28] is widely adopted in offline multi-processor

load balancing. Reactive migration of VMs is another

way to compensate after allocation.

3.4 Metrics for ISWCS Load Balancing

The key metrics based on [29] for ISWCS load

balancing are given in the following.

PMi(i PCPUi PMemi PStoi)

PCPUi PMemi PStoi

1) PM resources: , , , ,

where , , and are the CPU,

memory, and storage capacity that a PM can offer re-

spectively.

VMj(j V CPUj VMemj V Stoj
Tj Tj) V CPUj VMemj V Stoj

VMj

Tj , Tj

2) VM resources: , , , ,

, , where , , and are

the CPU, memory, and storage demand of re-

spectively, and are the start time and the

end time respectively.

s

[(t0, t1), (t1, t2), . . . , (ts−1, ts)]

Tr (tr−1, tr)

3) Discrete time: a time span can be partitioned

into equal length of slots. The slots with size can be

considered as , and each

time slot represents the time span .

PMi

Ts

4) Average CPU utilization of during slot 0

and : it is defined in (4):

PCPUi =

s∑
r=0

(PCPUTr

i × Tr)

s∑
r=0

Tr

, (4)

PCPUTr

i

Tr

Tr

PMemi PStoi

where is the average CPU utilization moni-

tored and computed in slot which may be a few

minutes long, and it can be obtained by monitoring

CPU utilization in slot . Average memory utiliza-

tion () and storage utilization () of PMs

can be calculated similarly. Similarly, the average

CPU (memory and storage) utilization of a VM can

be calculated.

5) Makespan: it represents the whole length of the

scheduled VM reservations, i.e., the difference be-

tween the start time of the first request and the end

time of the last request.

CM6) The maximum Capacity makespan () of

all PMs is calculated in (5) as below:

CM =
i

(CMi), (5)

CMi

which we can apply CPU, memory and storage uti-

lization to substitute too.

(IMD)7) Imbalance degree : it is a metric that

measures how far a set of values are spread out from

each other in statistics. Imbalance degree is the nor-

malized variance (regarding its average) of CPU,

memory and storage utilization for all PMs. It mea-

sures load imbalance effect and is defined as shown in

(6):

IMD=

(m∑
i=0

(
(Avgi − CPUu)

2

3
+

(Avgi −Memu)
2

3
+

(Avgi − Stou)
2

3

))/
m, (6)

Avgiwhere is defined in (7) as:

Avgi =
PCPUi + PMemi + PStoi

3
, (7)

CPUu Memu Stouand , , are the average utilization of

CPU, memory and storage in a cloud data center re-

778 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

In this paper, we interchange demands and requests, both of which are referred to as VM requests.

spectively and can be computed using utilization of

all PMs in a cloud data center.

TTheorem 1. Minimizing the makespan in the of-
fline scheduling problem is NP-hard[29].

The proof was provided in our previous work[29]

and we omit it here. Our approach in this paper dif-

fers from [29] in several perspectives: 1) we consider

that the multiple VM requests are allowed to be exe-

cuted on the same host simultaneously rather than a

single VM request in [29]; 2) our objective is minimiz-

ing the Capacity_makespan rather than the longest

processing time; 3) we extend [29] to be suitable for

both the offline and online scenarios rather than for

only the online one.

Combining the properties of both fixed process

time intervals and capacity sharing, we present new

offline and online algorithms in Section 4.

4 Prepartition Algorithms

In the following, we introduce one algorithm for

the offline scenario and two algorithms for the online

scenario. These algorithms can handle both the of-

fline and online requests, and achieve good perfor-

mance in load balancing.

4.1 Algorithm PrepartitionOff

First, we introduce the PrepartitionOff algorithm

that aims to partition the VM requests under the sit-

uation that the information of all VM requests is

known in advance. The processed order of VM re-

quests and the prepartition operations can be man-

aged by the algorithm.
m

OPT

Considering a set of VM reservations, there are

PMs in a data center and we denote as the opti-

mal solution with regard to minimizing Capacity

makespan. Firstly we define

P0 =
1

m

J∑
j=1

CMj � OPT, (8)

J

P0 OPT

where denotes the total number of allocated VMs,

and denotes the lower bound for as shown in

(8).

m

k

�P0/k�

Algorithm 1 gives the pseudocodes of the Prepar-

titionOff algorithm which measures the ideal load bal-

ancing among PMs. The algorithm firstly calcu-

lates the balancing value by (8), sets a partition val-

ue () and computes the length of each partition, i.e.,

, representing the maximum VM's CM that can

be allocated on a PM (line 1). For every demand,

�P0/k�
P0

PrepartitionOff divides it into multiple subin-

tervals when its CM is equal to or larger than , and

each subinterval is treated as a new request (lines

2–4). Then the algorithm sorts the newly generated

requests in decreasing order based on the CM for fur-

ther scheduling (line 5). After sorting of requests, the

algorithm will pick up the VM with the earliest start

time, and allocates the VM to the PM with the low-

est average CM and enough available resources (lines

6–8), thus achieving the load balancing objective. The

CM of PM will also be updated accordingly (line 9).

Finally, the algorithm calculates the CM of each PM

when all requests are assigned and finds the total par-

tition number (line 10). In practice, the scheduler

records all possible subintervals and their hosting

PMs so that the migration of VMs can be prepared

beforehand to alleviate overheads.

Algorithm 1. PrepartitionOff

m n

CMj j CMi

i

Input: : the total number of PMs; : the total number of

VM requests; : the CM of request ; : the CM of PM

;

Output: assign PM IDs to all requests and their partitions

P0

k
1 Initialization: computing the bound value and partition

value (e.g., 1, 2,...);

i 1 m2 forall from to ddo

CMi � P03 if tthen

�P0/k�4 Divide it by subintervals equally and treat
each subinterval as a new request

5 All intervals are sorted in decreasing order of CM, and ties
 are broken arbitrarily;

j 1 n6 forall from to ddo

7 Pick up the VM with the earliest start time in the VM
queue for execution;

j8 Allocate to the PM with the smallest load and enough
capacity;

9 Update load (CM) of the PM;

10 Calculate CM of every PM and find the total number of
 partitions

O(n m) n

m

Theorem 2. Applying the priority queue data
structure, the PrepartitionOff algorithm has a compu-
tational complexity of , where is the num-
ber of VM requests after pre-partition and is the
total number of PMs used.

