
52 Int. J. Bio-Inspired Computation, Vol. 15, No. 1, 2020

Copyright © 2020 Inderscience Enterprises Ltd.

Performance-aware deployment of streaming
applications in distributed stream computing
systems

Dawei Sun*
School of Information Engineering,
China University of Geosciences,
Beijing, 100083, China
and
Polytechnic Center for Territory Spatial Big-data,
MNR of China, China
Email: sundaweicn@cugb.edu.cn
*Corresponding author

Shang Gao
School of Information Technology,
Deakin University,
Victoria 3216, Australia
Email: shang.gao@deakin.edu.au

Xunyun Liu
Cloud Computing and Distributed Systems (CLOUDS) Laboratory,
School of Computing and Information Systems,
The University of Melbourne, Australia
Email: xunyunliu@gmail.com

Fengyun Li
School of Computer Science and Engineering,
Northeastern University,
Shenyang, 110819, China
Email: lifengyun@mail.neu.edu.cn

Rajkumar Buyya
Cloud Computing and Distributed Systems (CLOUDS) Laboratory,
School of Computing and Information Systems,
The University of Melbourne, Australia
Email: rbuyya@unimelb.edu.au

Abstract: Performance-aware deployment of streaming applications is one of the
key challenging problems in distributed stream computing systems. We proposed a
performance-aware deployment framework (Pa-Stream) for distributed stream computing
systems. By addressing the important aspects of the framework, this paper makes the following
contributions: 1) investigated the performance-aware deployment of a streaming application over
distributed and heterogeneous computing nodes, and provided a general application deployment
model; 2) demonstrated a streaming applications deployment scheme by proposing an artificial
bee colony strategy that deploys application’s vertices onto the best set of computing nodes;
an incremental online redeployment strategy was used to redeploy the running application;
3) developed and integrated Pa-Stream into Apache Storm platform; 4) evaluated the fulfilment
of low latency and high throughput objectives in a distributed stream computing environment.
Experimental results demonstrate that the proposed Pa-Stream provided effective performance
improvements on latency, throughput and resource utilisation.

Keywords: performance awareness; application deployment; stream computing; artificial bee
colony algorithm; distributed system.

 Performance-aware deployment of streaming applications in distributed stream computing systems 53

Reference to this paper should be made as follows: Sun, D., Gao, S., Liu, X., Li, F. and
Buyya, R. (2020) ‘Performance-aware deployment of streaming applications in distributed stream
computing systems’, Int. J. Bio-Inspired Computation, Vol. 15, No. 1, pp.52–62.

Biographical notes: Dawei Sun is an Associate Professor at the School of Information
Engineering, China University of Geosciences, Beijing, China. His current researches interests
include big data computing, cloud computing and distributed systems.

Shang Gao is currently a Senior Lecturer at the School of Information Technology, Deakin
University, Geelong, Australia. Her current research interests include distributed collaboration,
cybersecurity and cloud computing.

Xunyun Liu received his BE and ME in Computer Science and Technology from the National
University of Defense Technology in 2011 and 2013, respectively. He obtained his PhD in
Computer Science at the University of Melbourne in 2018. His research interests include stream
processing and distributed systems.

Fengyun Li is an Associate Professor at the School of Computer Science and Engineering,
Northeastern University, China. Her current researches interests include distributed systems,
network security, privacy preserving and cloud computing.

Rajkumar Buyya is a Redmond Barry Distinguished Professor and Director of the Cloud
Computing and Distributed Systems (CLOUDS) Laboratory at University of Melbourne,
Australia. He is also serving as the Founding CEO of the Manjrasoft, a spin-off company of
the university, commercialising its innovations in Cloud computing. He has authored over
650 publications and four text books. He is one of the highly cited authors in computer science
and software engineering worldwide (h-index 128, 85,600+ citations). He has served as the
Founding Editor-in-Chief of the IEEE Transactions on Cloud Computing and now serving as EiC
of Journal of Software: Practice and Experience.

1 Introduction

In the big data era, stream computing is an on-the-fly
computing paradigm, which can timely extract valuable
information from input data stream. As data streams are
directly processed without storage in advance, stream
computing is a good choice for event-driven applications
that require real-time reaction to events in the form of
fluctuating data streams. It is gaining tremendous attention
due to an increasing number of emerging application
scenarios (Eidenbenz and Locher, 2016) that rely heavily on
live and real-time processing of data streams. In the field of
finance, stream computing can be used to detect specific
events in high-frequency trading in a timely manner. In the
field of social networks, stream computing can be used to
collect current hot topics in real-time, and promote them to
the online users. In the field of system monitoring, stream
computing can be used to monitor data access online, and
issue real-time warning of abnormal access. In the field of
smart cities, stream computing can be used for intelligent
transportation. Stream computing can also be used for
real-time product recommendations during online shopping.

To address the specific issues raised by stream data
featured with high volume and high velocity, a new
generation of stream computing system has been developed.
Storm, as one of the most popular open source systems (Li
et al., 2016, 2017). It keeps the system average latency
within the range of milliseconds level.

The new generation of stream computing systems
usually offer simple programming interfaces for users
to design their streaming applications. In Storm, the

programming user interfaces are called spout and bolt, and
the streaming application logic is abstracted as a streaming
topology. The topology is a directed acyclic graph (DAG).

Vertices in a DAG represent application operators
(encapsulating logics such as, filtering, aggregation or
merging) as well as specific computations. Each vertex
processes one or more input tuples from the upstream
vertices according to its implemented function, and creates
one or more output tuples in the form of data stream
for downstream vertices. Edges in a DAG indicate
communications channels between those vertices. We treat
the terms streaming application, streaming topology, and
DAG as synonymous. A DAG is submitted to a stream
computing system and deployed on one or many computing
nodes. Stream applications can be either dependent or
independent according to the relationships among them;
stream applications can also be either preemptive or
non-preemptive depending on whether they can be
interrupted during execution. Computing nodes can be
either homogeneous or heterogeneous hosts depending on
whether the computing nodes have the same properties or
not.

