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Abstract: Performance-aware deployment of streaming applications is one of the  
key challenging problems in distributed stream computing systems. We proposed a  
performance-aware deployment framework (Pa-Stream) for distributed stream computing 
systems. By addressing the important aspects of the framework, this paper makes the following 
contributions: 1) investigated the performance-aware deployment of a streaming application over 
distributed and heterogeneous computing nodes, and provided a general application deployment 
model; 2) demonstrated a streaming applications deployment scheme by proposing an artificial 
bee colony strategy that deploys application’s vertices onto the best set of computing nodes;  
an incremental online redeployment strategy was used to redeploy the running application;  
3) developed and integrated Pa-Stream into Apache Storm platform; 4) evaluated the fulfilment 
of low latency and high throughput objectives in a distributed stream computing environment. 
Experimental results demonstrate that the proposed Pa-Stream provided effective performance 
improvements on latency, throughput and resource utilisation. 
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1 Introduction 

In the big data era, stream computing is an on-the-fly 
computing paradigm, which can timely extract valuable 
information from input data stream. As data streams are 
directly processed without storage in advance, stream 
computing is a good choice for event-driven applications 
that require real-time reaction to events in the form of 
fluctuating data streams. It is gaining tremendous attention 
due to an increasing number of emerging application 
scenarios (Eidenbenz and Locher, 2016) that rely heavily on 
live and real-time processing of data streams. In the field of 
finance, stream computing can be used to detect specific 
events in high-frequency trading in a timely manner. In the 
field of social networks, stream computing can be used to 
collect current hot topics in real-time, and promote them to 
the online users. In the field of system monitoring, stream 
computing can be used to monitor data access online, and 
issue real-time warning of abnormal access. In the field of 
smart cities, stream computing can be used for intelligent 
transportation. Stream computing can also be used for  
real-time product recommendations during online shopping. 

To address the specific issues raised by stream data 
featured with high volume and high velocity, a new 
generation of stream computing system has been developed. 
Storm, as one of the most popular open source systems (Li 
et al., 2016, 2017). It keeps the system average latency 
within the range of milliseconds level. 

The new generation of stream computing systems 
usually offer simple programming interfaces for users  
to design their streaming applications. In Storm, the 

programming user interfaces are called spout and bolt, and 
the streaming application logic is abstracted as a streaming 
topology. The topology is a directed acyclic graph (DAG). 

Vertices in a DAG represent application operators 
(encapsulating logics such as, filtering, aggregation or 
merging) as well as specific computations. Each vertex 
processes one or more input tuples from the upstream 
vertices according to its implemented function, and creates 
one or more output tuples in the form of data stream  
for downstream vertices. Edges in a DAG indicate 
communications channels between those vertices. We treat 
the terms streaming application, streaming topology, and 
DAG as synonymous. A DAG is submitted to a stream 
computing system and deployed on one or many computing 
nodes. Stream applications can be either dependent or 
independent according to the relationships among them; 
stream applications can also be either preemptive or  
non-preemptive depending on whether they can be 
interrupted during execution. Computing nodes can be 
either homogeneous or heterogeneous hosts depending on 
whether the computing nodes have the same properties or 
not. 

Low latency is one of the critical performance 
requirements for a stream computing system. To achieve  
it, usually application deployment is one of the key 
processes to start with. Users are often required to deploy 
inter-dependent operators to a set of available computing 
nodes to satisfy objective constraints, such as some certain 
throughput and latency. The problem of application 
deployment in distributed big data stream computing 
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systems is also one of the most thought-provoking NP-hard 
problems in general cases (Cai et al., 2019b; Cui et al., 
2019b; Kotto-Kombi et al., 2017). The volume of data 
streams fluctuates over time in an unpredictable manner, 
and the amount of available resources is also dynamically 
changing over time. Stream computing systems are expected 
to adapt to the dynamic heterogeneous resources to  
meet resource needs of streaming applications. It is 
disadvantageous to over or under-provision resources  
over a long period of time. A performance-aware stream 
computing system should be timely aware of the changes of 
each computing node and the volume of the multiple  
data streams. All of these requirements make the optimal 
application deployment challenging. 

To utilise resources wisely, a fundamental solution is 
performance-aware deployment that allows the application 
to scale out or scale in according to the processing needs 
brought by fluctuating data streams. However, the majority 
of state-of-the-art solutions (Hirzel et al., 2014; Thoman  
et al., 2018) do not provide an efficient performance-aware 
deployment strategy that knows how to deploy operators to 
available resources for the current data stream. Previous 
work in this area mainly focuses on scheduling. E.g., Storm 
only supports user-defined parallelism for each vertex, and 
deploys a DAG on a fixed number of computing nodes  
with simple polices, such as the default round-robin 
strategy, which lack performance awareness and adaptation 
capabilities. 

