
Journal of Network and Computer Applications 193 (2021) 103196

Available online 20 August 2021
1084-8045/© 2021 Elsevier Ltd. All rights reserved.

OpenPATH: Application aware high-performance software-defined
switching framework

Prabhakar Krishnan a,*, Subhasri Duttagupta b, Rajkumar Buyya c

a Center for Cybersecurity Systems and Networks, Amrita Vishwa Vidyapeetham, Amritapuri-Campus, Kerala, India
b Dept. of Computer Science and Engineering, Amrita Vishwa Vidyapeetham, Amritapuri-Campus, Kerala, India
c Cloud Computing and Distributed Systems (CLOUDS) Lab, School of Computing and Information Systems, The University of Melbourne, Australia

A R T I C L E I N F O

Keywords:
SDN
NFV
Service function chaining
Network function parallelism
Intent-based networking
Software switching

A B S T R A C T

Currently, core networking architecture is facing disruptive developments, due to the emergence of SDN for
control, NFV for services and so on. SDN promises more versatility in routing and managing traffic flows, while
NFV represents a large shift in how network functions and services are built, deployed, and managed. We present
OpenPATH (aPplication Aware software-defined swiTcHing framework)—A software-defined switching frame-
work for NFV processing and orchestration of Network Functions (NFs) and steering the flows through service
chains. Inspired by the potential benefits of encapsulating the application logic into the SDN dataplane, Open-
PATH is built on the concept of a modular dataplane, which consists of two layers - switching fabric layer to
control packet forwarding; and switch management layer, which inspects the incoming packets, steers the flows
through a sequence of NFs and determines the next forward/drop action. The application logic of the NFs can be
introduced and pushed to the dataplane at runtime and the framework offers fast packet processing and I/O
functionalities to support NF parallelism in the Service Function Chaining (SFC) scenarios. OpenPATH is a
modular framework for software switches and offers flexibility for programming run time functions depending on
the dynamic behavior of the network traffic and cyberattacks. The architecture components are not hard-coded
or rigidly implementations in conventional switches/bridges and standard OpenFlow based SDN stacks. The
design allows the vendors, operators, or developers to configure policies at run time and deploy custom logic and
NF (also series of NFs) through software programs embedded in the switching fabric. While the basic concept is
similar to some pioneering works in this area, OpenPATH does not sacrifice portability, performance, or security
for programmability. The OpenPATH as a programmable switching platform takes a different approach to meet
most of the requirements of application-aware and intent-based networking. OpenPATH helps administrators to
quickly configure network security services using a rich set of standard APIs, with simplified flow tables. The
evaluation shows that our design can leverage complex states in the data plane without overloading the SDN
controller. Compared to conventional SDN methods, this provides much greater versatility and precision. The key
findings indicate that OpenPATH achieves lower cost for scaling, higher overall throughput, and reductions in
latency for real-world service chains.

1. Introduction

The Software-Defined-Networking (SDN) paradigm has transformed
the way networks are managed, by using a logically structured control
plane that can enforce carefully designed rules and programs that
govern individual packet flows (Feamster et al., 2013) through all
network groups and across modern virtualized datacenters. It changed
the network vendor’s approach to networking. Network virtualization
(NFV) (Han et al., 2015a) paradigm which replaces specialized

middlebox systems in the network, has emerged as the enabling tech-
nology to operate a myriad of infrastructure services as software appli-
cations (Network Functions/NFs) running on virtual machines (VMs) in
Commercially available Off-The-Shelf (COTS) systems (H wang et al.,
2014). The developments in softwarized networking infrastructures are
aimed at improving network management, dataplane programmability,
and the agility of networks. The software scheme also facilitates efficient
traffic steering and orchestration of services and functions on the go.
However, the limited interactions among current SDN controller(s) with

* Corresponding author.
E-mail address: kprabhakar@am.amrita.edu (P. Krishnan).

Contents lists available at ScienceDirect

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

https://doi.org/10.1016/j.jnca.2021.103196
Received 30 October 2020; Received in revised form 12 July 2021; Accepted 11 August 2021

mailto:kprabhakar@am.amrita.edu
www.sciencedirect.com/science/journal/10848045
https://www.elsevier.com/locate/jnca
https://doi.org/10.1016/j.jnca.2021.103196
https://doi.org/10.1016/j.jnca.2021.103196
https://doi.org/10.1016/j.jnca.2021.103196
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2021.103196&domain=pdf

Journal of Network and Computer Applications 193 (2021) 103196

2

NFV platform(s) restrict the extent to which new transformations can be
realized (Sherry and Ratnasamy, 2012). The control plane, which is
represented by the controller, imposes the traffic rules, yet has no con-
trol or knowledge of the running status/details from the hosting ele-
ments of NFV. SDN controller does not usually take advantage of the
information that can be derived from individual packets such as
inter-packet arrival times, sequence, protocols meta-data, session and
connection state info of the applications. This overly rigid data and
isolation of the controller limits the awareness of the control decisions
and the versatility of the flow handling functions. Although SDN seeks to
provide a simplistic management interface of the streamlined dataplane
(s), the fact is that the functions and logic that exist within the dataplane
switches of a real network is becoming increasingly complicated and
fluid.

Modern Networks today are designed not only from simple elements
such as routers and switches. It is also composed of appliances and
middleboxes that perform various functions on network traffic such as
proxy, cache, router, deep inspection, firewall, VPN, IDS, policies/
configuration enforcing, traffic shaping, and monitoring for QoS (Alim
et al., 2016). The ability to optimally steer and process packets pose hard
problems that current SDN approaches are not likely to solve, because
the current match-action rules for switches are not concise enough to
handle complex policies and functionalities. It is well known that it is too
expensive to depend on the control plane for packet processing
frequently, instead of making the decisions at the flow-level. This
cost-effective flow-based approach is exactly the general spirit of the
SDN model. Furthermore, the conventional networking architectures
don’t help to dynamically track and modify the rules on flows with
variable duration and time intervals (for example, a video stream that
needs to be changed in time based on available capacity, ele-
phant/ant/mice flows). SDN with its global view has been able to
address all of these critical aspects in the dataplane, such as costs,
management, and programmability, as well as additional problems such
as multi-tenancy. This also brought in new vendors as it reduced the
barriers to entry. Furthermore, only the forwarding devices are
software-defined in current SDN implementations, such as OpenFlow
(McKeownet al., 2008) and its variants, while the other data plane de-
vices – middleboxes and network functions – tend to suffer from all of
the above problems. Besides, these machines may often suffer from
additional, more complicated issues, such as more complex tasks to
process packets. Traditionally middlebox appliances, with their closed
source software pre-installed in monolithic hardware systems are
deployed as a vendor-built solution. These systems are expensive and
vendor-locked in, causing barriers to scale and deliver customized ser-
vices to the end-users. Apart from simple routing and forwarding func-
tions, IP networks increasingly rely on a combination of advanced
functions. The primary objective is to implement service-inferred for-
warding for traffic traversing a given domain and distinguished by the
collection of invoked Service Functions. Service-inferred forwarding is a
policy-driven process, and policies which include dynamic parameters
such as: Subscriber-aware, based on flow characteristics, designed to
optimize network resource usage, and any combination of all these
factors. To apply policy to traffic or to provide network services to it, the
traffic must pass through a specific series of VNFs referred to as a service
chain. Service function chaining (SFC) (Service function chaining gen-
eral use cases) is a term that refers to the approaches for sequencing
VNFs and enforcing the requirement that traffic must pass through the
proper service chain. Service chaining has been applied manually in
traditional networks (Joseph et al., 2008). NFV (European Telecom-
munications Standards Institute(ETSI), 2014)is proposed to reduce the
management costs associated with hosting the SFC, and VNFs can be
generated dynamically. Optimizing the location of dynamically gener-
ated VNFs and deciding the optimal route for VNFs to traverse a service
chain are difficult problems. SDN enables the network to be viewed as a
single global entity, and a centralized controller provides programmable
forwarding rules that simplify service chaining compliance (Anwer

et al., 2013; Fayazbakhsh et al., 2013; Qazi et al., 2013; Gember et al.,
2013). A closer review of the services/functions of an SFC, reveals that
most of the network functions do not overlap/share dependence and can
operate parallelly. In the SFC shown in Fig. 1, Monitor NF retains sta-
tistics from the packets without altering their content. As the chain
length becomes 3, this results in a theoretical reduction of the latency by
25 percent. While NFV enhanced scalability and availability, other
problems such as minimal and autonomous control of NFs are not
addressed. An exhaustive characterization of NFV applications exhibit
similarity in processing blocks on the network traffic. For example, the
majority of the networking elements/devices comprise of functions/-
logic that inspects the headers of the packets, categorizes into type-
s/class of flows, and executes the predefined logic on these flows. NFV
vendors when they deploy their applications or services as VNFs provide
a proprietary API for the customization and management of the policies
and parameters. IETF has published several drafts (Service function
chaining (sfc) architecture; Network service chaining problem state-
ment; Network service header) as references for the practical imple-
mentation of SFC.

Network administrators support the “softwarization” trend because it
enables flexibility and dynamic network configuration capabilities.
However, implementing and deploying these strategies raises a number
of realistic deployment issues. To fully exploit the advantages of NFV
and SDN, the network must first carefully integrate a network orches-
tration strategy (Kim and Feamster, 2013), ensuring that the NFV inte-
gration does not complicate the network management environment
excessively (i.e., a management challenge). For instance, in order to
efficiently manage multiple network functions, a network administrator
can create an orchestration strategy that generates a diverse set of
associated network flow rules. It is critical to optimize the resulting flow
orchestration.

NFV service instances are autonomous software instances, and as
such, they have the potential to reduce network service efficiency when
compared to older hardware-based solutions (i.e., a performance chal-
lenge). As we argue, no modern approach addresses both challenges
comprehensively. Our approach is inspired by previous works on effi-
ciently orchestrating virtualized network functions and middleboxes (e.
g., CoMb (Sekar et al., 2012) and Bohatei (Fayaz et al., 2015)). Their
main focus was on network service coordination, like controlling
network flows, and not the most challenging part of managing network
flow laws (i.e., at the data plane). Although Eswitch (Molnár et al.,
2016), ClickOS (Martins et al., 2014) and NetVM (H wang et al., 2014)
focussed on lowering management overhead by the use of advanced I/O
handling algorithms, NFV systems continue to incur systematic perfor-
mance overhead because of traffic detouring. This article investigates and
tests a method for streamlining NFV flow processing by explicitly
extending native services within the SDN data plane.

In NFV hosting platforms –network functions (NFs) are implemented
as applications and deployed in one of the following models:

1. Physical machines (one NF/host), multiple hosts have to be utilized
to deploy a SFC (a chain of NFs)

2. Virtual machines (one NF/VM) and multiple VMs (VNFs) can be
deployed on a physical host.

3. Containers (one NF/container) and multiple containers (VNFs) can
be deployed on a physical host.

4. Micro-services on high-end switches/routers/middleboxes (each NF
as a micro-service) and the orchestration of the micro-services
happen in the advanced hardware components such as network
processors and SOCs.

We demonstrate another new model that implements each NF as a
function (thread) and deploy these VNFs (implemented in software
languages like C, P4) in a modular network operating system on high
performance switching hardware platforms. The OpenPATH switches
run NF/applications that are written in standard API/native API,

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

3

concurrently execute the logic of multiple NFs (chain of processes that
share resources optimally) to execute them at the same data plane
location (COTS node) and maintain complex stateful dataplane flows/
sessions/connection tables and packet characteristics. So fundamen-
tally, there is no notion of “virtual machines to NFs” (that usually run-on
server class machine) in our platform, rather we have a mapping of
“software processes to NFs” (that are running on switch network oper-
ating system) in OpenPATH.

