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Abstract This paper proposes a coordinated load management protocol for Peer-to-
Peer (P2P) coupled federated Grid systems. The participants in the system, such as
the resource providers and the consumers who belong to multiple control domains,
work together to enable a coordinated federation. The coordinated load management
protocol embeds a logical spatial index over a Distributed Hash Table (DHT) space
for efficient management of the coordination objects; the DHT-based space serves as
a kind of decentralized blackboard system. We show that our coordination protocol
has a message complexity that is logarithmic to the number of nodes in the system,
which is significantly better than existing broadcast based coordination protocols.

The proposed load management protocol can be applied for efficiently coordinat-
ing resource brokering services of distributed computing systems such as grids and
PlanetLab. Resource brokering services are the main components that control the
way applications are scheduled, managed and allocated in a distributed, heteroge-
neous, and dynamic Grid computing environments. Existing Grid resource brokers,
e-Science application work-flow schedulers, operate in tandem but still lack a coor-
dination mechanism that can lead to efficient application schedules across distrib-
uted resources. Further, lack of coordination exacerbates the utilization of various
resources (such as computing cycles and network bandwidth). The feasibility of the
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proposed coordinated load management protocol is studied through extensive simu-
lations.

Keywords Grid computing · Grid scheduling · Peer-to-Peer grids

1 Introduction

Distributed systems, including computational grids, P2P systems, Planetlab and
cross-company workflows, involve participants who are topologically and adminis-
tratively distributed over various control domains in the Internet. Participants in these
resource sharing environments can be organized based on a federated model. In a
federated organization [3, 8, 12, 17], every autonomous provider pools his resources
together for common benefit of the community. As a result, every participant gets
access to a much larger pool of resources.

1.1 Tragedy of commons

Distributed resource sharing systems such as computational grids and PlanetLab of-
ten exhibit the classical economics paradox called “tragedy of commons” during pe-
riod of high service and resource demand. A study undertaken in [8] confirms that
PlanetLab environment often experiences the problem of flash crowds where a grow-
ing number of users simultaneously request “slices” on common set of nodes to host
their distributed systems experiments. Such bursty behavior of users often leads to
sub-optimal system performance. Furthermore, the users who cannot successfully
finish their experiments due to competing or conflicting requests in the system tend
to retry their experiments that further aggravates the situation.

Another, motivating example is the way multiple Grid brokers schedule jobs on
distributed Grid resources. A majority of existing approaches to Grid scheduling are
non-coordinated. Brokers such as Nimrod-G [1], Condor-G [7] perform scheduling
related activities independent of the other brokers in the system. They directly submit
their applications to the underlying resources without taking into account the current
load, priorities, or utilization scenarios of other brokers. Clearly, this leads to over-
utilization, or a bottleneck, on some valuable resources while leaving others largely
underutilized. Furthermore, these brokers do not have a coordination mechanism and
this exacerbates the load sharing and utilization problems of distributed resources
because sub-optimal schedules are likely to occur.

1.2 Centralized approaches

One of the possible ways to solve the coordination problem among Grid brokers
and users, who operate in distributed fashion over the Internet has been to host
a coordination service on a centralized machine, wherein every consumer is re-
quired to submit his resource demands to the coordination service. Similarly, resource
providers update their resource usage status periodically with the coordination ser-
vice. The centralized resource allocation coordination service performs system wide
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load-distribution primarily driven by resource demand and availability. However, this
approach has several design limitations including: (i) single point of failure; (ii) lacks
scalability; (iii) high network communication cost at links leading to the coordination
service (i.e. network bottleneck, congestion); and (iv) computational power required
to serve a large number of participants.

1.3 Unstructured decentralized approaches

The coordinated scheduling protocols adopted by NASA-Scheduler [20] and Condor–
Flock P2P [5] are based on general broadcast and limited broadcast communication
mechanisms, respectively. Similarly, scheduling coordination in Tycoon [13] is based
on a decentralized and isolated auction mechanism, where a user can end up bidding
across every auction in the system (broadcast messaging). The OurGrid [3] system
coordinates load-information among the sites based on a complete broadcast messag-
ing approach. Specifically, OurGrid utilizes JXTA search [10] primitives as regards
to resource discovery and message routing. Hence, these unstructured decentralized
approaches have the following limitations: (i) high network overhead; and (ii) scala-
bility problems.

1.4 Proposed approach: structured decentralized

In this work, we propose that the role of the centralized coordinator to be distributed
among a set of machines based on a P2P network model. A P2P routing substrate such
as the Chord or Pastry DHT [18, 21] can be utilized as the basis for overall system de-
centralization and management. DHTs are inherently self-organizing, fault-tolerant,
and scalable. Specifically, we consider organizing resource brokers (and users in the
case of PlanetLab) and distributed resources based on a DHT overlay. In the pro-
posed approach, resource brokers post their resource demands by injecting a Resource
Claim object into the DHT based decentralized coordination space, while resource
providers update the resource supply by injecting a Resource Ticket object. These
objects are mapped to the DHT-based coordination services using a spatial hashing
technique [23]. The details on spatial hashing techniques is discussed in Sect. 6. The
decentralized coordination space is managed by a software service (a component of
our Grid broker service) called the coordination service, which undertakes activities
related to decentralized load-balancing, coordination space management, etc. More
details on how the coordination service in implemented as a software component of
Grid broker service can be found in Sect. 5.