Low latency is one of the critical performance
requirements for a stream computing system. To achieve
it, usually application deployment is one of the key
processes to start with. Users are often required to deploy
inter-dependent operators to a set of available computing
nodes to satisfy objective constraints, such as some certain
throughput and latency. The problem of application
deployment in distributed big data stream computing

54 D. Sun et al.

systems is also one of the most thought-provoking NP-hard
problems in general cases (Cai et al., 2019b; Cui et al.,
2019b; Kotto-Kombi et al., 2017). The volume of data
streams fluctuates over time in an unpredictable manner,
and the amount of available resources is also dynamically
changing over time. Stream computing systems are expected
to adapt to the dynamic heterogeneous resources to
meet resource needs of streaming applications. It is
disadvantageous to over or under-provision resources
over a long period of time. A performance-aware stream
computing system should be timely aware of the changes of
each computing node and the volume of the multiple
data streams. All of these requirements make the optimal
application deployment challenging.

To utilise resources wisely, a fundamental solution is
performance-aware deployment that allows the application
to scale out or scale in according to the processing needs
brought by fluctuating data streams. However, the majority
of state-of-the-art solutions (Hirzel et al., 2014; Thoman
et al., 2018) do not provide an efficient performance-aware
deployment strategy that knows how to deploy operators to
available resources for the current data stream. Previous
work in this area mainly focuses on scheduling. E.g., Storm
only supports user-defined parallelism for each vertex, and
deploys a DAG on a fixed number of computing nodes
with simple polices, such as the default round-robin
strategy, which lack performance awareness and adaptation
capabilities.

A performance-aware deployment strategy should be
able to decide when and how streaming applications are to
be deployed with regard to the specific applications
structures and available resources. To achieve this goal, a
performance-aware deployment strategy needs to know
the available resources of each computing node, the
dependencies between operators, and how to deploy
inter-dependent operators to the best set of available
computing nodes. Currently, the requirements of
performance-aware deployment are not fully considered
(Dias de Assunção et al., 2017). This creates the demand for
investigating a performance-aware deployment framework
for running streaming applications in distributed stream
computing systems, processing data streams in an efficient
manner, minimising the system latency and maximising the
system throughputs.

1.1 Key contributions

This paper makes the following contributions:

1 Investigated performance-aware deployment of a
streaming application over distributed and
heterogeneous computing nodes, and provided a system
model and application deployment model (Pa-Stream).

2 Demonstrated the proposed deployment scheme
(Pa-Stream) based on artificial bee colony (ABC)
algorithm to deploy vertices of a streaming application
onto the best set of computing nodes in an acceptable
amount of time; and redeployed the runtime application

with an incremental online redeployment strategy to
improve latency and throughput.

3 Developed and integrated Pa-Stream into Apache
Storm platform.

4 Evaluated the fulfilment of lower latency, higher
throughput and resource utilisation objectives with
two streaming applications Top_N and WordCount.

1.2 Paper organisation

The rest of the paper is organised as follows: Section 2
introduces the four steps of application deployment in a
stream computing system. Section 3 describes the system
model of Pa-Stream. Section 4 formalises the latency
modelling of stream application and the stream application
scheduling model. Section 5 focuses on the system
architecture, the modified ABC algorithm, and the
incremental online redeployment algorithm in Pa-Stream.
Section 6 introduces the experimental environment and
performance evaluation of Pa-Stream. Section 7 reviews
the related work on performance-aware deployment in
distributed computing systems and ABC-based applications.
Finally, conclusions and future work are given in Section 8.

2 Background

Storm, as one of the most popular distributed stream
computing systems, provides millisecond-level response to
users. The deployment of stream applications is a key to
achieving low latency. Usually, a stream application is
deployed on Storm platform with the following steps.

2.1 DAG creation

Functions of a stream application are usually divided into a
set of data-dependent operators, described as a DAG, and
termed a topology in Storm. Each vertex in the DAG has a
special function to process one or more input data streams
from upstream vertices, and output the processed data
streams to downstream vertices. The group mode of data
stream is a strategy used to decide how the data tuples are
distributed from upstream vertices to downstream vertices,
and can be set by data stream grouping interface for each
vertex. Some group modes have been provided by Storm,
such as fieldsGrouping and globalGrouping.

All the vertices are implemented through two interfaces
in Storm, spout and bolt. Spout interface is used to
implement a vertex that receives data from the external data
source. Bolt interface is used to implement a vertex that
processes data streams. Its corresponding processing logic is
defined by users with regard to its functional requirements.

2.2 Parameter configuration

There are a series of stream application parameters to be set.
For example, the parallelism degree of a vertex, which
determines the number of instances of a vertex, and plays a

 Performance-aware deployment of streaming applications in distributed stream computing systems 55

key role to implementing elastic computing. However, it is
extremely hard to determine a proper parallelism degree for
a vertex in a real-time computing environment, as there are
many factors such as input rates of data streams, time
complexity of each vertex, and available resources in a data
centre.

Current practice on Storm platform is to set most of the
parameters based on user’s experience and it is not allowed
to readjust or re-optimise the topology while the application
is running. However, the configuration of the parameters
is not one size fits all. It needs to be readjusted and
re-optimised in response to the changes of the computing
environment. The problem is beyond the scope of this paper
but relevant studies can be found in Mencagli et al. (2018)
and Wang et al. (2017).