In an attempt to address these challenges and questions, our research
has developed a framework called OpenPATH (a high-performance
SDNFV platform) for deploying diverse types of NFV applications and
for NF decomposition into lower-level components to resolve the limi-
tations in the previous approaches and boost the overall efficiency of the
network. We focus on a particular component in the NFs service chain
that is a known performance and security bottleneck, and we present
algorithms to increase its overall turnaround time, efficiency, and
resilience. We also leave traditional “SDN + NFV” as separate problems
by running NFVs in conjunction with SDN to route packets between NFs,
enabling the dataplane to handle these NFs (Sonchack et al., 2016; Qazi
et al., 2013; Gember-Jacobson et al., 2014). OpenPATH handles the NFV
orchestration and integration based on an entire topology view, which
includes applications, computing, memory, and other networking re-
sources (e.g. NF location). We show that the flexibility of OpenPATH in
conjunction with its coordinated approach to cross-NF management and
traffic orchestration allows for significant performance optimizations, e.
g., offering 20–30% saving in CPU cycles and 2-4x increase in processing
rate/bandwidth. We maintain the SDN controller and NFV MANO
(“Management and Network Orchestration”) in the integrated archi-
tecture. The central SDNFV Orchestrator represents the service chains as
function graphs and distributes the sub-graphs (chain of NFs) across the
nodes in the dataplane and at run time it manages packet steering
through the NF chain. Each hardware node/machine hosts a vSwitch,
which is managed by a software component called NF Manager. The
ultimate objective of the OpenPATH architecture is to divide the
network management functions and distribute control hierarchically.
Finally, OpenPATH will effectively add application-awareness and
stateful knowledge to the network, allowing Deep Packet Inspection
(DPI) as micro-services for existing SDN deployments in ways that were
not possible with legacy architecture.

OpenPATH framework consists of four major functional blocks - i)
provides operators with a policy-specification scheme through north-
bound API to intuitively define concurrent or parallel intent. ii) SDNFV
orchestrator smartly recognizes dependencies and composes policies
into an optimal service graph. iii) A logically centralized SDN controller
can dynamically install multiple NF application logic on the switches
and orchestrate the NFV service chaining with the global view. iv) NF
chain is executed in the dataplane switch(es), either implemented solely
in software or on different hardware accelerator platforms (e.g.,
SmartNIC, NetFPGA). The OpenPATH implementation as a program-
mable switching platform, takes a different approach to meet most of the
requirements of application-aware and intent-based networking, e.g.,
Modular pipeline, that runs arbitrary/custom logic and autonomous and
every element of the switching architecture is programmable, not just

NFs or Flow tables. The datapath supports both in-kernel for fast-
switching in short-lived connections and entirely in-userspace which
binds directly to network interfaces (bypassing the kernel) using DPDK,
for heavy-duty packet data-processing applications, facilitates the flex-
ible all programmable infrastructure for different use-cases, experi-
ments, and open innovations.

Specifically, we make the following contributions to this research:

• We present a comprehensive overview of the NFV ecosystem, i.e.,
functions that are virtualized, virtualization techniques, and soft-
ware acceleration. We articulated the guidelines for the design,
development, and operation of a high-performance NFV ecosystem
that can cope with heterogeneous and dynamic workloads effi-
ciently. Based on the critical study, we derived an SDN-based data-
path architecture that tackles the inter-NF dependencies and
parallelism in NFV.

• We design OpenPATH, a high-performance software switching
framework for NFV, using the standard Northbound API and Open-
Flow protocol, along with algorithms to concurrently execute the
logic of multiple NFs (service chain) to execute them at the same data
plane location.

• Address the key requirements for switching architecture in future
software-defined datacenters: (1) high-programmability and appli-
cation awareness in the dataplane. (2) high throughput and packet
rates. (3) efficient resource utilization (CPU, memory, network). (4)
dynamically scalable and agile orchestration, packet-steering. and
(5) security and fault-tolerance.

• By integrating major classes of NF/applications into dataplane and
various switch fabric combinations, we validate our approach. We
test OpenPATH programmable platform based on in-kernel Linux
bridge, OVS, and in-user space implementations such as OVS-DPDK
and measure it against other experimental software switching
systems.

• Our research focuses on the performance of real-world network
functions in a multi-host setting. We show that this framework not
only makes development and administration easier, but it also im-
proves the network performance: By executing two or more NFs at
the same physical host/switch, exploiting NF parallelism and
resource optimization, we are improving throughput by 2x and
reducing latency by 50%.

2. Background and motivation

With the increased adoption of SDN architecture in large enterprise
networks, SDN-based NFV platforms are widely evaluated now. Fig. 2
shows two potential approaches to implementing security services based
on NFV. The network function and services (e.g., VPN or NAT) are
usually deployed in middlebox appliances or COTS server machines.
NFV operates with VMs and commodity servers, thus minimizing costs
and simplifying deployment. A network service is rendered with a
sequence of network-functions and steering the flows(packet) through
that pipeline/chain (Service-function-chain (SFC). This chaining process
could be customized to diverse policy settings on request. Multiple

Fig. 1. Service function chaining implementation.

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

4

service chains in an NFV platform could re-use or leverage the pool of
NFs for optimal resource usage. A single sequential trajectory path is not
enough to orchestrate and form traffic in modern networks, as network
traffic becomes more sophisticated. Since traffic needs to be handled by
multiple NF elements, chokepoints occur in the network. Even the
control plane of NFV has limited intelligence about the network. All
these issues lead to siloed and isolated computing infrastructure to host
inefficient NFV services. The NFs continue to change the packet state,
and those changes are invisible to the control plane of the SDN. NFs can
allow various types of state changes with operations on packets: modify
payload/content/header fields (“e.g., NAT box switches IP addresses or
port numbers”), drop packets (“e.g., firewall blocks a flow”), consuming
and creating a new packet (“e.g., layer 7 load balancer terminates the TCP
client session, proxies and creates a new session with the correct server”). The
SDN controller thus is not equipped to track how the NFs in the center
change packets and can lose the ability to monitor the flows. In recent
years, high-performance DPI has been an active area of study, with
plenty of algorithms for improving the DPI efficiency. Today every NF
deploys its DPI engine, packets pass through a chain of DPI engines and
use different matching pattern algorithms, although they all perform the
same basic operation of matching the payload to a set of patterns. The
drawbacks of such a situation are significant: first, packets go through an
increasingly complex DPI phase, which means higher latency. Second,
the Chain’s slowest DPI engine is a bottleneck performance for the entire
chain. Similarly, if an attack is exposed to one DPI engine (e.g., a denial-
of-service attack), the entire chain is exposed to this attack in terms of
overall performance. A multi-prong approach is therefore required in
the packet processing architecture, to construct SFC that combine func-
tions into sequences and also allow multiple service/functional blocks to
do operations and examine each packet. Configuring these service
chains within the data plane, however, poses an operational obstacle. To
operate these service chains, the SDN data plane requires complicated
flow rules, as shown in Fig. 3, which present flow-steering challenges in

the process of service chaining.
We believe that as open programmable switching platforms and

frameworks (Fang et al., 2018) evolve, it encourages creativity in the NF
domain and operators can use the building block-
s/API/language/compilers provided by the framework. Besides, the
network infrastructure features can be expanded beyond these basic
building blocks: an application may include a module extension code in
the control/data plane. We demonstrated the use of the OpenPATH
platform as a concrete deployment context for advancing this NFV
domain: the broadband and cellular edge of a carrier network, as
expressed in infrastructures of network operators.

2.1. Stateful programmable dataplane solutions

In recent progress, SDN standard bodies and researchers have begun
to consider the possibility of offloading certain state-of-the-art packet
inspection and control operations to the dataplane switches. This is
primarily for reducing the signaling overhead of the switch/controller
and the latency deficiencies caused by the two-tiered SDN programming
model. More recently there was also a need to support API at the data-
plane, a set of registries with statements that persist across several flow
packets (i.e., flow states) and which was fulfilled by P4 (Bosshartet al.,
2014). The Open Networking Foundation (ONF, standard body) has
provided several suggestions to encourage designing the notion of “state
labels” in OpenFlow. While maintaining of the state within the dataplane
may seem to have been a step backward in respect of the SDN principles,
initiatives such as (Hanet al., 2016) may be more conservative (hybrid)
where the switches retain the flow-state, while the controller can
continue to supervise/control handling stateful table within the data-
plane switches. Moreover, it is the central controller that formalize
through dataplane program (for example, P4) to determine how the
switches can respond to packet-level events and adjust forwarding rules.
OpenState (Bianchi et al., 2014) and FAST (Moshref et al., 2014) were

Fig. 2. NFV implementation in SDN infrastructure.

Fig. 3. Traffic Steering Challenge for complex service chains.

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

5

the first ideas that proposed the stateful dataplane and programming
abstractions. Given the inherent conceptual coupling between language
constructs and packet processing, we give an overview of the basic
classification of programmable dataplane.

• Data flow graph: This represents computational logic as a line. The
Vertex node representing elementary computing function (NF) and
the Edge represents the path of data between two nodes. The Click
modular software router (Kohler et al., 2000) pioneered this flow
graph model. The packets traversing the graph through the vertices
on which network functions are performed. ClickOS (Martins et al.,
2014), “Vector Packet Processing (VPP) FD.io " (VPP FD.io, 2016),
and the “Berkeley Extensible Software Switch (BESS)" (Han et al.,
2015b) follow a similar design, with data units are represented as
packet vectors rather than a packet.

• match-action: The model defines programs with a series of search
table(s) arranged hierarchically as lookup tables. These lookup tables
perform ‘match’ operation with specific header fields (tuple) and
based on the result of the match - hit/miss, some ‘action’ is per-
formed on the packet. OpenFlow is the most popular example of
adopting this model for the forwarding dataplane and Open vSwitch
is one widely used implementation of this highly programmable
dataplane model.

• Hybrid switch: By representing hierarchical “match-action pipeline
in a data flow graph and look-up/NF as nodes and goto-table action as
edges”, hybrid implementations are employing combined abstrac-
tions in a switching framework.

FastClick (Barbette et al., 2015) extends the Click Modular Router
codebase (Kohler et al., 2000) by integrating optimized I/O mechanisms
DPDK and netmap for the datapath by using acceleration strategies.
Snabb (Paolino et al., 2015) proposed a composable modular architec-
ture for faster switching in operating systems that hosts hypervisor VMs
and demonstrated NFV services. Snabb realized their switch with a
newly designed hypervisor called vhost-user that directly moves packets
between processes bypassing the kernel. BESS (Han et al., 2015b) Ber-
keley Extensible Software Switch (formerly known as SoftNIC) is a
modular framework for softwarized switch and network functions. It
utilizes DPDK Poll-Mode Drivers (PMDs) to perform high-performance
packet I/O with direct hardware NIC access. VPP (VPP FD.io, 2016)
Vector Packet Processing is one of the well-designed routing stacks, that
makes use of modern optimization approaches like packet batching and
interleaving technique, where packets are received and grouped into
super-frames as vectors. VALE (Rizzo and Lettieri, 2012) is another
software switching solution that exploited the fast-I/O netmap mecha-
nism for packet buffer movement across the processes. They also
adopted batch computations and packet pre-fetching and designed to be
used as the interconnect between VMs. The mSwitch (Honda et al.,
2015) is an improved design of VALE targeted for SDN solutions, by
using novel forwarding algorithm, kernel by-pass I/O, and no-CPU core
bindings for the NF processes and at the same time scaling for a large
number of ports. DPX (Park et al, 2019) proposed a framework that
supported security service functions in the dataplane, and they are
deployed through standard OpenFlow “match-action” rules. Their
model avoids the decoding of packets by providing the operators with a
simpler way to configure functions to the network. They enforced
complex security policies through the implementation of “action clus-
tering” which aggregate activities from various flows to a smaller rule-
set. OpenFlow API is expanded by OFX (Sonchack et al., 2016) for
deploying NFs in the dataplane, by installing an agent application that
offloads some of the operations of a control plane for the switches. It
supports the “Berkeley Packet Filter (BPF)" programming model in the
Open vSwitch while retaining its high-performance benefits. SoftFlow
(Jackson et al., 2016) retains the run-to-completion model based on
Open vSwitch and runs arbitrary programs as Free-Flow activities in the
datapath, but it is far more complex to configure policies/parameters to

these programs. The Open Packet Processor (OPP) (Bianchi et al., 2016) is
an attempt for combining configurable multiple hardware with limited
dataplane capabilities. The OPP improves on the OpenState, even
though it varies slightly from a design perspective, it provides SDN
networks with a cutting-edge data plane using complete XFSM in place
of the simpler OpenState version. The packet processing pipeline of a
classic SDN architecture’s stateless data plane is limited to the initial
primitives in OpenFlow. SNAP (Arashloo et al., 2016) is a programming
language used for stateful SDN switches and it allows flexibility for the
program to make the decisions on traffic policy and flow-rules at run
time, almost providing the power to function as a proxy controller. In
recent years, researchers (Kaljic et al., 2019) have introduced applica-
tions that run on stateful dataplane, and all the stateful schemes from the
literature share similar design notion at a very high level.

