
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. (2014)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3314

OpenStack Neat: a framework for dynamic and energy-efficient
consolidation of virtual machines in OpenStack clouds

Anton Beloglazov*,† and Rajkumar Buyya

Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computing and Information Systems,
The University of Melbourne, Melbourne, Australia

SUMMARY

Dynamic consolidation of virtual machines (VMs) is an efficient approach for improving the utilization of
physical resources and reducing energy consumption in cloud data centers. Despite the large volume of
research published on this topic, there are very few open-source software systems implementing dynamic
VM consolidation. In this paper, we propose an architecture and open-source implementation of OpenStack
Neat, a framework for dynamic VM consolidation in OpenStack clouds. OpenStack Neat can be configured
to use custom VM consolidation algorithms and transparently integrates with existing OpenStack deploy-
ments without the necessity of modifying their configuration. In addition, to foster and encourage further
research efforts in the area of dynamic VM consolidation, we propose a benchmark suite for evaluating
and comparing dynamic VM consolidation algorithms. The proposed benchmark suite comprises Open-
Stack Neat as the base software framework, a set of real-world workload traces, performance metrics and
evaluation methodology. As an application of the proposed benchmark suite, we conduct an experimental
evaluation of OpenStack Neat and several dynamic VM consolidation algorithms on a five-node testbed,
which shows significant benefits of dynamic VM consolidation resulting in up to 33% energy savings.
Copyright © 2014 John Wiley & Sons, Ltd.

Received 10 November 2013; Revised 19 May 2014; Accepted 19 May 2014

KEY WORDS: cloud computing; OpenStack; virtualization; dynamic VM consolidation; framework

1. INTRODUCTION

Cloud computing has revolutionized the information and communication technology (ICT) industry
by enabling on-demand provisioning of elastic computing resources on a pay-as-you-go basis. How-
ever, cloud data centers consume huge amounts of electrical energy resulting in high operating costs
and carbon dioxide (CO2) emissions to the environment. It is estimated that energy consumption by
data centers worldwide has risen by 56% from 2005 to 2010 and was accounted to be between 1.1%
and 1.5% of the global electricity use in 2010 [1]. Furthermore, carbon dioxide emissions of the
ICT industry were estimated to be 2% of the global emissions, which is equivalent to the emissions
of the aviation industry [2].

To address the problem of high energy use, it is necessary to eliminate inefficiencies and waste in
the way electricity is delivered to computing resources, and in the way these resources are utilized
to serve application workloads. This can be carried out by improving the physical infrastructure of
data centers, as well as resource allocation and management algorithms. Recent advancement in
the data center design resulted in a significant increase of infrastructure efficiency. As reported by
the Open Compute project, Facebook’s Oregon data center achieved a power usage effectiveness

*Correspondence to: Anton Beloglazov, CLOUDS Lab, Department of Computing and Information Systems, The
University of Melbourne, Melbourne, Australia.

†E-mail: a.beloglazov@student.unimelb.edu.au

Copyright © 2014 John Wiley & Sons, Ltd.

A. BELOGLAZOV AND R. BUYYA

Figure 1. The combined deployment of OpenStack and OpenStack Neat.

(PUE) of 1.08 [3], which means that approximately 91% of the data center’s energy consumption
is consumed by the computing resources. Therefore, now it is important to focus on optimizing the
way the resources are allocated and utilized to serve application workloads.

One method to improve the utilization of resources and reduce energy consumption is dynamic
consolidation of virtual machines (VMs) [4–26] enabled by live migration, the capability of trans-
ferring a VM between physical servers (referred to as hosts or nodes) with a close-to-zero downtime.
Dynamic VM consolidation consists of two basic processes: migrating VMs from underutilized
hosts to minimize the number of active hosts and offloading VMs from hosts when those become
overloaded to avoid performance degradation experienced by the VMs, which could lead to a vio-
lation of the QoS requirements. Idle hosts are automatically switched to a low-power mode to
eliminate the static power and reduce the overall energy consumption. When required, hosts are
reactivated to accommodate new VMs or VMs being migrated from other hosts. Even though a large
volume of research has been published on the topic of dynamic VM consolidation, there are very
few open-source software implementations.

In this work, we introduce an architecture and implementation of OpenStack Neat‡: an open-
source software framework for distributed dynamic VM consolidation in cloud data centers based
on the OpenStack platform§. Figure 1 depicts a typical deployment of the core OpenStack services,
OpenStack Neat services, and their interaction, which will be discussed in detail in the following
sections. The deployment may include multiple instances of compute and controller hosts. The
OpenStack Neat framework is designed and implemented as a transparent add-on to OpenStack,
which means that the OpenStack installation need not be modified or specifically configured to
benefit from OpenStack Neat. The framework acts independently of the base OpenStack platform

‡The OpenStack Neat framework, http://openstack-neat.org/.
§The OpenStack cloud platform, http://openstack.org/.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

http://openstack-neat.org/
http://openstack.org/

OPENSTACK NEAT: A FRAMEWORK FOR DYNAMIC CONSOLIDATION OF VIRTUAL MACHINES

and applies VM consolidation processes by invoking public APIs of OpenStack. The purpose of the
OpenStack Neat framework is twofold: (1) providing a fully operational open-source software for
dynamic VM consolidation that can be applied to existing OpenStack clouds and (2) providing an
extensible software framework for conducting research on dynamic VM consolidation.

OpenStack Neat is designed and implemented following the distributed approach to dynamic VM
consolidation introduced and evaluated in our previous works [27–29]. The target environment is
an infrastructure as a service (IaaS), for example, Amazon EC2, where the provider is unaware
of applications and workloads served by the VMs and can only observe them from outside. We
refer to this property of IaaS environments as being application agnostic. The proposed approach to
distributed dynamic VM consolidation consists in splitting the problem into four sub-problems [29]:

1. Deciding if a host is considered to be underloaded, so that all VMs should be migrated from
it, and the host should be switched to a low-power mode.

2. Deciding if a host is considered to be overloaded, so that some VMs should be migrated from
it to other active or reactivated hosts to avoid violating the QoS requirements.

3. Selecting VMs to migrate from an overloaded host.
4. Placing VMs selected for migration on other active or reactivated hosts.

This approach has two major advantages compared with traditional fully centralized VM con-
solidation algorithms: (1) splitting the problem simplifies its analytical treatment by allowing the
consideration of the sub-problems independently; and (2) the approach can be implemented in
a partially distributed manner by executing the underload/overload detection and VM selection
algorithms on compute hosts and the VM placement algorithm on the controller host, which can
optionally be replicated. Distributed VM consolidation algorithms enable the natural scaling of
the system to thousands of compute nodes, which is essential for large-scale cloud providers. For
instance, Rackspace, a well-known IaaS provider, currently manages tens of thousands of servers.
Moreover, the number of servers continuously grows: Rackspace has increased the total server count
in the second quarter of 2012 to 84,978 up from 82,438 servers at the end of the first quarter [30].

In addition, to facilitate research efforts and future advancements in the area of dynamic VM con-
solidation, we propose a benchmark suite for evaluating and comparing dynamic VM consolidation
algorithms comprising OpenStack Neat as the base software framework, real-world workload traces
from PlanetLab, performance metrics, and evaluation methodology (Section 5).

The key contributions of this work are the following:

� An architecture of an extensible software framework for dynamic VM consolidation designed
to transparently integrate with OpenStack installations and allowing configuration-based sub-
stitution of multiple implementations of algorithms for each of the four defined sub-problems
of dynamic VM consolidation.
� An open-source software implementation of the framework in Python released under the

Apache 2.0 license and publicly available online.
� An implementation of several algorithms for dynamic VM consolidation proposed and

evaluated by simulations in our previous works [27–29].
� An initial version of a benchmark suite comprising the software framework, workload

traces, performance metrics, and methodology for evaluating and comparing dynamic VM
consolidation solutions following the distributed model.
� Experimental evaluation of the framework on a five-node OpenStack deployment using real-

world application workload traces collected from more than a thousand PlanetLab VMs hosted
on servers located in more than 500 places around the world [31]. According to the estimates
of potential energy savings, the evaluated algorithms reduce energy consumption by up to 33%
with a limited performance impact.

The remainder of the paper is organized as follows. In the next section, we discuss the related
work, followed by the overall design and details of each component of the OpenStack Neat frame-
work in Section 3. In Section 4, we describe the implemented VM consolidation algorithms. In
Section 5, we propose a benchmark suite for evaluating distributed dynamic VM consolidation

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

A. BELOGLAZOV AND R. BUYYA

algorithms. We experimentally evaluate the framework and analyze the results in Section 6. We
conclude the paper with a discussion of scalability and future research directions in Section 7 and
conclusions in Section 8.