A performance-aware deployment strategy should be 
able to decide when and how streaming applications are to 
be deployed with regard to the specific applications 
structures and available resources. To achieve this goal, a 
performance-aware deployment strategy needs to know  
the available resources of each computing node, the 
dependencies between operators, and how to deploy  
inter-dependent operators to the best set of available 
computing nodes. Currently, the requirements of 
performance-aware deployment are not fully considered 
(Dias de Assunção et al., 2017). This creates the demand for 
investigating a performance-aware deployment framework 
for running streaming applications in distributed stream 
computing systems, processing data streams in an efficient 
manner, minimising the system latency and maximising the 
system throughputs. 

1.1 Key contributions 

This paper makes the following contributions: 

1 Investigated performance-aware deployment of a 
streaming application over distributed and 
heterogeneous computing nodes, and provided a system 
model and application deployment model (Pa-Stream). 

2 Demonstrated the proposed deployment scheme  
(Pa-Stream) based on artificial bee colony (ABC) 
algorithm to deploy vertices of a streaming application 
onto the best set of computing nodes in an acceptable 
amount of time; and redeployed the runtime application 

with an incremental online redeployment strategy to 
improve latency and throughput. 

3 Developed and integrated Pa-Stream into Apache 
Storm platform. 

4 Evaluated the fulfilment of lower latency, higher 
throughput and resource utilisation objectives with  
two streaming applications Top_N and WordCount. 

1.2 Paper organisation 

The rest of the paper is organised as follows: Section 2 
introduces the four steps of application deployment in a 
stream computing system. Section 3 describes the system 
model of Pa-Stream. Section 4 formalises the latency 
modelling of stream application and the stream application 
scheduling model. Section 5 focuses on the system 
architecture, the modified ABC algorithm, and the 
incremental online redeployment algorithm in Pa-Stream. 
Section 6 introduces the experimental environment and 
performance evaluation of Pa-Stream. Section 7 reviews  
the related work on performance-aware deployment in 
distributed computing systems and ABC-based applications. 
Finally, conclusions and future work are given in Section 8. 

2 Background 

Storm, as one of the most popular distributed stream 
computing systems, provides millisecond-level response to 
users. The deployment of stream applications is a key to 
achieving low latency. Usually, a stream application is 
deployed on Storm platform with the following steps. 

2.1 DAG creation 

Functions of a stream application are usually divided into a 
set of data-dependent operators, described as a DAG, and 
termed a topology in Storm. Each vertex in the DAG has a 
special function to process one or more input data streams 
from upstream vertices, and output the processed data 
streams to downstream vertices. The group mode of data 
stream is a strategy used to decide how the data tuples are 
distributed from upstream vertices to downstream vertices, 
and can be set by data stream grouping interface for each 
vertex. Some group modes have been provided by Storm, 
such as fieldsGrouping and globalGrouping. 

All the vertices are implemented through two interfaces 
in Storm, spout and bolt. Spout interface is used to 
implement a vertex that receives data from the external data 
source. Bolt interface is used to implement a vertex that 
processes data streams. Its corresponding processing logic is 
defined by users with regard to its functional requirements. 

2.2 Parameter configuration 

There are a series of stream application parameters to be set. 
For example, the parallelism degree of a vertex, which 
determines the number of instances of a vertex, and plays a 
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key role to implementing elastic computing. However, it is 
extremely hard to determine a proper parallelism degree for 
a vertex in a real-time computing environment, as there are 
many factors such as input rates of data streams, time 
complexity of each vertex, and available resources in a data 
centre. 

Current practice on Storm platform is to set most of the 
parameters based on user’s experience and it is not allowed 
to readjust or re-optimise the topology while the application 
is running. However, the configuration of the parameters  
is not one size fits all. It needs to be readjusted and  
re-optimised in response to the changes of the computing 
environment. The problem is beyond the scope of this paper 
but relevant studies can be found in Mencagli et al. (2018) 
and Wang et al. (2017). 

2.3 Stream application deployment 

Stream applications need to be deployed onto the available 
computing nodes in a data centre. Each vertex of a DAG  
is assigned to an appropriate computing node. In Storm 
platform, a deployment system consists of a nimbus node, 
one or more supervisors nodes, and one or more zookeepers 
nodes. Nimbus node is used to receive and manage stream 
applications. Supervisor node is used to run and manage 
instances of vertex on worker processes. Zookeeper is used 
to coordinate states between supervisor and nimbus. 