2.2. Switching and I/O management

The following are research aspects that have been widely discussed
among the many challenges of the ETSI NFV standard (European Tele-
communications Standards Institute(ETSI), 2014): NFV architectural
design, NF parallelism performance, NF management, NF placements,
and NF chaining. Many initiatives are considering how architectures in
SDN and NFV need to grow such as ONF (ONF Solution Brief, 2014).
Nevertheless, as yet there are few demonstrated solutions. Palkar et al.
proposed E2 (Palkar et al., 2015) an NFV system that relies on a
centralized SDN controller to handle the location, interconnection of
services, and to dynamically scale a variety of NFs. The presence of SDN
controllers is important for all the complex management of services and
orchestration of the NFs. Mekky et al. (Mekky et al., 2014) proposed an
application-aware SDN dataplane architecture that depends on func-
tionalities of the OVS based dataplane. NetVM (H wang et al., 2014)
employed shared memory for fast data copying between VMs, while it
leveraged on ClickOS to deploy more lightweight function modules in-
side VM instances. To reduce overhead packet movement, Zhang et al.
(Zhang et al., 2016b) developed SDNFV on top of NetVM and added
features for parallelizing NF Chain on a single server and over multiple
hosts. Slick (Anwer et al., 2013) presented a virtual middlebox elastic
architecture that consisted of a central controller and a dataplane of
lightweight COTS servers, to develop NFV applications. They focused on
solving the NF placement problem and the southbound protocol is not
defined as well. Flowtags (Fayazbakhsh et al., 2013) suggested
network-wide policies for dynamic middlebox behavior, through
explicit tagging in the packet headers. However, explicit tagging oper-
ation in high-bandwidth and heavy traffic switching platforms with
complex service chains and flows is cumbersome and can cause semantic
errors in a parallelized SFC process.

In data centers and enterprise networks, the service chain for the
traffic is deployed with network functions and services (e.g. NAT, VPN,
Firewall, IDS, encryption), which end users are normally unaware of
their presence. In traditional networking settings, the network services
are statically interconnected in a serial pipeline and predefined paths for
the packets are configured. The introduction of NFV and SDN has
significantly enabled SFC engineering (Qazi et al., 2013), exploiting the
logically centralized control plane, providing flexibility in service
chaining and forwarding plane programmability. OpenNF (Gember-Ja-
cobson et al., 2014) proposed a closed NFV architecture in which
network functions are deployed in the dataplane COTS and the man-
agement/orchestration is done at the customized control application.
The architecture retains the spirit of SDN, with the standard SDN con-
troller’s oversight and individual vertical subsystems for coordinating
with the NFs running in the OpenNF domain. NEWS (Mekky et al., 2017)
is an expanded SDN architecture that uses a modified flow-table data
structure “NF/App table” to manage packets and implements service
chaining inside the data plane as a static sequence of modular functions.
CoMbs (Sekar et al., 2012) proposed to consolidate multiple middlebox
appliances (decomposing NFs) to one software on a COTS-based

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

6

dataplane node for improving the overall networking performance.
Click Modular Router was advanced further by PacketShader I/O (Han
et al., 2010) which exploits parallelism and multi-queue support of
recent NICs, batching to improve overall performances of Click and
ClickOS (Martins et al., 2014) is a runtime platform for virtual NFs.
ClickOS offers NF I/O enhancements and reduced latency for packets at
the same physical location that traverse multiple NFs. OpenBox
(Bremler-Barr et al., 2016) presented an SDN architecture with distinct
dataplane and deployed the NFs as OpenBox instances and controlled
through the OpenBox protocol. The instruction cycles of the NFs are
divided into independent blocks and executed as modules in the
switches and allows for the reuse of software modules across network
functions and enables faster adoption of packet processing hardware
accelerators. OpenBox generalizes Click’s modular approach to provide
a network-wide platform for the development of modular NFs.

2.3. NF service function chaining (SFC)

Many research efforts (Bifulco and Rétvári, 2018) tackled the effi-
ciency downside of software-based NF switching frameworks. In
particular, software-based NFs that add substantial overheads and la-
tencies, which may be unacceptable with the chain length for different
applications operating under ultra-low response times. The literature
(Fei et al., 2020) has suggested several groups of proposals that
approach the problems in SFC from various perspectives. Some possible
approaches for SFC latency optimization problems are i) accelerating NF
cycles internally. ii) Instructions-Level Parallelism (ILP). iii) high-speed
packet I/O. Some NFs do not share any dependence and can operate in
parallel. So, we can perform acceleration vertically running parallelly
multiple NFs on the same or copied set of data, on different dedicated
CPU cores. ClickNP (Li et al., 2016) leveraged on offloading costly op-
erations to SmartNICs, NetFPGA, and specialized hardware for hori-
zontally accelerating NF to achieve overall performance on the NFV
implementation. NetBricks (Panda et al., 2016) followed a similar
approach as Click, but they designed the functions to run on a physical
host, dedicating one core per VNF in the chain. ClickOS and NetVM (H
wang et al., 2014; ntop; Zhang et al., 2016b) proposed solutions for the
acceleration of packet delivery across the virtual machines and VNFs.
These approaches proposed modular SDNFV architectures to distribute
the network functions as “NF Blocks/Instances” onto the individual
nodes and using efficient merging techniques, implemented an NFV
platform to solve the SFC problem. NFVNice (Kulkarni et al., 2017)
builds on OpenNetVM (Zhang et al., 2016a) DPDK platform, provides a
userspace control, and efficient I/O management framework for NFs,
that enables dynamic backpressure scheduling for NFV chains and

demonstrates improved NF Throughput, Fairness, and CPU Utilization.
ParaBox (Zhang et al., 2017) also attempts to explore NF parallelism in
NFV. However, its NF parallelism detection remains preliminary and
lacks a comprehensive analysis on NF action dependency. ParaBox has
to provide different packet copies for NFs running in parallel which
introduces large resource overhead. In comparison, we propose a
comprehensive framework with three layers to enable NF parallelism
and enhance NFV performance. NFs are implemented as a set of software
modules in our system, at a finer granularity than the individual NFs. For
example, one can build service by chaining the firewall module and
DNAT module, making the composition of the service more versatile and
effective. Our research proposes enriching the prior solutions, to address
extensive processing in the data plane and tackles issues related to deep
packet inspection NFs and meet the demands of other knowledge-based
intelligent network functions. To tackle the management problems in
the middlebox/Virtual NF world, prior efforts focus mainly on orga-
nizing network resources (“i.e., on the control plane”), only a few so-
lutions attempted to solve the inherent problems in packet I/O
processing (“i.e. on the data plane”). Although the popular initiatives
such as OpenBox, BESS, and NFP are attempting to boost NFV platforms
by designing Fast I/O handling, Parallelism, Efficient packet processing
mechanisms, the infrastructures are still lacking optimal performance
and resource utilization due to complex traffic switching/routing
overhead.

Table 1 shows a summary of the taxonomy of software switching
architectures. In comparison to the current literature, our work aims to
advance our understanding of software switch efficiency, SFC, and to aid
in the resolution of possible bottlenecks.

This research work discusses and examines one method for stream-
lining the NFV traffic directly in SDN architecture by expanding native
functions in the dataplane. We argue that NFV requires a packet-
processing software environment that addresses the problems such as
NF placement, SFC scalability and also grow at run time, parallelism and
load balancing across nodes, isolating the NF resources, monitor, and
fault recovery and other run-time parameters. To this end, our research
addressed some of these key issues targeting performance and presents a
framework, which we call OpenPATH. From a functional point of view,
our approach offers advantages such as (i) enabling developers, to focus
on the core applications logic and leverage on external frameworks for
common standard functions. (ii) simplifying the operator’s tasks, by
automation and shared management.

3. OpenPATH framework

OpenPATH is inspired by the desire to expand the data plane’s

Table 1
Summary of Software switching/NFV Works.

Work Architecture and Programming Model Best Features for NFV
SFC Placement, parallelism, security

BESS (Han et al., 2015b) Modular, Data Flow Graph, Programmable NIC. Structured, C,
Python, RTC, Pipelined

Forwarding between physical NICs.
Not compatible with the advances in QEMU.

NetVM (H wang et al.,
2014)

Modular Router, Data Flow Graph, Structured, C++, Run-To-
Completion (RTC)

VNF chaining. Live NF migration.

OPP (Bianchi et al., 2016) Self-Contained, Flow Graph, C, RTC Full Router, VNF chaining, Supports live migration
NfvNice (Kulkarni et al.,

2017)
Self-Contained, SDN Switch, Structured, C, callbacks, RTC Stateless SDN deployments, Supports OpenFlow protocol, specifically designed

for NFV management
OpenNetVM (Zhang et al.,

2016a)
NetVM on DPDK, Shared memory, Netmap, Structured, C, NUMA-
aware, polling mode

specifically designed for NFV management layer for flexible and efficient service
chaining

E2 (Palkar et al., 2015) Self-Contained, Virtual L2 SDN switch, Netmap, Structured, C,
Berkeley Packet Filter (BPF), Pipelined

flexible packet processing pipelines, large number of ports. Supports dynamic
scaling and orchestration through NFs (e.g., location, device interconnection).

OpenNF (
Gember-Jacobson et al.,
2014)

This retains two distinct vertical sub-systems, outside of the SDN
remain NF. Modular, Netmap, Structured, C, callbacks, NUMA
aware, polling mode

Their research focuses primarily on the sharing of the state and the transmitting
problems that occur with replication and migration,

OpenPATH (This work) Modular, SDN/NFV switch, DPDK, Shared Memory, Data Flow
graph. Match-Action, C, Python, NUMA-aware, polling mode

Allows for easy reconfiguration of the NFV chains and fine-grained and/or
dynamic control of the forwarding rules. OpenFlow based API. Inter-VMs (or
container) abstractions are not Defined. Supports SFC Security, Dynamic
Expansion, Acceleration.

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

7

functionality and to enhance the current SDN architecture. SDN’s per-
formance enhancement challenge has been solved by modifying the data
plane in a variety of ways:

• Stateful packet processing - which is cognizant of the data plane’s
state. Numerous studies have shown that the stateless design of the
OpenFlow switch does not adequately accommodate packet pro-
cessing from stateful protocols (e.g., TCP, FTP). The most common
way to achieve stateful packet processing is to introduce finite
automata into the data plane.

• Flow table structure - additional data to support the treatment of data
plane, energy usage, and QoS issues, among others.

• Flow table Look-up method - often occur in conjunction with systemic
improvements to flow tables. In certain situations, the latest frame-
works are built on enhancements to the OpenFlow flow table lookup
mechanisms already in place.

• Packet classification mechanisms - permit classification of packets
based on the headers of higher-layer protocols. As a result, sophis-
ticated mechanisms such as DPI can be implemented.

• Data plane architecture and abstraction - have been suggested in a large
number of studies as a solution to the existing OpenFlow standard’s
restricted versatility.

While theoretically feasible, application logic offloading presents sig-
nificant practical difficulties. Since simple extensions will not address
the programmability and flexibility issues associated with current data
plane architectures, we advocate for the creation of an entirely new SDN
data plane architecture that will provide a high degree of flexibility for
future network evolution. OpenPATH is built in a manner that seeks to
maintain as much as possible the original SDN concept (i.e., simple data
plane) by designing its extensions as modular components of the SDN
data plane. “NFV Enablement Inside SDN Data Plane” is an approach that
aims to do network management in a controller, but distributing the
NFs/applications across the dataplane, providing them with organic,
reliable, and scalable support. We show that the OpenPATH system
programmatically fuses the processing of multiple NFs and greatly re-
duces latency and improves performance.

3.1. Design challenges

In this section, we discuss the key challenges we encountered in
designing the proposed switching framework.

Fast Packet I/O Processing: This topic brings us to a variety of
design challenges and there is no need to reinvent the wheel in terms of
efficiency and processing rate. Many current switches achieve good ef-
ficiency, and we adopt some of these techniques: packet-batching (Rizzo
and Lettieri, 2012; Rizzo, 2012), lightweight packet and merging rep-
resentation (Honda et al., 2015), and optimized memory copies (ntop;
Sun et al., 2017). The Packet I/O is the critical function of the switching
system and data movement, memory overhead, excessive protocol in-
spection operations on the packets impact the latencies and throughput,
as systematically discussed by works (Han et al., 2010; VPP FD.io, 2016;
Rizzo, 2012). To this end, OpenPATH implemented software accelera-
tion mechanisms minimizing the datapath overhead in legacy hardware
middlebox appliances. We performed a detailed analysis of the pro-
grammable dataplane for NFV’s high-speed I/O (Gallenmüller et al.,
2015; Lettieri et al., 2017) solutions. Some production grade solutions
use SR-IOV (Dong et al., 2010) and softwarized switches such as
OVS-DPDK (Open, 2019), Netmap (Rizzo, 2012), PF_RING ZC (ntop),
and Snabb (Paolino et al., 2015). PF RING is a fast packet processing
framework from NTOP corporation. PF_RING directly exposes the NIC
ring buffer to applications in userspace, thus reducing the high overhead
of the OS network stack. Netmap exposes userspace applications with a
zero-copy network packet I/O for standard operating system environ-
ments. SR-IOV allows a physical NIC to export multiple
virtual-interfaces to the hypervisor layer in the OS and VMs can access

the network transparently like connecting to an interface. But, SR-IOV
capabilities are vendor-dependent and can be connected directly to
the guest OS running on VMs using PCI pass-through. Using Data Plane
Development Kit (DPDK) gives an efficient user-space standard software
I/O interface for the datapath to achieve throughput and ultra-low
latency.