2. RELATED WORK

Research work related to this paper can be divided into two categories: (1) practically imple-
mented and publicly available open-source software systems and (2) theoretical work on various
approaches to dynamic VM consolidation. Despite the large volume of research published on the
topic of dynamic VM consolidation, there are very few software implementations publicly available
online. To the best of our knowledge, the earliest open-source implementation of a VM consoli-
dation manager is the Entropy project.¶ Entropy is an open-source VM consolidation manager for
homogeneous clusters developed by Hermenier et al. [4] and released under the Lesser General
Public License.

Entropy is built on top of Xen and focused on two objectives: (1) maintaining a configuration
of the cluster, where all VMs are allocated sufficient resources, and (2) minimizing the number of
active hosts. To optimize the VM placement, Entropy periodically applies a two-phase approach.
First, a constraint programming problem is solved to find an optimal VM placement, which min-
imizes the number of active hosts. Then, another optimization problem is solved to find a target
cluster configuration with the minimal number of active hosts that also minimizes the total cost of
reconfiguration, which is proportional to the cost of VM migrations. Instead of optimizing the VM
placement periodically as Entropy, OpenStack Neat detects host underload and overload conditions
and dynamically resolves them, which allows the system to have a more fine-grained control over
the host states. Although Entropy may find a more optimal VM placement by computing a glob-
ally optimal solution, all aspects of VM placement optimization must be computed by a central
controller, thus limiting the scalability of the system.

Feller et al. [5] proposed and implemented a framework for distributed management of VMs for
private clouds called Snooze,|| which is open source and released under the General Public License
version 2. In addition to the functionality provided by the existing cloud management platforms,
such as OpenStack, Eucalyptus, and OpenNebula, Snooze implements dynamic VM consolidation
as one of its base features. Another difference is that Snooze implements hierarchical distributed
resource management. The management hierarchy is composed of three layers: local controllers
on each physical node, group managers managing a set of local controllers, and a group leader
dynamically selected from the set of group managers and performing global management tasks. The
distributed structure enables fault tolerance and self-healing by avoiding single points of failure and
automatically selecting a new group leader if the current one fails. Snooze also integrates monitoring
of the resource usage by VMs and hosts, which can be leveraged by VM consolidation policies.
These policies are intended to be implemented at the level of group managers and therefore can
only be applied to subsets of hosts. This approach partially solves the problem of scalability of VM
consolidation by the cost of losing the ability of optimizing the VM placement across all the nodes
of the data center. OpenStack Neat enables scalability by distributed underload/overload detection
and VM selection, and potentially replicating the VM placement controllers. In contrast to Snooze,
it is able to apply global VM placement algorithms for the selected migration VMs by taking into
account the full set of hosts. Another difference is that OpenStack Neat transparently integrates with
OpenStack, a mature open-source cloud platform widely adopted and supported by the industry,
thus ensuring long-term development of the platform.

The second category of related work includes various theoretical approaches to the problem of
dynamic VM consolidation. These can be further divided into application-specific and application-
agnostic approaches. In application-specific approaches, the authors make assumptions about the

¶The Entropy VM manager, http://entropy.gforge.inria.fr/.
||The Snooze cloud manager, http://snooze.inria.fr/.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

http://entropy.gforge.inria.fr/
http://snooze.inria.fr/

OPENSTACK NEAT: A FRAMEWORK FOR DYNAMIC CONSOLIDATION OF VIRTUAL MACHINES

execution environment or applications. For example, there are a number of works where the authors
focus on enterprise environments by developing static and semi-static consolidation techniques
[6, 7], assuming the knowledge of application priorities [8], or applying off-line profiling of appli-
cations [9]. There has been extensive research on VM consolidation tailored to specific application
types, such as focusing on Web [10–15] and high-performance computing (HPC) applications [16,
17] or managing both Web and HPC applications [18, 19]. In contrast, our approach is applica-
tion agnostic, meaning that there are no application-specific assumptions. This makes the system
easily applicable to IaaS environments, where various types of user applications share computing
resources.

One of the first works in which dynamic VM consolidation was applied to minimize energy
consumption in an application-agnostic way has been performed by Nathuji and Schwan [20]. The
authors have proposed an architecture of a system where the resource management is divided into
local and global policies. At the local level, the system leverages power management strategies of
the guest operating system (OS). The global manager applies its policy to decide whether the VM
placement needs to be adapted. Zhu et al. [21] studied a similar problem of automated resource
allocation and capacity planning. They proposed three individual controllers each operating at a
different timescale, which place compatible workloads onto groups of servers, react to changing
conditions by reallocating VMs, and allocate resources to VMs within the servers to satisfy the
service-level agreements (SLAs).

Bobroff et al. [22] proposed an algorithm for dynamic VM consolidation under SLA constraints
based on time-series analysis and forecasting of the resource demand. Nandi et al. [23] formulated
the problem of VM placement as a stochastic optimization problem with a constraint on the proba-
bility of a host overload, taking into account three dimensions of resource constraints. The authors
introduced two versions of the optimization problem and corresponding greedy heuristics depend-
ing on the distribution model of the VM resource usage: for known distributions and for unknown
distributions with known mean and variance. A drawback of all the described application-agnostic
approaches is that they are centralized: a single algorithm running on the master node leverages the
global view of the system to optimize the VM allocation. Such a centralized approach limits the
scalability of the system, when the number of physical machines grows over thousands and tens of
thousands, like in Rackspace [30].

In this work, we follow a distributed approach proposed in our previous works [27–29], where
every compute host locally solves the problems of underload/overload detection and VM selection.
Then, it sends a request to a global manager to place only the selected migration VMs on other hosts.
A similar approach was followed by Wood et al. [24] in their system called Sandpiper aimed at load
balancing in virtualized data centers using VM live migration. The main objective of the system is
to avoid host overloads referred to as hot spots by detecting them and migrating overloaded VMs to
less-loaded hosts. The authors applied an application-agnostic approach, referred to as a black-box
approach, in which VMs are observed from outside, without any knowledge of applications resident
in the VMs. A hot spot is detected when the aggregate usage of a host’s resources exceeds the
specified threshold for k out of n last measurements, as well as for the next predicted value. Another
proposed approach is gray-box, when certain application-specific data are allowed to be collected.
The VM placement is computed heuristically by placing the most loaded VM to the least loaded
host. The difference from our approach is that VMs are not consolidated; therefore, the number of
active hosts is not reduced to save energy.

Feller et al. [25] proposed a set of algorithms for dynamic VM consolidation and evaluated
them using the Snooze cloud manager discussed earlier. The approach and algorithms proposed
in the paper can be seen as an extension of our previous work [27]. The authors proposed
threshold-based heuristics for underload and overload detection using averaged resource usage data
collected from the CPU, random access memory (RAM), and network interface of the hosts. In
contrast to our previous works [27, 28], the VM placement algorithm is applied only to subsets
of hosts, therefore disallowing the optimization of the VM placement across all the hosts of the
data center.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

A. BELOGLAZOV AND R. BUYYA

3. SYSTEM DESIGN

The aim of the OpenStack Neat project is to provide an extensible framework for dynamic consol-
idation of VMs based on the OpenStack platform. Extensibility in this context means the ability to
implement new VM consolidation algorithms and apply them in OpenStack Neat without the neces-
sity to modify the source code of the framework itself. Different implementations of the algorithms
can be plugged into the framework by modifying the appropriate options in the configuration file.

OpenStack Neat provides an infrastructure required for monitoring VMs and hypervisors, col-
lecting resource usage data, transmitting messages and commands between the system components,
and invoking VM live migrations. The infrastructure is agnostic of VM consolidation algorithms in
use and allows implementing custom decision-making algorithms for each of the four sub-problems
of dynamic VM consolidation: host underload/overload detection, VM selection, and VM place-
ment. The implementation of the framework includes the algorithms proposed in our previous works
[27–29]. In the following sections, we discuss the requirements and assumptions, integration of the
proposed framework with OpenStack, and each of the framework’s components.

3.1. Requirements and assumptions

The components of the framework are implemented in the form of OS services running on the
compute and controller hosts of the data center in addition to the core OpenStack services. The
current implementation of OpenStack Neat assumes a single instance of the controller responsible
for finding a new placement of the VMs selected for migration. However, because of distributed
underload/overload detection and VM selection algorithms, the overall scalability is significantly
improved compared with existing completely centralized VM consolidation solutions.

OpenStack Neat relies on live migration to dynamically relocate VMs across physical machines.
To enable live migration, it is required to set up a shared storage and correspondingly configure
OpenStack Nova (i.e., the OpenStack Compute service) to use this storage for storing VM instance
data. For instance, a shared storage can be provided using the Network File System (NFS) or the
GlusterFS distributed file system [32].

OpenStack Neat uses a database (which can be distributed) for storing information about VMs
and hosts, as well as resource usage data. It is possible to use the same database server used by
the core OpenStack services. In this case, it is only required to create a new database and user for
OpenStack Neat. The required database tables are automatically created by OpenStack Neat on the
first launch of its services.