1.5 Our contributions

The main contributions of this paper include: (i) a global coordination protocol for
load-management between distributed Grid brokers; and (ii) a proposal for utilizing
the DHT based spatial index for managing complex coordination objects and decen-
tralizing the protocol. We now summarize some of our findings:

• resource claim and ticket object injection rates have significant influence on the
coordination delay experienced by distributed users in the system
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• proposed coordination protocol is highly effective in curbing the number of
scheduling negotiation iterations undertaken on a per job basis, the redemption,
and notification message complexity involved with the coordination protocol is
O(1)

• In a federation of n heterogeneous Grid resources, on average the number of mes-
sages required to successfully map a job to a resource is O(logn)

2 Paper organization

The rest of this paper is structured as follows: Sect. 3 sets the proposed coordina-
tion protocol in context with related work. Section 4 gives an overview of the Grid
system and scheduling model that we consider in this paper. Next, Sect. 5 discusses
the key elements of the coordination protocol. Section 6 summarizes d-dimensional
spatial index that forms the basis for mapping the coordination objects. In Sect. 7, we
present the finer details on the coordination protocol-based resource allocation and
load-balancing algorithms. Message complexity analysis is presented in Sect. 8. In
Sect. 9, we present various experiments and discuss our results. We end this paper
with concluding remarks in Sect. 10.

3 Related work

The main focus of this section is to compare the novelty of the proposed work
against the current state-of-the-art. Coordinated management of resources in grids
and other distributed systems is a widely studied research problem. Several research
projects such as Bellagio [4], Tycoon [13], NASA-Scheduler [20], OurGrid [3],
Sharp [8], Shirako [12], and Condor–Flock [5] have proposed federated models for
inter-networking compute and storage resources in grids. These systems support a
varying degree of global coordination with respect to load-management. Further-
more, based on the network and communication models, these approaches have dif-
ferent scalabilities.

The Shirako [12] system presents a mechanism for on-demand leasing of net-
worked Grid resources. Shriako’s leasing architecture builds upon the Sharp frame-
work for secure resource peering and distributed resource allocation. The Shirako
system does not define how different brokers in the system connect with each other,
as the system grows to a large number of participants. The novel contribution of the
proposed work lies in this domain, i.e. efficient protocol for enforcing global coordi-
nation among distributed brokers in the system. Next, Bellagio [4] is a market-based
resource allocation system for federated Grid infrastructures. With the centralized
auction approach adopted by the Bellagio system, a best-case communication over-
head of O(c) is exhibited if the auction is limited to c participants and O(n) if not.
In contrast, the proposed coordinated load-management protocol is based on a DHT-
based d-dimensional space. The approach inherits the underlying features of DHT-
based networks such as scalability, self-organization, and not prone to single point of
failure.

Tycoon [13] is a distributed market-based resource allocation system. Application
scheduling and resource allocation in Tycoon is based on a decentralized isolated
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auction mechanism. In the worst case, a scheduler or a broker can end-up bidding
across all n sites in the system. Hence, on a per job basis a broker can generate
O(n) messages in the system. Since Tycoon is based on a distributed auction, it has
a best-case communication overhead of O(nc), based on the assumption that an auc-
tion is limited to c participants. In contrast using the proposed approach a broker
needs to undertake close to logarithmic number messages (that we show later) on a
per job basis. The system [20] models a Grid broker architecture and studies three
different distributed job migration algorithms. Scheduling in the Grid environment
is facilitated through coordination between site specific LRMS and the GS. System-
wide load coordination algorithms such as the sender-initiated, receiver-initiated, and
symmetrically-initiated algorithms are based on complete broadcast messaging be-
tween participants’ GSes, thereby clearly incurring O(n) messages on a per job ba-
sis. We improve on these load coordination algorithms by reducing the number of
messages to a logarithm of the number of GSes in the system.

Condor–Flock [5] presents a Grid scheduling system that consists of Internet-wide
Condor work pools organized on the Pastry overlay. The site managers in the overlay
coordinate the load-management by announcing available resources to all the sites
whose Identifiers (IDs) appear in the routing table. Hence, in a network of n con-
dor sites, O(n logb n) messages are generated per resource status change on per site
basis. Similarly, the load-information coordination in OurGrid [3] is also based on
complete broadcast messaging. OurGrid system is implemented using the JXTA [10]
P2P substrate. In contrast, our coordinated load-management protocol utilizes a
d-dimensional spatial index over a DHT space for deterministic lookups and coor-
dination. This gives the system ability to produce controllable number of messages
and guarantees a deterministic behavior with respect to number of routing hops. In
Table 1, we analytically compare the performance of the proposed coordination pro-
tocol with respect to the current state-of-the-art.

Table 1 Coordination
technique comparison System name Network model Message complexity

(per job)

NASA-Scheduler [20] Unstructured O(n)

Decentralized

Condor–Flock P2P [5] Structured O(n logn)

Decentralized

Shirako [12] Centralized O(1)

Our-Grid [3] JXTA O(n)

Tycoon [13] Unstructured O(n)

Decentralized

Bellagio [4] Centralized O(1)

Proposed work Structured O(logn)

Decentralized
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4 Models

4.1 Grid scheduling model

The proposed coordinated load management protocol derives from the Grid-
Federation [17] resource sharing model. Grid-Federation aggregates distributed re-
source brokering and allocation services as part of a single and cooperative resource
sharing environment. The Grid-Federation, GF = {R1,R2, . . . ,Rn}, consists of a
number of Grid sites, n, with each site having to contribute its local resources to the
federation. In this work, we assume Ri = (pi, xi,μi,øi , γi), which includes the num-
ber of processors, pi , processor architecture, xi , their speed, μi , installed operating
system type, øi , and underlying interconnect network bandwidth, γi . Refer to Table 2
for the notations that we utilize in the remainder of this paper.

Resource brokering, indexing and allocation in the Grid-Federation is facilitated
by a Resource Management System (RMS) known as the Grid Federation Agent
(GFA). Figure 1 shows an example Grid-Federation resource sharing model consist-
ing of Internet-wide distributed parallel resources (clusters, supercomputers). The
GFA service is composed of three software modules including a Grid Resource Man-
ager (GRM), Local Resource Management System (LRMS), and Grid Peer. The
GRM component of a GFA exports a Grid site to the federation and is responsible
for coordinating federation wide application scheduling and resource allocation. The
GRM is responsible for scheduling the locally submitted jobs in the federation. Fur-
ther, it also manages the execution of remote jobs in conjunction with the LRMS. Ad-
ditionally, LRMS implements the following methods for facilitating federation wide
job submission and migration process: answering the GRM queries related to local
job queue length, expected response time, and current resource utilization status x.