2.3 Stream application deployment

Stream applications need to be deployed onto the available
computing nodes in a data centre. Each vertex of a DAG
is assigned to an appropriate computing node. In Storm
platform, a deployment system consists of a nimbus node,
one or more supervisors nodes, and one or more zookeepers
nodes. Nimbus node is used to receive and manage stream
applications. Supervisor node is used to run and manage
instances of vertex on worker processes. Zookeeper is used
to coordinate states between supervisor and nimbus.

Application deployment is a process of deploying
inter-dependent sub-tasks of an application onto a set of
available computing nodes while ensuring the execution
satisfies user’s specified service level agreement (SLA)
constraints. There is an increasing research interests on this
SLA-fulfilling problem (Dias de Assunção et al., 2017;
Thoman et al., 2018), but it has not been completely solved
and still requires further investigation.

2.4 Online running and optimisation

A data stream in distributed stream computing environments
has two typical features (Mencagli et al., 2018): the first one
is non-stationarity, which states that the volume of stream
varies constantly due to the fact that data stream arrives at
different rates, and often measured in seconds; the other
feature is burstiness, as data stream may happen at multiple
time scales and is measured by second-order properties,
such as the index of dispersion or the Hurst parameter.

A stream application receives continuous data streams
and processes them in an online fashion. To keep the
efficiency and adaptability of an elastic stream computing
system, an online running and optimisation strategy is
required to handle data stream fluctuation and changes in
available resource.

In this paper, we focus on performance-aware
deployment of streaming applications in Strom platform. A
heuristics deployment strategy is employed in the process
of deployment and online optimisation. A sub-optimal
scheduling scheme can be obtained through the proposed
deployment strategy, allowing application to scale out or

scale in according to the fluctuating data stream and
changing resources.

3 System model

In this section, system model are described, including single
stream application model, and multiple stream applications
model.

3.1 Single stream application model

The topology of a stream application (Lombardi et al.,
2018) can be described by a DAG G = (V(G), E(G)), where
V(G) = {vi | i  1, ꞏꞏꞏ, n} is a finite set of n vertices,

,() { | , ()}i jv v i jE G e v v V G  is a finite set of directed

edges.
Vertex vi  V(G) is a computing task of the stream

application, which receives input data streams, processes
data tuples, and then generates new output data streams.
One or more instances of vi can be created on-demand, that
is vi = {vi1, vi2, ꞏꞏꞏ, vim}, m  {1, 2, ꞏꞏꞏ}. For each vertex
instance vij, it is an atomic computing task, and can only
be executed on one computing node. The weight ivw

associated with vertex vi is the computation cost of vi, which
indicates the cost that vi takes to process input data tuples.
Weights of all m instances of vertex vi are the same, that is

1 2 .i i i imv v v vw w w w   

An edge , ()i jv ve E G is a directed edge from vi to vj,

where vi and vj are directly connected vertices, vi is the
upstream vertex of vj, and vj is the downstream vertex of vi.
For instance, an edge 1 2, ()i jv ve E G is a directed edge

connecting vj1 to vj2. The weight
,vi jew associated with edge

,i jv ve is the communication cost of , ,i jv ve , which indicates

the cost that ,i jv ve takes to transfer output data tuple of vi

from vi to vj. Especially, if vi and vj are running on the same
computing node, the time of transferring output data tuple of
vi from vi to vj is usually considered to be 0. Weights of all
m instances of vertex vi and all n instances of vertex vj are
the same, which is formulated as the following:

1, 2vi jew 

2, 1 3, 5 , 2
.v v vi j i j im jne e ew w w


  

A vertex vin,G without a directed edge from any other
vertices in V(G) to vin,G is named input vertex of G, and a
vertex vout,G without a directed edge from vout,G to other any
vertices in V(G) is named output vertex of G. For the sake
of simplicity and without loss of generality, we assume that
there is only one input vertex and only one output vertex in
each stream application.

3.2 Multiple stream applications model

There could be multiple stream applications. To simplify the
deployment of multiple stream applications, we try to
combine multiple stream applications into a single stream
application. The relationship between any two stream

56 D. Sun et al.

applications can be subdivided into two categories: data
dependent and non-data dependent.

In a data dependent scenario, the output of a steam
application Gi is the input of the other stream application Gj.
The result of the combined single stream application Gr
can be obtained by combining Gi and Gj according to
the data dependencies. That is, V(Gr) = V(Gi)  V(Gj),

, ,,() () () ,out G in Gi jr i j v vE G E G E G e   where , ,iout G iv G is

the output vertex of Gi; , ,jin G jv G is the input vertex of

Gj; and , ,,out G in Gi jv ve is a new directed edge from , iout Gv to

, .jin Gv The input vertex , iin Gv of Gi is the input vertex of Gr,

and the output vertex , jout Gv of Gj is the output vertex of Gr.

As shown in Figure 1, steam application Gi and Gj are
combined into a new result steam application Gr. The output
of vertex of v5 is the input of vertex of va in the result steam
application Gr. A new directed edge from v5 to va is created
in Gr.

Figure 1 Combing multiple stream applications with data
dependency into one single stream application

v5v1

v4

v3

v2

va vb

v5v1

v4

v3

v2

va vb

(a) Gi (b) Gj

(c) Gr

In a non-data dependency scenario, the resulting single
stream application Gr can be obtained by adding new input
vertex , ,rin Gv output vertex , rout Gv and corresponding new

directed edges for Gi and Gj. That is, () ()r iV G V G

, ,() ,r rj in G out GV G v v   the weight ,in Grvw of input vertex

, rin Gv is 0, that is , 0.in Grvw  Similarly, the weight ,out Grvw

of output vertex , rout Gv is also 0, that is , 0.out Grvw  ()iE G

, , , , , , , ,, , , ,() .in G in G in G in Gj out Gi out G out Gj out Gr i r r rj v v v v v v v vE G e e e e    

, , , , , ,, , ,, ,in G in G in G in Gj out Gi out Gr i r rv v v v v ve e e and , ,,out Gj out Grv ve are new

directed edges from , rin Gv to , ,iin Gv from , rin Gv to , ,jin Gv

from , iout Gv to , ,rout Gv and from , jout Gv to , ,rout Gv

respectively. The weight of new directed edges are also 0.
The input of Gr is the combination of the original input for
Gi and Gj, the output of Gr is the combination of the original
input for Gi and Gj.