Another requirement is that all the compute hosts must have a user, which is enabled to switch
the host into a low-power mode, such as Suspend to RAM. This user account is used by the global
manager to connect to the compute hosts via the Secure Shell protocol and switch them into the
sleep mode when necessary. More information on deactivating and reactivating physical nodes is
given in Section 3.4.1.

3.2. Integration with OpenStack

OpenStack Neat services are installed independently of the core OpenStack services. Moreover,
the activity of the OpenStack Neat services is transparent to the core OpenStack services. This
means that OpenStack does not need to be configured in a special way to be able to take
advantage of dynamic VM consolidation implemented by OpenStack Neat. It also means that
OpenStack Neat can be added to an existing OpenStack installation without the need to modify
its configuration.

The transparency is achieved by the independent resource monitoring implemented by OpenStack
Neat, and the interaction with the core OpenStack services using their public APIs. The OpenStack
APIs are used for obtaining information about the current state of the system and performing VM
migrations. In particular, the APIs are used to obtain the current mapping of VMs to hosts, hardware
characteristics of hosts, parameters of VM flavors (i.e., instance types), and VM states and to invoke
VM live migrations. Although OpenStack Neat performs actions affecting the current state of the

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

OPENSTACK NEAT: A FRAMEWORK FOR DYNAMIC CONSOLIDATION OF VIRTUAL MACHINES

system by relocating VMs across hosts, it is transparently handled by the core OpenStack services
because VM migrations are invoked via the public OpenStack APIs, which is equivalent to invoking
VM migrations manually by the system administrator.

One of the implications of this integration approach is that the VM provisioning and destruction
processes are handled by the core OpenStack services, while OpenStack Neat discovers new VM
instances through OpenStack APIs. In the following sections, we refer to hosts running the Nova
Compute service, that is, hosting VM instances, as compute hosts and a host running the other
OpenStack management services but not hosting VM instances as the controller host.

3.3. System components

OpenStack Neat is composed of a number of components and data stores, some of which are
deployed on the compute hosts and some on the controller host, which can potentially have multiple
replicas. As shown in Figure 2, the system is composed of three main components:

� Global manager—a component that is deployed on the controller host and makes global
management decisions, such as mapping VM instances to hosts, and initiating VM live
migrations
� Local manager—a component that is deployed on every compute host and makes local deci-

sions, such as deciding that the host is underloaded or overloaded and selecting VMs to migrate
to other hosts
� Data collector—a component that is deployed on every compute host and is responsible for

collecting data on the resource usage by VM instances and hypervisors and then storing the
data locally and submitting it to the central database, which can also be distributed

Figure 2. The deployment diagram.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

A. BELOGLAZOV AND R. BUYYA

Figure 3. The global manager: a sequence diagram of handling an underload request.

The deployment model may vary for each particular system depending on its requirements. For
instance, the central database can be deployed on a separate physical node or be distributed across
multiple physical nodes. The location and deployment of the database server are transparent to
OpenStack Neat, which only requires a configuration parameter to be set to the network address
of the database front-end server. For simplicity, in our experiment testbed, the database server is
deployed on the same physical node hosting the global manager, as shown in Figure 2.

3.4. Global manager

The global manager is deployed on the controller host and is responsible for making VM placement
decisions and initiating VM migrations. It exposes a representational state transfer (REST) Web
service, which accepts requests from local managers. The global manager processes two types of
requests: (1) relocating VMs from an underloaded host and (2) offloading a number of VMs from
an overloaded host.

Figure 3 shows a sequence diagram of handling a host underload request by the global man-
ager. First, a local manager detects an underload of the host using the specified-in-the-configuration
underload detection algorithm. Then, it sends an underload request to the global manager includ-
ing the name of the underloaded host. The global manager calls the OpenStack Nova API to obtain
the list of VMs currently allocated to the underloaded host. This is required to obtain a view of the
actual state of the system, as some VMs currently allocated to the host may still be in migration.
Once the list of VMs is received, the global manager invokes the VM placement algorithm with the
received list of VMs along with their resource usage and states of hosts fetched from the database as
arguments. Then, according to the VM placement generated by the algorithm, the global manager
submits the appropriate VM live migration requests to the OpenStack Nova API and monitors the
VM migration process to determine when the migrations are completed. Upon the completion of
the VM migrations, the global manager switches the now idle source host into the Suspend to RAM
state. Because the Suspend to RAM state provide low-latency transitions, it is possible to quickly
re-enable the host if required as discussed in Section 3.4.1.

As shown in Figure 4, handling overload requests is similar to underload requests. The difference
is that instead of sending just the host name, the local manager also sends a list of Universally
Unique Identifiers (UUID) of the VMs selected by the configured VM selection algorithm to be
offloaded from the overloaded host. Once the request is received, the global manager invokes the
specified configuration VM placement algorithm and passes as arguments the list of VMs received
from the local manager to be placed on other hosts along with other system information. If some of
the VMs are placed on hosts that are currently in the low-power mode, the global manager reactivates

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

OPENSTACK NEAT: A FRAMEWORK FOR DYNAMIC CONSOLIDATION OF VIRTUAL MACHINES

Figure 4. The global manager: a sequence diagram of handling an overload request.

them using the Wake-on-LAN technology, as described in Section 3.4.1. Then, similar to handling
underload requests, the global manager submits VM live migration requests to the OpenStack Nova
API.

3.4.1. Switching power states of hosts. One of the main features required to be supported by
the hardware and OS in order to take advantage of dynamic VM consolidation to save energy is
the Advanced Configuration and Power Interface (ACPI). The ACPI standard defines platform-
independent interfaces for power management by the OS. The standard is supported by Linux, the
target OS for the OpenStack platform. ACPI defines several sets of power states, the most relevant
of which is the sleep state S3, referred to as Suspend to RAM. Meisner et al. [33] showed that power
consumption of a typical blade server can be reduced from 450 W in the active state to just 10.4 W
in the S3 state. The transition latency is currently mostly constrained by the power supply unit of
the server, which leads to a total latency of approximately 300 ms. This latency is acceptable for the
purposes of dynamic VM consolidation, as VM live migrations usually take tens of seconds.

The Linux OS provides an API to programmatically switch the physical machine into the sleep
mode. The machine can be reactivated over the network using the Wake-on-LAN technology. This
technology has been introduced in 1997 by the Advanced Manageability Alliance formed by Intel
and IBM and is currently supported by most modern servers.

3.5. Local manager

The local manager component is deployed on every compute host as an OS service. The ser-
vice periodically executes a function that determines whether it is necessary to reallocate VMs
from the host. A high-level view of the workflow performed by the local manager is shown in
Figure 5. At the beginning of each iteration, it reads from the local storage the historical data on
the resource usage by the VMs and hypervisor stored by the data collector. Then, the local man-
ager invokes the specified-in-the-configuration underload detection algorithm to determine whether
the host is underloaded. If the host is underloaded, the local manager sends an underload request
to the global manager’s REST API to migrate all the VMs from the host and switch the host to a
low-power mode.

If the host is not underloaded, the local manager proceeds to invoking the specified-in-the-
configuration overload detection algorithm. If the host is overloaded, the local manager invokes the
configured VM selection algorithm to select VMs to offload from the host. Once the VMs to migrate

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

A. BELOGLAZOV AND R. BUYYA

Figure 5. The local manager: an activity diagram.

from the host are selected, the local manager sends an overload request to the global manager’s
REST API to migrate the selected VMs. Similar to the global manager, the local manager can be
configured to use custom underload detection, overload detection, and VM selection algorithms
using the configuration file.

3.6. Data collector

The data collector is deployed on every compute host as an OS service and periodically collects the
CPU utilization data for each VM running on the host, as well as data on the CPU utilization by
the hypervisor. The collected data are stored in the local file-based data store and also submitted to
the central database. The data are stored as the average megahertz consumed by a VM during the
last measurement interval of length � . In particular, the CPU usage C vi .t0; t1/ of a VM i , which is a
function of the bounds of a measurement interval Œt0; t1�, is calculated as shown in (1).

C vi .t0; t1/ D
nvi F

�
�vi .t1/ � �

v
i .t0/

�

t1 � t0
; (1)

where nvi is the number of virtual CPU cores allocated to VM i , F is the frequency of a single CPU
core in megahertz, and �vi .t/ is the CPU time consumed by VM i up to time t . The CPU usage of
the hypervisor C hj .t0; t1/ is calculated as a difference between the overall CPU usage and the CPU
usage by the set of VMs allocated to the host, as shown in (2).

C hj .t0; t1/ D
nhjF

�
�hj .t1/ � �

h
j .t0/

�

t1 � t0
�
X
i2Vj

C vi .t0; t1/; (2)

where nhj is the number of physical cores of the host j , �hj .t/ is the CPU time consumed by the host
overall up to time t , and Vj is the set of VM allocated to host j . The CPU usage data are stored as

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

OPENSTACK NEAT: A FRAMEWORK FOR DYNAMIC CONSOLIDATION OF VIRTUAL MACHINES

integers. This data format is used because of its portability: the stored values can be approximately
converted to the CPU utilization percentages for any host or VM type. In general, to more accurately
handle heterogeneous environments, this performance metric can be replaced with a more abstract
measure, such as EC2 compute units in Amazon EC2.