The Grid peer module in conjunction with indexing service performs tasks related
to decentralized resource lookups and updates. It is the Grid peer component, which
interacts with the DHT overlay. A Grid Peer service generates two basic types of
objects with respect to coordinated grid brokering: (i) a claim, a object sent by a

Fig. 1 GFAs and Grid sites
with their Grid peer service and
some of the hashings to the
Chord ring. Dark dots are the
Grid peers that are currently part
of Chord based Grid network.
Light dots are the ticket/claim
object posted by Grid sites and
GFA service
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Table 2 Notations
Symbol Meaning

Resource

n Number of Grid Federation Agents (GFAs) in the Grid
network

Gi ith GFA in the system

Ri Configuration of the ith resource in the system

ρi Resource utilization for resource at GFA i

xi Processor architecture for resource at GFA i

pi Number of processors for resource at GFA i

φi Operating system type for resource at GFA i

μi Processor speed at GFA i

γi Network inter-connection bandwidth at Ri

Job

Ji,j,k ith job from the j th user of kth GFA

pi,j,k Number of processor required by Ji,j,k

φi,j,k Operating system type required by Ji,j,k

αi,j,k Communication overhead for Ji,j,k

xi,j,k Processor architecture type required by Ji,j,k

Index

ri,j,k A claim posted for job Ji,j,k

Ui A ticket issued by the ith GFA/broker

dim Dimensionality or number of attributes in the Carte-
sian space

fmin Minimum division level of d-dimensional index tree

Mc Random variables denoting number of messages gen-
erated in mapping a claim object

Tc , Tt Random variables denoting number of disjoint query
paths undertaken in mapping a claim and ticket object

Network

λin Total incoming claim/ticket arrival rate at a network
queue i

λout Outgoing claim/ticket rate at a network queue i

μn Average network queue service rate at a Grid peer i

μr Average query reply rate for index service at GFA i

λin
t Incoming ticket rate at a index service i

λin
c Incoming claim rate at a index service i

λin
a Incoming query rate at a DHT routing service i from

the local index service

λin
index Incoming index query rate at a index service i from its

local DHT routing service

K Network queue size

GFA service to the P2P overlay-based coordination space for locating the resources
matching a user’s application requirements; and (ii) a ticket, is an update object sent
by a Grid site owner about the underlying resource conditions. Since, a Grid resource
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is identified by more than one attribute, a claim or ticket is always d-dimensional.
Further, both of these queries can specify different kinds of constraints on the attribute
values. If a query specifies a fixed value for each attribute then it is referred to as a d-
dimensional Point Query (DPQ). However, in case the query specifies a range of
values for attributes, then it is referred to as a d-dimensional Window Query (DWQ)
or a d-dimensional Range Query (DRQ). In database literature, a DWQ or an DRQ
is also referred to as a spatial range query [19]. Grid peer component of GFA service
is responsible for distributed ticket publication, claim subscription, and logical d-
dimensional index space management.

In order to study the effectiveness of the proposed protocol with respect to load
management, we consider coordinated scheduling of synchronous parallel applica-
tions [14] on a federated Grid system of parallel resources (such as cluster or super-
computer). A job Ji,j,k consists of the number of processors required, pi,j,k , the job
length, li,j,k (in terms of instructions), and the communication overhead, αi,j,k .

4.2 Job model

To capture the nature of parallel execution with message passing overhead required by
the parallel applications, we considered a part of total execution time as the commu-
nication overhead and remaining as the computational time. We consider the network
communication overhead αi,j,k for a parallel job Ji,j,k to be randomly distributed
over the processes. In other words, we do not consider the case, e.g. when a paral-
lel program written for a hypercube is mapped to a mesh architecture. We assume
that the communication overhead parameter αi,j,k would scale the same way over all
the clusters depending on γi . The total data transfer involved during a parallel job
execution is given by

Γ (Ji,j,k,Rk) = αi,j,k × γk.

The time for job Ji,j,k = (pi,j,k, li,j,k, αi,j,k) to execute on a parallel resource Rm

is,

T (Ji,j,k,Rm) = li,j,k

μm pi,j,k

+ Γ (Ji,j,k,Rk)

γm

.

5 Coordination protocol

We start this section with a description of the communication, coordination and in-
dexing models that are utilized to facilitate the P2P coordination space. Thereafter,
we look at the composition of objects and access primitives that form the basis for
coordinating the application schedules among the distributed GFAs/brokers.

5.1 Layered design of the coordination protocol

The OPeN architecture proposed in the work [22] is utilized as the base model in ar-
chitecting and implementing the proposed protocol. The OPeN architecture consists
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of three layers: the Application layer, Core Services layer, and Connectivity layer.
Grid Services such as resource brokers work at the Application layer and insert ob-
jects via the Core services layer. In the context of a GFA, the GRM software module
operates at the Application layer.

We have implemented the Coordination service as a sub-layer of the Core ser-
vices layer. The Coordination service accepts the application-level objects such as
claims/tickets. These objects encapsulate coordination logic, which in this case is the
provisioning information (current resource status and resource requirements) that is
required by coordination service to undertake efficient load-balancing across distrib-
uted Grid resources. These objects are managed by the coordination service. The calls
between the Coordination service and Resource discovery service are made through
the standard publish/subscribe technique. The Resource discovery service is respon-
sible for managing the logical index space and communicating with the Connectivity
layer. As shown in Fig. 2, Core services layer is managed by the Grid Peer module of
a GFA service.