Application deployment is a process of deploying  
inter-dependent sub-tasks of an application onto a set of 
available computing nodes while ensuring the execution 
satisfies user’s specified service level agreement (SLA) 
constraints. There is an increasing research interests on this 
SLA-fulfilling problem (Dias de Assunção et al., 2017; 
Thoman et al., 2018), but it has not been completely solved 
and still requires further investigation. 

2.4 Online running and optimisation 

A data stream in distributed stream computing environments 
has two typical features (Mencagli et al., 2018): the first one 
is non-stationarity, which states that the volume of stream 
varies constantly due to the fact that data stream arrives at 
different rates, and often measured in seconds; the other 
feature is burstiness, as data stream may happen at multiple 
time scales and is measured by second-order properties, 
such as the index of dispersion or the Hurst parameter. 

A stream application receives continuous data streams 
and processes them in an online fashion. To keep the 
efficiency and adaptability of an elastic stream computing 
system, an online running and optimisation strategy is 
required to handle data stream fluctuation and changes in 
available resource. 

In this paper, we focus on performance-aware 
deployment of streaming applications in Strom platform. A 
heuristics deployment strategy is employed in the process  
of deployment and online optimisation. A sub-optimal 
scheduling scheme can be obtained through the proposed 
deployment strategy, allowing application to scale out or 

scale in according to the fluctuating data stream and 
changing resources. 

3 System model 

In this section, system model are described, including single 
stream application model, and multiple stream applications 
model. 

3.1 Single stream application model 

The topology of a stream application (Lombardi et al., 
2018) can be described by a DAG G = (V(G), E(G)), where 
V(G) = {vi | i  1, ꞏꞏꞏ, n} is a finite set of n vertices, 

,( ) { | , ( )}i jv v i jE G e v v V G   is a finite set of directed 

edges. 
Vertex vi  V(G) is a computing task of the stream 

application, which receives input data streams, processes 
data tuples, and then generates new output data streams. 
One or more instances of vi can be created on-demand, that 
is vi = {vi1, vi2, ꞏꞏꞏ, vim}, m  {1, 2, ꞏꞏꞏ}. For each vertex 
instance vij, it is an atomic computing task, and can only  
be executed on one computing node. The weight ivw  

associated with vertex vi is the computation cost of vi, which 
indicates the cost that vi takes to process input data tuples. 
Weights of all m instances of vertex vi are the same, that is 

1 2 .i i i imv v v vw w w w     

An edge , ( )i jv ve E G  is a directed edge from vi to vj, 

where vi and vj are directly connected vertices, vi is the 
upstream vertex of vj, and vj is the downstream vertex of vi. 
For instance, an edge 1 2, ( )i jv ve E G  is a directed edge 

connecting vj1 to vj2. The weight 
,vi jew  associated with edge 

,i jv ve  is the communication cost of , ,i jv ve , which indicates 

the cost that ,i jv ve  takes to transfer output data tuple of vi 

from vi to vj. Especially, if vi and vj are running on the same 
computing node, the time of transferring output data tuple of 
vi from vi to vj is usually considered to be 0. Weights of all 
m instances of vertex vi and all n instances of vertex vj are 
the same, which is formulated as the following: 

1, 2vi jew   

2, 1 3, 5 , 2
.v v vi j i j im jne e ew w w


    

A vertex vin,G without a directed edge from any other 
vertices in V(G) to vin,G is named input vertex of G, and a 
vertex vout,G without a directed edge from vout,G to other any 
vertices in V(G) is named output vertex of G. For the sake 
of simplicity and without loss of generality, we assume that 
there is only one input vertex and only one output vertex in 
each stream application. 

3.2 Multiple stream applications model 

There could be multiple stream applications. To simplify the 
deployment of multiple stream applications, we try to 
combine multiple stream applications into a single stream 
application. The relationship between any two stream 
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applications can be subdivided into two categories: data 
dependent and non-data dependent. 

In a data dependent scenario, the output of a steam 
application Gi is the input of the other stream application Gj. 
The result of the combined single stream application Gr  
can be obtained by combining Gi and Gj according to  
the data dependencies. That is, V(Gr) = V(Gi)  V(Gj), 

, ,,( ) ( ) ( ) ,out G in Gi jr i j v vE G E G E G e    where , ,iout G iv G  is 

the output vertex of Gi; , ,jin G jv G  is the input vertex of 

Gj; and , ,,out G in Gi jv ve  is a new directed edge from , iout Gv  to 

, .jin Gv  The input vertex , iin Gv  of Gi is the input vertex of Gr, 

and the output vertex , jout Gv  of Gj is the output vertex of Gr. 