The actual data are obtained using libvirt’s API** in the form of the CPU time consumed by VMs
and hosts overall to date. Using the CPU time collected at the previous time step, the CPU time
for the last time interval is calculated. According to the CPU frequency of the host and the length
of the time interval, the CPU time is converted into the required average megahertz consumed by
the VM over the last time interval. Then, using the VMs’ CPU utilization data, the CPU utiliza-
tion by the hypervisor is calculated. The collected data are both stored locally and submitted to
the database.

At the beginning of every iteration, the data collector obtains the set of VMs currently run-
ning on the host using the Nova API and compares them with the VMs running on the host at
the previous time step. If new VMs have been found, the data collector fetches the historical data
about them from the central database and stores the data in the local file-based data store. If some
VMs have been removed, the data collector removes the data about these VMs from the local
data store.

While OpenStack Neat oversubscribes the CPU of hosts by taking advantage of information on
the real-time CPU utilization, it does not overcommit RAM. In other words, RAM is still a con-
straint in placing VMs on hosts; however, the constraint is the maximum amount of RAM that can
be used by a VM statically defined by its instance type, rather than the real-time RAM consump-
tion. The reason for that is that RAM is a more critical resource compared with the CPU, as an
application may fail because of insufficient RAM, whereas insufficient CPU may just slow down
its execution.

3.7. Data stores

As shown in Figure 2, the system contains two types of data stores:

� Central database—a database server, which can be deployed either on the controller host or on
one or more dedicated hosts
� Local file-based data storage—a data store deployed on every compute host and used for tem-

porarily caching the resource usage data to use by the local managers in order to avoid excessive
database queries

The details about the data stores are given in the following subsections.

3.7.1. Central database. The central database is used for storing historical data on the resource
usage by VMs and hypervisors, as well as hardware characteristics of hosts. To ensure scalability,
the database can be provided by any existing distributed database system, for example, the MySQL
Cluster [34]. The database is populated by the data collectors deployed on compute hosts. There
are two main use cases when the data are retrieved from the central database instead of the local
storage of compute hosts. First, it is used by local managers to fetch the resource usage data after
VM migrations. Once a VM migration is completed, the data collector deployed on the destination
host fetches the required historical data from the database and stores them locally to be used by the
local manager.

The second use case of the central database is when the global manager computes a new place-
ment of VMs on hosts. VM placement algorithms require information on the resource consumption
of all the hosts in order to make global allocation decisions. Therefore, every time there is a need
to place VMs on hosts, the global manager queries the database to obtain the up-to-date data on the
resource usage by hypervisors and VMs.

**The libvirt virtualization API, http://libvirt.org/.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

http://libvirt.org/

A. BELOGLAZOV AND R. BUYYA

3.7.2. Local file-based data store. A local manager at each iteration requires data on the resource
usage by the VMs and hypervisor of the corresponding host in order to pass them to the under-
load/overload detection and VM placement algorithms. To reduce the number of queries to the
database over the network, apart from submitting the data into the database, the data collector tem-
porarily stores the data locally. This way, the local manager can just read the data from the local file
storage and avoid having to retrieve the data from the central database.

4. VM CONSOLIDATION ALGORITHMS

As mentioned earlier, OpenStack Neat is based on the approach to the problem of dynamic VM
consolidation, proposed in our previous work [29], which consists in dividing the problem into four
sub-problems: (1) host underload detection; (2) host overload detection; (3) VM selection; and (4)
VM placement. The implementation of the framework includes several algorithms proposed in our
previous works [27–29] with slight modifications. The overview of the implemented algorithms
is given for reference only. It is important to note that the presented algorithms are not the main
focus of the current paper. The focus of the paper is the design of the framework for dynamic VM
consolidation, which is capable of handling multiple implementations of consolidation algorithms
and can be switched between the implementations through configuration.

4.1. Host underload detection

In our experiments, we use a simple heuristic for the problem of underload detection shown in
Algorithm 1. The algorithm calculates the mean of the n latest CPU utilization measurements and
compares it with the specified threshold. If the mean CPU utilization is lower than the threshold, the
algorithm detects a host underload situation. The algorithm accepts three arguments: the CPU uti-
lization threshold, the number of last CPU utilization values to average, and a list of CPU utilization
measurements.

4.2. Host overload detection

OpenStack Neat includes several overload detection algorithms, which can be enabled by modifying
the configuration file. One of the simple included algorithms is the averaging threshold-based (THR)
overload detection algorithm. The algorithm is similar to Algorithm 1, while the only difference is
that it detects overload situations if the mean of the n last CPU utilization measurements is higher
than the specified threshold.

Another overload detection algorithm included in the default implementation of OpenStack Neat
is based on estimating the future CPU utilization using local regression (i.e., the locally weighted
scatterplot smoothing (LOESS) method), referred to as the local regression robust (LRR) algorithm
[28] shown in Algorithm 2. The algorithm calculates the LOESS parameter estimates and uses them
to predict the future CPU utilization at the next time step, taking into account the VM migration
time. In addition, the LRR algorithm accepts a safety parameter, which is used to scale the predicted
CPU utilization to increase or decrease the sensitivity of the algorithm to potential overloads.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

OPENSTACK NEAT: A FRAMEWORK FOR DYNAMIC CONSOLIDATION OF VIRTUAL MACHINES

A more complex overload detection algorithm included in OpenStack Neat is the Markov over-
load detection (MHOD) algorithm, which enables the system administrator to explicitly specify
a constraint on the overload time fraction (OTF) value as a parameter of the algorithm, while
maximizing the time between VM migrations, thus improving the quality of VM consolidation [29].

4.3. VM selection

Once a host overload has been detected, it is necessary to determine what VMs are the best to be
migrated from the host. This problem is solved by VM selection algorithms. An example of such
an algorithm is simply randomly selecting a VM from the set of VMs allocated to the host. Another
algorithm shown in Algorithm 3 is called minimum migration time maximum CPU utilization. This
algorithm first selects VMs with the minimum amount of RAM to minimize the live migration time.
Then, out of the selected subset of VMs, the algorithm selects the VM with the maximum CPU
utilization averaged over the last n measurements to maximally reduce the overall CPU utilization
of the host.

4.4. VM placement

The VM placement problem can be seen as a bin packing problem with variable bin sizes, where
bins represent hosts, bin sizes are the available CPU capacities of hosts, and items are VMs to be
allocated with an extra constraint on the amount of RAM. As the bin packing problem is NP-hard, it
is appropriate to apply a heuristic to solve it. OpenStack Neat implements a modification of the best
fit decreasing (BFD) algorithm, which has been shown to use no more than 11=9 � OPT C 1 bins,
where OPT is the number of bins of the optimal solution [35].

The implemented modification of the BFD algorithm shown in Algorithm 4 includes several
extensions: the ability to handle extra constraints, namely, consideration of currently inactive hosts,
and a constraint on the amount of RAM required by the VMs. An inactive host is only activated

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

A. BELOGLAZOV AND R. BUYYA

when a VM cannot be placed on one of the already active hosts. The constraint on the amount of
RAM is taken into account in the first fit manner; that is, if a host is selected for a VM as a best fit
according to its CPU requirements, the host is confirmed if it just satisfies the RAM requirements. In
addition, similar to the averaging underload and overload detection algorithms, the algorithm uses
the mean values of the last n CPU utilization measurements as the CPU constraints. The worst-case
complexity of the algorithm is .nCm=2/m, where n is the number of physical nodes and m is the
number of VMs to be placed. The worst case occurs when every VM to be placed requires a new
inactive host to be activated.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

OPENSTACK NEAT: A FRAMEWORK FOR DYNAMIC CONSOLIDATION OF VIRTUAL MACHINES

5. A BENCHMARK SUITE FOR EVALUATING DISTRIBUTED DYNAMIC VM
CONSOLIDATION ALGORITHMS

Currently, research in the area of dynamic VM consolidation is limited by the lack of a standardized
suite of benchmark software, workload traces, performance metrics, and evaluation methodology.
Most of the time, researchers develop their own solutions for evaluating the proposed algorithms,
which are not publicly available later on. This complicates further research efforts in the area
because of the limited opportunities for comparing new results with prior solutions. Moreover, the
necessity in implementing custom evaluation software leads to duplication of efforts. In this work,
we propose an initial version of a benchmark suite for evaluating dynamic VM consolidation algo-
rithms following the distributed approach of splitting the problem into four sub-problems discussed
earlier. The proposed benchmark suite consists of four major components:

1. OpenStack Neat, a framework for distributed dynamic VM consolidation in OpenStack
clouds providing a base system implementation and allowing configuration-based switching
of different implementations of VM consolidation algorithms

2. A set of workload traces containing data on the CPU utilization collected every 5 min from
more than a thousand PlanetLab VMs deployed on servers located in more than 500 places
around the world [31]

3. A set of performance metrics capturing the following aspects: quality of VM consolidation,
quality of service delivered by the system, overhead of VM consolidation in terms of the
number of VM migration, and execution time of the consolidation algorithms

4. Evaluation methodology prescribing the approach of preparing experiments, deploying the
system, generating workload using the PlanetLab traces, and processing and analyzing
the results

We believe that the availability of such a benchmark suite will foster and facilitate research efforts
and future advancements in the area of dynamic VM consolidation. In addition, researchers are
encouraged to publicize and share the implemented consolidation algorithms to simplify perfor-
mance comparisons with future solutions. One approach to sharing algorithm implementations is
the addition of an extra package to the main branch of OpenStack Neat that will contain contributed
algorithms. This would provide a central location, where anyone can find the up-to-date set of con-
solidation algorithms to use in their research. Therefore, processing and managing the inclusion of
such submissions into the main public repository of OpenStack Neat will be performed as part of
the project. The following sections provide more information on the workload traces, performance
metrics, and evaluation methodology of the proposed benchmark suite. The performance evaluation
discussed in Section 6 is an example of application of the benchmark suite.