O(n) n

O(n)

O(m)

O(n m) n

Proof. The priority queue is adopted so that each

PM has a priority value (average Capacity

makespan), and each time when the algorithm choos-

es an item from it, the algorithm selects the one with

the highest priority. It costs time to sort ele-

ments, and steps for insertion and the extrac-

tion of minima in a priority queue[25]. Then, by adopt-

ing a priority queue, the algorithm picks a PM with

the lowest average Capacity makespan in

time. In total, the time complexity of the Preparti-

tionOff algorithm is for demands. □
Theorem 3. The PrepartitionOff algorithm has the

Wen-Hong Tian et al.: Prepartition: Load Balancing Approach for Virtual Machine Reservations 779

1 + ε

ε 1/k k

approximation ratio of regarding the
Capacity_makespan where = and is the parti-
tion value (a preset constant).

P0

si fi pi fi−si

T0

CM

CM � OPT i ∈ J

CMi � εOPT

CMm εOPT

CMm εOPT � (1 + ε)OPT

Proof. It can be seen that every demand has

bounded Capacity makespan by Preparition apply-

ing the lower bound . Every request has start time

, end time and process time = . The start

time of the last completion job (later than all the oth-

er jobs) is . We also assume that all the other

servers are allocated with VM requests and denote

the maximum Capacity makespan as , that is,

. Since, for all requests , we have

 (by the setting of the PrepartitionOff

algorithm in (9)), this job finishes with load

(+). Therefore, the schedule with Capaci-

ty_makespan + . □

4.2 Algorithm PrepartitionOn1

Apart from the offline scenario, the online sce-

nario is also quite common in a realistic environment.

For online VM allocations, scheduling decisions must

be made without complete information about the en-

tire job instances because jobs arrive one by one. We

firstly extend the PrepartitionOff algorithm to the on-

line scenario as the PrepartitionOn1 algorithm, which

can only have the information of VM requests when

the requests come into the system.

m LGiven PMs and VMs (including the one that

just came) in a data center, we can have the dynam-

ic balance value as shown in (9):

B =

(
1�j�L

(CMj)/2,
L∑

j=1

(CMj)/m

)
, (9)

B

L

B

where is one half of the maximum

Capacity makespan of all current PMs or the ideal

load balance value of all current PMs in the system,

and is the number of VMs requests that have al-

ready arrived. Notice that the reason to set as one

half of the maximum Capacity makespan of all cur-

rent PMs is to avoid the extra management costs

caused by a large number of partitions.

k
P

Algorithm 2 shows the pseudocodes of the Prepar-

titionOn1 algorithm. Since in an online scenario, the

requests come one by one, the system can only cap-

ture the information of arrived requests. The algo-

rithm firstly predefines the prepartition value of

and the total partition number as 0 (line 1). When

a new request comes into the system, the algorithm

picks up the VM with the earliest start time in the

queue for scheduling and computes dynamic balance

B B

�(B /k)�

k

n

value () by (9) (lines 2 and 3). After is comput-

ed, if the Capacity maskespan of the VM request is

too large (larger than), then the initial re-

quest is partitioned into several requests (segments)

based on the partition value . In these partitioned

requests, if some requests are still with large Capaci-

ty maskespan, they would be put back into the

queue waiting to be executed, and follow the same

partition and allocation process (lines 4 and 5). The

VM requests with small Capacity maskespan after

partition would be executed when their start time be-

gins, and will be assigned to the PM that has the

minimum value of Capacity makespan (lines 6–8).

After all demands are allocated, the PrepartitionOn1

algorithm calculates the Capacity makespan value of

all the PMs and outputs all the partition values for

demands (line 9). Since the numbers of partitions and

segments of each VM request are known at the mo-

ment of allocation, the system can prepare VM migra-

tion in advance so that the processing time and insta-

bility of migration can be reduced.

Algorithm 2. PrepartitionOn1

m n

CMj j CMi

i

Input: : the total number of PMs; : the total number of

VM requests; : the CM of request ; : the CM of PM

;

Output: assign PM IDs to all requests and their partitions
k P1 Set the partition value , total partition number = 0;

j2 for each arrived job ddo

CMj

VMj B

3 Pick up the VM with the start time equal to the system
time in the VM queue to schedule; compute of

 and using (9);

CMj > �(B /k)�4 if tthen

VMj �(B /k)�

P = P + �CMj

B /k
�

5 Partition into multiple equal subinte-

 rvals, treat each subinterval as a new demand and

 add them into the VM queue, , update
 load (CM) of the PM;

6 else

j7 Allocate to PM with the minimum load and enough
capacity;

8 Update load (CM) of the PM;

P9 Output the total number of partitions

To analyze algorithm performance based on theo-

retical analysis, we conduct competitive ratio analy-

sis that represents the performance ratio between an

online algorithm and an optimal offline algorithm. An

online algorithm is competitive if its competitive ra-

tio is bounded.

(1 + (1/k)− (1/mk))

Theorem 4. The PrepartitionOn1 algorithm has a
competitive ratio of with regard-
ing to the Capacity makespan.

OPT

PrepartitionOn1(I)

Proof. Without loss of generality, we label PMs in

order of non-decreasing final loads (CM) in the

PrepartitionOn1 algorithm. and

 are denoted as the optimal load

balance value of corresponding offline scheduling and

780 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

I PMm

m− 1

∑n

i=1
CMi

j PMm

PMm

m− 1

PMm

k

1�i�n CMi/k

the load balance value of PrepartitionOn1 for a given

set of jobs , respectively. Then the load of de-

fines the Capacity makespan. Each of the PMs

processes a subset of the jobs and then experiences an

(possibly none) idle period. All PMs together finish a

total Capacity makespan during their busy

periods. Let us consider the allocation of the last job

 to . By the scheduling rule of the Preparti-

tionOn1 algorithm, has the minimum load at

the time of allocation. Hence, any idle period on the

first PMs cannot be bigger than the

Capacity makespan of the last job allocated on

and hence cannot exceed the maximum

Capacity makespan divided by (partition value),

i.e., . Based on (10), we have

m×PrepartitionOn1(I)�
n∑

i=1

CMi+(m−1) (CMi)

k
,

(10)

which is equivalent to (11) as below:

PrepartitionOn1(I) �
n∑

i=1

CMi

m
+ (m− 1)

(CMi)

mk
,

(11)

which is also equivalent to (12):

PrepartitionOn1(I) �
(
OPT +

(
1

k
− 1

mk

)
OPT

)
.