As shown in Figure 1, steam application Gi and Gj are 
combined into a new result steam application Gr. The output 
of vertex of v5 is the input of vertex of va in the result steam 
application Gr. A new directed edge from v5 to va is created 
in Gr. 

Figure 1 Combing multiple stream applications with data 
dependency into one single stream application 
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In a non-data dependency scenario, the resulting single 
stream application Gr can be obtained by adding new input 
vertex , ,rin Gv  output vertex , rout Gv  and corresponding new 

directed edges for Gi and Gj. That is, ( ) ( )r iV G V G  

, ,( ) ,r rj in G out GV G v v    the weight ,in Grvw  of input vertex 

, rin Gv  is 0, that is , 0.in Grvw   Similarly, the weight ,out Grvw  

of output vertex , rout Gv  is also 0, that is , 0.out Grvw   ( )iE G  

, , , , , , , ,, , , ,( ) .in G in G in G in Gj out Gi out G out Gj out Gr i r r rj v v v v v v v vE G e e e e      

, , , , , ,, , ,, ,in G in G in G in Gj out Gi out Gr i r rv v v v v ve e e  and , ,,out Gj out Grv ve  are new 

directed edges from , rin Gv  to , ,iin Gv  from , rin Gv  to , ,jin Gv  

from , iout Gv  to , ,rout Gv  and from , jout Gv  to , ,rout Gv  

respectively. The weight of new directed edges are also 0. 
The input of Gr is the combination of the original input for 
Gi and Gj, the output of Gr is the combination of the original 
input for Gi and Gj. 

As shown in Figure 2, steam application Gi and Gj are 
now merged into a new result steam application Gr. A new 

input vertex vin and output vertex vout are created for Gr. 
There are four new directed edges added, which are from vin 
to v1, from vin to va, from v5 to vout, and from vb to vout are 
created for Gr. Weight of those new vertices and edges are 
0. 

Figure 2 Combing multiple stream applications without data 
dependency into single stream application 
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For applications with both data dependency and  
non-data dependency relationships, a complex result stream 
application can be obtained by applying the above  
two combination rules consecutively. 

4 Problem formulation 

In this section, we formularies latency of stream  
application, stream application scheduling model, and utility 
quantification of constraints in distributed stream computing 
systems. 

4.1 Latency of stream application 

As the topology of a stream application is described by a 
DAG G, all vertices in G are topologically ordered, forming 
one or more directed paths. 

A directed path from vi to vj can be describe as 
, , , ,i jv v i jp v v   the latency of ,i jv vp  is the total 

elapsed time calculated by adding up the computing time of 
each vertex and the communication time of each edge on the 
path , .i jv vp  It can be formulated by equation (1). 

  ,

, , ,

, .i j k v vi k

k v v v v v vi j i k i j

v v v e

v p e p

l p w w
 

    (1) 

The latency of G is the maximum latency of all directed 
paths P(G) of G. It can be described as equation (2). 

 
( )

( ) max ( ) .
p P G

l G l p


  (2) 
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The maximum latency of a directed path starting from input 
vertex vin and ending at output vertex vout of G, can be 
further described as equation (3). 

  
, ,

,
( )

( ) max in out
v v v vin out in out

v v
p P G

l G l p


  (3) 

where , ( )in outv vP G  is the directed path set of G, with all its 

paths starting at the input vertex vin and ending at the output 
vertex vout. 

The latency l(G) of a stream application G is one of  
the key measurements to evaluate the performance of a 
distributed stream computing system. 

4.2 Stream application scheduling model 

In a stream computing system, application scheduling is a 
dynamic problem to be solved at runtime (Cardellini et al., 
2016), which is subject to periodic or unpredictable data 
stream fluctuations and the changing availability of 
resources. This long-run problem further exaggerates the 
difficulty of application scheduling. 

For a stream application G and a set of computing nodes 
CN, the objective of scheduling vertices of stream 
application G onto interconnected computing nodes CN in 
data centre is to find a scheduling s: V(G) → CN that 
minimises l(G), satisfying user specified SLA constraints 
such as low system latency and high system throughput. 