The Connectivity layer is responsible for undertaking key-Based routing in the
DHT space such as Chord, CAN, Pastry, etc. The actual implementation protocol
at this layer does not directly affect the operations of the Core services layer. In
principle, any DHT implementation at this layer could perform the desired task. In
this paper, our simulation environment models the Chord substrate at the Connectivity
layer. Chord hashes the peers and objects (such as fields, logical indices, etc.) to the
circular identifier space and it guarantees the average lookup complexity as O(log n)

Fig. 2 Layered design of the
coordination protocol
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steps with high probability. Each peer in the Chord network is required to maintain
routing table state of O(log n) other peers, where n is the total Grid network size.

5.2 Coordination objects

This section gives details about the resource claim and ticket objects that form the
basis for enabling decentralized coordination mechanism among the brokers/GFAs
in a Grid environment. We start with the description of the components that form the
part of a Grid-Federation resource ticket object.

5.2.1 Resource ticket

Every GFA in the federation publishes its resource ticket to the Coordination space
through the Core services layer (shown in Fig. 2). A resource ticket object Ui , or
update query, consists of a resource description Ri , for a resource i. E.g.:

Resource Ticket: Total-Processors = 100 && Processor-Arch = Pentium &&
Processor-Speed = 2 GHz && Operating-System = Linux && Utilization = 0.80.

5.2.2 Resource claim

A resource claim or look-up object encapsulates the resource configuration needs of
a user’s job. In this work, we focus on the application types whose needs can be
satisfied by compute and storage resources that are available within Grid and Planet-
Lab environments. Users submit their application’s resource requirements to the local
GFA. A GFA aggregates the characteristics of a job, including number of processors,
their architecture, operating system type, with constraint on maximum speed, and
resource utilization into a resource claim object, ri,j,k . For example,

Resource Claim: Total-Processors ≥ 70 && Processor-Arch = Pentium &&
2 GHz ≤ Processor-Speed ≤ 5 GHz && Operating-System = Solaris && 0.0 ≤
Utilization ≤ 0.90.

The GRM module of a GFA passes the resource ticket and claim object to the co-
ordination service operating at the Core services layer. Recall that the Core services
layer is managed by the Grid peer module. It is the Grid peer module, which interacts
with the DHT based overlay network. The operation between Grid peer module and
DHT based overlay is transparent to the GRM. In other words, a GRM is not aware
of how the Grid peer module is routing, searching, and matching the objects in the
system. It is the responsibility of a Grid peer module to implement specific commu-
nication and data organization methods, which can provide desired functionality to
the Application layer services, i.e. a GRM. In order to efficiently route, search, and
match the d-dimensional claim and ticket objects, the Grid peer module embeds a
logical spatial data-structure over the DHT overlay space. The finer details on this
spatial data-structure is given in Sect. 6.

The resource ticket and claim objects are spatially hashed to an index cell i in
the d-dimensional coordination space. Similarly, coordination services in the Grid
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Fig. 3 Resource allocation and application scheduling coordination across Grid sites

network hash (through the Connectivity layer) themselves into the space using the
overlay hashing function such as SHA-1. In Fig. 3, resource claim objects issued by
site p and l are mapped to the index cell i, which is currently hashed to the site s.
In this case, site s is responsible for coordinating the resource sharing among all the
resource claims that are mapped to the cell i. Subsequently, site u issues a resource
ticket (shown as dot in Fig. 3) that falls under a region of the space currently required
by users at site p and l. In this case, the coordination service of site s has to decide
which of the sites (i.e. either l or p or both) be allowed to claim the ticket issued by
site u. This load-distribution decision is based on the load-balancing objective that it
should not lead to over-provisioning of resources at site u.

In Table 3, we show an example list of claim objects that are stored with a coor-
dination service at time t = 900 seconds. Essentially, the claims in the list arrived at
a time ≤900 and are waiting for a suitable ticket object that can meet its resource
configuration requirements while Table 4 depicts the list of ticket objects that have
arrived at t = 900 seconds. Following the ticket arrival event, the coordination ser-
vice undertakes a procedure that divides this ticket object among the list of claims.
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Table 3 Claim list
Time Claim ID μi,j,k pi,j,k xi,j,k φi,j,k

200 Claim 1 >800 50 Intel Linux

350 Claim 2 >1200 20 Intel Linux

500 Claim 3 >700 10 Sparc Solaris

700 Claim 4 >1500 1 Intel Windows XP

Table 4 Ticket list
Time GFA ID μi pi pi avail xi φi

900 GFA-8 1400 80 75 Intel Linux

Based on the resource attribute specification, only Claim 1 and Claim 2 matches the
ticket’s resource configuration. As specified in the ticket object, there are currently 75
processors available with the GFA 8, which is less than the sum of processors required
by Claim 1 and 2 (i.e. 70). Hence, in this case the coordination service, based on a
First-Come-First-Serve (FCFS) queue processing scheme, first notifies the GFA that
has posted Claim 1 and follows it with the GFA responsible for Claim 2. However,
Claims 3 and 4 have to wait for the arrival of tickets that can match their required
resource configuration.

The coordination service notifies a claimer for resources by issuing a soft state
pass that is redeemable for a lease at the ticket issuer GFA in the system. The soft
state pass specifies the resource type Ri for which access should be granted over a
duration (expected running time of an application). GFAs on behalf of local site issue
tickets for resources and post to the coordination space. Our coordination protocol
can leverage the Sharp framework [8] with respect to secure resource exchanges. In
Sharp, all exchanges are digitally signed, and the GFAs/brokers endorse the public
keys of the GFAs in the system.

6 D-dimensional coordination object mapping and routing

The 1-dimensional hashing provided by a standard DHT is insufficient to manage
complex objects such as resource tickets and claims. DHTs generally hash a given
unique value/identifier (e.g. a file name) to a 1-dimensional DHT key space and hence
they cannot directly support mapping and lookups for complex objects. Management
of those objects whose extents lie in d-dimensional space can be done by embedding
a logical index structure over the 1-dimensional DHT key space.