Usage Scenarios of the Software Switching framework: (See Fig. 4)

(a) Steering traffic between co-resident containers, VMs.
(b) Instantiating separate overlay networks over a shared datacenter

fabric, using VXLAN headers.
(c) Steering packets between a sequence of network functions (NFs),

by inspecting and modifying a Network Services Header (NSH).

SFC Traffic Steering scheme: There has been several proposals from
the IETF working groups through RFCs and reference designs for the
practical implementation of service functions chaining in SDN/NFV
converged infrastructures. To enforce traffic steering at the network
level in SDN managed infrastructures, the following major approaches
are recommended:

• Network Overlay/Underlay: These methods give an efficient frame-
work for steering packets across the SFC by re-using the standard
protocol header from the packets. The shortcoming is that meta-data
is not shareable and hence lacks the ability to re-classify or modify
SFC (after the initial chaining sequence is assigned), thereby inhib-
iting the dynamic extension/modification of NFs at run time.

• Explicit tagging: “Network Service Header (NSH)" (Quinn and Elzur,
2016) draft proposed by IETF addresses the SFC encapsulation
(RFC8300). NSH specifies the topology independent format of
overlay-headers that are carried by the packets on the dataplane. The
NSH metadata gives the ability to the middleboxes/services/NFs in
the SFC to distinguish the services that operated on flows and steer
the packets forward in the chain. FlowTags (Fayazbakhsh et al.,
2013) allows SFC to identify tag-field-enhanced packets where NFs
create and check the tagged fields when exchanging packets. Such
approaches can encourage reclassification and steer the packets
across any NF chain path, the caveat being the action-results cannot
be shared as they operate in a different context. Moreover, these
methods are more complex to manage and add steering overhead to
SFC.

Policy design to describe service graphs: Network operators
delegate unique roles to NFs in a service chain for sequential chaining of
operation. Nevertheless, since we expect to promote NF parallelism in
NFV that conventional NF positions specification approaches were un-
able to describe. To this end, OpenPATH enriches the semantic repre-
sentation of the policies, and priorities in SFC.

Orchestrator design to manage service graphs: The standard
sequential chain is converted into an efficient parallel service graph.
Therefore, managing and orchestrating the NFs at run-time to fulfill the
order and dependency between the NFs in the chain is complex. To this
end, OpenPATH provides an interface to the operator to define the

Fig. 4. Software switching use cases.

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

8

order, dependencies, priorities and at execution time the SDNFV
orchestrator utilizes an automated analysis and placement algorithm to
fulfill the SFC efficiently.

Optimizing the resource overhead: SFC parallelism demands both
copy-free/copy-based functionalities from the underlying packet steer-
ing system, to execute the SFC graph. These copying operations and
movement of packets may increase the load on the memory subsystem
and communication fabric respectively, and it’s challenging to orches-
trate and optimize the usage of resources(Memory and Bandwidth).
OpenPATH framework performs resource-overhead analysis considering
the SDN dataplane capabilities and shared-memory, Fast I/O mecha-
nisms to define multiple graphs for the same SFC and installs the flow-
table match-action rules.

Designing efficient infrastructures: NFV parallelization poses
some questions about the architecture of infrastructures. Next, the
network should enable the lightweight copying of packets to reduce
overhead copying and the network needs a merging module to combine
processed packets in the final output from parallel NFs. Also, the packet
movement and Fast I/O approaches in the NFV platforms (Martins et al.,
2014; Fayazbakhsh et al., 2013; Sun et al., 2017; Zhang et al., 2016a)
rely on a virtual centralized switch to arbitrate and steer the packets
between NFs. In these approaches, due to a centralized switch as the
hub, packet queuing/routing would become a bottleneck and compro-
mise the efficiency. These problems may exacerbate during NFV paral-
lelism, which may multiply (copies) the packets to be steered across two
or more parallel paths in the SFC graph. In OpenPATH we exploited
shared-memory abstraction for packet copying and packet-steering
through the NF handler engine attached to each VNF in the chain,
thus avoiding the complexities.

Placement of NF: Modern networks demand optimized infrastruc-
ture services and for deploying a NFV platform with a string of network-
functions/services. The naive placement approach would be to divide
the NFs equally across the available NFV nodes and due to multiple
traversals of packets across the nodes, they incur additional overheads,
throughput will also suffer in long NF chains that span multiple nodes.
OpenPATH employs smart affinity-based placement for SFC which incurs
lower latencies compared to traditional placement approaches.

Service Chaining: Sophisticated networks and datacenters deploy
complicated and scale-out network service plans with a large number of
services (long and complex SFC pipelines). In the legacy configuration
(NFs on VMs) the processing rate and throughput decrease as we in-
crease the NFs and number of disjoint paths in the chain. This bad
performance is due to the non-optimal I/O, packets copying, across the
stack and buffers, multiple contexts switching within the node and as the
number of NFs increase the chokepoints, packet touring back and forth
between the VMs through the switch. In OpenPATH architecture, with
the NFs already embedded in the data plane switches nodes, we save all
the above-mentioned overheads and the other resource optimization
techniques such as zero-copy and smart load-balancing across multi-
node SDNFV configuration have played a key role in achieving
maximum practical sustained peak throughput even with the scaling of
the chain.

Scalable Deployment: Scalability and elasticity are accomplished
by using OpenFlow or other load balancing strategies to dynamically
reconfigure the flow tables on the vSwitch nodes (dataplane). This
means that both the number of written services and the traffic in our
proposed solution scale-out. The forwarding algorithm should be
designed, which scales up with port density.

Service Chain Management: The NFV platform orchestrator is
provided with the global view and control to dynamically add network
functions or services in the chain. To this end, OpenPATH’s central
SDNFV orchestrator is responsible for enabling the NFV/applications at
run time through the NFV MANO and other management processes, e.g.,
“load the connection restricting < blacklist IP> and restrict TCP connections
to 80."

In Summary, OpenPATH is designed with the following principles

and requirements:

• Performance: service chain management should have minimal
latency.

• Centralization: the control plane should offer a centralized overview
of all network link states. NF order and dependencies in an SFC to be
analyzed factoring in the correctness of SFC outcome.

• Generalization: supports all standard stateful connection-oriented
protocols.

• Extensible: should not demand modifications to NFs code or appli-
cation logic. provide compatibility to run legacy NFs. OpenPATH
supports new features offered by advancing the SDN and NFV
standards.

• High Scalability: SFC efficiency scales with the number of cores on the
host nodes and supports complex placement graphs that span with
the number of nodes in the chain.

• Operational Complexity: running the framework control operations
should not incur too much overhead and no single point of failure
and coordinating with the stateful dataplane does not cause bottle-
necks in a broad set of use-cases.

3.2. Framework overview

OpenPATH framework builds upon the implementation of the
stateful SDN architecture (Krishnan and Achuthan, 2019). The frame-
work offers a high-performance programmable dataplane switch called
VARMAN (Krishnan et al., 2019a), API/SDK to implement a suite of
security analytics on the control plane and lightweight VNFs (Virtual
Network Functions) on the data plane for monitoring and policy
enforcement. The network-wide policies have to be converted into
flow-rules and match-action control for every domain. The SDN
controller, NFV MANO, and NF Manager within each domain
co-operatively decide and interact over control channel to enforce the
rules on traffic flows and packets. Following the principles of several
popular SDN-based frameworks (McKeownet al., 2008; Pfaff et al., 2015;
Open, 2019; Barbette et al., 2015; Paolino et al., 2015; Rizzo and Let-
tieri, 2012; Honda et al., 2015; Sonchack et al., 2016; Jackson et al.,
2016; Bianchi et al., 2016; Arashloo et al., 2016; Fayazbakhsh et al.,
2013; Bremler-Barr et al., 2016; Zhang, 2019), OpenPATH offers the rich
set of declarative/abstraction interfaces, that are used by the control
plane applications to communicate to the SDNFV dataplane switches in
each domain how traffic should be processed and rules/actions on the
flows. We also export a native SDK/library package, that allows
NF/applications to utilize the optimized functions, in contrast to
un-changed “legacy” applications/NFs that are portable and directly run
on standard sockets and northbound API supported by the OS.

The OpenPATH framework has mainly two planes: management and
smart dataplane as shown in Fig. 5.

• Management & Control Plane - SDNFV orchestrator, SDN
controller, NFV MANO processes manage the traffic packets that flow
through the series of NFs in the SFC. The NF Dependency inspection
process analyses the chain of NFs, their instruction sets, and function
blocks, fields of the packet and the corresponding operations (read/
write), the dependencies between NFs. The results of the analysis will
produce a dependency matrix to mark the parallel and sequential
parts of the SFC. The head/tail NF of the chain and the intermediate
distribute/merge functions are also setup. SDN controller manages
the programming functionalities of the network devices and traffic
and also hosts the NFV services. NFV-MANO is tasked to coordinate
and manage the NFV services and network functions that are
deployed in the vSwitch nodes.

• SDNFV Data Plane - OpenPATH switches are configured and
interconnected in different topologies in the dataplane layer and
connected to the management layer through the standard OpenFlow
protocol and the controller, and through both native/open standard

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

9

API to the applications at the top layer. The infrastructure for the
data plane consists of a low-level packet processor, multi-physical-
port network adapters, hardware whitebox switches, hypervisors
and their internal virtual switches. The NFs and packet forwarding
pipeline are designed for implementing in software/hardware/
hybrid-model with SmartNICs. Every node in the SDN domain is
supervised by an NF Manager, that communicates with the SDN
controller. A dataplane instance vSwitch receives a service chain
graph from the NFV-MANO controller and the NF-Manager on that
vSwitch node, apply the flow-rules on the packets (match-action). A
packet would go through the VNFs in the service chain deployed
across the corresponding switches.

The OpenPATH framework is designed to provide efficient NFV
management by employing a modular and extensible datapath and the
standard OpenFlow communication protocol for orchestrating SFC and
controlling the forwarding/steering the packets across the network. The
Controller is responsible for launching and executing application logic in
dataplane switches and enforcing the policies/actions on the matching
flow/packets defined by the operator. The dataplane can be directly
controllable (with delegated access levels by the SDN controller) using
dataplane programming languages. (e.g., P4). Using the latest optimi-
zation algorithms, we present in this framework and the network-wide
view of the packet processing tasks in the network available to the
cross-plane SDNFV orchestrator, the controller fuses processing steps of
multiple applications in such a way that eventual processing stays the
same, but packets do not go through the same processing over and over
again, thus improving the overall performance considerably. The com-
plete network state awareness of SDN can be managed in a central
controller when supporting NFs natively in the dataplane. An extended
SDNFV cohesive architecture is designed that hosts both NFV and
network management services. It means that there are no separate NF
agents or new API, so they do not have separate control protocols unlike
the solutions proposed by (Sonchack et al., 2016; Fayazbakhsh et al.,
2013; Gember-Jacobson et al., 2014; Bremler-Barr et al., 2016). In
OpenPATH, NFV integration and service function chaining technologies
are hosted within the SDN architecture. The aim is to have only one
common SDNFV orchestrator in the network who has the visibility of the
networking infrastructure, manage the switching policies, and also
control the deployed NFV services.

4. Application-aware SDNFV architecture

Fig. 6 shows the main system components in OpenPATH architecture
to handle the applications and NFV services including a policy definition
engine, SDN controller, NFV MANO, SDNFV orchestrator, and NF
Manager. OpenPATH offers a versatile platform that can be used to
speed up packet operations, an efficient packet I/O, and enables the
application/NF to concentrate on programming the logic and run time
policies. The framework provides an intuitive interface to the operators
for representing SFC policies and intents for the orchestration of the
applications/NFV services. The NF Chain represents a network function
graph deployed in a series of VNF instances, distributed over one or
more virtual switches (vSwitch) or server nodes. OpenPATH is designed
on the concept of a “split data plane” comprising of a switching fabric for
high-speed packet forwarding between ports; and switch management,
that processes packets, runs application logic and policies and de-
termines the path/route/next hops for them. This disjoint design and
loose coupling inside the dataplane allow OpenPATH to deliver a
smooth, high-performance fabric and capabilities for programming the
packet processing logic, operators to deploy custom service chains.