As shown in Figure 2, steam application Gi and Gj are
now merged into a new result steam application Gr. A new

input vertex vin and output vertex vout are created for Gr.
There are four new directed edges added, which are from vin
to v1, from vin to va, from v5 to vout, and from vb to vout are
created for Gr. Weight of those new vertices and edges are
0.

Figure 2 Combing multiple stream applications without data
dependency into single stream application

v5v1

v4

v3

v2

va vb

v5v1

v4

v3

v2

(a) Gi (b) Gj

(c) Gr

va vb

vin vout

For applications with both data dependency and
non-data dependency relationships, a complex result stream
application can be obtained by applying the above
two combination rules consecutively.

4 Problem formulation

In this section, we formularies latency of stream
application, stream application scheduling model, and utility
quantification of constraints in distributed stream computing
systems.

4.1 Latency of stream application

As the topology of a stream application is described by a
DAG G, all vertices in G are topologically ordered, forming
one or more directed paths.

A directed path from vi to vj can be describe as
, , , ,i jv v i jp v v  the latency of ,i jv vp is the total

elapsed time calculated by adding up the computing time of
each vertex and the communication time of each edge on the
path , .i jv vp It can be formulated by equation (1).

  ,

, , ,

, .i j k v vi k

k v v v v v vi j i k i j

v v v e

v p e p

l p w w
 

   (1)

The latency of G is the maximum latency of all directed
paths P(G) of G. It can be described as equation (2).

 
()

() max () .
p P G

l G l p


 (2)

 Performance-aware deployment of streaming applications in distributed stream computing systems 57

The maximum latency of a directed path starting from input
vertex vin and ending at output vertex vout of G, can be
further described as equation (3).

  
, ,

,
()

() max in out
v v v vin out in out

v v
p P G

l G l p


 (3)

where , ()in outv vP G is the directed path set of G, with all its

paths starting at the input vertex vin and ending at the output
vertex vout.

The latency l(G) of a stream application G is one of
the key measurements to evaluate the performance of a
distributed stream computing system.

4.2 Stream application scheduling model

In a stream computing system, application scheduling is a
dynamic problem to be solved at runtime (Cardellini et al.,
2016), which is subject to periodic or unpredictable data
stream fluctuations and the changing availability of
resources. This long-run problem further exaggerates the
difficulty of application scheduling.

For a stream application G and a set of computing nodes
CN, the objective of scheduling vertices of stream
application G onto interconnected computing nodes CN in
data centre is to find a scheduling s: V(G) → CN that
minimises l(G), satisfying user specified SLA constraints
such as low system latency and high system throughput.

Let 1 2{ , , , }cnnDC cn cn cn  be a set of computing

nodes in a data centre, and 1 2{ , , , }umU u u u  be a set

of users. For the sake of simplicity, and without loss of
generality, we assume that each user submits only one
application, the stream application submitted by the ith user
ui is denoted as Gi. The DAG scheduling problem of all mu
DAGs in the data centre is then formulated as follows:

 
1

min
um

i

i

l G

 (4)

subject to

   max ,i i il G l G u U   (5)

   min ,i i it G t G u U   (6)

in which l(Gi) and t(Gi) are the latency and throughput of
the ith application in the user set, respectively. lmax(Gi) and
tmin(Gi) are the maximum latency and minimum throughput
of the ith application, respectively, which are user-specified
SLAs constraints. Specifically, throughput of an application
is the amount of data tuple processing per unit time.

5 PA-Stream: architecture and algorithms

The above analysis builds up the foundation of Pa-Stream
– a performance-aware deployment framework. In this
section, we discuss the overall structure of Pa-Stream,
including its system architecture, modified ABC algorithm,
and incremental online redeployment algorithm.

5.1 System architecture

The system architecture of Pa-Stream is composed of
one nimbus, some zookeepers, and a bunch of supervisors.

Nimbus receives the streaming applications from the
users, creates the instance graph according to the logic
graph and configuration parameters, and then deploys vertex
in-stances to workers on appropriate supervisors following
the specific deployment strategy. Different deployment
strategies can be employed via IScheduler interface.
Storm 1.1.0 or above (Toshniwal et al., 2014) supports four
kinds of built-in deployment strategies: DefaultScheduler,
Isolation-Scheduler, Mul-titenantScheduler, and
ResourceA-wareScheduler. Configurations in Storm.yaml
specify the selected deployment strategy. We implement
Pa-Stream using the IScheduler interface. Pa-Stream is
deployed on nimbus and in charge of the initial deployment
of vertices onto the best set of supervisors within an
acceptable amount of time using the ABC algorithm, and it
automatically redeploys vertices to improve application
performance when the computing resources change and/or
the user’s needs cannot be met.

A supervisor continually listens to nimbus for vertices,
and executes one or more vertices in one or many work
processes. Each worker node can execute a limited number
of work processes, which is determined by the number of
available slots in the work node. The number of slots is
determined by hardware capacities, such as CPU, memory.
A monitor module is built into the supervisor, to monitor the
inter-node and intra-node performance of the supervisor,
such as the transmission latency and the remaining available
slots. A monitor module is also built into the worker node,
used to get the input and output data rate of each executor
that runs on the worker node. The information kept by the
monitor module is used for further vertex redeployment if
necessary to better adapt to system changes.