We now describe the features of the P2P-based spatial index that we utilize for
mapping the d-dimensional claim and ticket objects over the DHT key space. Pro-
viding background work and details on this topic is beyond the scope of this paper;
here we only give a high level picture. The spatial index that we consider in this
work assigns regions of space to the Grid peers. If a Grid peer is assigned a region of
d-dimensional space, then it is responsible for handling query computation associated
with the claim and ticket objects that intersect that region, and for storing the objects
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Fig. 4 Spatial resource claims {W,X,Y,Z}, cell control points, point resource tickets {M} and some of
the hashings to the Chord, i.e. the d-dimensional coordinate values of a cell’s control point is used as the
key and hashed onto the Chord. Dark dots are the grid peers that are currently part of the network. Light
dots are the control points hashed on the Chord. For this figure, fmin = 2, dim = 2

that are associated with the region. Figure 4 depicts a 2-dimensional Grid resource
attribute space for mapping claim and ticket objects. The attribute space has a grid-
like structure due to its recursive division process. The index cells resulting from this
process remain constant throughout the life of the d-dimensional attribute space and
serve as entry points for subsequent mapping of claim and ticket objects. The number
of index cells produced at the minimum division level is always equal to (fmin)

dim,
where dim is the dimensionality of the Cartesian space. Details on recursive sub-
division techniques can be found in the article [23]. Every Grid peer in the network
has basic information about the Cartesian space coordinate values, dimensions, and
minimum division level.

Every cell at the fmin level is uniquely identified by its centroid, termed a control
point. Figure 4 depicts four control points A, B , C, and D. DHT hashing method
such as the Chord method is utilized to hash these control points to the overlay so
that the responsibility for managing a index cell is associated with a Grid peer in the
system. In Fig. 4, control point B is hashed to the Grid peer s, which is responsible
for managing all claim and ticket object that are stored with that control point. For
mapping claim objects, the search strategy depends whether it is a DPQ or DRQ. For
a DPQ type claim, the mapping is straight forward since every point is mapped to
only one cell in the Cartesian space. For a DRQ type claim, mapping is not always
singular because a range look-up can cross more than one cell. To avoid mapping
a range claim to all the cells that it crosses (which can create many unnecessary
duplicates), a mapping strategy based on diagonal hyperplane of the Cartesian space
is utilized. This mapping involves feeding claim candidate index cells as inputs into
a mapping function, Fmap. This function returns the IDs of index cells to which given
claim should be mapped. Spatial hashing is performed on these IDs (which returns
a keys) to identify the current Grid peers responsible for managing the given keys.
A Grid peer service uses the index cell(s) currently assigned to it and a set of known
base index cells obtained at initialization as the candidate index cells.
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Similarly, mapping the ticket also involves the identification of the cell in the
Cartesian space. A ticket is always associated with an event region and all cells that
are contained fully or partially within the event region [11] will be selected to receive
the corresponding ticket. The calculation of an event region is also based upon the
diagonal hyperplane of the Cartesian space.

7 Proposed algorithms

In this section, we provide the description of the algorithms that have been developed
for: (i) resource allocation and (ii) decentralized coordination. In Table 2, we present
the model parameters required to discuss the decentralized resource allocation and
coordination in federated grid environments. In Fig. 5, we summarize these steps
using distributed interaction diagram.

Fig. 5 Example of the process of job scheduling, resource allocation, and decentralized coordination:
(1) user submits a job to the local broker, GFA1. Following this, GFA1 posts or subscribes a resource
claim to the coordination space corresponding to that job; (2) all the GFAs in the system sends or pub-
lish the resource ticket or Resource Update Query (RUQ) to the P2P coordination space; (3) In the P2P
coordination space, resource ticket of GFA3 matches with the resource claim of GFA1; GFA1 receives
the notification message of resource matching (GFA3) from the coordination space; (4) GFA1 submits job
GFA3; job is executed at GFA3 and GFA3 notifies GFA1 of completion
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Algorithm 1 RESOURCE ALLOCATION IN COORDINATION SPACE

1: PROCEDURE: Match
2: Input: Ticket ui from Resource Ri

3: begin
4: index ← 0
5: ClaimListm ← �

6: while ClaimList[index] �= null do
7: ri,j,k ← ClaimList[index]
8: if ri,j,k ∩ ui �= null then
9: ClaimListm ← ClaimListm ∪ ri,j,k

10: index ← index + 1
11: end
12: return ClaimListm
13: end
14: PROCEDURE: Event Resource Claim Submit
15: Input: Claim ri,j,k
16: begin
17: ClaimList ← ClaimList ∪ ri,j,k
18: end
19: PROCEDURE: Event Resource Ticket Submit
20: Input: Ticket ui from Resource Ri

21: begin
22: ClaimListm ← Match(ui )
23: index ← 0
24: while Ri is not over-provisioned do
25: Send notification of match event to resource claimer ClaimListm[index]
26: Remove ClaimListm[index]
27: index ← index + 1
28: end
29: end

7.1 Resource allocation

The details of the decentralized resource allocation algorithm (refer to Algo-
rithm 1) that is undertaken by the P2P coordination space is presented here. When
a resource claim object, ri,j,k arrives at the coordination service, it is added to the
existing claim list, ClaimList by the coordination service (lines 16–19). When a re-
source ticket object, ui arrives at the coordination service, the list of resource claims
that overlap or match with the submitted resource ticket object in the d-dimensional
space is computed (lines 21–25). The overlap signifies that the job associated with
the given claim object can be executed on the ticket issuer’s resource subject to its
availability.

In order to get the matches, the coordination service first, selects the claim objects
in the ClaimList in first come first serve order (lines 4–5); then from this list, the
number of claims that overlap with the ticket are selected to the ClaimListm (lines 6–
13). The resource claimers are notified about the resource ticket match until the ticket
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issuer is not over-loaded (lines 25–30). The coordination procedure can utilize the dy-
namic resource parameters such as the number of available processors, queue length,
etc. as the over-loading indicator. These over-loading indicators are encapsulated with
the resource ticket object by the GFAs.