Let 1 2{ , , , }cnnDC cn cn cn   be a set of computing 

nodes in a data centre, and 1 2{ , , , }umU u u u   be a set  

of users. For the sake of simplicity, and without loss of 
generality, we assume that each user submits only one 
application, the stream application submitted by the ith user 
ui is denoted as Gi. The DAG scheduling problem of all mu 
DAGs in the data centre is then formulated as follows: 

 
1

min
um

i

i

l G

  (4) 

subject to 

   max ,i i il G l G u U    (5) 

   min ,i i it G t G u U    (6) 

in which l(Gi) and t(Gi) are the latency and throughput of 
the ith application in the user set, respectively. lmax(Gi) and 
tmin(Gi) are the maximum latency and minimum throughput 
of the ith application, respectively, which are user-specified 
SLAs constraints. Specifically, throughput of an application 
is the amount of data tuple processing per unit time. 

5 PA-Stream: architecture and algorithms 

The above analysis builds up the foundation of Pa-Stream  
– a performance-aware deployment framework. In this 
section, we discuss the overall structure of Pa-Stream, 
including its system architecture, modified ABC algorithm, 
and incremental online redeployment algorithm. 

5.1 System architecture 

The system architecture of Pa-Stream is composed of  
one nimbus, some zookeepers, and a bunch of supervisors. 

Nimbus receives the streaming applications from the 
users, creates the instance graph according to the logic 
graph and configuration parameters, and then deploys vertex 
in-stances to workers on appropriate supervisors following 
the specific deployment strategy. Different deployment 
strategies can be employed via IScheduler interface.  
Storm 1.1.0 or above (Toshniwal et al., 2014) supports four 
kinds of built-in deployment strategies: DefaultScheduler, 
Isolation-Scheduler, Mul-titenantScheduler, and 
ResourceA-wareScheduler. Configurations in Storm.yaml 
specify the selected deployment strategy. We implement  
Pa-Stream using the IScheduler interface. Pa-Stream is 
deployed on nimbus and in charge of the initial deployment 
of vertices onto the best set of supervisors within an 
acceptable amount of time using the ABC algorithm, and it 
automatically redeploys vertices to improve application 
performance when the computing resources change and/or 
the user’s needs cannot be met. 

A supervisor continually listens to nimbus for vertices, 
and executes one or more vertices in one or many work 
processes. Each worker node can execute a limited number 
of work processes, which is determined by the number of 
available slots in the work node. The number of slots is 
determined by hardware capacities, such as CPU, memory. 
A monitor module is built into the supervisor, to monitor the 
inter-node and intra-node performance of the supervisor, 
such as the transmission latency and the remaining available 
slots. A monitor module is also built into the worker node, 
used to get the input and output data rate of each executor 
that runs on the worker node. The information kept by the 
monitor module is used for further vertex redeployment if 
necessary to better adapt to system changes. 

Zookeeper, designed as a coordinator between nimbus 
and supervisors, stores the status of nimbus and supervisors, 
so zookeeper is stateful, while nimbus and supervisors are 
stateless. 

5.2 ABC algorithm 

ABC algorithm is a relatively new bio-inspired swarm 
intelligence algorithm, motivated by the intelligent foraging 
and the waggle dance behaviours of honeys bees swarm, 
proposed by Karaboga and Basturk (Saad et al., 2018), 
mainly for the purposes of continuous optimisation (Ma  
et al., 2019). ABC algorithm is better than genetic algorithm 
(GA) (Sadeghiram, 2017) and particle swarm optimisation 
(PSO) (Agarwal and Ranjan, 2019) over continuous space 
optimisation (Xiang et al., 2018). 

In a honey bees swarm, there are three types of bees, 
which are employed bees, onlooker bees and scout bees. 
Employed bees are committed to searching available food 
sources in the neighbourhood, gathering honey information, 
and sharing honey information with onlooker bees. 
Onlooker bees select a relatively good food source 
according to the quality information of food sources, which 
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are provided by the employed bees, and then to further 
search a better food source with the application of local 
search. When a food source is exhausted by the employed 
and onlooker bees, the employed bees becomes a scout bee, 
and then search for a new food source randomly. 

In the ABC algorithm, the numbers of employed bees or 
onlooker bees equals to the numbers of food source, which 
is denoted by N. Each food source represents a solution, so 
the terms ‘food source’ and ‘solution’ are hereby used 
interchangeably. 

5.2.1 Initialisation 

In the initialisation phase, the number of employed bees and 
onlooker bees are set to N. An initial population is generated 
randomly and consists of N solutions with D-dimensional 
variables. The ith solution Xi = {xi1, xi2, ꞏꞏꞏ, xiD} represents an 
element of the solution set. The jth dimensional element of 
the ith solution can be generated randomly by equation (7). 

 min max min (0, 1)ij j j jx x x x r     (7) 

where i  {1, 2, ꞏꞏꞏ, N}, j  {1, 2, ꞏꞏꞏ, D}, min
jx  and max

jx  

are the minimum and maximum of the jth dimensional 
element, respectively, r(0, 1) is a random real number in the 
interval [0, 1]. 