The SDNFV orchestrator communicates with vSwitch nodes on the
dataplane via an NF Manager (NFM) and provides flexible control
functions from the management plane and VNFs/NF-Manager on the
vSwitches are given independence for routing and steering the packets.
The main aim of the framework is to provide a flexible open switching
infrastructure and extended API. The SDN controller orchestrates the
overall operation of a network domain, the NF Manager coordinates the
operations/flow tables within each vSwitch node. Thus, the data plane
operates like the softwarized switching fabric that underlays VNFs at
each switch node. The standard interfaces such as sFlow, OpenFlow are
used on the southbound control channel by all the management/control
plane processes.

4.1. SDNFV dataplane

This paper builds on our earlier work VARMAN (Krishnan et al.,
2019a; Krishnan et al., 2019b) a software switch as the dataplane in
OpenPATH. We followed the de-facto method for network management
in production grade dataplane by using Open vSwitch (OVS) (Pfaff et al.,
2015) and OpenFlow (McKeownet al., 2008), although the Click (Kohler
et al., 2000) styled interfaces are common in academic contexts. Fig. 6

Fig. 5. High-level illustration of OpenPATH framework.

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

10

shows the OpenPATH overall architecture, the dataplane which consists
of two internal layers that has divided the functions of a switching
framework. The stateful dataplane makes the “match-action:for-
ward/drop” decision for the majority of the normal flows and executes
the pre-defined “network-function/application logic” inside the data-
plane switching framework, without forwarding to the controller (“un-
less there are suspicious flows/exceptional conditions”). The design
spans across both the planes of the SDN to cooperate in managing the
stateful modules/NFs deployed in the dataplane and their corresponding
control applications in the control plane. The NF Manager with the
worker thread PacketQ coordinates the zero-copy packet movement
operations by setting up reference-descriptors (Tx/Rx) and manage the
I/O operations from the NIC to the VNF queues. The PacketQ poll-mode
driver connects virtual or physical interfaces and the device modules.
The OVS-DPDK abstraction establishes the queues/descriptor rings (VNF
Qs) in the shared-memory regions for a direct copy of Rx/Tx packets
from these NIC queues. OpenPATH PacketQ/DPDK handles the
Ingressing packets and with the help of NF Manager steers it towards the
head of the NF chain so it can also apply actions to the packet and with
the unique forwarding mechanism built inside each VNF, the packet gets
processed on the NFs in the chain until it reaches the tail NF and egresses
the node. There is a delineation between a high-performance switching
fabric (forwarding packets between ports) and switch management
(deciding the egress ports). The switching network can be extended to
large numbers of virtual ports and also provide parallel access to egress
ports when multiple Tx VNFs forward packets independently in the
chain. The dataplane is designed to support both software and hardware
switches, to speed up the transfer of packets. Another advantage of
OpenPATH is its inherent multi-tenancy support: Multiple network
tenants may run their NFs in the same network, on the same data plane
resources, while essentially isolating themselves. Two separate admin-
istrators, for example, could deploy two separate IPSs with different sets
of rules. In OpenPATH, these two IPSs can be combined on the data
plane to one NFM switch, while maintaining isolation on the control
plane of the program. This greatly decreases ownership and running
costs, since the data plane can be utilized even better. The OpenPATH
switching fabric will employ all possible software acceleration tech-
niques for packet I/O processing. The NF Manager can dynamically

install new policies to process packet flows which save from overhead
involving the control plane.

4.2. Management and control plane

Fig. 6 shows the framework that integrates SDN/NFV control and is
supervised by the SDNFV Orchestrator.

SDN Controller is a critical management application, with various
sub-systems and functional modules that run as worker threads. It im-
plements OpenFlow (OF)standards for the communication channel to
dataplane and processes the messages from OF switches and provides
standard REST/JSON/native OpenPATH API for the applications. The
controller runs the entire network as the brain of the framework. The
controller which has the purview over the entire network gathers and
maintains high-level state of the vSwitch flow-tables, OpenFlow pipeline
installed in VNFs, network path characteristics, health, policies, and
topology changes in the network. The controller then launches the NFs
on vSwitch nodes and transmits the flow-rule tables to the NF Manager
on those nodes for steering the flows through the NFs. The other key
operations include: Topology Collection (using the LLDP protocol), Flow
Analyzer and OVSDB as the datastore for the OpenFlow network.

NFV MANO is another critical management application that controls
and orchestrates the NFV platform integrated inside the switch nodes.
This centralized application schedules CPU and other resources for the
VNF instances and places them on the vSwitch nodes in the data plane.
The NFV MANO handles the NF parallelism, dependency analysis and
placement and employs a smart affinity-based placement technique by
co-hosting NFs that have shared operations/cycle, as this will decrease
the unnecessary trips of packets flying back and forth between the NFs in
the chain. The key function of the NFV MANO is to deploy NFV appli-
cations/programs as a service-chain on the data plane nodes and
orchestrate them during the execution.

NFVx augments the data plane and aids in the execution of light-
weight functions. On the switches, the OpenFlow software stack is
enhanced to execute the applications/NFs and NFV functions. On
receiving the service graph and the corresponding flow-tables, the NF
Manager will install the NF functions in the SFC and set up the match-
action OF pipeline in the VNFs. This module coordinates with the

Fig. 6. Application-Aware NFV integrated SDNFV Architecture.

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

11

global service-chain-aware SDN controller.
SDNFV Orchestrator- This is the most critical management and

control software in the OpenPATH framework. It is a cross-functional
application that communicates with all layers of the networking infra-
structure. It coordinates the integration of NFV platform services with
SDN infrastructural components and protocols. In multi-domain SD-
Cloud deployments, this interfaces with the controllers and network
management services across the domains. The Network Operators can
communicate their policies through the templates/interface provided to
the orchestrator. The flow rules represent the policies, which include the
intents and info for the service chain. Inside this plane, the SLA manager
converts these logical policies into a machine-readable form for further
application processing. It communicates with the Topology Manager,
which maintains the network topology. The Topology Manager tracks
and collects network data, i.e., network utilization, switch TCAMs, NF
position, and load on nodes. This runs a heuristic that determines the
order of NFs in service chains and optimal placement for NFs. The
orchestrator supervises the fulfillment of the SLA/QoS policies at run
time and monitors the Service Function chaining performance, NFV
platform utilization, vSwitch health and efficiency, faults and recovery
processes, controller responses. It gathers data from all components
across the network, maintains the topology map and configurations of
the deployed NFV.

Control Applications- The management/control layer allows op-
erators to run custom apps for policy creation/management/monitoring
their NFs deployed in the OpenPATH infrastructure or match-action
tables in JSON format over southbound and northbound API.

5. Network function service chaining

This section describes the strategies and techniques we followed to
transform the design requirements for an efficient NFV platform under
the SDN architecture. The complete workflow in realizing the SFC
optimization in OpenPATH is illustrated in Fig. 7. OpenPATH consists of
two major functional units in the workflow: the order-dependency
analysis function as part of the SFC Control engine, and the mirror/
merge functions on the software/vSwitch device.

5.1. Service graph description

The first challenge in the SFC process is to describe the intent of the
operator in terms of Sequential chaining and priorities/preferences of
the application in parallelizing certain functions in a particular order.
Also, the description should be intuitive and expressive in the interface.
OpenPATH provides an interface for the semantic representation of the
policies, priorities in SFC. SDNFV Orchestrator is designed to define,
construct and manage service graphs through the entire life cycle in
execution. The standard sequential chain is converted into an efficient
parallel service graph. Therefore, managing and orchestrating the NFs at
run-time to fulfill the order and dependency between the NFs in the
chain is complex. We provide an interface to the operator to define the
order, dependencies, intents, priorities and at execution time the SDNFV
orchestrator utilizes an automated analysis and placement algorithm to
fulfill the SFC efficiently. The Policy Definition Templates are:

• Order (NF#1, before/after, NF#2): defined to express the order in
which any two NF#s have to be executed.

• Priority (NF1 > NF2): defined to specify the Priority of one NF over
another NF, in parallel execution.

• Position (NF#, first/last): defined to specify the position of an NF in
the chain.

5.2. NF dependency analysis and parallelization

OpenPATH designs a hybrid SFC platform, in which both paral-
lelism/sequential chaining is facilitated. OpenPATH recognizes paral-
lelism opportunities through its dependency analysis feature. The NF
Parallelism has some key requirements: i) When a set of NFs are paral-
lelized, packet data are distributed (multiple copies) and once the par-
allel NFs are executed the output packets are merged for the processed
packet traverses through the chain. ii) No source code or logic core
changes should be done to the NF/application for parallelism or scaling
the instances. We employed the dependency-analysis and NF Parallelism
algorithm as illustrated in Fig. 8, to determine parallelizable NFs from
all possible pairs in the SFC. This algorithm decides whether two NFs can
be parallelized (with-copy/copy-free) or not. Several critical parameters
are taken into account when performing NF dependency analysis: (1)
The read and write operations performed by NFs on data packets. (2)
Flow termination or packet drops (e.g., by a firewall) in an NF. (3)
packet reconstruction (e.g., by a WAN optimizer|, NAT). (4) load bal-
ancer in front of several instances of the same NF. The consistency
condition ensures that the packet coming out from the final node in the
parallel parts must be similar to that packet if it had crossed the NFs in a
conventional sequential manner. The algorithm depicted in Fig. 8 ac-
cepts a serial SFC (“designated as s”) as input, with the help of two tables
(Table 2, Table 3) and outputs the parallelism indicator for each pair of
adjacent VNFs in the SFCs. In a service graph, a parallelism indicator is
added to show whether two adjacent VNFs will operate in parallel.

P(m,m+ 1)=

{
1, if f s

m and f s
m+1 can run in parallel

0, otherwise

Fig. 7. Workflow of the SFC implementation.

Fig. 8. NF parallelism analysis.

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

12

5.3. Service graph construction

OpenPATH represents a service graph for a network-function/service
sequence/chain. The graphs can represent vertex nodes and edges, the
multi-path trajectories of the packets based on the content inspection.
The edges leaving a vertex node determines the next hop for the packet.
The NFV MANO constructs the final service graph (Fig. 9) from the
outcome of the NF Dependency Analysis and operator’s policy template.
The resulting service graph and (possible sub-graphs) are transformed to
OpenPATH flow-table rule definitions so that the SDN controller can
install and manage the NFV processing at the dataplane switches. When
a VNF is done processing a packet, the NF handler invokes - “Match:
<result of the VNF>, Action: Discard/Send to/Default”. The SDNFV
Orchestrator/operator defines the “Default path” for every node, one of
the edges (highlighted with bold lines), and “Default action” is usually
taken by the VNFs.

In other dynamic SFC cases (Fig. 10), the NFV MANO can install
match-actions rules for some VNFs that can take a custom action/
execute a logic based on the result from the current VNF. This decision is
taken on per-packet for the next path/edge to traverse. In an Enterprise
Edge gateway use-case, the SFC may have a sequence of NFs for the
packets to go through - e.g., IDS, Firewall, Sandbox, DoS scrubber,
honeypot, and so on. The IDS will be coupled with Sandbox, so that
when it detects anomalies and malicious flows the packets are detoured
to Sandbox (with the match: action rule configured to call Sandbox VNF).
With this scheme on the IDS VNF, only the suspicious packets are steered

through the Sandbox VNF path and the benign traffic flows through the
default path. Also, through feedback messaging, the future packets of
that flow would be re-routed through the path of the Sandbox NF or
dropped at the Firewall itself, much ahead in the chain.