5.1. Workload traces

To make experiments reproducible, it is important to rely on a set of input traces to reliably generate
the workload, which would allow the experiments to be repeated as many times as necessary. It is
also important to use workload traces collected from a real system rather than artificially generated,
as this would help to reproduce a realistic scenario. This chapter uses workload trace data provided
as a part of the CoMon project, a monitoring infrastructure of PlanetLab [31]. The traces include
data on the CPU utilization collected every 5 min from more than a thousand VMs deployed on
servers located in more 500 places around the world. Ten days of workload traces collected during
March and April 2011 has been randomly chosen, which resulted in a total of 11,746 24-h-long
traces. The full set of workload traces is publicly available online††.

The workload from PlanetLab VMs is representative of an IaaS cloud environment, such as
Amazon EC2, in the sense that the VMs are created and managed by multiple independent users and
the infrastructure provider is not aware of what particular applications are executing in the VMs.

††The PlanetLab traces, http://github.com/beloglazov/planetlab-workload-traces.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

http://github.com/beloglazov/planetlab-workload-traces

A. BELOGLAZOV AND R. BUYYA

24181260

100%

75%

50%

25%

0%

24181260

100%

75%

50%

25%

0%

24181260

Hour

C
P

U
 u

ti
liz

at
io

n

Figure 6. A sample of six selected CPU utilization traces over a 24-h period.

Furthermore, this implies that the overall system workload is composed of multiple heterogeneous
applications, which also corresponds to a typical IaaS environment.

To stress the system in the experiments, the original workload traces have been filtered to leave
only the ones that exhibit high variability. In particular, only the traces that satisfy the following
two conditions have been selected: (1) at least 10% of time the CPU utilization is lower than 20%
and (2) at least 10% of time the CPU utilization is higher than 80%. This significantly reduced the
number of workload traces, resulting in only 33 out of 11,746 24-h traces left. The set of selected
traces and filtering script is available online [36]. A sample of six traces is shown in Figure 6.

The resulting number of traces was sufficient for the experiments, whose scale was limited by
the size of the testbed described in Section 6.1. If a larger number of traces is required to satisfy
larger-scale experiments, one approach is to relax the conditions of filtering the original set of traces.
Another approach is to randomly sample with replacement from the limited set of traces. If another
set of suitable workload traces becomes publicly available, it can be included in the benchmark suite
as an alternative.

5.2. Performance metrics

For effective performance evaluation and comparison of algorithms, it is essential to define per-
formance metrics that capture the relevant characteristics of the algorithms. One of the objectives
of dynamic VM consolidation is the minimization of energy consumption by the physical nodes,
which can be a metric for performance evaluation and comparison. However, energy consumption is
highly dependent on the particular model and configuration of the underlying hardware, efficiency
of power supplies, implementation of the sleep mode, and so on. A metric that abstracts from the
mentioned factors, but is directly proportional and can be used to estimate energy consumption, is
the time of a host being idle, aggregated over the full set of hosts. By using this metric, the qual-
ity of VM consolidation can be represented by the increase in the aggregated idle time of hosts.
However, this metric depends on the length of the overall evaluation period and the number of hosts.
To eliminate this dependence, we propose a normalized metric referred to as the aggregated idle
time fraction (AITF) defined as shown in (3).

AITF D

P
h2H ti .h/P
h2H ta.h/

; (3)

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

OPENSTACK NEAT: A FRAMEWORK FOR DYNAMIC CONSOLIDATION OF VIRTUAL MACHINES

where H is a set of hosts, ti .h/ is the idle time of the host h, and ta.h/ is the total activity time of
the host h. To quantify the overall QoS delivered by the system, we apply the aggregated overload
time fraction (AOTF), which is based on the OTF metric [29] and defined as shown in (4).

AOTF.ut / D

P
h2H to.h; ut /P
h2H tb.h/

; (4)

where to.h; ut / is the overload time of the host h calculated according to the overload threshold
ut and tb.h/ is the total busy (non-idle) time of the host h. We propose evaluating the overhead of
dynamic VM consolidation in the system in terms of the number of VM migrations initiated as a
part of dynamic consolidation. Apart from that, the execution time of various components of the
system including the execution time of the VM consolidation algorithms is evaluated.

5.3. Performance evaluation methodology

One of the key points of the proposed performance evaluation methodology is the minimization of
manual steps required to run an experiment through automation. Automation begins from scripted
installation of the OS, OpenStack services, and their dependence on the testbed’s nodes, as described
in the OpenStack installation guide [32]. The next step is writing scripts for preparing the system
for an experiment, which includes starting up the required services, booting VM instances, and
preparing them for starting the workload generation.

While most of the mentioned steps are trivial, workload generation is complicated by the require-
ment of synchronizing the time of starting the workload generation on all the VMs. Another
important aspect of workload generation is the way workload traces are assigned to VMs. Typi-
cally, the desired behavior is assigning a unique workload trace out of the full set of traces to each
VM. Finally, it is necessary to create and maintain a specific level of CPU utilization for the whole
interval between changes of the CPU utilization level defined by the workload trace for each VM.

This problem is addressed using a combination of a CPU load generation program‡‡ and a
workload distribution Web service and clients deployed on VMs [36]. When a VM boots from
a pre-configured image, it automatically starts a script that polls the central workload distribu-
tion Web service to be assigned a workload trace. Initially, the workload distribution Web service
drops requests from clients deployed on VMs to wait for the moment when all the required VM
instances are booted up and ready for generating workload. When all clients are ready, the Web ser-
vice receives a command to start the workload trace distribution. The Web service starts replying to
clients by sending each of them a unique workload trace. Upon receiving a workload trace, every
client initiates the CPU load generator and passes the received workload trace as an argument. The
CPU load generator reads the provided workload trace file and starts generating CPU utilization
levels corresponding to the values specified in the workload trace file for each time frame.

During an experiment, OpenStack Neat continuously logs various events into both the database
and log files on each host. After the experiment, the logged data are used by special result pro-
cessing scripts to extract the required information and compute the performance metrics discussed
in Section 5.2, as well as the execution time of various system components. This process should
be repeated for each combination of VM consolidation algorithms under consideration. Once the
required set of experiments is completed, other scripts are executed to perform automated statistical
tests and plotting graphs for comparing the algorithms.

The next section presents an example of application of the proposed benchmark suite and in
particular applies the following: (1) OpenStack Neat as the dynamic VM consolidation framework;
(2) the filtered PlanetLab workload traces discussed in Section 5.1; (3) the performance metrics
defined in Section 5.2; and (4) the proposed evaluation methodology. The full set of scripts used in
the experiments is available online [36].

‡‡The CPU load generator, http://github.com/beloglazov/cpu-load-generator.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

http://github.com/beloglazov/cpu-load-generator

A. BELOGLAZOV AND R. BUYYA

6. PERFORMANCE EVALUATION

In this section, we apply the benchmark suite proposed in Section 5 to evaluate OpenStack Neat and
several dynamic VM consolidation algorithm discussed in Section 4.

6.1. Experiment testbed

The testbed used for performance evaluation of the system consisted of the following hardware:

� 1 � Dell Optiplex 745

– Intel(R) Core(TM) 2 CPU (two cores and two threads) 6600 at 2.40 GHz
– 2-GB DDR2-667
– Seagate Barracuda 80 GB, 7200 RPM SATA II (ST3808110AS)
– Broadcom 5751 NetXtreme Gigabit Controller

� 4 � IBM System x3200 M3

– Intel(R) Xeon(R) CPU (four cores and eight threads), X3460 at 2.80 GHz
– 4-GB DDR3-1333
– Western Digital 250 GB, 7200 RPM SATA II (WD2502ABYS-23B7A)
– Dual Gigabit Ethernet (2 � Intel 82574L Ethernet Controller)

� 1 � Netgear ProSafe 16-Port 10/100 Desktop Switch FS116

The Dell Optiplex 745 machine was chosen to serve as the controller host running all the major
OpenStack services and the global manager of OpenStack Neat. The four IBM System x3200 M3
servers were used as compute hosts, that is, running OpenStack Nova, and local managers and data
collectors of OpenStack Neat. All the machines formed a local network connected via the Netgear
FS116 network switch.