(12)∑n

i=1 CMi/m OPT (I)

OPT (I) � 1�i�n CMi

PrepartitionOn1(I) � (1 + (1/k)− (1/mk))OPT

Note that is the lower bound on

because the optimum Capacity makespan cannot be

smaller than the average Capacity makespan on all

PMs. Besides since the

largest job must be processed on a PM. We therefore

have .

□

O(n m) n

m

TTheorem 5. By using the priority queue, the com-
putational complexity of the PrepartitionOn1 algo-
rithm is , where is the number of VM re-
quests after the pre-partition operations and is the
total number of used PMs.

Proof. It is similar to the proof for Theorem 2,

and we omit it here. □

4.3 Algorithm PrepartitionOn2

Observing that the PrepartitionOn1 algorithm

may bring too many partitions in some cases, we

present the PrepartitionOn2 algorithm by introduc-

ing a parameter to control the number of partitions in

a more flexible manner. The differences between the

PrepartitionOn1 algorithm and the PrepartitionOn2

algorithm are the followings.

1) To avoid a large number of partitions, we bring

a constant value f (for instance 0.125, 0.25) for mea-

suring load balancing.

CM

1 + f CM

x

2) Setting a CM bound for each PM, for instance,

each PM has a CM as 1 × 24 in each day within 24 h,

but we consider a PM can at most run with 100

CPU utilization in 16 hours, i.e., we set a CM bound

for each PM for each day as = 16. If overload-

ing happens to a PM according to predefined thresh-

olds and , then a new request should be

partitioned into (the number of active PMs) subin-

tervals equally and the scheduler allocates each subin-

terval to every PM.

f

The pseudocodes of the PrepartitionOn2 algo-

rithm are shown in Algorithm 3. The algorithm first-

ly initializes the predefined Capacity_makespan

bound of PMs and the constant value as intro-

duced above (line 1). For the arrived VMs, the algo-

rithm picks up the VM with the earliest start time for

execution, and calculates the Capacity_makespan of

both VMs and PMs (lines 2–4). The picked VM will

be supposed to be allocated to the PM with the mini-

mum Capacity_makespan value, and the

Capacity_makespan of the PM and the PM with the

minimum Capacity_makespan are calculated with

that supposition (lines 5–7). If the increased Capaci-

ty_makespan of the PM is too large (line 8), the VM

will be partitioned into the number of active PMs,

and the partitioned VMs are allocated to PMs one by

one (line 9). Otherwise, the VM can be allocated di-

rectly to the PM with the minimum loads (lines 10

and 11). Finally, the scheduling results and the num-

ber of partitions can be obtained (line 12).

O(n m)

n

m

Theorem 6. PrepartitionOn2 has a computational
complexity of by applying a priority queue,
where is the number of VM requests after the pre-
partition operations and is the total number of used
PMs.

Proof. It is also similar to the proof for Theorem

2, and we omit it here. □

1 + f

CM

Theorem 7. The competitive ratio of the Preparti-
tionOn2 algorithm is at most and each PM has
maximum CM as .

CMB

1 + f

Proof. According to Algorithm 3, whenever a PM

has CM larger than or the competitive ratio of

the algorithm is larger than , the allocating VMs

Wen-Hong Tian et al.: Prepartition: Load Balancing Approach for Virtual Machine Reservations 781

1 + f

will be pre-partitioned into multiple sub-instances

and allocated. Therefore, the competitive ratio of the

PrepartitionOn2 algorithm is at most . □
Algorithm 3. PrepartitionOn2

m n

CMj j CMi i

Input: : total number of PMs; : total number of VM re-

quests; : the CM of request ; : the CM of PM ;

Output: assign PM IDs to all requests and their partitions

CM
f(� 0.125) P = 0;

1 Initialization: set the CM bound for each PM, a constant
 value , total partition number

j2 ffor each arrived job ddo

3 Pick up the VM with the earliest start time in the VM
queue to schedule;

CMj j4 Compute of VM , and CM of each PM;

CM5 Choose the minimum value CM of PM named ;

j
CM
CM +

6 Suppose to allocate VM to the PM which has
 and compute its new value of CM named
;

CM
7 Get the new minimum value of CM of PM named

;

CM +/CM) > (1 + f) CM + > CM8 if (or tthen

VM j x

P = P + x;

9 Partition into multiple (the number of PM
turned on) subintervals equally, and allocate each
subinterval to every PM,

10 else

j11 Allocate to PM with the minimum load and available
 capacity;

P12 Output the total number of partitions

5 Performance Evaluation

Notice that there are eight types of VMs in Table 3

and three types of PMs in Table 4, where each type

of VM occupies 1/16 or 1/8 or 1/4 or 1/2 of the

whole capacity of the corresponding PM considering

all three dimension resources of CPU, memory, and

storage. Therefore the three dimension resources be-

come one dimension in this case. In the following, the

simulation results of the Prepartition algorithms and

a few existing algorithms are provided. To conduct

simulation, a Java simulator called CloudSched (refer

to Tian et al.[30]) is used.

5.1 Offline Algorithm Performance Evaluation

All simulations are conducted on a computer con-

figured with an Intel i5 processor at 2.5 GHz and 4 GB

memory. All VM requests are generated by following

normal distribution. To compare the offline algo-

rithms, Round-Robin (R-R) algorithm, LPT algo-

rithm and post migration (PMG) algorithm are im-

plemented.

1) R-R Algorithm. It is a load balancing schedul-

ing algorithm by allocating the VM demands in turn

to each PM that can offer demanded resources.

2) LPT Algorithm. LPT is one of the best prac-

tices for offline scheduling algorithms without migra-

tion, which has an approximation ratio of 4/3. All the

VM demands are sorted by processing time in de-

creasing order firstly. Then demands are allocated to

the PM with the minimum load in the sorted order.