Zookeeper, designed as a coordinator between nimbus
and supervisors, stores the status of nimbus and supervisors,
so zookeeper is stateful, while nimbus and supervisors are
stateless.

5.2 ABC algorithm

ABC algorithm is a relatively new bio-inspired swarm
intelligence algorithm, motivated by the intelligent foraging
and the waggle dance behaviours of honeys bees swarm,
proposed by Karaboga and Basturk (Saad et al., 2018),
mainly for the purposes of continuous optimisation (Ma
et al., 2019). ABC algorithm is better than genetic algorithm
(GA) (Sadeghiram, 2017) and particle swarm optimisation
(PSO) (Agarwal and Ranjan, 2019) over continuous space
optimisation (Xiang et al., 2018).

In a honey bees swarm, there are three types of bees,
which are employed bees, onlooker bees and scout bees.
Employed bees are committed to searching available food
sources in the neighbourhood, gathering honey information,
and sharing honey information with onlooker bees.
Onlooker bees select a relatively good food source
according to the quality information of food sources, which

58 D. Sun et al.

are provided by the employed bees, and then to further
search a better food source with the application of local
search. When a food source is exhausted by the employed
and onlooker bees, the employed bees becomes a scout bee,
and then search for a new food source randomly.

In the ABC algorithm, the numbers of employed bees or
onlooker bees equals to the numbers of food source, which
is denoted by N. Each food source represents a solution, so
the terms ‘food source’ and ‘solution’ are hereby used
interchangeably.

5.2.1 Initialisation

In the initialisation phase, the number of employed bees and
onlooker bees are set to N. An initial population is generated
randomly and consists of N solutions with D-dimensional
variables. The ith solution Xi = {xi1, xi2, ꞏꞏꞏ, xiD} represents an
element of the solution set. The jth dimensional element of
the ith solution can be generated randomly by equation (7).

 min max min (0, 1)ij j j jx x x x r    (7)

where i  {1, 2, ꞏꞏꞏ, N}, j  {1, 2, ꞏꞏꞏ, D}, min
jx and max

jx

are the minimum and maximum of the jth dimensional
element, respectively, r(0, 1) is a random real number in the
interval [0, 1].

The fitness function fit(Xi) of the ith solution Xi can be
calculated by equation (8).

   
 

 

1
, if 0

1

1 , otherwise

i
ii

i

f X
f Xfit X

f X

   
 

 (8)

where f(Xi) is the objective function value of the ith solution
Xi, determined by the response time of the deployment
strategy.

5.2.2 Employed bees

In the employed bee phase, each employed bee begins to
select a neighbour randomly and get a new food source Vi.
The jth dimensional element of the ith new solution Vi can be
generated randomly by equation (9).

  (1, 1),ij ij ij kj ijv x x x i k      (9)

where i, k  {1, 2, ꞏꞏꞏ, N}, j  {1, 2, ꞏꞏꞏ, D}, Xk is a random
selected neighbour of Xi, xkj is the jth dimensional element of
the kth solution Xk, ij(–1, 1) is a random real number in the
interval [–1, 1].

In order to keep vij within the limit of minimum and
maximum of the jth dimensional element, vij needs to be
re-adjusted by equation (10).

min min

max max

, if
.

, if
ijj j

ij
ijj j

x v x
v

x v x

   
 (10)

If the fitness of the new solution Vi is better than that of the
old solution Xi, the new solution Vi will be used to replace
Xi; otherwise, the old solution Xi is retained.

5.2.3 Selection probability

The onlooker bee will select a food source according to the
fitness of the food source. The selection probability pi of the
ith solution Xi can be calculated by equation (11).

1

.

.

i
i SN

j

j

fit
p

fit





 (11)

Obviously, the larger the selection probability pi, the more
likely that the ith solution Xi will be selected by the onlooker
bees.

5.2.4 Onlooker bees

In the onlooker bees phase, when employed bees finish their
search, they share the nectar amounts and the locations of
solutions with the onlooker bees. Each onlooker bee begins
to select a solution Xi according to its selection probability
pi, and selects a neighbour randomly and gets a new
candidate solution Vi by equation (9). Similarly, if the
fitness of the new candidate solution Vi is better than that of
the selected solution Xi, the new candidate solution Vi will
replace Xi; otherwise, the selected solution Xi will be
retained.

The searching process continues until all the onlooker
bees complete the similar search.

5.2.5 Scout bees

In the scout bees phase, if a solution Xi cannot be improved
after repeated search, the solution Xi will be abandoned, and
the employed bee becomes a scout bee and generates a new
solution Vi to replace the solution Xi using equation (7).

5.3 Incremental online redeployment

If the latency or the throughput exceeds the user-defined
limit, the running DAG needs to be redeployed online to
improve the latency or throughput.

In the online redeployment phase, the redeployment
solution can also be obtained using the modified ABC
algorithm in Algorithm 1. To minimise the system
fluctuation caused by the online redeployment, we
compare the newest redeployment solution with the current
deployment situation, and only incrementally redeploy some
vertices that need to be adjusted urgently, rather than doing
a full redeployment. The online redeployment algorithm is
described in Algorithm 1.

The input of this algorithm includes the scheduling state
of online DAGs and the current available capacity matrix

.n mvC  The output is the incremental online redeployment

solution. Step 8 to Step 24 monitor the latency and
throughput of each online DAGs, decide the timing of
online redeployment, and incrementally redeploy vertices
that need to be readjusted.