7.2 Coordination algorithm

This section provides the description of the algorithm (refer to Algorithm 2) for
coordinating allocation of distributed Grid resources. When a GFA, Gj intends to
submit a job, Ji,j,j for execution, it compiles a resource claim object, ri,j,j for the
job and posts it to the P2P coordination space (lines 1–6). On the other hand, the
GFA, Gi compiles the resource ticket object, ui for resource, Ri and publishes it to
the P2P coordination space periodically depending on the ticket injection rate. Be-
sides, whenever the resource condition changes such as a task completion event hap-
pens, the GFA also posts a ticket object for the corresponding resource immediately
(lines 7–12).

Once there is a match between a ticket object, ui and a claim object, ri,j,j , the
coordination service sends a ticket redemption request for job, Ji,j,j to ticket issuer
GFA, Gi (lines 13–17). The request message contains the information that job, Ji,j,j

is submitted by GFA, Gj . After notifying the resource claimer GFA, the coordina-
tion service un-subscribes the resource claim for that task from the P2P coordination
space.

When the ticket issuer GFA, Gi receives the notification of match from the coor-
dination service, it sends a Reply to the resource claimer GFA, Gj . If the task can
be executed in the local resource at that time, it sends a positive reply; otherwise it
sends a negative reply to the claimer GFA (lines 18–26). If the Reply is ‘accept’, then
the claimer GFA, Gj transfers the locally submitted job, Ji,j,j to the ticket issuer
GFA and un-subscribes the claim object from the coordination space to remove du-
plicates (lines 27–32). However, if the ticket issuer GFA fails to grant access due to
local resource sharing policy (i.e. Reply is ‘reject’), then the claimer GFA reposts the
resource claim object for that task to the coordination space for future notifications
(lines 33–34).

8 Complexity analysis

Lemma 1 In a federation of n heterogeneous Grid resources, on average a job Ji,j,k

requires O(logn) messages to be sent in the network in order to locate a node that
can successfully complete the job without being overloaded.

Scheduling a job Ji,j,k in the coordinated federation involves the following steps:
(i) posting the resource claim object to DHT based coordination space; (ii) receiving
the notification message from the coordination space when a resource ticket object
hits the claim object; (iii) contacting the GFA (site authority) about the claim-ticket
match, the contacted GFA performs certain checks such as security, resource avail-
ability. Hence, the total number of messages produced in successfully allocating a job
to a resource is summation of the number of messages produced in these three steps.
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Algorithm 2 DECENTRALIZED COORDINATION

1: PROCEDURE: Event Job Submit
2: Input: Job Ji,j,k

3: begin
4: Encapsulate claim object ri,j,k for job Ji,j,k

5: Subscribe ri,j,k to coordination space
6: end
7: PROCEDURE: Event Resource Status Changed
8: Input: Resource Ri

9: begin
10: Encapsulate ticket object ui for resource Ri

11: Publish ui to coordination space
12: end
13: PROCEDURE: Event Ticket Redeemption Request
14: Input: Task Ji,j,k , GFA Gi

15: begin
16: Send ticket redemption Request for task Ji,j,k to

GFA Gi ; Request message implies Gj

17: end
18: PROCEDURE: Event Ticket Redeemption Reply
19: Input: Task Ji,j,k , GFA Gj

20: begin
21: if Ji,j,k can be executed in local resource then
22: Send Reply “accept” to GFA Gj

23: else
24: Send Reply “reject” to GFA Gj

25: endif
26: end
27: PROCEDURE: Event Ticket Redeemption Reply Action
28: Input: Task Ji,j,k , GFA Gi , Reply
29: begin
30: if Reply is “accept” then
31: Send J i, j, k to accepting GFA Gi for execution
32: Unsubscribes the claim object for Ji,j,k

33: else
34: Subscribe claim object ri,j,k to coordination space
35: endif
36: end

We denote the number of messages generated in mapping a resource claim by a
random variable Mc. The distribution of Mc is function of the problem parameters
including query size, dimensionality of search space, query rate, division threshold,
and data distribution. Note that the derivation presented in this paper assumes that the
Chord method is used for delegation of service messages in the network. Essentially,
a control point at the fmin level of the logical d-dimensional Cartesian space can be
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reached in O(logn) routing hops using the Chord method. Based on the above discus-
sion, in order to compute the worst case message lookup and routing complexity one
additional random variable Tc is considered. Tc denotes the number of disjoint query
path undertaken in mapping a claim object. The spatial index described in Sect. 6
maps a resource claim can be utmost mapped to 2 index cells. Note that the number
of index cells to which a resource claim can be mapped is dependent on the spatial
index. Providing background information on this topic is beyond scope of this paper,
interested readers may refer to the paper [15] for further information. With the Chord
method, every disjoint path will undertake E[Tc] × (log2 n) routing hops with high
probability. Hence, the expected value of Mc is given by:

E[Mc] = E[Tc] × (log2 n),

substituting E[Tc] with the value 2 and adding 2 for messages involved with sending
notification and negotiation,

E[Mc] = 2 × (log2 n) + 2,

ignoring the constant terms in the above equation we get

E[Mc] = O(logn). (1)

The above equation shows that scheduling message complexity function growth
rate is bounded by the function O(logn).

Lemma 2 In a federation of n GFAs/brokers, each broker having m jobs to schedule
then total scheduling messages generated in the system is bounded by the function
O(m × n × logn).

This lemma directly follows from Definition 1. Since a job in the system requires
O(logn) messages to be undertaken before it can be successfully allocated to re-
source, therefore, computing the scheduling message complexity for m jobs distrib-
uted over n GFAs/brokers is straightforward.