Unfortunately, there was a hardware problem preventing the system from taking advantage of
dynamic VM consolidation to save energy. The problem was that the compute nodes of our testbed
did not support the Suspend to RAM power state, which is the most suitable for the purpose of
dynamic VM consolidation. This state potentially provides very low switching latency, in the order
of 300 ms, while reducing the energy consumption to a negligible level [33]. Another approach
would be to shut down inactive nodes; however, the latency is too high to quickly re-enable them.
Therefore, rather than measuring the actual energy consumption by the servers, the AITF metric
introduced in Section 5.2 was used to compare algorithms and estimate potential energy savings.

6.2. Experiment setup and algorithm parameters

From the point of view of experimenting with close-to-real-world conditions, it is interesting to allo-
cate as many VMs on a compute host as possible. This would create a more dynamic workload and
stress the system. At the same time, it is important to use full-fledged VM images representing real-
istic user requirements. Therefore, the Ubuntu 12.04 Cloud Image [37] was used in the experiments,
which is one of the Ubuntu VM images available in Amazon EC2.

Because the compute hosts of the testbed contained limited amount of RAM, to maximize the
number of VMs served by a single host, it was necessary to use a VM instance type with the min-
imum amount of RAM sufficient for Ubuntu 12.04. The minimum required amount of RAM was
empirically determined to be 128 MB. This resulted in a maximum of 28 VMs being possible to
instantiate on a single compute host. Therefore, to maximize potential benefits of dynamic VM con-
solidation on the testbed containing four compute nodes, the total number of VM instances was set
to 28, so that in an ideal case, all of them can be placed on a single compute host, while the other
three hosts are kept idle. Out of the 33 filtered PlanetLab workload traces discussed in Section 5.1,
28 traces were randomly selected, that is, one unique 24-h trace for each VM instance. The full set
of selected traces is available online [36].

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

OPENSTACK NEAT: A FRAMEWORK FOR DYNAMIC CONSOLIDATION OF VIRTUAL MACHINES

During the experiments, all the configuration parameters of OpenStack Neat were set to their
default values except for the configuration of the overload detection algorithm. The overload detec-
tion algorithm was changed for each experiment by going through the following list of algorithms
and their parameters:

Figure 7. The experiment results. (a) The AITF metric. (b) The AOTF metric. (c) The number of VM
migrations.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

A. BELOGLAZOV AND R. BUYYA

1. MAX-ITF algorithm—a baseline algorithm that never detects host overloads, leading to the
maximum ITF for the host, where the algorithm is used.

2. The THR algorithm with the n parameter set to 2, and the CPU utilization threshold set to 0.8,
0.9, and 1.0

3. The LRR algorithm with the safety parameter set to 0.9, 1.0, and 1.1
4. The MHOD algorithm with the OTF parameter set to 0.2, 0.3, and 0.4

Each experiment was run three times to handle the variability caused by random factors, such as
the initial VM placement, workload trace assignment, and component communication latency. All
the system initialization and result processing scripts, along with the experiment result packages are
available online [36].

6.3. Experiment results and analysis

The results of the experiments are graphically depicted in Figure 7. The mean values of the obtained
AITF and AOTF metrics and the number of VM migrations along with their 95% confidence inter-
vals (CIs) are displayed in Table I. The results of MAX-ITF show that for the current experiment
setup, it is possible to obtain high values of AITF of up to 50%, while incurring a high AOTF of
more than 40%. All the THR, LRR, and MHOD allow tuning of the AITF values by adjusting the
algorithm parameters. For the THR algorithm, the mean AITF increases from 36.9% to 49.2% with
the corresponding decrease in the QoS level from 15.4% to 42.2% by varying the CPU utilization
threshold from 0.8 to 1.0. The mean number of VM migrations decreases from 167.7 for the 80%
threshold to 11.3 for the 100% threshold. The THR algorithm with the CPU utilization threshold set
to 100% reaches the mean AITF shown by the MAX-ITF algorithm, which is expected as setting
the threshold to 100% effectively disables host overload detection. Similarly, adjusting the safety
parameter of the LRR algorithm from 1.1 to 0.9 leads to an increase of the mean AITF from 37.9%
to 47.3% with a growth of the mean AOTF from 17.8% to 34.4% and decrease of the mean number
of VM migrations from 195.7 to 28.3. THR-1.0 reaches the mean AITF of 49.2% with the mean
AOTF of 42.2%, while LRR-0.9 reaches a close mean AITF of 47.3% with the mean AOTF of only
34.4%, which is a significant decrease compared with the AOTF of THR-1.0.

Varying the OTF parameter of the MHOD algorithm from 0.2 to 0.4 leads to an increase of the
mean AITF from 37.7% to 40.7% with an increase of the mean AOTF from 16.0% to 21.4%. First
of all, it is important to note that the algorithm meets the specified QoS constraint by keeping the
value of the AOTF metric below the specified OTF parameters. However, the resulting mean AOTF
is significantly lower than the specified OTF parameters: 17.9% for the 30% OTF and 21.4% for
the 40% OTF. This can be explained by a combination of two factors: (1) the MHOD algorithm is
parameterized by the per-host OTF, rather than AOTF, which means that it meets the OTF constraint
for each host independently; (2) because of the small scale of the experiment testbed, a single under-
loaded host used for offloading VMs from overloaded hosts is able to significantly skew the AITF
metric. The AITF metric is expected to be closer to the specified OTF parameter for large-scale
OpenStack Neat deployments. A comparison of the results produced by LRR-1.1 and LRR-1.0 with

Table I. The experiment results (mean values with 95% CIs).

Algorithm AITF AOTF VM migrations

THR-0.8 36.9% (35.6, 38.2) 15.4% (12.5, 18.3) 167.7 (152.7, 182.6)
THR-0.9 43.0% (42.6, 43.5) 27.0% (25.7, 28.1) 75.3 (70.2, 80.5)
THR-1.0 49.2% (49.2, 49.4) 42.2% (33.0, 51.3) 11.3 (9.9, 12.8)
LRR-1.1 37.9% (37.9, 38.0) 17.8% (12.8, 22.7) 195.7 (158.3, 233.0)
LRR-1.0 40.3% (38.1, 42.4) 23.8% (21.4, 26.1) 93.7 (64.6, 122.8)
LRR-0.9 47.3% (45.2, 49.4) 34.4% (28.8, 40.0) 28.3 (23.2, 33.5)
MHOD-0.2 37.7% (36.8, 38.5) 16.0% (13.5, 18.5) 158.3 (153.2, 163.5)
MHOD-0.3 38.1% (37.7, 38.5) 17.9% (16.8, 18.9) 138.0 (81.6, 194.4)
MHOD-0.4 40.7% (37.0, 44.4) 21.4% (16.7, 26.0) 116.3 (26.6, 206.0)
MAX-ITF 49.2% (49.1, 49.3) 40.4% (35.8, 44.9) 14.0 (7.4, 20.6)

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

OPENSTACK NEAT: A FRAMEWORK FOR DYNAMIC CONSOLIDATION OF VIRTUAL MACHINES

Table II. Energy consumption estimates.

Algorithm Energy (kWh) Base energy (kWh) Energy savings (%)

THR-0.8 25.99 34.65 24.99
THR-0.9 24.01 33.80 28.96
THR-1.0 22.09 32.93 32.91
LRR-1.1 25.66 34.50 25.63
LRR-1.0 24.96 34.18 26.97
LRR-0.9 22.60 33.20 31.93
MHOD-0.2 25.70 34.53 25.59
MHOD-0.3 25.59 34.48 25.76
MHOD-0.4 24.72 34.12 27.54
MAX-ITF 22.07 32.94 33.01

MHOD-0.2 and MHOD-0.4 reveals that the MHOD algorithm leads to lower values of the AOTF
metric (higher level of QoS) for approximately equal values of AITF.

By using the obtained AITF and AOTF metrics for each algorithm and data on power consumption
by servers, it is possible to compute estimates of potential energy savings relatively to a non-power-
aware system assuming that hosts are switched to the sleep mode during every idle period. To obtain
a lower bound on the estimated energy savings, it is assumed that when dynamic VM consolidation
is applied, the CPU utilization of each host is 80% when it is active and non-overloaded, and 100%
when it is overloaded. According to the data provided by Meisner et al. [33], power consumption
of a typical blade server is 450 W in the fully utilized state, 270 W in the idle state, and 10.4 W
in the sleep mode. Using the linear server power model proposed by Fan et al. [38] and the power
consumption data provided by Meisner et al. [33], it is possible to calculate power consumption of
a server at any utilization level.