The fitness function fit(Xi) of the ith solution Xi can be 
calculated by equation (8). 

   
 

 

1
, if 0

1

1 , otherwise

i
ii

i

f X
f Xfit X

f X

   
 

 (8) 

where f(Xi) is the objective function value of the ith solution 
Xi, determined by the response time of the deployment 
strategy. 

5.2.2 Employed bees 

In the employed bee phase, each employed bee begins to 
select a neighbour randomly and get a new food source Vi. 
The jth dimensional element of the ith new solution Vi can be 
generated randomly by equation (9). 

  ( 1, 1),ij ij ij kj ijv x x x i k       (9) 

where i, k  {1, 2, ꞏꞏꞏ, N}, j  {1, 2, ꞏꞏꞏ, D}, Xk is a random 
selected neighbour of Xi, xkj is the jth dimensional element of 
the kth solution Xk, ij(–1, 1) is a random real number in the 
interval [–1, 1]. 

In order to keep vij within the limit of minimum and 
maximum of the jth dimensional element, vij needs to be  
re-adjusted by equation (10). 
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If the fitness of the new solution Vi is better than that of the 
old solution Xi, the new solution Vi will be used to replace 
Xi; otherwise, the old solution Xi is retained. 

5.2.3 Selection probability 

The onlooker bee will select a food source according to the 
fitness of the food source. The selection probability pi of the 
ith solution Xi can be calculated by equation (11). 
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Obviously, the larger the selection probability pi, the more 
likely that the ith solution Xi will be selected by the onlooker 
bees. 

5.2.4 Onlooker bees 

In the onlooker bees phase, when employed bees finish their 
search, they share the nectar amounts and the locations of 
solutions with the onlooker bees. Each onlooker bee begins 
to select a solution Xi according to its selection probability 
pi, and selects a neighbour randomly and gets a new 
candidate solution Vi by equation (9). Similarly, if the 
fitness of the new candidate solution Vi is better than that of 
the selected solution Xi, the new candidate solution Vi will 
replace Xi; otherwise, the selected solution Xi will be 
retained. 

The searching process continues until all the onlooker 
bees complete the similar search. 

5.2.5 Scout bees 

In the scout bees phase, if a solution Xi cannot be improved 
after repeated search, the solution Xi will be abandoned, and 
the employed bee becomes a scout bee and generates a new 
solution Vi to replace the solution Xi using equation (7). 

5.3 Incremental online redeployment 

If the latency or the throughput exceeds the user-defined 
limit, the running DAG needs to be redeployed online to 
improve the latency or throughput. 

In the online redeployment phase, the redeployment 
solution can also be obtained using the modified ABC 
algorithm in Algorithm 1. To minimise the system 
fluctuation caused by the online redeployment, we  
compare the newest redeployment solution with the current 
deployment situation, and only incrementally redeploy some 
vertices that need to be adjusted urgently, rather than doing 
a full redeployment. The online redeployment algorithm is 
described in Algorithm 1. 

The input of this algorithm includes the scheduling state 
of online DAGs and the current available capacity matrix 

.n mvC   The output is the incremental online redeployment 

solution. Step 8 to Step 24 monitor the latency and 
throughput of each online DAGs, decide the timing of 
online redeployment, and incrementally redeploy vertices 
that need to be readjusted. 
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Algorithm 1 Incremental online redeployment algorithm 

1 Input: scheduling state of online DAGs, current available 
capacity matrix n mvC   of computing nodes in a data centre. 

2 Output: incremental online redeployment solution. 

3 Initialise num-candidate-DAG = 0. 

4 Set limit for redeployment threshold. 

5 if DAG G or matrix n mvC   of computing nodes is null then 

6 Return null. 

7 end if 

8 for each DAG in the online DAGs do 

9 Monitor the latency and throughput of each DAG G. 

10 if latency l(G) of the DAG G is in (lmin(G), lmax(G)) or 
throughput t(G) of the application is in (tmin(G), 
tmax(G)) then 

11 Set DAG G as the candidate redeployment 
application. 

12 num-candidate-DAG++. 