The minimum load indicates the minimum

Capacity makespan among all the PMs.

3) PMG Algorithm. The PMG algorithm comes

from the VMware distributed resource scheduling

(DRS) algorithm[31], which adopts migration to

achieve load balancing regarding makespan. In the be-

ginning, it allocates the demands in the same way as

LPT does. Here we replace makespan by

Capacity makespan. Then the algorithm calculates

the average Capacity makespan of all demands. In

the PMG algorithm, the up-threshold and the low-

threshold are configured to achieve the load balanc-

ing effects, which are configured based on the aver-

age Capacity makespan and factor. In our experi-

ments, we configure the factor as 0.1 (which can be

configured dynamically to meet the demands), which

represents that the up-threshold is 1.1 times of the

average Capacity makespan and the low-threshold is

0.9 times the average Capacity makespan. The algo-

rithm also maintains a migration list containing the

VMs on the PMs with higher Capacity makespan

values than the low-threshold. The VM migration is

triggered to make the Capacity makespan smaller

than the low-threshold. Thereafter, the VMs in the

migration list will be re-allocated to a PM with Ca-

pacity makespan smaller than the up-threshold. Mi-

grating VMs to a new PM is triggered if the opera-

tion would not lead the Capacity makespan of the

Table 3. Eight Types of VMs Derived from Amazon EC2

VM Type

(No.)

Computing

Capacity (Cores)

Memory (GB) Storage (GB)

1-1(1) 1.0 1.875 211.25

1-2(2) 4.0 7.500 845.00

1-3(3) 8.0 15.000 1 690.00

2-1(4) 6.5 17.100 422.50

2-2(5) 13.0 34.200 845.00

2-3(6) 26.0 68.400 1 690.00

3-1(7) 5.0 1.875 422.50

3-2(8) 20.0 7.000 1 690.00

Table 4. Three Types of Suggested PMs Specification

PM

Type

Computing Capacity

(Cores)

Memory (GB) Storage (GB)

1 16 30.0 3 380

2 52 136.8 3 380

3 40 14.0 3 380

782 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

PM to be higher than the up-threshold. To be noted,

some VMs can be left in the list; thus finally the algo-

rithm allocates the left VMs to the PMs with the

minimum Capacity makespan in sequence to bal-

ance the loads.

VMs and PMs have the same configuration with

Amazon EC2. The configurations are shown in Table

3 and Table 4, in which one unit (core) of computing

capacity is equivalent to 1.0 GHz–1.2 GHz 2007 Xeon

or 2007 Opteron processors[26].

Remarks. We adopt the typical recommended VM

types suggested by Amazon EC2. Amazon EC2 has a

variety of VM types, and it classifies them into gener-

al purpose, compute optimized (computational inten-

sive VMs), memory optimized (memory-intensive

VMs), and storage optimized (storage-intensive VMs).

Although we adopt the Amazon EC2 classification,

our approach can still be extended to other classifica-

tions.

5.1.1 Replay with ESL Data Trace

To reflect realistic data generation, we utilize the

data derived from Hebrew University Experimental

System Lab (ESL)[32] that has been widely used for

realistic data. The data with monthly records collect-

ed by the Linux cluster has characteristics that can

be fitted into our reservation model. In the log file,

each line contains 18 elements where we only need

parts of them, such as the requested ID, start time,

duration and the number of processors (capacity de-

mands) in our simulation. Because the time slot

length mentioned previously is set to 5 min, the time

units of the original data are converted from seconds

to minutes.

Fig.3 shows the comparison of different algo-

rithms in average utilization, imbalance degree,

makespan and Capacity makespan. According to the

results, we can observe that the PrepartitionOff algo-

rithm can achieve better performance than the other

algorithms in four aspects. For average utilization, the

PrepartitionOff algorithm is 10 –20 higher than

PMG, LPT, and R-R. The reason for different algo-

rithms to have different average CPU utilization lies

in that we consider heterogeneous PMs and different

algorithms may use the different numbers of total

PMs. For makespan and Capacity makespan, the

PrepartitionOff algorithm is 10 –20 lower than

PMG and LPI, and 30 –40 lower than R-R. And

for imbalance degree, it is 30 –40 lower than LPT.

Observation 1. As shown in the above perfor-

mance evaluations, PMG is one of the best heuristic

approaches to balancing loads; however, it cannot as-

sure a bounded or predefined target.

Observation 2. PMG does not obtain the same

good performance as PrepartitionOff in terms of aver-

age utilization, makespan and Capacity makespan,

no matter how many times of migration have been

taken.

k

k

k

The main reason is that PrepartitionOff takes ac-

tions in a much more refined and desired scale by

prepartition based on reservation data while PMG is

just a best-effort trial by migration. In addition,

PrepartitionOff is much more precise and desired with

the aid of prepartition while PMG is just a trial to

balance load as much as possible. To compare imbal-

ance degree (IMD) change as time goes, we also con-

duct the tests about consecutive imbalance degree us-

ing 1 000 VMs and 2 000 VMs among four different

offline algorithms as shown in Fig.4. In Fig.4(a) and

Fig.4(b), the X-axis is for time and the Y-axis is for

imbalance degree. We can see that PrepartitionOff

(with = 8) has the minimum makespan and mini-

mum imbalance degree most of the time during tests,

except for the initial period. Notice that the value of

 can be set differently. Here we just present the re-

sults for = 8.

5.1.2 Results Comparison by Synthetic Data

μ

δ

k

We configure the time slot to be 5 minutes as

mentioned before; therefore, an hour has 12 slots and

a day has 288 slots. All requests are subject to nor-

mal distribution with mean as 864 (three days) and

standard deviation as 288 (one day) respectively.

After requests are generated in this way, we start the

simulator to simulate the scheduling effects of differ-

ent algorithms and the comparison results are collect-

ed. For data collection, first we set of the Preparti-

tionOff algorithm as 4 (we configure the value as 4

because in previous research[18], this value has been

validated to be an effective value to improve perfor-

mance). Besides the different types of VMs are with

equal probabilities. We also vary the number of VMs

from 100 to 200, 400 and 800 to analyze the trend.