Lemma 3 In a federation of n heterogeneous resources if GFAs/brokers posts p re-
source ticket object over a time period t , then the average-case message complexity
involved with mapping these tickets to Grid peers in the network is bounded by the
function O(E[Tt ] × p × logn).

The proof for this definition directly follows from Lemma 1. The procedure for
mapping the ticket object to the Grid peers is similar to the one followed for a claim
object. A ticket object is always associated with an event region, and all index cells
that fall fully and partially within the even region will be selected to receive the
corresponding ticket object. The number of disjoint query path taken to map a ticket
object is denoted by random variable Tt with mean E[Tt ].
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9 Performance evaluation

In this section, we validate the effectiveness of the proposed coordination protocol
using a trace driven simulation.

9.1 Simulation model

In our message queuing model, a Grid peer node (through its Chord routing service)
is connected to an outgoing network queue (see label 6 in Fig. 6) and an incoming
link from the Internet (see label 5 in Fig. 6). The network messages that are delivered
through the incoming link (effectively coming from other Grid peers in the overlay)
are processed as soon as they arrive. If the destination of the incoming messages is
the local index service then they are put into the index message queue (see label 2 in
Fig. 6). Otherwise, the messages are routed through the outgoing queue to the next
successor Chord service, which is more closer to the destination in the Chord key
space. Furthermore, the Chord routing service (see label 4 in Fig. 6) receives mes-
sages from the local index service (see label 3 in Fig. 6). Similarly, these messages are
processed as soon as they arrive at the Chord routing service. After processing, the
Chord routing service queues the message in the local outgoing queue. Basically, this
queue models the network latencies that a message encounters as it is transferred from
one Chord routing service to another on the overlay. Once a message leaves an out-
going queue it is directly delivered to a Chord routing service through the incoming
link. The distributions for the delays (including queuing and processing) encountered
in an outgoing queue are given by the M/M/1/K [2] queue steady state probabilities.

9.2 Experimental setup

Our simulation infrastructure is created by combining two discrete event simulators
namely GridSim [6], and PlanetSim [9]. The experiments run a Chord overlay with a
32 bit configuration, i.e. the number of bits utilized to generate Grid peer and object
(claim/ticket) ids. The GFA/broker network size is fixed to n = 100. The network
queue message processing rate is fixed at μn = 5,000 messages per second and net-
work message queue size is fixed at K = 104. The GFAs inject resource claim and

Fig. 6 Network message
queuing model at a Grid peer i
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ticket objects based on the exponential inter-arrival time distribution. The value for
resource claim inter-arrival delay, 1

λin
c

, is distributed over [60,600].
The GFAs inject resource ticket objects with mean delay, 1

λin
t

, distributed over

[120,600] in steps of 120 seconds. The spatial extent of both resource claims and
ticket objects lie in a 4-dimensional attribute space, i.e. dim = 4. These attribute di-
mensions include the number of processors, their speed, their architecture, and oper-
ating system type. The distributions for these resource dimensions are obtained from
the Top 500 supercomputer list.1 The GFAs/brokers encode the metric “number of
available processors” at time t with the resource ticket object Ui . A coordination
service utilizes this metric as the indicator for the current load on a resource Ri . In
other words, a coordination service will stop sending the notifications as the number
of processors available with a ticket issuer approaches zero. fmin of the logical d-
dimensional spatial index is set to 4. We generate the workload distributions across
GFAs based on the model given in the paper [14]. The processor count for a resource
was fed to the workload model based on the resource configuration obtained from the
Top 500 list. For more finer details on the experiment configuration, the readers are
referred to the technical report [16].

9.3 Results and observations

In our simulation, we vary the resource claim inter-arrival delay over the inter-
val [60,600] and the resource ticket (update) inter-arrival delay over the interval
[120,600] in steps of 120 seconds. The graphs in Figs. 7 and 8 show the perfor-
mance of the proposed coordination protocol in terms of scheduling efficiency and
network overhead perspective, respectively. Please note that, labels in Figs. 7 and 8,
denote the measurements obtained at different values of 1

λin
t

.

9.3.1 Scheduling efficiency perspective

As a measurement of scheduling performance, we use the following metrics namely,
average coordination delay, average response time, average number of ticket redemp-
tion negotiations, and total scheduling messages.

The scheduling performance metric coordination delay sums up the latencies for:
(i) a resource claim to reach the index cell; (ii) waiting time until a resource ticket
matches with the claim; and (iii) the notification delay from coordination service to
the relevant GFA. CPU time for a job is defined as the time a job takes to actually
execute on a processor or set of processors. The average response time for a job is
the delay between the submission and arrival of execution output. Effectively, the re-
sponse time includes the latencies for coordination and CPU time. Note that these
measurements are collected by averaging the values obtained for each job in the sys-
tem.

Figure 7(a) depicts the results for average coordination delay in seconds with in-
creasing resource claim mean inter-arrival delay, 1

λin
c

and for different inter-arrival

1Top 500 Supercomputer List, http://www.top500.org/.

http://www.top500.org/
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Fig. 7 Effect of 1
λin
c

and 1
λin
t

on different performance metrics (scheduling efficiency perspective)

Fig. 8 Effect of 1
λin
c

and 1
λin
t

on different performance metrics (Network perspective)
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delays of resource tickets (information update delay). The results show that at higher
inter-arrival delay of tickets, the jobs in the system experience increased coordination
delay. This happens due to the fact that in this case, the resource claim objects for the
jobs have to wait for longer period of time before they are hit by ticket objects. As the
CPU time (processing time) of a job is not dependent on the resource ticket publish
frequency, the average response time function for a job (see Fig. 7(b)) shows the sim-
ilar growth as the coordination delay function with the changes in 1

λin
t

. However, for a

fixed 1
λin

t

, the results show that at higher claim inter-arrival delays, the jobs in the sys-

tem face comparatively lesser coordination delays. The main reason for this behavior
of the coordination protocol is that in this case, the resource claim objects experience
less network traffic and competing requests, which lead to an overall decrease in the
coordination delay across the system (see Fig. 7(a)).