5.4. Fault Tolerance and smart placement

OpenPATH represents a service graph for a network-function/service
sequence/chain. OpenPATH is optimized for virtualized SDN environ-
ments, enabling smooth failover, load balancing and fault-tolerance by
careful route allocation. A significant limitation of generic topology-
aware routing methods is their reliance on topology structures and
their inability to handle temporary connection changes and failures.
SDN enables the introduction of new networking abstractions and the
simplification of network management. Three types of errors can be
tolerated from a fault-tolerance standpoint: (1) VNF process failures or
software application faults inside a vSwitch node which may lead to
breaking/blocking the chain of NFs. (2) If a lower-level switch goes
down, hosts can lose connectivity with the VNFs attached to it. We also
consider connection faults on the data plane, because switch failures
activate the same warnings and generate the same answers. (3) Man-
agement/control plane failure - control channel saturation or congested
link disconnects leading to split SDN stack. Controller application fail-
ures or overloading. NFV-MANO failure, NF-Manager un-responsive or
terminate to co-ordinate with the SDNFV orchestrator. The dataplane
failure recovery capability is described by the VARMAN (Krishnan et al.,
2019a) as the stateful OVS stack is derived completely from that work.
The failure of any of the OpenPATH components such as NF-Manager or
termination of any of the NF handler threads on the vSwitch node is
considered as a break in the SFC path and hence backup-paths are
calculated ahead of time so that the traffic interruption to switch the
VNFs is minimal at run-time. The NF parallelization mechanism breaks
up larger flows into smaller flows. Switches forward separate sub-flows
through the associated operating VNFs in the sub-SFC. Each sub-SFC is
allocated a distinct sub-flow. Fig. 11 shows method in which the main
SFC is divided into sub-SFC graphs. When a fault happens in an oper-
ating sub-SFC, the state and metadata of the VNF is migrated in the
back-up SFC nodes and will be activated for future flows. OpenPATH
provides immediate protection against all single-failure scenarios,
without requiring the controller to compute alternate routing or update
flow tables. It is, nevertheless, possible to detect several or additional
failures in a single network domain with the help of the controller’s
reactive measures. The serialization module can aggregate sub-SFC data.
In parallelization, some information and state data often need to be
synchronized. Based on usability criteria, the length and proportions of
the VNFs may be modified in the SFC, Sub-SFC and back-up SFCs. The
backup sub flow increases the overall availability of the SFC. The NFV
MANO constructs the final service graph from the outcomes of the NF
Dependency Analysis/Parallel and Placement algorithms and operator’s
policy template. The resulting service graph and (sub-graphs) are
transformed to flow-table rule definitions.

After provisioning back-up sub-graphs and for parallel service graph,
the sub-SFCs are mapped to vSwitch-nodes, considering affinity factors

Table 2
Operation table.

Virtual Network Function Packet Flow

Firewall R Y
Gateway N
Intrusion Detection System (IDS) R N
Video Optimization Controller (VOC) R N
Netcache R N
Virtual Private Networking (VPN) R/W Y
Network Address Translation (NAT) R/W N
WAN Optimization and Bandwidth Shaper R/W N
Traffic Monitor R N

Packet Operations: R denotes Reading. W denotes Writing.
Flow Operations: Y denotes ‘Can Modify’, N denotes ‘Cannot Modify’.

Table 3
Capabilities table.

VNF1 \ VNF2 Read Packet Write Packet Modify Flow

Read Packet Y Y Y
Write Packet N Y Y
Modify Flow N N N

Column 1 corresponds to actions of first VNF.
Row 1 Corresponds to actions of the second VNF.
Y denotes “VNF1 and VNF2 Can run in Parallel”.
N denotes “VNF1 and VNF2 Cannot run in Parallel”.

Fig. 9. Default service graph example.

Fig. 10. Dynamically Changing Service graph.

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

13

for the best overall SFC processing time and also fail-safe factors for the
reliable completion of the SFC. In summary, VNF failures and node
availability characteristics are factored-in for deploying the serial/par-
allel sub-SFCs. The placement strategy involves splitting the paths of the
working-SFCs and the corresponding backup-SFCs based on affinity
levels namely: High-Affinity and Low-Affinity. This design reduces
steering overhead between VNFs. When a fault or attack happens in the
operating sub-SFC, the state and metadata of the VNF in back-up SFC
nodes incur additional overhead.

High-Affinity: All the NFs within one SFC are deployed in one node.
There is no internal overhead for steering flows between VNFs and
during failures.

Low-Affinity: The active sub-SFCs and the associated back-up SFCs
are not placed in the same node. There is additional synchronization
overhead when failures occur.

Fig. 12 shows the algorithm for deploying a set of VNFs that form a
given SFC. The general strategy is to first place the active sub-SFCs on
the nodes, and then the associated back-up SFCs are deployed depending
on the degree of affinity. In summary, to recover from failures in the
Management/Control Plane, OpenPATH framework uses ‘active-active’
fail-safe method with two machines actively in sync to take over when
one of these critical components fail. For the failures of any of the
components (network partition or chain broken), the backup-path
approach will be followed.

5.5. SFC packet forwarding

The SDNFV Orchestrator coordinates with the NFV-MANO and SDN
Controller to create flow-tables for each of the VNFs in the SFC. Besides,
the SDN controller can set rules to accommodate a broad category of

flows to reduce the flow table size. The categorized packets of those
flows are steered through the chain of NFs. We use Flow-based traffic
management, and this method is not based on header fields, proxy, and
other additional tags. Rather, it employs an independent forwarding
scheme leveraging the OpenFlow, from overlaying and preserving
packets unchanged/transparent in the SFC. Our scheme uses the com-
bination of most recent updated OpenFlow 1.5.1, forwarding policies
defined in Yang format, in the SFC friendly OpenDayLight (ODL)
controller. A global forwarding table for managing the flows is created
by NFV MANO and transmitted to the NF Manager. Fig. 13 shows the
path mapping technique to steer the packets/flows through different
paths/NF pipeline.

The NF Manager divides the global table and applies individual VNF
flow-table rules. NFV MANO distributes the packet forwarding task
across the dataplane switch nodes and configures VNFs to directly/
parallelly forward packets to the next VNF in the chain without any
coordination. An NF handler function is plugged into each VNF for-
warding path, to participate in the packet steering process, and as this is
transparently done by the OpenPATH so VNFs don’t require code
changes. The NF Manager in the vSwitch is the communicating agent at
run time and manages a forwarding table (FT), that corresponds to the
sub-graph view of the global service graph. This node manager installs
the most updated packet-steering rules in each NF handler in the VNF
chain. PacketQ module is a poll-mode driver that manages the Ingress/
Egress queues and the physical network interface adapters in the
vSwitch node. This module receives the packets from the virtual-NIC and
performs lookup with 5-tuple matching on the flow-table and forwards to
the first VNF in the service-graph. In a typical SFC scenario, the VNF at
the head of the chain receives the packet, runs the logic on the packet
and NF handler will pass on the packet to the next VNF in the sequence
or make copies to forward to the next VNFs in parallel. This packet
processing and steering continue until the packets reach the tail of the
chain where they are merged for output Egress processing. Network
topologies have been configured in such a way that all VNFs that are
connected to a common edge switch are on their own subnet. NFV-
MANO will have full knowledge of the interconnecting network topol-
ogy. Other traffic is redirected and therefore must go through a lower-
layer VNF. The lower- and upper-layer switches in any given pod in a
fat tree are set up to perform forwarding/filtering functions. As a result,
all upper-level switches in the pod will contain a route to the destination
subnet, and each one underneath them will too. For all other inter-pod
traffic, the default/0 prefix has a secondary path TAG (PT) (the least-
significant byte of the destination IP address). We use the Service
Chain (SCID values) as a source of probabilistic entropy; it will distribute
network traffic equally across the outgoing links. Also, the subsequent
packets will travel the same direction, so there will be no packet reor-
dering. Forwarding state can be incrementally built into the switches.

5.6. Flow table management

The NFV MANO constructs the final service graph based on the NFV
dependency analysis and operator’s policy templates. After the service-
graph is generated (possible sub-graphs) at the controller, they are

Fig. 11. SFC distribution.

Fig. 12. SFC placement strategy.

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

14

transformed to flow rule definitions. The flow tables at the vSwitch
nodes are managed by the NF Manager. We need to account for saving
flow table capacity of SDN devices through aggregating micro-flow for
high scalability. The flow-table installed by the SDN controller to each
vSwitch follows the standard OpenFlow but is expanded to support our
SFC steering scheme, by re-purposing some of the fields in the packet
headers: i) some fields are added - SFC ID, PATH ID, TAG, SERVICE ID.
ii) match-action rule has a new “flag” that indicates if the current packet
is split into multiple copies to traverse through parallel paths. For par-
allel action paths, multiple VNFs will be invoked next for the same
packet. iii) match-action rule also has a field for the tag that carries
metadata used by NF handlers in the VNF for run-time monitoring and
statistics collected by the NF manager. Fig. 14 shows the flow table
management.

5.7. Network status synchronization and SDNFV Co-ordination

In OpenPATH, we do not directly address external state coordination
across NF replicas; rather, we concentrate on how the state handled at
each layer influences flow routing decisions made across both the
Control Plane and Data Plane in complex service chains. The hierar-
chical control system makes decisions based on the internal and external
states that each layer maintains. OpenPATH forwarding decisions are
not just based on flow rules, but on flow states, which the switch retains
and modifies in response to packets and timeout events. The concern is,
therefore, whether this new state should be reported and reapplied
during reconciliation. Flow state synchronization and reconciliation are
unnecessary for OpenPATH operations to be reliable. Furthermore, the
switch’s forwarding action is independent of the flow condition of every
other switch. Since flow-based networking makes more frequent use of
the control plane than conventional networking, it has higher over-
heads. Its dependence on the control plane entails inherent overheads:
the bandwidth and latency associated with communication between a
switch and the central controller. The stateful data plane of OpenPATH
appears to contradict the classic architecture, which centralizes the
stateful decisions with the controller, removing the need for devices to

implement complex software to manage state distribution. Indeed,
modern SDN platforms (such as our research work OpenPATH) use a
distributed flow rule database to synchronize the switches. The latency
and overhead associated with inter-switch communication on the data
plane fabric is much lesser in our architecture compared to traditional
SDN architecture with stateful dataplane, where the decisions have to be
routed across the much slower control channel and centralized switches
as in the case of VM based NFV platforms.

The OpenPATH network describes the overall service as a hierar-
chical network of network functions that are distributed over one or
more vSwitches (VNFs). All nodes keep track of NF state, and make
decisions based on that. “NF Managers” allow for the development of
load balancing data and reaction to errors/overload. Additionally, the
SDN Controller contains the flow table, which may be maintained by the
NFs. We coordinate with each node’s SDNFV Orchestrator to decide flow
rules but allow local table rules to be updated as appropriate. We
organize the control and system administration into a three-layered
structure. OpenPATH’s mission is to consolidate state visibility, while
distributing information. state inside the VNF is contained as a node
specific. Transient states include things like the application and data
caches, i.e., state that is needed for the NF, but does not impact on the
rest of the network and the SDN controller. The node-specific state
presents the current utilization of the vSwitch (OVS), as well as resource
utilization on the vSwitch. There is a state from the outside that de-
termines how packets are handled. Internal and external state relevant
for flows are stored in the VNFs. This state has to be consistent across all
or some of the NFs, particularly if they are handling network flows.
When an NF has to take notice of an external state, we use the NF
Manager to notify other NFs. In multi-node SFC scenarios, as the NF state
is distributed across multiple nodes, the SDN controller initializes the
tables across the nodes and periodically synchronizes the state tables.
This problem and the management overhead are not unique to Open-
PATH, and we solve this issue efficiently through the native design
choice of “Statefulness” in the data plane. Since flow-based networking
makes more frequent use of the control plane than conventional
networking, it has higher overheads. Its dependence on the control plane

Fig. 13. Packet Paths mapping Methods.

Fig. 14. Flow Table generated for Complex service chain.

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

15

entails inherent overheads: the bandwidth and latency associated with
communication between a switch and the central controller. OpenPATH
has defined messaging interface over OpenFlow between all the com-
ponents in the SDNFV ecosystem - SDN controller, NF Manager, NF
handler, VNFs and the NFV MANO for the following actions: (i)Specify
processing graph and block configuration. (ii)Events. (iii) Load infor-
mation. (iv) Isolation between NFs. (v) Network-wide view. (vi) Auto-
matic scaling, provisioning, placement, and steering. (vii) NF/
application match-action definitions. Each command message applies to
flows matching some criteria, F, for a Switch Node N and Service S (one
or more flows or wild card) in the SFC. Some example commands are:”
SkipMe (F, N), RequestMe (F, N), ChangeDefault (F, N, S) and Message (N,
X, Y) for sending JSON format (key/value) from VNF N to NF Manager.”
The control communication through Messages that happen on the
southbound channel is encapsulated in special message “OpenFlow
VENDOR” and handled by the SDN Controller.