Each dataset is an average of 10 runs.

Fig.5 displays the comparison of different algo-

rithms in average utilization, imbalance degree,

makespan and Capacity makespan. From Figs.5(a)–
5(d), we can know that for average utilization, the

PrepartitionOff algorithm is 10 –20 higher than

Wen-Hong Tian et al.: Prepartition: Load Balancing Approach for Virtual Machine Reservations 783

Fig.3. Comparison of offline algorithms with ESL trace. (a) Average utilization. (b) Imbalance degree with ESL trace. (c) Makespan
with ESL trace. (d) Capacity makespan.

Fig.4. Consecutive imbalance degree under different numbers of VMs of four different offline algorithms. (a) 1 000 VMs.
(b) 2 000 VMs.

784 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

PMG and LPT, and 40 –50 higher than R-R. As

for makespan and Capacity makespan, the Preparti-

tionOff algorithm is 8 –13 lower than PMG and

LPT, and 40 –50 lower than R-R. We also note

that the PMG algorithm can improve the perfor-

mance of the LPT algorithm as it configures the up-

threshold and low-threshold based on the

Capacity_makespan value. The LPT algorithm is bet-

ter than the R-R algorithm. Similar results are ob-

served for the comparison of makespan.

5.2 PrepartitionOn1 Algorithm Performance

Evaluation

We demonstrate the simulation results of the

PrepartitionOn1 algorithm and the other three algo-

rithms in this subsection. All VM requests are gener-

2− (1/m) m

ated by following the normal distribution, and the on-

line algorithms including Random, R-R, and Online

Resource Scheduling Algorithm (OLRSA)[33] that has

a good competitive ratio (, where is the

number of PMs) are compared with PrepartitionOn1.

OLRSA calculates the Capacity makespan of all the

PMs and sorts PM by Capacity makespan in de-

scending order, which assigns the VM request to the

PM with the minimum Capacity makespan and re-

quired resources.

5.2.1 Replay with ESL Data Trace with

PrepartitionOn1

The ESL dataset aforementioned is also used in

the experiments. Fig.6 illustrates the comparisons of

the average utilization, imbalance degree, makespan,

Fig.5. Comparison of offline algorithms with normal distribution. (a) Average utilization. (b) Imbalance degree. (c) Makespan.
(d) Capacity_makespan.

Wen-Hong Tian et al.: Prepartition: Load Balancing Approach for Virtual Machine Reservations 785

and Capacity makespan. According to Figs.5(a)–
5(d), we can see that the PrepartitionOn1 algorithm

demonstrates the highest average utilization, the min-

imum imbalance degree, and the minimum makespan.

As for Capacity makespan, OLRSA shows much bet-

ter performance compared with the Random algo-

rithm and the R-R algorithm, and the Preparti-

tionOn1 algorithm still out performs 10 –15 in av-

erage utilization, 20 –30 in imbalance degree, and

5 –20 in makespan than OLRSA.

5.2.2 Results Comparison by Synthetic

Data with PrepartitionOn1

The requests are configured as the same as in

Subsection 5.1 based on the normal distribution. We

set that VMs with different types have equal proba-

bilities, and we modify the requests generation ap-

proach to produce different sizes of requests to trace

the tendency. From Fig.7, we can see that the

PrepartitionOn1 algorithm has better performance in

average utilization, imbalance degree, makespan, and

Capacity makespan. Compared with OLRSA, the

PrepartitionOn1 algorithm still improves about 10

in average utilization, 30 –40 in imbalance degree,

10 –20 in makespan, and 10 –20 in

Capacity makespan.

k

1/k

k

LPT is one kind of the best approaches for offline

load balance algorithms without migration, which has

an approximation ratio of 4/3. Therefore, we suggest

setting the value of as 4, which can obtain an ap-

proximation ratio as 1+ = 5/4. Under this config-

uration, a better approximation ratio could be ob-

tained. With a higher , better load balancing effects

Fig.6. Comparison of online algorithms with ESL trace. (a) Average utilization. (b) Imbalance degree. (c) Makespan. (d) Ca-
pacity_makespan.

786 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

k

could be achieved. While there exist trade-offs be-

tween load balancing effect and time cost. For online

load balance algorithms, we also suggest setting as

4, and cloud service providers could reconfigure the

value to be higher as suitable as the load balancing

effects they desired.

m = 100

k

2− (1/m) = 2− (1/100)

1 + (1/k)− (1/mk) = 1 + (1/4)−
(1/400)

Let us consider that we have PMs and

the value of is set as 4, and then according to the

analysis in [33], the complexity ratio of OLRSA is

, and the complexity ratio of

PrepartitionOn1 is

 based on Subsection 4.2. This proves that the

PrepartitionOn1 algorithm can achieve better perfor-

mance than OLRSA theoretically.

5.3 Performance Evaluation of the

PrepartitionOn2 Algorithm

In this subsection, we display the simulation re-

sults of the PrepartitionOn2 algorithm and other

three algorithms: Random, R-R, and OLRSA.

We still use the log data from ESL and normal

distribution for experiments. Fig.7 and Fig.8 illus-

trate the comparisons of the average utilization, im-

balance degree, makespan, and Capacity makespan

between the PrepartitionOn2 and the other online al-

gorithms and the results show that PrepartitionOn2

performs the best in terms of compared metrics.

In Fig.9, we provide the consecutive imbalance de-

gree comparison for four algorithms in online schedul-

Fig.7. Comparison of online algorithms with normal distribution. (a) Average utilization. (b) Imbalance degree. (c) Makespan.
(d) Capacity_makespan.

Wen-Hong Tian et al.: Prepartition: Load Balancing Approach for Virtual Machine Reservations 787

ing with 1 000 VMs and 2 000 VMs respectively. In

Fig.9(a) and Fig.9(b), the X-axis is for time and Y-

axis is for imbalance degree. We can see that the

PrepartitionOn2 algorithm has the minimum

makespan and minimum imbalance degree most of

the time during tests.

k

k k = 3

k = 4

k = 2

k = 4 k

k

The large values of may bring side effects since

it will need more partitions. In Fig.10, we compare

the time costs (simulated with ESL data and the time

unit is millisecond) under different partition values of

. The PrepartitionOn1 algorithm with takes

about 10% less running time than that with ,

and PrepartitionOn1 with takes 15% less run-

ning time than that with . A larger value of

will lead to a better load balance with a longer pro-

cess time. We also observe that a larger value of

will induce a lower Capacity makespan value. Simi-

klarly, with a larger value of , a larger average utiliza-

tion as well as a lower imbalance degree and a lower

makespan can be obtained.