 Performance-aware deployment of streaming applications in distributed stream computing systems 59

Algorithm 1 Incremental online redeployment algorithm

1 Input: scheduling state of online DAGs, current available
capacity matrix n mvC  of computing nodes in a data centre.

2 Output: incremental online redeployment solution.

3 Initialise num-candidate-DAG = 0.

4 Set limit for redeployment threshold.

5 if DAG G or matrix n mvC  of computing nodes is null then

6 Return null.

7 end if

8 for each DAG in the online DAGs do

9 Monitor the latency and throughput of each DAG G.

10 if latency l(G) of the DAG G is in (lmin(G), lmax(G)) or
throughput t(G) of the application is in (tmin(G),
tmax(G)) then

11 Set DAG G as the candidate redeployment
application.

12 num-candidate-DAG++.

13 end if

14 if num-candidate-DAG > limit or l(G) > lmax(G) or
t(G) > tmin(G) then

15 Get the best deployment solution by Algorithm 1.

16 for each vertex in newest best redeployment
solution and the current scheduling state do

17 if a vertex vi that is deployed in both
deployment solutions but currently is
deployed on computing nodes other than the
ones in the newest redeployment solution,
then

18 Redeploy the vi to the new computing nodes
according the newest best redeployment
solution.

19 end if

20 end for

21 num-candidate-DAG = 0.

22 end if

23 Update resource state of each computing node in the
data centre

24 end for

25 return incremental online redeployment solution.

6 Performance evaluation

This section focuses on evaluation of the proposed
Pa-Stream, discussing the experimental environment and
parameter settings, and providing an analysis on
performance evaluation results.

6.1 Experimental environment

The proposed Pa-Stream system is implemented as an
extension to Storm 1.0.2 (Toshniwal et al., 2014; Zhang
et al., 2017). Stream application scenarios have been
simulated on a computing cluster in Computer Architecture
Laboratory at China University of Geosciences, Beijing.

The cluster consists of 18 machines, with one designated
node serving as master node, running Storm nimbus and UI.
The computing node runs Linux CentOS 6.3 with dual
6-core, Intel Core (TM) i7-4790, 3.6 GHz, 8 GB memory,
and 1 Gbps network interface cards. Three designated as the
zookeeper node, each computing node runs Linux CentOS
6.3 with dual 6-core, Intel Core (TM) i7-4790, 3.6 GHz,
4 GB memory, and 1 Gbps network interface cards. The
rest 14 machines work as the supervisor nodes, with
each computing node runs Linux CentOS 6.3 with dual
4-core, Intel Core (TM) i5-8400, 2.8 GHz, 4 GB
memory, and 1 Gbps network interface cards. Moreover,
two streaming applications Top_N (Toshniwal et al., 2014)
and WordCount (Toshniwal et al., 2014) are submitted to
the cluster.

6.2 Performance results

The experimental setting contains three evaluation
parameters: average latency AL, average throughput AT, and
average computing node usage uavg(cn).

6.2.1 Average latency

Average latency AL or response time of a stream application
is one of the most important performance indicators in
distributed stream computing systems. On Storm platform,
AL can be directly obtained through the Storm UI.

Figure 3 Average latency with different rates of inputs data
stream

With the increase of rates of data stream, the average
latency increases under both deployment strategies. For
each input rate, Pa-Stream has a shorter average than the
default Storm strategy.

As shown in Figure 3, when the rates are less than
1,000 tuples/s, both the average latency of Pa-Stream and
the default Storm strategy all stay at a lower level. The
difference between the two deployment strategies is small.
When the rates climb to more than 1,000 tuples/s, the gap
between the two strategies gets wider. The higher the data
rate is, the more significant this difference is noted. When
the rates increase to 7,000 tuples/s, the average latency of

60 D. Sun et al.

Pa-Stream is gauged at 450 millisecond and the default
Storm strategy goes to 1,200 millisecond.

6.2.2 Average throughput

Average throughput AT reflects the overall processing
ability of all running stream applications, evaluated by the
number of output tuples per second per application.

With the increase of rates of data stream, the average
throughput increases under both deployment strategies. At
each rate, Pa-Stream beats the default Storm strategy with a
higher average throughput.

As shown in Figure 4, with the increase of rates, the
difference between the two strategies becomes obvious. The
higher the data rate is, the more significant this difference is.
When the rate reaches at 100 tuples/s, both the average
throughput of Pa-Stream and the default Storm strategy
behave at a similar level, gauged at 48 tuples/s and
49 tuples/s, respectively. The difference between the
two deployment strategies is small. When the rate reaches at
7,000 tuples/s, the average throughput of Pa-Stream is
gauged at 3,000 tuples/s, and that of the default Storm
strategy goes to and 900 tuples/s. The difference is rather
significant.

Figure 4 Average throughput with different rates of inputs data
stream

7 Related work

In this section, we review two categories of related works:
performance-aware deployment in distributed computing
systems and ABC-based applications.

7.1 Performance-aware deployment in distributed
computing systems

Application deployment plays an important role in
distributed computing systems to help the application meet
its functional and non-functional requirements. It is difficult
to find an optimal schedule for a constraint-based DAG
because of the fluctuating arrival rates of data stream and
the varying amount of available computing resources.
Performance-aware deployment is of crucial importance as

the deployment state of applications directly affects the
system performance (El-Kassabi et al., 2019).

In Saez et al. (2015), the authors focused on the
persistence layer of applications. The effect of different
deployment scenarios on application performance over
time was investigated, and a performance-aware dynamic
application (re)distributed design support process was
proposed. The performance was evaluated with some
well-known applications, such as the TPC-H benchmark.

In Kessler and Löwe (2012), the principles of a
novel framework for performance-aware composition of
sequential and explicitly parallel software components
with variants implementation were described. Automatic
composition results in a table-driven implementation that,
for each parallel invocation of a performance-aware
component, looked up the expected best implementation
variant, processor allocation and schedule.

To summarise, performance-aware deployment in
distributed computing systems has been studied in
many works. However, few works have considered
performance-ware deployment of streaming applications. In
our work, we improve system performance by employing a
performance-aware deployment strategy.