OpenPATH provides a rich set of inter-VNF messaging abstraction
API- that facilitates communication between VNFs for cooperative SFC
processing. Some example API actions: "(i) reconstruct TCP byte streams
(to avoid the redundant overhead at each NF), (ii) per-packet metadata
tags that accompany the packet even across NF boundaries, and (iii)
inter-NF signals (e.g., a notification to block traffic from an IDS NF to a
firewall NF)." These inter-NF messaging are useful for SFC optimization
and facilitate designing fine-grained NFs modules that can be manipu-
lated at run-time. OpenPATH extends a control API exposed to NF
manager: i) boot-up/spin-down VNFs instance. ii) for creating/
destroying virtual interfaces to VNFs. iii) merging/splitting multiple
VNFs in a chain inside a vSwitch host or between nodes. iv) exchanging
alerts/events between NFV MANO such as faulty/rogue/overloading
nodes, that could trigger exceptions to respond/remediate/recover. The
cross-layer control interface is provided over JSON-like structured
messages and three programmable APIs - Python/C/Rest and scriptable
configuration language - CLI and every parameter in the SDNFV and SFC

environment is run-time configurable.

6. Implementation

Having defined a set of design principles, this OpenPATH imple-
mentation is based on a high-performance, programmable stateful
dataplane SDN stack and an application aware SDNFV framework. The
hierarchical framework reference implementation is illustrated in
Fig. 15. OpenPATH is an all-softwarized switching framework to inte-
grate the NFV platform with the SDN architecture, at the distributed
dataplane switches (programmable white boxes or server nodes) and
sharing/coordinating the control and service chaining with the SDN
controller. A dataplane instance/node of OpenPATH is called as
vSwitch, which is installable fully as software on a high-core density
server host machine or deployed in a hybrid software/offloaded-
hardware-NIC model. The software switching and management com-
ponents are developed in the Open vSwitch (OVS) opensource code base
and we augmented the core stack with native VNF modules for sup-
porting NFV services.

6.1. Stateful dataplane

Software switch solutions following the “match/action” approach
such as OvS-DPDK (Open, 2019) and P4 (Osiński et al., 2020)
(Bosshartet al., 2014), employ high-performance lookup algorithms for
matching (packet header metadata) and applying the respective actions.
The proposed design of the dataplane is realized by re-architecting the
stock OVS code. We ground our discussion in our experience imple-
menting OvS-DPDK (Open, 2019), a faster variant of Open vSwitch
(Fayaz et al., 2015). It relocates Open vSwitch’s data plane into user
space and uses DPDK poll-mode drivers to send packets, fully elimi-
nating the overhead associated with kernel and interrupt handlers.

The key components of the data plane are:

Fig. 15. OpenPATH switching framework Implementation.

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

16

• vSwitch- These are called nodes that host the VNFs/applications
deployed by the NFV-MANO. The nodes can be Whitebox program-
mable switches that can boot Custom-Linux kernel with Open
vSwitch and other modules, that exports the ports as software in-
terfaces to the kernel. The nodes can also be server-grade machines
with multi-core and high-memory configuration (COTS) which can
host multiple NICs for emulating a multi-port software switch.
Multiple vSwitch nodes can be interconnected through another
switch to build a scale-out SDNFV cluster platform. The node is built
with dual Xeon X5650 @ 2.67 GHz CPUs (2 × 12 cores), NVidia
GPGPU, Intel 82599EB 10G Dual-Port NIC (Both are connected to an
experimental LAN for data-plane traffic), 48 GB (8 GB for huge
pages), Ubuntu 16.10 (kernel 3.5, DPDK, QEMU). Each machine has
one 1 GbE Intel NIC for control and management traffic.

• Data Traffic Switch: NFV Nodes connect to a Cisco SX350X-24F
Managed Switch | 24 Ports 10 Gigabit Ethernet (GbE).

• OpenFlow Switch (running OpenPATH Switch software): Whitebox
high-end switch for control and management traffic (its private
vendor who we had to anonymize since we did not get a permission
to use the vendor’s name, running OpenWRT (OpenWrt Wiki, 2017))
We also experimented with Pica8 (Pica8, 2013) P-3290 (with a
modified Indigo OS (Indigo)). For applications, a Stateful API library
is exported. We used the OFPT EXPERIMENTER extension to
encapsulate OpenPATH control messages in the OpenFlow protocol
packets.

• NF Manager is the core system process that runs on every vSwitch in
the dataplane. This is a kernel process that runs with high priority
and handles packet movement between the VNFs and maintains the
flow-tables.

• Upcall-handler as part of the vSwitch node is a key process that
interfaces NF Manager with the SDN Controller and so it maintains a
separate queue for OpenFlow pipeline messages to-Controller/from-
Controller in a separate memory space and forwards the new-flows/
packets/unknown-flows over a safe channel to the SDN controller.
We are repurposing OFPT FLOW MOD messages from the OpenFlow
protocol to define the forwarding behaviors across the VNFs in a
service chain.

The opportunity for combining match-action on flows with “state
labels” on the chain of tables is an integral aspect of our scheme (See
Fig. 16). A packet that enters the switch is matched in flow-table(s) and
based on the lookup result; the action may be - forward/modify/drop the
packet. We extended the OpenFlow v1.5 +, with the entries by the
corresponding headers describing the events, sessions, and connection
state (metadata). We added supplementary fields - “State labels, Flow
ID, ID, Path ID” that would be employed by the match-action right from
the head VNF in the service chain and subsequent VNF tables and until
the end of the SFC. As most of the NFV applications are stateful type, (i.

e., they maintain connection or transient session data across multiple
instantiations of the network function) and the infrastructure is expected
to provision a high-speed memory for storage of protocol, metadata,
headers, options, and other flags. Hence, the OpenPATH framework
defines special data structures synapses (maintained by the connection
tracking module) that are provided by the shared-memory infrastruc-
ture, for storing and retrieving state information. A high-speed “key-
value” database is provisioned in each vSwitch node, and it is widely
utilized by many stateful network applications such as IDS, FIREWALL,
WEB PROXY.

While building the stateful extension to Open vSwitch we had to
address flow-table cache preservation strategy. As OVS is designed on
the premise that the flow-table rules seldom vary relative to the rate of
arrival of packets, it follows a conservative caching scheme, which is
important for its high efficiency. In comparison, after each change of
state, switches may have to rebuild cache entries, removing any caching
advantages. The NF Managers integrated into the switches are intended
for data plane state maintenance and communication between the
controller and the switches through OpenPATH southbound APIs. The
controller will initialize an application contained within a switch. The
controller can add, alter, and delete table entries in vSwitch nodes pro-
actively during runtime. Additionally, the controller may configure
switch properties, such as the interval between state reports. The
controller exposes north bound APIs to allow applications to change
state tables in order to enforce stateful processing logic. The data plane
maintains state and updates it in response to incoming packets or in-
ternal/external events. The state information can be uploaded to the
controller, allowing the controller to maintain the network’s global state
information. The controller may specify the frequency at which switches
send update messages based on the application’s requirements. For
instance, switches can be programmed to communicate with the
controller on a periodic basis rather than sending a single message for
each update. The controller will regularly obtain state reports from the
data plane and update the local record in order to maintain state syn-
chronization. The controller’s internal state can be used to recover from
failures. The controller will replicate the state of a failed switch and
redirect flows appropriately. Due to the fact that the controller does not
have the most recent state when a switch fails, the state to be configured
in the replacement switch may be inconsistent with the most recent state
in the failed switch. Take note that in the OpenPATH architecture, the
controller continues to serve as the centralized intelligence. The
controller continues to perform traditional functions such as connection
discovery, topology detection, and forwarding. We incorporate the
OpenPATH API into the architecture and store state in the data plane to
improve the efficiency and scalability of stateful applications.

To address the challenges of implementing agile data plane with
stateful operations and managing the trade-off between the resource
constraints in the switches and optimizing the controller interface, we

Fig. 16. Stateful Flow Table Operations workflow.

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

17

make two key implementations.

• We aim at collecting a compact representation of packet distributions
while retaining enough information about flows to enable high ac-
curacy on packet inspection and flow classification tasks. Achieving
such a representation requires the design of a flow compression
scheme that is simple enough to be efficiently implemented by the
primitives available in current programmable switches, but which is
able to retain meaningful features for classification purposes.

• Computing compact representations of packet distributions should
not consume the majority of resources in the switch, enabling the
system to co-exist with other typical applications, e.g. forwarding, or
to be used in tandem with complementary network telemetry
solutions.

It is imperative to find the correct balance between memory savings
and accuracy. OpenPATH balances this trade-off, for different use cases,
through a parameterization during the profiling phase. First, we devised
a new compact representation of packet length and inter-time packet
arrival distributions which is small yet provides enough information to
perform accurate application-specific traffic classification. We name
such representations as synapses. OpenPATH data plane layer (called as
VARMAN) offers similar accuracy scores while using significantly less
memory, e.g., covert channels can be detected with at most 3% loss in
accuracy using only a 20-byte memory footprint per flow. When
compared with related methods for capturing compressed packet fre-
quency distributions (Nasr et al., 2017), OpenPATH consistently out-
performs them in terms of the classification accuracy under similar
memory restrictions, considerable bandwidth savings when compared to
network telemetry approaches (Sonchack et al., 2018) that rely on a
server infrastructure responsible for flow analysis. The synapses gener-
ated by vSwitch profiler depend on the parameters, i.e., the compaction
table, dictated by an application-specific profile which determines how
efficiently the switch SRAM will be used and how accurate the flow
classification will be. In general, finding the parameters that offer an
optimal trade-off would require an exhaustive search of the parameter
space. To search on the parameter space for a configuration that offers a
good trade-off between synapse size and classification accuracy, the
profiler implements alternative customization policies that can be
enabled by the OpenPATH operator. Note, that synapses are tightly
coupled to a specific implementation of the profiler in VARMAN
(Krishnan et al., 2019a) and nothing prevents the use of alternate
optimization techniques. Unlike other ideas, such as OpenNF (Gem-
ber-Jacobson et al., 2014), we envision a more distributed, hierarchical
architecture for state management. Internal and external non-NF-related
states will be managed and adjusted by the centralized SDN controller.
This reduces the SDN controller’s potential overhead. In addition, it
enables finer-grained state maintenance at lower levels of the hierarchy,
which obviates the need for regular SDN controller updates and the
associated communication overheads. As the NF state is distributed
across multiple nodes, the SDN controller initializes the tables across the
nodes and periodically synchronizes the state tables. This problem and
the management overhead are not unique to OpenPATH, and we solve
this issue efficiently through the native design choice of “Statefulness” in
the data plane. It is critical to enable the data plane to not only char-
acterize flows using packet sequences, but also handle traffic using
aggregated data and compact representations across multiple flows. Our
experiments demonstrate that OpenPATH can handle traffic in a
multi-flow aware manner without requiring costly communication with
the SDN controller.

6.2. NF manager

NF Manager is the core system process that runs on every vSwitch in
the dataplane. This is a kernel process that runs with high priority and
handles packet movement between the VNFs and maintains the flow-

tables. Zero-copy exchange of packets between the VNFs is accom-
plished by allocating DPDK DMA packets from NIC buffers to the “shared
memory huge pages” region in userspace. The descriptors to the Tx/Rx
ring buffers are passed for the VNFs to give access to packets in the
queues. When packets enter the NIC Rx threads in the NF Manager use
the polling mode worker module (PacketQ) in DPDK to move packets
into the SM area that all VNFs can access. The Rx threads check the
packets of a flow and execute the match-action for the matching rule in
the TCAM, copy the packet descriptors to Ring Buffers, and finally the
waking up the NF processes to running state in the dedicated CPU cores.
Once the application logic of the NFs on a packet is run, the NF Handler/
Tx Thread transfer the packet descriptors to the next VNF Rx queue
through shared memory. When the packet reaches the end of the chain,
the NF handler on the last VNF moves the packet to the NF-Manager
which merges the packets from all the paths of the SFC and invokes
the PacketQ to forward the flows on Egress ports. For each VNF the NFM
holds “a pair of ring buffers Tx/Rx” for exchanging packet any VNFs in
the Chain. The Rx threads of PacketQ (“DPDK polling mode device
driver that avoids interrupt handling overhead”) receive the packets
arriving at the Ingress ports of the vSwitch node. The PacketQ looks up at
the SFC flow-table setup by the NF Manager and finds the head VNF in
the chain and the SC- ID defined for the new packet. The descriptors to
the new packet are added to the Rx Queue of that VNF. If the PacketQ
lookup returns a table-miss/no path is defined, then the new flow packet
is moved to Upcall-handler’s queue (to be forwarded to the controller).
We are repurposing OFPT FLOW MOD messages from the OpenFlow
protocol to define the forwarding behaviors across the VNFs in a service
chain. The SDN Controller must recall the forwarding-rules imple-
menting the part of the SFC graph from one node and rules to properly
forward packets from the last NF in the chain. The packets are forwarded
from one network domain to another domain, deploying different seg-
ments of a single SFC graph across multiple nodes (or a transfer on the
way to that node). The controller installs service SC-ID to process flow
and sets the flow operation to be “output to port SC-ID.” When a packet
reaches the end of the chain (tail/last VNF), the merging of all the
versions of that packet has to be done. This process is defined by the NF-
Manager and done by a dedicated VNF process. The NF Manager raises
the parallelization factor by the reference counter. If multiple VNFs are
processing a packet, it is likely that each will ask for a different action at
the end or merged into a single match-action. The “match-action” on the
final result is executed to either drop/forward to the Egress port or steer
the packet to another SFC/SC-ID path. When running network functions
involving complex operations/analyzes of packets, packet-processing
overhead varies across the flows. As a consequence, routing packets to
NFs using round-robin scheme will possibly cause an imbalance in the
queuing that could lead to dropped packets and erratic latencies. So, the
NFM is designed to load balance the NFs based on the active ring-buffers
used by the VNFs. The simple methods such as “round robin or queue-
size balancing” cannot be used for scheduling VNFs involving tempo-
ral flow state, as the descriptors have to be defined for each thread to
avoid contention. To tackle this problem, we implemented flowID based
load balancer making sure that all the packets of a flowID go through the
same NF instances/threads to avoid context switching complexity. We
extended the DPDK with data-structures and fast-lookup tables for
storing the VNF-packet-paths and dependencies to handle concurrent
access on packets by multiple VNFs.