To evaluate the number of partitions triggered by

different prepartition-based algorithms, Table 5 shows

the number of partitions during our tests. Since the

PrepartitionOff algorithm is offline, the number is

much smaller than those of the online algorithms.

And the partitions of PrepartitionOn2 are smaller

than those of PrepartitionOn1, as PrepartitionOn2

has brought predefined parameters to avoid too many

partitions as discussed in Subsection 4.3.

6 Conclusions

Load balancing for cloud administrators is a chal-

lenging problem in data centers. To address this issue,

Fig.8. Comparison of online algorithms with ESL distribution. (a) Average utilization. (b) Imbalance degree. (c) Makespan. (d) Ca-
pacity_makespan.

788 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

ε

we proposed a novel VM reservation paradigm to bal-

ance the VM loads for PMs. Through prepartition op-

erations before allocation for VMs, our algorithms can

achieve better load balancing effects compared with

well-known load balancing algorithms. In this paper,

we presented both offline (PrepartitionOff) and on-

line (PrepartitionOn1 and PrepartitionOn2) load bal-

ancing algorithms to reveal the feature of fixed inter-

val constraints of VM scheduling and capacity shar-

ing. Theoretically, we proved that PrepartitionOff is

an algorithm with 1+ approximation ratio, where

ε = 1/k k

k

k

(1/k)

1 + (1/k)− (1/mk)

1 + f f

 and is a positive integer. It is possible that

the PrepartitionOff algorithm can be very close to the

optimal solution via increasing the value of , i.e.,

through setting up , it is also attainable to achieve a

desired load balancing goal defined in advance be-

cause PrepartitionOff is a (1+)-approximation.

As for online algorithms, PrepartitionOn1 has com-

petitive ratio and PrepartitionOn2

has competitive ratio where is a constant less

than 0.5. Both the synthetic and trace-driven simula-

tions validated theoretical observations and showed

that the Prepartition algorithms can perform better

than a few existing algorithms in terms of average

utilization, imbalance degree, makespan, and Capaci-

ty makespan. As such, other further research issues

can be considered.

k

• Appropriate Choice Between Load Balance and
Total Partition Numbers. The Prepartition-based al-

gorithm can achieve desired load balance objective by

setting a suitable value of . It may need a large

number of partitions so that the times of migration

can be large depending on the characteristics of VM

requests. For example, in Amazon EC2[26], the dura-

tion of VM reservations varies from a few hours to a

few months; therefore we can classify different types

of VMs based on their durations (Capacity makes-

pans) firstly, and then applying Prepartition will not

have a large partition number for each type. In prac-

tice, we need to analyze traffic patterns to make the

number of partitions (pre-migrations) reasonable so

that the total costs, including running time and the

times of migration, can be reduced.

Fig.9. Consecutive imbalance degree under different numbers of VMs of five different online algorithms. (a) 1 000 VMs. (b) 2 000 VMs.

Fig.10. Comparison of time costs for PrepartitionOn1 by vary-
ing values of k.

TTable 5. Number of Partitions in Different Algorithms

Algorithm Number of Partitions

1 000 VMs 2000 VMs

PrepartitionOff 64 109

PrepartitionOn1 159 361

PrepartitionOn2 115 293

Wen-Hong Tian et al.: Prepartition: Load Balancing Approach for Virtual Machine Reservations 789

• Heterogeneous Configurations of PMs and VMs.
We mainly consider that a VM requires a portion of

the total capacity from a PM. This is also applied in

Amazon EC2 and [27]. When this is not true, multi-

dimensional resources, such as CPU, memory, and

bandwidth, have to be considered together or sepa-

rately in the load balance.

• Precedence Constraints Among Different VM
Requests. In reality, some VMs may be more impor-

tant than others depending on applications running

on them, and we would like to extend the current al-

gorithm to consider this case.

• Application Features Characterization with Mul-
ti-Tenancy and Resource Contention. For instance,

tightly coupled requests/applications can be parti-

tioned on the same VM to reduce communication

costs.

Acknowledgements The authors would like

to thank the anonymous reviewers' valuable com-

ments to improve the quality of our work.

Conflict of Interest The authors declare that

they have no conflict of interest.

References

Xu M X, Buyya R. Brownout approach for adaptive man-

agement of resources and applications in cloud comput-

ing systems: A taxonomy and future directions. ACM

Computing Surveys, 2020, 52(1): Article No. 8. DOI: 10.

1145/3234151.

[1]

Xu F, Liu F M, Jin H, Vasilakos A V. Managing perfor-

mance overhead of virtual machines in cloud computing:

A survey, state of the art, and future directions. Proceed-

ings of the IEEE, 2014, 102(1): 11–31. DOI: 10.1109/

JPROC.2013.2287711.

[2]

Gill S S, Tuli S, Toosi A N, Cuadrado F, Garraghan P,

Bahsoon R, Lutfiyya H, Sakellariou R, Rana O, Dustdar

S, Buyya R. ThermoSim: Deep learning based framework

for modeling and simulation of thermal-aware resource

management for cloud computing environments. Journal

of Systems and Software, 2020, 166: 110596. DOI: 10.1016/

j.jss.2020.110596.

[3]

Xu M X, Buyya R. BrownoutCon: A software system

based on brownout and containers for energy efficient

cloud computing. Journal of Systems and Software, 2019,

155: 91–103. DOI: 10.1016/j.jss.2019.05.031.

[4]

Zhang J, Yu F R, Wang S, Huang T, Liu Z Y, Liu Y J.