The proposed coordinated scheduling approach is also highly successful in reduc-
ing the number of negotiations undertaken for the successful submission of a job (see
Fig. 7(c)). Note that our simulation results show that the negotiation and notifica-
tion complexity of the proposed coordination protocol has similar bounds as that of a
centrally coordinated system, such as the Bellagio. Essentially, with a centrally coor-
dinated protocol the negotiation and notification message complexity is O(1). Simu-
lation results show that GFAs in the system receive on an average 1 coordination noti-
fication per job (see Fig. 7(d)) and undertake on an average, close to 1 negotiation per
job basis (see Fig. 7(c)). This suggests that the negotiation and notification complex-
ity involved with our scheduling technique is O(1). The negotiation and notification
complexity involved with broadcast based scheduling coordination protocols such as
[3, 20] is bounded by the function O(n). This shows that our approach is significantly
better than the existing broadcast based or centralized coordination protocols.

In case of decentralized setting (i.e. P2P spatial index), a claim object can be
mapped to more than one control points based on its spatial extent or query window
size. If the control points are assigned to different Grid peers in the network then the
problem of duplicate or conflicting notification can arise for a given claim (i.e. a claim
is hit by more than one ticket object at more than one Grid peer at the same time). This
problem is quite evident in case decentralized spatial index (see Fig. 4). On the other
hand, under the centralized setting, the coordination space is hosted and managed
by a single machine in the system and all the control points, claims and tickets are
stored with it. Therefore, the problem of duplicate or conflicting notifications does not
occur here and the notification complexity involved with the centralized approach is
bounded by the function O(1). Hence, this proves that our decentralized approach
offers same performance as the centralized approach.

9.3.2 Network perspective

Here, we analyze the performance overhead of the DHT-based space as regards to
facilitating coordinated scheduling among distributed GFAs. In particular, we mea-
sured the following: (i) number of routing hops undertaken per claim and ticket ob-
ject basis; (ii) total number of claim and ticket objects generated in the system; and
(iii) total number of messages generated for the successful mapping of the coordina-
tion objects, receiving notifications, and removing duplicate claim objects.
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Figure 8(a) shows the number of routing hops, undertaken at different claim and
ticket injection rate across the GFAs in the system. Suffixes “t” and “c” are used in the
labels in Fig. 8(a) to represent the values for ticket and claim objects, respectively.
Recall that the values shown here have been averaged for all the jobs over all the
GFAs in the system. As expected, with an increase in the injection rate of the objects,
the number of routing hops is not changed significantly. We observed that the average
routing hops for mapping the ticket objects is around 3.6, while for the claim objects
it is around 3.4. This shows that the routing hops for mapping claim/ticket object is as
expected in a Chord based DHT space, i.e. bounded by the function O(log n). Since
log2(100) = 6.64, it can be easily shown that c1 × 3.6 = 6.64, where c1 is a constant.

In Fig. 8(b), we show the total number of messages produced as a result of suc-
cessfully mapping and executing all the jobs in the system. The measurement shown
in this figure includes both mapping and scheduling messages. Mapping messages
for a job equals to the number of messages that are required to map a claim object for
that job to the coordination space. According to Sect. 8, Lemma 2, the total number of
messages produced for all the jobs (refer to Fig. 8(b)) satisfies the theoretical bound
on message generation, i.e. O(m × n × logn), where m = 25 (number of jobs sub-
mitted at a GFA) and n = 100. The negotiation and notification complexity involved
with broadcast based scheduling coordination protocols such as [3, 20] is bounded
by the function O(m × n2).

As expected, the number of claims generated during the simulation is constant,
irrespective of the claim and ticket inter-arrival delay (we do not show the plot here
due to space constraint). This also shows that the number of messages produced as
a result of mapping and removing claim objects in the system, remains the same at
different claim or ticket inter-arrival delay. However, for the same setup, the number
of tickets generated show a linear growth with the increase in claim inter-arrival delay.
Figure 8(c) depicts the total number of ticket objects, posted by all GFAs in the system
with respect to increasing claim and ticket inter-arrival delay. In Fig. 8(c), we can
see that as the claim and ticket inter-arrival delay increase, the number of messages
generated during simulation period increases. For instance, when the ticket inter-
arrival delay is 120 seconds and the claim inter-arrival delay is 360 seconds, 13,000
tickets as well as 650,000 ticket messages are generated in the system (see Fig. 8(d)).
Thus, if the GFAs publish tickets at relatively faster rate, the message overhead of
the system increases substantially. But in this case, the average coordination delays
per job also decreases moderately (see Fig. 7(a)). Therefore, the ticket inter-arrival
delay should be chosen in such a way that a balance between coordination delay and
message overhead can co-exist in the system.

10 Conclusion

In this paper, we present a DHT based coordination protocol for efficiently managing
the load in federated Grid computing systems. A d-dimensional spatial index forms
the basis for distributing claim and ticket objects over a structured Grid broker over-
lay. Our simulation shows that: (i) the resource claim and ticket object injection rate
has significant influence on the coordination delay experienced by distributed users
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in the system; (ii) the proposed coordination protocol is highly effective in curbing
the number of scheduling negotiation iteration required to be undertaken on a per job
basis, the redemption and notification message complexity is bounded by the func-
tion O(1); and (iii) on average the number of messages required to successfully map
a job to a resource is bounded by the function O(logn).

One limitation with our approach is that the current index can map a resource
claim object to at most 2 index cells. In some cases, this can lead to the generation of
unwanted notification messages in the system and may be to an extent sub-optimal
load-balancing as well. In our future work, we are going to address this issue by
constraining the mapping of a resource claim object to an index cell. Another way to
tackle this problem is to make the peers currently managing the same resource claim
object to communicate with each other before sending the notifications.
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