13 end if 

14 if num-candidate-DAG > limit or l(G) > lmax(G) or  
t(G) > tmin(G) then 

15 Get the best deployment solution by Algorithm 1. 

16 for each vertex in newest best redeployment 
solution and the current scheduling state do 

17 if a vertex vi that is deployed in both 
deployment solutions but currently is 
deployed on computing nodes other than the 
ones in the newest redeployment solution, 
then 

18 Redeploy the vi to the new computing nodes 
according the newest best redeployment 
solution. 

19 end if 

20 end for 

21 num-candidate-DAG = 0. 

22 end if 

23 Update resource state of each computing node in the 
data centre 

24 end for 

25 return incremental online redeployment solution. 

6 Performance evaluation 

This section focuses on evaluation of the proposed  
Pa-Stream, discussing the experimental environment and 
parameter settings, and providing an analysis on 
performance evaluation results. 

6.1 Experimental environment 

The proposed Pa-Stream system is implemented as an 
extension to Storm 1.0.2 (Toshniwal et al., 2014; Zhang  
et al., 2017). Stream application scenarios have been 
simulated on a computing cluster in Computer Architecture 
Laboratory at China University of Geosciences, Beijing. 

The cluster consists of 18 machines, with one designated 
node serving as master node, running Storm nimbus and UI. 
The computing node runs Linux CentOS 6.3 with dual  
6-core, Intel Core (TM) i7-4790, 3.6 GHz, 8 GB memory, 
and 1 Gbps network interface cards. Three designated as the 
zookeeper node, each computing node runs Linux CentOS 
6.3 with dual 6-core, Intel Core (TM) i7-4790, 3.6 GHz,  
4 GB memory, and 1 Gbps network interface cards. The  
rest 14 machines work as the supervisor nodes, with  
each computing node runs Linux CentOS 6.3 with dual  
4-core, Intel Core (TM) i5-8400, 2.8 GHz, 4 GB  
memory, and 1 Gbps network interface cards. Moreover, 
two streaming applications Top_N (Toshniwal et al., 2014) 
and WordCount (Toshniwal et al., 2014) are submitted to 
the cluster. 

6.2 Performance results 

The experimental setting contains three evaluation 
parameters: average latency AL, average throughput AT, and 
average computing node usage uavg(cn). 

6.2.1 Average latency 

Average latency AL or response time of a stream application 
is one of the most important performance indicators in 
distributed stream computing systems. On Storm platform, 
AL can be directly obtained through the Storm UI. 

Figure 3 Average latency with different rates of inputs data 
stream 

 

With the increase of rates of data stream, the average 
latency increases under both deployment strategies. For 
each input rate, Pa-Stream has a shorter average than the 
default Storm strategy. 

As shown in Figure 3, when the rates are less than  
1,000 tuples/s, both the average latency of Pa-Stream and 
the default Storm strategy all stay at a lower level. The 
difference between the two deployment strategies is small. 
When the rates climb to more than 1,000 tuples/s, the gap 
between the two strategies gets wider. The higher the data 
rate is, the more significant this difference is noted. When 
the rates increase to 7,000 tuples/s, the average latency of 
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Pa-Stream is gauged at 450 millisecond and the default 
Storm strategy goes to 1,200 millisecond. 

6.2.2 Average throughput 

Average throughput AT reflects the overall processing 
ability of all running stream applications, evaluated by the 
number of output tuples per second per application. 

With the increase of rates of data stream, the average 
throughput increases under both deployment strategies. At 
each rate, Pa-Stream beats the default Storm strategy with a 
higher average throughput. 

As shown in Figure 4, with the increase of rates, the 
difference between the two strategies becomes obvious. The 
higher the data rate is, the more significant this difference is. 
When the rate reaches at 100 tuples/s, both the average 
throughput of Pa-Stream and the default Storm strategy 
behave at a similar level, gauged at 48 tuples/s and  
49 tuples/s, respectively. The difference between the  
two deployment strategies is small. When the rate reaches at 
7,000 tuples/s, the average throughput of Pa-Stream is 
gauged at 3,000 tuples/s, and that of the default Storm 
strategy goes to and 900 tuples/s. The difference is rather 
significant. 

Figure 4 Average throughput with different rates of inputs data 
stream 

 

7 Related work 

In this section, we review two categories of related works: 
performance-aware deployment in distributed computing 
systems and ABC-based applications. 

7.1 Performance-aware deployment in distributed 
computing systems 

Application deployment plays an important role in 
distributed computing systems to help the application meet 
its functional and non-functional requirements. It is difficult 
to find an optimal schedule for a constraint-based DAG 
because of the fluctuating arrival rates of data stream and 
the varying amount of available computing resources. 
Performance-aware deployment is of crucial importance as 

the deployment state of applications directly affects the 
system performance (El-Kassabi et al., 2019). 