7.2 Bio-inspired-based applications in distributed
systems

Bio-inspired algorithm can be applied in many fields
(Cai et al., 2016). In Cai et al. (2019a), a multi-objective
three-dimensional DV-hop localisation algorithm was
proposed with NSGA-II. In Cui et al. (2019a), a CNNs and
multi-objective algorithms were proposed for malicious
code detection. In Cai et al. (2018), a bat algorithm with
triangle-flipping strategy was proposed for numerical
optimisation. ABC is a relatively new bio-inspired swarm
intelligence algorithm, often resulting in better performance
than GA, PSO over continuous space optimisation (Xiang
et al., 2018).

For example, the topological design of a computer
communication network is a well-known NP-hard problem.
In Saad et al. (2018), a goal programming-based
multi-objective artificial bee colony optimisation (MOABC)
algorithm was proposed to solve the problem of topological
design in distributed local area networks, and a comparative
analysis was also done with regard to a non-dominated
sorting GA and a Pareto-dominance PSO algorithm.

Virtual network embedding is also a hot research topic
in the network virtualisation context. In Pathak et al. (2018),
the authors proposed an approach based on ABC to address
the dynamic virtual network embedding problem in a
scenario with multiple infrastructure providers. A
comparative study was conducted with other nature-inspired
virtual network embedding algorithms. The findings
affirmed that the proposed virtual network embedding
approach performed well and produced better results.

In cloud manufacturing, it is possible that there are
several conflicting criteria that need to be optimised
simultaneously during the service composition and

 Performance-aware deployment of streaming applications in distributed stream computing systems 61

selection. In this process, the trade-off regarding the quality
of the composite services is a key issue in successful
implementation of manufacturing tasks. In Zhou et al.
(2018), an adaptive multi-population differential ABC
algorithm was proposed for multiple-objective service
composition in cloud manufacturing.

To summarise, the aforementioned application of ABC
algorithm provides a valuable insight into the potential
solutions for various problems in distributed systems.
However, in big data stream computing systems, existing
ABC algorithms cannot be applied to the stream application
deployment. Particular challenges and opportunities of
distributed stream computing system need to be considered,
and some characteristics specific to data streams need to be
considered when employing ABC algorithm to deploy
stream applications in the distributed environments.

8 Conclusions and future work

To achieve low system latency, high system throughput, and
high resource utilisation, a performance-aware deployment
strategy should be able to determine when and how
streaming applications are deployed according to the
structure of applications and the available resources. It
knows the available resources of each computing node, the
dependencies between operators, and also the efficient
deployment of inter-dependent operators to a best set
of available computing nodes. The performance-aware
deployment framework can process unbounded data streams
in a scalable and efficient manner, minimising system
latency and maximising system throughputs.

The paper makes the following contributions:

1 Investigated the performance-aware deployment of
streaming applications over distributed and
heterogeneous computing nodes, and provided a
general system and application deployment model for
distributed stream computing systems.

2 Proposed a streaming application deployment scheme
by employing the artificial bee colony algorithm, and
an incremental online redeployment strategy for
running applications.

3 Developed and integrated the Pa-Stream into Apache
Storm platform.

4 Implemented a prototype and tested the performance of
the proposed Pa-Stream.

Our future work will be focusing on the following
directions:

1 To develop a complete performance-aware deployment
framework based on Pa-Stream.

2 To apply Pa-Stream in real big data stream computing
application scenarios, such as real-time data monitoring
scenario and real-time user portraits.

Acknowledgements

This work is supported by the National Natural Science
Foundation of China under Grant No. 61972364; and the
Fundamental Research Funds for the Central Universities
under Grant No. 2652018081 and No. N181604015.

References

Agarwal, S. and Ranjan, P. (2019) ‘TTPA: a two tiers PSO
architecture for dimensionality reduction’, International
Journal of Bio-Inspired Computation, March, Vol. 13, No. 2,
pp.119–130.

Cai, X., Gao, X. and Xue, Y. (2016) ‘Improved bat algorithm with
optimal forage strategy and random disturbance strategy’,
International Journal of Bio-inspired Computation, Vol. 8,
No. 4, pp.205–214.

Cai, X., Wang, H., Cui, Z., Cai, J., Xue, Y. and Wang, L. (2018)
‘Bat algorithm with triangle-flipping strategy for numerical
optimization’, International Journal of Machine Learning and
Cybernetics, Vol. 9, No. 2, pp.199–215.

Cai, X., Wang, P., Du, L., Cui, Z., Zhang, W. and Chen, J. (2019a)
‘Multi-objective three-dimensional DV-hop localization
algorithm with NSGA-II’, IEEE Sensors Journal, Vol. 19,
No. 21, pp.10003–10015.

Cai, X., Zhang, J., Liang, H., Wang, L. and Wu, Q. (2019b)
‘An ensemble bat algorithm for large-scale optimization’,
International Journal of Machine Learning and Cybernetics,
DOI: 10.1007/s13042-019-01002-8.

Cardellini, V., Nardelli, M. and Luzi, D. (2016) ‘Adaptive online
scheduling in Storm’, Proceedings of the 2016 International
Conference on High Performance Computing & Simulation,
HPCS 2016, IEEE Press, July, pp.583–590.

Cui, Z., Du, L. Wang, P., Cai, X. and Zhang, W. (2019a)
‘Malicious code detection based on CNNs and multi-objective
algorithm’, Journal of Parallel and Distributed Computing,
July, Vol. 129, pp.50–58.

Cui, Z., Zhang, J., Wang, Y., Cao, Y., Cai, X., Zhang, W. and
Chen, J. (2019b) ‘A pigeon-inspired optimization algorithm
for many-objective optimization problems’, Science China
Information Sciences, July, Vol. 62, No. 7, pp.1–17.