Load balancing in data center networks: A survey. IEEE

Communications Surveys & Tutorials, 2018, 20(3): 2324–

2352. DOI: 10.1109/COMST.2018.2816042.

[5]

Rahman M, Iqbal S, Gao J. Load balancer as a service in

cloud computing. In Proc. the 8th International Sympo-

[6]

sium on Service Oriented System Engineering, Apr. 2014,

pp.204–211. DOI: 10.1109/SOSE.2014.31.

Noshy M, Ibrahim A, Ali H A. Optimization of live virtu-

al machine migration in cloud computing: A survey and

future directions. Journal of Network and Computer Ap-

plications, 2018, 110: 1–10. DOI: 10.1016/j.jnca.2018.03.002.

[7]

Song X, Ma Y F, Teng D. A load balancing scheme using

federate migration based on virtual machines for cloud

simulations. Mathematical Problems in Engineering, 2015,

2015: 506432. DOI: 10.1155/2015/506432.

[8]

Xu M X, Tian W H, Buyya R. A survey on load balanc-

ing algorithms for virtual machines placement in cloud

computing. Concurrency and Computation: Practice and

Experience, 2017, 29(12): e4123. DOI: 10.1002/cpe.4123.

[9]

Ghomi E J, Rahmani A M, Qader N N. Load-balancing

algorithms in cloud computing: A survey. Journal of Net-

work and Computer Applications, 2017, 88: 50–71. DOI:

10.1016/j.jnca.2017.04.007.

[10]

Thakur A, Goraya M S. A taxonomic survey on load bal-

ancing in cloud. Journal of Network and Computer Appli-

cations, 2017, 98: 43–57. DOI: 10.1016/j.jnca.2017.08.020.

[11]

Kumar P, Kumar R. Issues and challenges of load balanc-

ing techniques in cloud computing: A survey. ACM Com-

puting Surveys, 2019, 51(6): Article No. 120. DOI: 10.

1145/3281010.

[12]

Thiruvenkadam T, Kamalakkannan P. Energy efficient

multi dimensional host load aware algorithm for virtual

machine placement and optimization in cloud environ-

ment. Indian Journal of Science and Technology, 2015,

8(17): 1–11. DOI: 10.17485/ijst/2015/v8i17/59140.

[13]

Cho K M, Tsai P W, Tsai C W, Yang C S. A hybrid

meta-heuristic algorithm for VM scheduling with load bal-

ancing in cloud computing. Neural Computing and Appli-

cations, 2015, 26(6): 1297–1309. DOI: 10.1007/s00521-014-

1804-9.

[14]

Xu F, Liu F M, Liu L H, Jin H, Li B, Li B C. iAware:

Making live migration of virtual machines interference-

aware in the cloud. IEEE Trans. Computers, 2014,

63(12): 3012–3025. DOI: 10.1109/TC.2013.185.

[15]

Zhou Z, Liu F M, Zou R L, Liu J C, Xu H, Jin H. Car-

bon-aware online control of geo-distributed cloud services.

IEEE Trans. Parallel and Distributed Systems, 2016,

27(9): 2506–2519. DOI: 10.1109/TPDS.2015.2504978.

[16]

Liu F M, Zhou Z, Jin H, Li B, Li B C, Jiang H B. On ar-

bitrating the power-performance tradeoff in SaaS clouds.

IEEE Trans. Parallel and Distributed Systems, 2014,

25(10): 2648–2658. DOI: 10.1109/TPDS.2013.208.

[17]

Tian W H, Xu M X, Chen Y, Zhao Y. Prepartition: A

new paradigm for the load balance of virtual machine

reservations in data centers. In Proc. the 2014 IEEE In-

ternational Conference on Communications, Jun. 2014,

pp.4017–4022. DOI: 10.1109/ICC.2014.6883949.

[18]

Wen W T, Wang C D, Wu D S, Xie Y Y. An ACO-based

scheduling strategy on load balancing in cloud computing

environment. In Proc. the 9th International Conference

[19]

790 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

on Frontier of Computer Science and Technology, Aug.

2015, pp.364–369. DOI: 10.1109/FCST.2015.41.

Chhabra S, Singh A K. Optimal VM placement model for

load balancing in cloud data centers. In Proc. the 7th In-

ternational Conference on Smart Computing & Communi-

cations, Jun. 2019. DOI: 10.1109/ICSCC.2019.8843607.

[20]

Bala A, Chana I. Prediction-based proactive load balanc-

ing approach through VM migration. Engineering with

Computers, 2016, 32(4): 581–592. DOI: 10.1007/s00366-

016-0434-5.

[21]

Ebadifard F, Babamir S M. A PSO-based task schedul-

ing algorithm improved using a load-balancing technique

for the cloud computing environment. Concurrency and

Computation: Practice and Experience, 2018, 30(12): e4368.

DOI: 10.1002/cpe.4368.

[22]

Ray K, Bose S, Mukherjee N. A load balancing approach

to resource provisioning in cloud infrastructure with a

grouping genetic algorithm. In Proc. the 2018 Internation-

al Conference on Current Trends Towards Converging

Technologies, Mar. 2018. DOI: 10.1109/ICCTCT.2018.

8550885.

[23]

Deng W, Liu F M, Jin H, Liao X F, Liu H K. Reliability-

aware server consolidation for balancing energy-lifetime

tradeoff in virtualized cloud datacenters. International

Journal of Communication Systems, 2014, 27(4): 623–642.

DOI: 10.1002/dac.2687.

[24]

Kleinberg J, Tardos É. Algorithm Design. Pearson/Addi-

son-Wesley, 2006.

[25]

Emeras J, Varrette S, Plugaru V, Bouvry P. Amazon

Elastic Compute Cloud (EC2) versus in-house HPC plat-

forms: A cost analysis. IEEE Transaction on Cloud Com-

puting, 2019, 7(2): 456–468. DOI: 10.1109/TCC.2016.

2628371.

[26]

Knauth T, Fetzer C. Energy-aware scheduling for infras-

tructure clouds. In Proc. the 4th IEEE International Con-

ference on Cloud Computing Technology and Science,

Dec. 2012, pp.58–65. DOI: 10.1109/CloudCom.2012.6427

569.

[27]

Graham R L. Bounds on multiprocessing timing anoma-

lies. SIAM Journal on Applied Mathematics, 1969, 17(2):

416–429. DOI: 10.1137/0117039.