In Saez et al. (2015), the authors focused on the 
persistence layer of applications. The effect of different 
deployment scenarios on application performance over  
time was investigated, and a performance-aware dynamic 
application (re)distributed design support process was 
proposed. The performance was evaluated with some  
well-known applications, such as the TPC-H benchmark. 

In Kessler and Löwe (2012), the principles of a  
novel framework for performance-aware composition of 
sequential and explicitly parallel software components  
with variants implementation were described. Automatic 
composition results in a table-driven implementation that, 
for each parallel invocation of a performance-aware 
component, looked up the expected best implementation 
variant, processor allocation and schedule. 

To summarise, performance-aware deployment in 
distributed computing systems has been studied in  
many works. However, few works have considered 
performance-ware deployment of streaming applications. In 
our work, we improve system performance by employing a 
performance-aware deployment strategy. 

7.2 Bio-inspired-based applications in distributed 
systems 

Bio-inspired algorithm can be applied in many fields  
(Cai et al., 2016). In Cai et al. (2019a), a multi-objective 
three-dimensional DV-hop localisation algorithm was 
proposed with NSGA-II. In Cui et al. (2019a), a CNNs and 
multi-objective algorithms were proposed for malicious 
code detection. In Cai et al. (2018), a bat algorithm with 
triangle-flipping strategy was proposed for numerical 
optimisation. ABC is a relatively new bio-inspired swarm 
intelligence algorithm, often resulting in better performance 
than GA, PSO over continuous space optimisation (Xiang  
et al., 2018). 

For example, the topological design of a computer 
communication network is a well-known NP-hard problem. 
In Saad et al. (2018), a goal programming-based  
multi-objective artificial bee colony optimisation (MOABC) 
algorithm was proposed to solve the problem of topological 
design in distributed local area networks, and a comparative 
analysis was also done with regard to a non-dominated 
sorting GA and a Pareto-dominance PSO algorithm. 

Virtual network embedding is also a hot research topic 
in the network virtualisation context. In Pathak et al. (2018), 
the authors proposed an approach based on ABC to address 
the dynamic virtual network embedding problem in a 
scenario with multiple infrastructure providers. A 
comparative study was conducted with other nature-inspired 
virtual network embedding algorithms. The findings 
affirmed that the proposed virtual network embedding 
approach performed well and produced better results. 

In cloud manufacturing, it is possible that there are 
several conflicting criteria that need to be optimised 
simultaneously during the service composition and 



 Performance-aware deployment of streaming applications in distributed stream computing systems 61 

selection. In this process, the trade-off regarding the quality 
of the composite services is a key issue in successful 
implementation of manufacturing tasks. In Zhou et al. 
(2018), an adaptive multi-population differential ABC 
algorithm was proposed for multiple-objective service 
composition in cloud manufacturing. 

To summarise, the aforementioned application of ABC 
algorithm provides a valuable insight into the potential 
solutions for various problems in distributed systems. 
However, in big data stream computing systems, existing 
ABC algorithms cannot be applied to the stream application 
deployment. Particular challenges and opportunities of 
distributed stream computing system need to be considered, 
and some characteristics specific to data streams need to be 
considered when employing ABC algorithm to deploy 
stream applications in the distributed environments. 

8 Conclusions and future work 

To achieve low system latency, high system throughput, and 
high resource utilisation, a performance-aware deployment 
strategy should be able to determine when and how 
streaming applications are deployed according to the 
structure of applications and the available resources. It 
knows the available resources of each computing node, the 
dependencies between operators, and also the efficient 
deployment of inter-dependent operators to a best set  
of available computing nodes. The performance-aware 
deployment framework can process unbounded data streams 
in a scalable and efficient manner, minimising system 
latency and maximising system throughputs. 

The paper makes the following contributions: 

1 Investigated the performance-aware deployment of 
streaming applications over distributed and 
heterogeneous computing nodes, and provided a 
general system and application deployment model for 
distributed stream computing systems. 

2 Proposed a streaming application deployment scheme 
by employing the artificial bee colony algorithm, and 
an incremental online redeployment strategy for 
running applications. 

3 Developed and integrated the Pa-Stream into Apache 
Storm platform. 

4 Implemented a prototype and tested the performance of 
the proposed Pa-Stream. 

Our future work will be focusing on the following 
directions: 

1 To develop a complete performance-aware deployment 
framework based on Pa-Stream. 

2 To apply Pa-Stream in real big data stream computing 
application scenarios, such as real-time data monitoring 
scenario and real-time user portraits. 
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