To calculate the base energy consumption by a non-power-aware system, it is assumed that in
such a system, all the compute hosts are always active with the load being distributed across them.
Because the power model applied in this study is linear, it is does not matter how exactly the load is
distributed across the servers. The estimated energy consumption levels for each overload detection
algorithm, along with the corresponding base energy consumption by a non-power-aware system,
and percentages of the estimated energy savings are presented in Table II.

According to the estimates, MAX-ITF leads to the highest energy savings over the base energy
consumption of approximately 33% by the cost of substantial performance degradation (AOTF D
40.4%). The THR, LRR, and MHOD algorithms lead to energy savings from approximately 25% to
32% depending on the specified parameters. Similar to the earlier comparison of algorithms using
the AITF metric, LRR-0.9 produces energy savings close to those of THR-1.0 (31.93% compared
with 32.91%), while significantly reducing the mean AOTF from 42.2% to 34.4%. The MHOD algo-
rithm produces approximately equal or higher energy savings than the LRR algorithm with lower
mean AITF values, that is, higher levels of QoS, while also providing the advantage of specifying a
QoS constraint as a parameter of the algorithm. The obtained experiment results confirm the hypoth-
esis that dynamic VM consolidation is able to significantly reduce energy consumption in an IaaS
cloud with a limited performance impact.

Table III lists the mean values of the execution time along with 95% CIs measured for each
overload detection algorithm during the experiments for some of the system components: processing
of underload and overload requests by the global manager (GM), overload detection algorithms
executed by the local manager (LM), and iterations of the data collector (DC). Request processing
by the global manager takes on average between 30 and 60 s, which is mostly determined by the
time required to migrate VMs. The mean execution time of the MHOD algorithm is higher than
those of THR and LRR, while still being under half a second, resulting in a negligible overhead
considering that it is executed at most once in 5 min. The mean execution time of an iteration of the
data collector is similarly under a second, which is also negligible considering that it is executed
only once in 5 min.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

A. BELOGLAZOV AND R. BUYYA

Table III. The execution time of components in seconds (mean values with 95% CIs).

Algorithm GM underload GM overload LM overload DC

THR 33.5 (26.4, 40.5) 60.3 (54.0, 66.7) 0.003 (0.000, 0.006) 0.88 (0.84, 0.92)
LRR 34.4 (27.6, 41.1) 50.3 (47.8, 52.8) 0.006 (0.003, 0.008) 0.76 (0.73, 0.80)
MHOD 41.6 (27.1, 56.1) 53.7 (50.9, 56.6) 0.440 (0.429, 0.452) 0.92 (0.88, 0.96)
MAX-ITF 41.7 (9.6, 73.7) — 0.001 (0.000, 0.001) 1.03 (0.96, 1.10)

7. SCALABILITY REMARKS AND FUTURE DIRECTIONS

Scalability and eliminating single points of failure are important benefits of designing a dynamic
VM consolidation system in a distributed way. According to the approach adopted in the design
of OpenStack Neat, the underload/overload detection and VM selection algorithms are able to
inherently scale with the increased number of compute hosts. This is because they are executed
independently on each compute host and do not rely on information about the global state of the
system. In regard to the database setup, there exist distributed database solutions, for example, the
MySQL Cluster [34].

On the other hand, in the current implementation of OpenStack Neat, there is assumed to be only
one instance of the global manager deployed on a single controller host. This limits the scalability
of VM placement decisions and creates a single point of failure. However, even with this limitation,
the overall scalability of the system is significantly improved compared with existing completely
centralized VM consolidation solutions. Compared with centralized solutions, the only functionality
implemented in OpenStack Neat by the central controller is the placement of VMs selected for
migration, which constitute only a fraction of the total number of VMs in the system. To address
the problem of a single point of failure, it is possible to run a second instance of the global manager,
which initially does not receive requests from the local managers and is automatically activated
when the primary instance of the global manager fails. However, the problem of scalability is more
complex because it is necessary to have multiple independent global managers concurrently serving
requests from local managers.

Potentially, it is possible to implement replication of the global manager in line with OpenStack’s
approach to scalability by replication of its services. From the point of view of communication
between the local and global managers, replication can be simply implemented by a load bal-
ancer that distributes requests from the local managers across the set of replicated global managers.
A more complex problem is synchronizing the activities of the replicated global managers. It is
necessary to avoid situations when two global managers place VMs on a single compute host simul-
taneously, because that would imply that they use an out-of-date view of the system state. One
potential solution to this problem could be a continuous exchange of information between global
managers during the process of execution of the VM placement algorithm, that is, if a host is selected
by a global manager for a VM, it should notify the other global managers to exclude that host from
their sets of available destination hosts.

There are several future directions for improvements of the current work. First of all, it is impor-
tant to propose a synchronization model and implement replication of global managers to achieve a
completely distributed and fault-tolerant dynamic VM consolidation system. Next, the data collec-
tor component should be extended to collect other types of data in addition to the CPU utilization
that can be used by VM consolidation algorithms. Another direction is performance optimization
and testing of OpenStack Neat on large-scale OpenStack deployments.

It is important to further refine the proposed initial version of the benchmark suite, for exam-
ple, to provide a more concrete evaluation methodology along with tools for conducting automated
experiments. It would also be beneficial to add alternative sets of workload traces, which would
help to evaluate VM consolidation algorithms with a variety of workloads. As mentioned before,
we accept contributions of implementations of VM consolidation algorithms that could be included
in OpenStack Neat as a part of the proposed benchmark suite. Such a central repository of

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

OPENSTACK NEAT: A FRAMEWORK FOR DYNAMIC CONSOLIDATION OF VIRTUAL MACHINES

VM consolidation algorithms would greatly benefit future research in the area by simplifying
and facilitating performance comparisons of alternative solutions, and avoiding duplication of
research efforts.

8. CONCLUSIONS

In this paper, we have proposed a design and implementation of an open-source framework for
dynamic VM consolidation in OpenStack clouds, called OpenStack Neat. The framework follows
a distributed model of dynamic VM consolidation, where the problem is divided into four sub-
problems: host underload detection, host overload detection, VM selection, and VM placement.
Through its configuration, OpenStack Neat can be customized to use various implementations of
algorithms for each for the four sub-problems of dynamic VM consolidation. OpenStack Neat is
transparent to the base OpenStack installation by interacting with it using the public APIs, and not
requiring any modifications of OpenStack’s configuration. We have also proposed a benchmark suite
comprising OpenStack Neat as the base software framework, a set of PlanetLab workload traces,
performance metrics, and methodology for evaluating and comparing dynamic VM consolidation
algorithms following the distributed model.

The experiment results and estimates of energy consumption have shown that OpenStack Neat is
able to reduce energy consumption by the compute nodes of a four-node testbed by 25–33%, while
resulting in a limited application performance impact from approximately 15% to 40% AOTF. The
MHOD algorithm has led to approximately equal or higher energy savings with lower mean AOTF
values compared with the other evaluated algorithms, while also allowing the system administrator
to explicitly specify a QoS constraint in terms of the OTF metric.

The performance overhead of the framework is nearly negligible, taking on average only a fraction
of a second to execute iterations of the components. The request processing of the global manager
takes on average between 30 and 60 s and is mostly determined by the time required to migrate
VMs. The results have shown that dynamic VM consolidation brings significant energy savings with
a limited impact on the application performance. The proposed framework can be applied in both
further research on dynamic VM consolidation and real OpenStack cloud deployments to improve
the utilization of resources and reduce energy consumption.

REFERENCES

1. Koomey J. Growth in Data Center Electricity Use 2005 to 2010. Analytics Press: Oakland, CA, 2011.
2. Gartner, Inc. Gartner Estimates ICT Industry Accounts for 2 Percent of Global CO2 Emissions. Gartner Press:

Stamford, CT, USA, Release (April 2007).
3. The Open Compute project—energy efficiency. (Available from: http://opencompute.org/about/energy-efficiency/)

[Accessed on 21 November 2012].
4. Hermenier F, Lorca X, Menaud J, Muller G, Lawall J. Entropy: a consolidation manager for clusters. Proceedings of

the 2009 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, Washington, DC,
USA, 2009; 41–50.

5. Feller E, Rilling L, Morin C. Snooze: a scalable and autonomic virtual machine management framework for pri-
vate clouds. Proceedings of the 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), Ottawa, Canada, 2012; 482–489.

6. Verma A, Dasgupta G, Nayak TK, De P, Kothari R. Server workload analysis for power minimization using
consolidation. Proceedings of the 2009 USENIX Annual Technical Conference, San Diego, CA, USA, 2009; 28–41.

7. Speitkamp B, Bichler M. A mathematical programming approach for server consolidation problems in virtualized
data centers. IEEE Transactions on Services Computing (TSC) 2010; 3(4):266–278.