[28]

Tian W H, Zhao Y, Zhong Y L, Xu M X, Jing C. A dy-

namic and integrated load-balancing scheduling algo-

rithm for Cloud datacenters. In Proc. the 2011 IEEE In-

ternational Conference on Cloud Computing and Intelli-

gence Systems, Sept. 2011, pp.311–315. DOI: 10.1109/

CCIS.2011.6045081.

[29]

Tian W H, Zhao Y, Xu M X, Zhong Y L, Sun X S. A

toolkit for modeling and simulation of real-time virtual

machine allocation in a cloud data center. IEEE Trans.

Automation Science and Engineering, 2015, 12(1): 153–

161. DOI: 10.1109/TASE.2013.2266338.

[30]

Gulati A, Shanmuganathan G, Holler A, Ahmad I. Cloud-

scale resource management: Challenges and techniques. In

Proc. the 3rd USENIX Conference on Hot Topics in

[31]

Cloud Computing, Jun. 2011, Article No. 3. DOI: 10.

5555/2170444.2170447.

Feitelson D, Tsafrir D, Krakov, D. Experience with using

the parallel workloads archive. Journal of Parallel and

Distributed Computing, 2014, 74(10): 2967–2982. DOI:

10.1016/j.jpdc.2014.06.013.

[32]

Xu M X, Tian W H. An online load balancing scheduling

algorithm for cloud data centers considering real-time

multi-dimensional resource. In Proc. the 2nd Internation-

al Conference on Cloud Computing and Intelligence Sys-

tems, Oct. 30–Nov. 1, 2012, pp.264–268. DOI: 10.1109/

CCIS.2012.6664409.

[33]

WWen-Hong Tian received his Ph.D.

degree in computer science from the

Department of Computer Science,

North Carolina State University,

Raleigh, in 2007. He is now a profes-

sor at the University of Electronic Sci-

ence and Technology of China, Cheng-

du. His research interests include scheduling in cloud

computing and big data platforms, image recognition by

deep learning, and parallel training of large-scale model

and evolution algorithms. He has more than 110 jour-

nal/conference publications and five books in related ar-

eas. He is a senior member of CCF and a member of

ACM and IEEE.

Min-Xian Xu is currently an asso-

ciate professor at Shenzhen Institute

of Advanced Technology, Chinese

Academy of Sciences, Shenzhen. He re-

ceived his B.Sc. degree in 2012 and his

M.Sc. degree in 2015, both in soft-

ware engineering from University of

Electronic Science and Technology of China, Chengdu.

He obtained his Ph.D. degree in computer science from

the University of Melbourne, Melbourne, in 2019. His re-

search interests include resource scheduling and opti-

mization in cloud computing. He has co-authored about

40 peer-reviewed papers published in prominent interna-

tional journals and conferences. His Ph.D. thesis was

awarded the 2019 IEEE TCSC Outstanding Ph.D. Dis-

sertation Award.

Wen-Hong Tian et al.: Prepartition: Load Balancing Approach for Virtual Machine Reservations 791

GGuang-Yao Zhou received his

Bachelor's degree in 2014 and his Mas-

ter's degree in 2017 from School of Ar-

chitectural Engineering, Tianjin Uni-

versity, Tianjin. He is now a Ph.D.

candidate at School of Information

and Software Engineering, University

of Electronic Science and Technology of China, Cheng-

du, majoring in software engineering. His current re-

search interests include resource scheduling of cloud

computing, facial expressions recognition, and theory of

deep reinforcement learning.

Kui Wu entered the Special Class

for the Gifted Young of Wuhan Uni-

versity, Wuhan, in 1985. He received

his B.Sc. and his M.Sc. degrees in

computer science from Wuhan Univer-

sity, Wuhan, in 1990 and 1993, respec-

tively, and his Ph.D. degree in com-

puting science from the University of Alberta, Edmon-

ton, in 2002. He worked as a project manager in Haven

Software Inc. (Hong Kong) from 1995 to 1998. He joined

the Department of Computer Science at the University

of Victoria, Victoria, in 2002, and is currently a profes-

sor there. He was a JSPS Fellow at the University of

Tsukuba, Tsukuba, in 2009, a visiting professor at City

University of Hong Kong, Hong Kong, in 2009 and 2019,

and a visiting professor at Norwegian University of Sci-

ence and Technology, Trondheim, in 2008 and 2019. His

current research interests include network performance

analysis, online social networks, Internet of Things, and

parallel and distributed algorithms.

Cheng-Zhong Xu is the dean of

Faculty of Science and Technology

and the director of Institute of Collab-

orative Innovation, University of

Macau, Macau, and a chair professor

of computer and information science.

Dr. Xu's main research interests lie in

parallel and distributed computing and cloud comput-

ing, in particular, with an emphasis on resource manage-

ment for system's performance, reliability, availability,

power efficiency, and security, and in big data and data-

driven intelligence applications in smart city and self-

driving vehicles. He published two research monographs

and more than 300 peer-reviewed papers in journals and

conference proceedings. His papers received about 15 000

citations with an H-index of 66. He obtained his B.Sc.

and M.Sc. degrees from Nanjing University, Nanjing, in

1986 and 1989 respectively, and his Ph.D. degree from

the University of Hong Kong, Hong Kong, in 1993, all in

computer science and engineering.

Rajkumar Buyya is a Redmond

Barry Distinguished Professor of

School of Computing and Information

Systems and the director of the Cloud

Computing and Distributed Systems

(CLOUDS) Laboratory at the Univer-

sity of Melbourne, Melbourne. He has

authored over 625 publications and seven text books. He

is one of the highly cited authors in computer science

and software engineering worldwide (h-index=160, g-in-

dex=350, 140 400+ citations). Dr. Buyya is recognized

as a ``Web of Science Highly Cited Researcher" for four

consecutive years since 2016, a fellow of IEEE, and Sco-

pus Researcher of the Year 2017 with Excellence in In-

novative Research Award by Elsevier for his outstand-

ing contributions to cloud computing. (For further infor-

mation on Dr. Buyya, please visit his cyberhome:

www.buyya.com.)

792 J. Comput. Sci. & Technol., July 2023, Vol.38, No.4