Dias de Assunção, M., da Silva Veith, A. and Buyya, R. (2017)
‘Distributed data stream processing and edge computing:
a survey on resource elasticity and future directions’, Journal
of Network and Computer Applications, December, Vol. 103,
pp.1–17.

Eidenbenz, R. and Locher, T. (2016) ‘Task allocation
for distributed stream processing’, Proceedings of 35th
Annual IEEE International Conference on Computer
Communications, INFO-COM 2016, IEEE Press, July, Article
no. 7524433.

El-Kassabi, H.T., Serhani, M.A., Dssouli, R. and Navaz, A.N.
(2019) ‘Trust enforcement through self-adapting cloud
workflow orchestration’, Future Generation Computer
Systems, August, Vol. 97, pp.462–481.

Hirzel, M., Soulé, R., Schneider, S., Gedik, B. and Grimm, R.
(2014) ‘A catalog of stream processing optimizations’, ACM
Computing Surveys, April, Vol. 46, No. 4, pp.1–34.

Kessler, C. and Löwe, W. (2012) ‘Optimized composition of
performance-aware parallel components’, Concurrency
Computation Practice and Experience, April, Vol. 24, No. 5,
pp.481–498.

62 D. Sun et al.

Kotto-Kombi, R., Lumineau, N. and Lamarre, P. (2017)
‘A preventive auto-parallelization approach for elastic
stream processing’, Proceedings of the 37th International
Conference on Distributed Computing Systems, ICDCS 2017,
IEEE Press, June, pp.1532–1542.

Li, C., Zhang, J. and Luo, Y. (2017) ‘Real-time scheduling
based on optimized topology and communication traffic in
distributed real-time computation platform of storm’, Journal
of Network and Computer Applications, June, Vol. 87,
pp.100–115.

Li, T., Tang, J. and Xu, J. (2016) ‘Performance modeling and
predictive scheduling for distributed stream data processing’,
IEEE Transactions on Big Data, December, Vol. 2, No. 4,
pp.353–364.

Lombardi, F., Aniello, L., Bonomi, S. and Querzoni, L. (2018)
‘Elastic symbiotic scaling of operators and resources in
stream processing systems’, IEEE Transactions on Parallel
and Distributed Systems, March, Vol. 29, No. 3, pp.572–585.

Ma, L.B., Wang, X.W., Shen, H. and Huang, M. (2019) ‘A novel
artificial bee colony optimiser with dynamic population size
for multi-level threshold image segmentation’, International
Journal of Bio-Inspired Computation, January, Vol. 13,
No. 1, pp.32–44.

Mencagli, G., Torquati, M. and Danelutto, M. (2018)
‘Elastic-PPQ: a two-level autonomic system for spatial
preference query processing over dynamic data streams’,
Future Generation Computer Systems, February, Vol. 79,
pp.862–877.

Pathak, I., Tripathi, A. and Vidyarthi, D.P. (2018) ‘A model
for virtual network embedding using artificial bee colony’,
International Journal of Communication Systems, July,
Vol. 31, No. 10, pp.1–22, Article number e3573.

Saad, A., Khan, S.A. and Mahmood, A. (2018) ‘A multi-objective
evolutionary artificial bee colony algorithm for optimizing
network topology design’, Swarm and Evolutionary
Computation, February, Vol. 38, pp.187–201.

Sadeghiram, S. (2017) ‘Bacterial foraging optimisation algorithm,
particle swarm optimisation and genetic algorithm:
a comparative study’, International Journal of Bio-Inspired
Computation, May, Vol. 10, No. 4, pp.275–282.

Saez, S.G., Andrikopoulos, V., Leymann, F. and Strauch, S. (2015)
‘Design support for performance aware dynamic application
(re-)distribution in the cloud’, IEEE Transactions on Services
Computing, March–April, Vol. 8, No. 2, pp.225–239.

Thoman, P., Dichev, K., Heller, T., Iakymchuk, R., Aguilar, X.,
Hasanov, K., Gschwandtner, P., Lemarinier, P., Markidis, S.,
Jordan, H., Fahringer, T., Katrinis, K., Laure, E. and
Nikolopoulos, D.S. (2018) ‘A taxonomy of task-based
parallel programming technologies for high-performance
computing’, The Journal of Supercomputing, April, Vol. 74,
No. 4, pp.1422–1434.

Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K.,
Patel, J.M., Kulkarni, S., Jackson, J., Gade, K., Fu, M.,
Donham, J., Bhagat, N., Mittal, S. and Ryaboy, D. (2014)
‘Storm@twitter’, Proceedings of 2014 ACM SIGMOD
International Conference on Management of Data, SIGMOD
2014, ACM Press, June, pp.147–156.

Wang, C., Meng, X., Guo, Q., Weng, Z. and C. Yang. (2017) ‘Au-
tomating characterization deployment in distributed data
stream management systems’, IEEE Transactions on
Knowledge and Data Engineering, December, Vol. 29, No.
12, pp. 2669-2681.

Xiang, W., Meng, X., Li, Y., He, R. and An, M. (2018)
‘An improved artificial bee colony algorithm based on the
gravity model’, Information Sciences, March, Vol. 429,
pp.49–71.

Zhang, J., Li, C., Zhu, L. and Liu, Y. (2017) ‘The real-time
scheduling strategy based on traffic and load balancing
in storm’, Proceedings of the 18th IEEE International
Conference on High Performance Computing and
Communications, HPCC 2016, IEEE Press, January,
pp.372–379.

Zhou, J., Yao, X., Lin, Y., Chan, F.T.S. and Li, Y. (2018)
‘An adaptive multi-population differential artificial bee
colony algorithm for many-objective service composition
in cloud manufacturing’, Information Sciences, August,
Vol. 456, pp.50–82.