8. Cardosa M, Korupolu M, Singh A. Shares and utilities based power consolidation in virtualized server environments.
Proceedings of the 11th IFIP/IEEE Integrated Network Management (IM), Long Island, NY, USA, 2009; 327–334.

9. Kumar S, Talwar V, Kumar V, Ranganathan P, Schwan K. vManage: loosely coupled platform and virtualization
management in data centers. Proceedings of the 6th International Conference on Autonomic Computing (ICAC),
Barcelona, Spain, 2009; 127–136.

10. Kusic D, Kephart JO, Hanson JE, Kandasamy N, Jiang G. Power and performance management of virtualized
computing environments via lookahead control. Cluster Computing 2009; 12(1):1–15.

11. Kusic D, Kandasamy N, Jiang G. Combined power and performance management of virtualized computing envi-
ronments serving session-based workloads. IEEE Transactions on Network and Service Management (TNSM) 2011;
8(3):245–258.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

http://opencompute.org/about/energy-efficiency/

A. BELOGLAZOV AND R. BUYYA

12. Jung G, Hiltunen MA, Joshi KR, Schlichting RD, Pu C. Mistral: dynamically managing power, performance, and
adaptation cost in cloud infrastructures. Proceedings of the 30th International Conference on Distributed Computing
Systems (ICDCS), Genoa, Italy, 2010; 62–73.

13. Wang X, Wang Y. Coordinating power control and performance management for virtualized server clusters. IEEE
Transactions on Parallel and Distributed Systems (TPDS) 2011; 22(2):245–259.

14. Guenter B, Jain N, Williams C. Managing cost, performance, and reliability tradeoffs for energy-aware server provi-
sioning. Proceedings of the 30th Annual IEEE International Conference on Computer Communications (INFOCOM),
Shanghai, China, 2011; 1332–1340.

15. Ardagna D, Panicucci B, Trubian M, Zhang L. Energy-aware autonomic resource allocation in multitier virtualized
environments. IEEE Transactions on Services Computing (TSC) 2012; 5(1):2–19.

16. Berral JL, Goiri Í, Nou R, Julià F, Guitart J, Gavaldà R, Torres J. Towards energy-aware scheduling in data cen-
ters using machine learning. Proceedings of the 1st International Conference on Energy-Efficient Computing and
Networking, Passau, Germany, 2010; 215–224.

17. Yang J, Zeng K, Hu H, Xi H. Dynamic cluster reconfiguration for energy conservation in computation intensive
service. IEEE Transactions on Computers 2012; 61(10):1401–1416.

18. Carrera D, Steinder M, Whalley I, Torres J, Ayguadé E. Autonomic placement of mixed batch and transactional
workloads. IEEE Transactions on Parallel and Distributed Systems (TPDS) 2012; 23(2):219–231.

19. Goiri Í, Berral J, Oriol Fitó J, Julià F, Nou R, Guitart J, Gavaldà R, Torres J. Energy-efficient and multifaceted
resource management for profit-driven virtualized data centers. Future Generation Computer Systems (FGCS) 2012;
28(5):718–731.

20. Nathuji R, Schwan K. VirtualPower: coordinated power management in virtualized enterprise systems. ACM SIGOPS
Operating Systems Review 2007; 41(6):265–278.

21. Zhu X, Young D, Watson BJ, Wang Z, Rolia J, Singhal S, McKee B, Hyser C, Gmach D., Gardner R., Christian
T., Cherkasova L. 1000 Islands: integrated capacity and workload management for the next generation data center.
Proceedings of the 5th International Conference on Autonomic Computing (ICAC), Chicago, IL, USA, 2008; 172–
181.

22. Bobroff N, Kochut A, Beaty K. Dynamic placement of virtual machines for managing SLA violations. Proceedings
of the 10th IFIP/IEEE International Symposium on Integrated Network Management (IM), Munich, Germany, 2007;
119–128.

23. Nandi B, Banerjee A, Ghosh S, Banerjee N. Stochastic VM multiplexing for datacenter consolidation. Proceedings
of the 9th IEEE International Conference on Services Computing (SCC), Honolulu, HI, USA, 2012; 114–121.

24. Wood T, Shenoy P, Venkataramani A, Yousif M. Black-box and gray-box strategies for virtual machine migration.
Proceedings of the 4th USENIX Symposium on Networked Systems Design & Implementation, Cambridge, MA, USA,
2007; 229–242.

25. Feller E, Rohr C, Margery D, Morin C. Energy management in IaaS clouds: a holistic approach. Proceedings of the
5th IEEE International Conference on Cloud Computing (IEEE CLOUD), Honolulu, HI, USA, 2012; 204–212.

26. Beloglazov A, Buyya R, Lee YC, Zomaya A. A taxonomy and survey of energy-efficient data centers and cloud
computing systems. In Advances in Computers, Vol. 82, Zelkowitz M (ed.). Academic Press: Waltham, MA, USA,
2011; 47–111.

27. Beloglazov A, Abawajy J, Buyya R. Energy-aware resource allocation heuristics for efficient management of data
centers for cloud computing. Future Generation Computer Systems (FGCS) 2011; 28(5):755–768.

28. Beloglazov A, Buyya R. Optimal online deterministic algorithms and adaptive heuristics for energy and performance
efficient dynamic consolidation of virtual machines in cloud data centers. Concurrency and Computation: Practice
and Experience (CCPE) 2012; 24(13):1397–1420.

29. Beloglazov A, Buyya R. Managing overloaded hosts for dynamic consolidation of virtual machines in cloud data
centers under quality of service constraints. IEEE Transactions on Parallel and Distributed Systems (TPDS) 2013;
24(7):1366–1379. DOI: 10.1109/TPDS.2012.240.

30. Rackspace hosting reports second quarter 2012 results. (Available from: http://ir.rackspace.com/phoenix.zhtml?
c=221673&p=irol-newsArticle&ID=1723357) [Accessed on 6 November 2012].

31. Park KS, Pai VS. CoMon: a mostly-scalable monitoring system for PlanetLab. ACM SIGOPS Operating Systems
Review 2006; 40(1):65–74.

32. Beloglazov A, Piraghaj SF, Alrokayan M, Buyya R. Deploying OpenStack on CentOS using the KVM hypervisor
and GlusterFS distributed file system. Technical Report, CLOUDS-TR-2012-3, CLOUDS Laboratory, The University
of Melbourne: Australia, 2012.

33. Meisner D, Gold B, Wenisch T. PowerNap: eliminating server idle power. ACM SIGPLAN Notices 2009; 44(3):
205–216.

34. MySQL Cluster. (Available from: http://www.mysql.com/products/cluster/) [Accessed on 23 November 2012].
35. Yue M. A simple proof of the inequality FFD (L)< 11/9 OPT (L)C 1, for all l for the FFD bin-packing algorithm.

Acta Mathematicae Applicatae Sinica (English Series) 1991; 7(4):321–331.
36. Beloglazov A. Scripts for setting up and analyzing results of experiments using OpenStack Neat. (Available from:

http://github.com/beloglazov/ccpe-2014-experiments) [Accessed on 10 November 2013].
37. Ubuntu 12.04 (Precise Pangolin) Cloud images. (Available from: http://uec-images.ubuntu.com/precise/current/)

[Accessed on 22 November 2012].
38. Fan X, Weber WD, Barroso LA. Power provisioning for a warehouse-sized computer. Proceedings of the 34th Annual

International Symposium on Computer Architecture (ISCA), San Diego, CA, USA, 2007; 13–23.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2014)
DOI: 10.1002/cpe

http://ir.rackspace.com/phoenix.zhtml?c=221673&p=irol-newsArticle&ID=17 23357
http://ir.rackspace.com/phoenix.zhtml?c=221673&p=irol-newsArticle&ID=17 23357
http://www.mysql.com/products/cluster/
http://github.com/beloglazov/ccpe-2014-experiments
http://uec-images.ubuntu.com/precise/current/

	OpenStack Neat: a framework for dynamic and energy-efficient consolidation of virtual machines in OpenStack clouds
	Summary
	INTRODUCTION
	RELATED WORK
	SYSTEM DESIGN
	Requirements and assumptions
	Integration with OpenStack
	System components
	Global manager
	Switching power states of hosts

	Local manager
	Data collector
	Data stores
	Central database
	Local file-based data store

	VM CONSOLIDATION ALGORITHMS
	Host underload detection
	Host overload detection
	VM selection
	VM placement

	A BENCHMARK SUITE FOR EVALUATING DISTRIBUTED DYNAMIC VM CONSOLIDATION ALGORITHMS
	Workload traces
	Performance metrics
	Performance evaluation methodology

	PERFORMANCE EVALUATION
	Experiment testbed
	Experiment setup and algorithm parameters
	Experiment results and analysis

	SCALABILITY REMARKS AND FUTURE DIRECTIONS
	CONCLUSIONS
	REFERENCES