6.3. Management and controller plane

The OpenPATH Management/Control plane system comprises three
major centralized software services: SDNFV Orchestrator, per-domain
SDN Controller, and ETSI (European Telecommunications Standards
Institute(ETSI), 2014) compliant NFV MANO. SDN Controller manages
the dataplane instantiations (vSwitch): setting processing logic, con-
trolling provisioning, flow-table, loading VNF modules dynamically on
the switches, routing, and scaling of network bandwidth. The SDN

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

18

controller, NFV MANO components use a secure communication
OpenFlow over TLS and OpenPATH control overlay in simple JSON
(Bray, 2017). On SDN side, Open vSwitch (OVS) control plane design
was implemented without modification, on OpenDaylight(ODL) Open-
Flow controller (Medved et al., 2014). There are three ways to control
the OpenPATH: Python/C APIs/Scriptable configuration language,
OVS-like CLI and everything component is run-time configurable.

6.4. NF processing

NF/application processing logic is implemented in the OVS context
and through the netlink interface, the flow-tables in the kernel space are
updated. The VNF table is handled in conjunction with the traditional
OpenFlow tables. Every Packet is looked up with the flow-table for
matching-rule and the action function () for that rule is run. If table-miss
in lookup, that packet is sent to the control plane. An NF Manager has
these responsibilities: (i) determines the action for the current flows. (ii)
modifies the corresponding state table persistent state. (iii) generates or
modifies the rules for the kernel flow-table. (iv) generates/receives
packets to/from vSwitches nodes. (v) forwards “Packet_In, Flow_-
Removed, or NF_update vendor” messages to the control plane. Each VNF
is provided an NF handler, which handles OpenFlow instructions and
flow updates through the NF Manager from the controller. OpenPATH
framework is designed to allow new applications or VNFs to be deployed
on the fly even when vSwitches are running. Through OF_VENDOR ac-
tion command, the new NFs are sent as sub-actions by the SDN
controller to the NF Manager which installs the appropriate flow rule in
the VNF NF handler agent in the SFC.

6.5. SFC placement

Traditionally, network services are deployed as function chains
(SFCs). As, each SFC’s overall performance is limited, we define the
parallelized SFC in which the data within each working sub-SFC is less.
To get closer to reality, we include both VNF and PM failures when we
evaluate parallelized SFC availability. OpenPATH NFV Placement al-
gorithm maps a set of SFCs. The operational sub-SFCs are mapped first,
and then the backup sub-SFCs are mapped. Each NF instance must be
mapped to a single NFV server (vSwitch node). The purpose is to reduce
inter-node traffic since it incurs reduced delay and requires fewer pro-
cessor cycles to traverse via the NICs while also constraining the link
bandwidth between nodes and the switch.

• Dependency and affinity: The metadata sharing between the NFs
(for e.g., sharing the same IP headers in the NAT and Load Balancer)
have full dependencies and placed adjacent in the process-queue
chain. A majority of stateful firewalls can only operate on one
instance at a time, making affinity important. There are instances,
where separating an NF’s instance (and accompanying input traffic)
is necessary. Any methods that retain cohesion rely on state migra-
tion methods, which is expensive and not compatible with legacy
functions. There is no switching overhead across the switches to
VMs.

• Fault Tolerance: Fault tolerance and backup SFC nodes (except one
work by Wang et al. (2020), the failures and recovery are not
addressed). The two existing NFV execution paradigms are RTC and
Pipeline. Reduced PL cost is one of RTC’s objectives. By distributing a
single VNF in a PM, network operators are able to manage VNFs. We
create the placement strategy and a hybrid placement algorithm that
incorporate the advantages of two existing NFV execution models. To
retain affinity, the software switch and controller work together to
build a novel placement technique. Our system doesn’t require state
migration, uses less flow table entries than the switch when trans-
ferring traffic to NF instances. Our offered solutions can reduce SFC
delay and resource utilization while guaranteeing Availability.

• Microservice model: the placed NFs are application processes that
are already deployed in the system. The processes are in Sleep-Wait
state and will be scheduled (chain of processes) as soon as a SFC
request is ready for execution. (Our model is akin to “micro-services”
deployed in high-end enterprise class routers and process the SFC
requests in non-blocking mode at wire-speed)

6.6. Software acceleration

OpenPATH uses the DPDK I/O abstraction and improves it with SM
that enables VNF/processes/apps to pass buffer descriptors via the zero-
copy API feature. The OpenPATH threads DMA data by-passing the
Linux kernel to the SM region. We employed “NUMA-awareness (forcing
socket locality)" and network driver in polling-mode to avoid costly
interrupt handling operations and other types of notifications. The
performance improvements such as tuple-space search algorithms for
table lookups (Srinivasan et al., 1999), Read-Copy-Update rather than
traditional locking (McKenney and Slingwine, 1998), and packet
batching (Kim et al., 2012) have all brought substantial benefits to
switching in both code-and data-driven designs. The
zero-overhead/copy-free Shared Memory based communication channel
is utilized to move packets and other messages between the proc-
esses/VMs/containers and the physical vSwitch host. We use asyn-
chronous ring buffers mechanism in conjunction with shared memory to
implement zero-copy operations on packets and also ensured consis-
tency without the use of locks. The Receive Queue resides in the SM
(user-space), so that the VNF NF handler has to write a descriptor to the
Rx Q of the next VNF in the chain for moving the packets. To further
reduce copying overhead for parallel operations, we implemented
optimization techniques such as “Header-Only Copying”. The PacketQ
engine is a kernel poll-mode driver that runs on a dedicated CPU core
that transfers frames from the hardware via DPDK and kick starts the
SFC workflow with the head VNF in the chain. The softwarized
switching implementations are nowadays comparable with hardwar-
e/ASIC based solutions and high-speed software networking requires
acceleration techniques in various axes which are illustrated in Fig. 17.
OpenPATH implemented various software acceleration methodologies
as listed in Table 4.

6.7. OpenPATH API and applications

We use our taxonomy to build a Stateful API for flow-aware NF/
application logic for exporting, importing, and minimizing changes to
their code. We use the specified transport layer connection-oriented
protocols (TCP/UDP) metadata fields (e.g., TCP or UDP connections)
and define the abstraction for the controllers to specifically determine
which state to be exported or imported to the switches. OpenPATH

Fig. 17. Acceleration techniques and benefits.

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

19

library and SDK enumerates various types of API for NFs and control
applications to implement application logic in the dataplane and to
manage/monitor state transitions of the corresponding flows and con-
nections. The APIs provide programming interface (1)to configure
global state table and the state management table, (2) to retrieve state
information from the global state table, (3) to register call-back func-
tions in OpenPATH to subscribe specific state-based events and (4) to
manage and manipulate the flows based on the state-based events in
VNF.

In Fig. 18, a basic NF/app module is shown in full as an example. The
NF/application requires OpenPATH to register a function. To realize the
design explained, OpenPATH has incorporated a set of core network
functions that are employed as worker processes in the SDNFV data-
plane. Some key functions that operate on packets are: load monitoring,
flow tracking, load balancing, packet classification, merging/splitting,
boot-up/shutdown/placement, DoS detector/scrubber/sandbox. We
export a native API to provide direct access to the optimized library and
use OpenPATH socket abstractions. The legacy NF/applications can be
unchanged and utilize the standard sockets/other northbound APIs
supported by the OS. OpenPATH SDK and OVS-DPDK library export API
to implement custom NF and packet/flow-based inspection/moni-
toring/filter policy definitions. Also, the native modules and special
datapath application modules that are already built in the OpenPATH
vSwitch software can be utilized to experience the highly programmable
switching framework.

7. Performance evaluation

The findings of our research on the programmability and efficiency
of this proposed switching platform are summarized here. The evalua-
tion environment is intended to serve as a laboratory for experimenting
with various design choices, benchmarks (Tahhan et al., 2017) and
reconfiguring the OpenPATH SDN-based-NFV Platform software for
various test cases. We evaluated both in real hardware-based testbed
(described in Section 7.1) and in simulated Mininet-based network
testbed (Section 7.8). Against each sub-section in the Evaluation section,
we specify the testbed setup (hardware or simulated) for the

experiments in that section.

7.1. Hardware testbed configuration

To measure how well our OpenPATH framework would perform on
industry-grade switch hardware for the vSwitch nodes, we tested our
implementation of a Whitebox router that supports Open vSwitch
switching software.

The Major components of the testbed as shown in Fig. 19 are:

• vSwitch Nodes (NFV platform running OpenPATH): 4 server class
machines with dual Xeon X5650 @ 2.67 GHz CPUs (2 × 12 cores),
NVidia GPGPU, Intel 82599EB 10G Dual-Port NIC (Both are con-
nected to an experimental LAN for data-plane traffic), 48 GB (8 GB
for huge pages), Ubuntu 16.10 (kernel 3.5, DPDK-1.4 and QEMU-
1.5). Each machine has one 1 GbE Intel NIC for control and man-
agement traffic.

• Data Traffic Switch: NFV Nodes connect to a Cisco SX350X-24F
Stackable Managed Switch | 24 Ports 10 Gigabit Ethernet (GbE)

• Traffic Generator: Network Function Performance Analyzer (NFPA,
(Csikor et al., 2015)), is a benchmarking tool using the DPDK pktgen.
NFPA and OpenPATH ingress run on dedicated machines.

• OpenFlow Switch (running OpenPATH Switch software): Whitebox
high-end switch (its private vendor who we had to anonymize since
we did not get a permission to use the vendor’s name, running
OpenWRT (OpenWrt Wiki, 2017)) We also experimented with Pica8
(Pica8, 2013) P-3290 (with a modified Indigo OS (Indigo)).

7.2. Comparison of OVS-DPDK SDN stack

The softwarized switching implementation in OpenPATH is compa-
rable with hardware/ASIC based solutions exploiting acceleration
techniques in various axes which are illustrated in Fig. 17 and in Table 4.
The OVS-DPDK classical implementation doesn’t adopt the above opti-
mizations and acceleration in software. This is explained in Section 6.6
Software Acceleration.

The observations in the design and implementation of OVS-DPDK are

Table 4
Software acceleration methods.

Flow awareness Zero-copy Packet processing Coding Practices

Per-flow processing Limited state I/O batching Multiloop: Many packets at once
NIC calculates hash function of 5-tuple Using shared memory Compute Batching • More instructions per clock cycle
Hash value is exported at userspace NIC use Direct-memory access Poll-mode device drivers • CPU pipeline always full
Packets traverse Rx/Tx queues Independent processing Reduce Interrupt pressure Prefetching: start reading next packets
Multi-core scalability Payload is unmodified Packet Arrivals in Batches • Reduce overhead of memory access
One CPU core/HW queue Only metadata is accessed No individual packet departure • Exploit cache hits
Receive-side Scaling (RSS)

Fig. 18. Example network function implementation.

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

20

enumerated below:

• The major overhead in the OVS is the match/action pipeline to
orchestrate flows, flow table. OVS tries to optimize this function with
aggressive flow-caching. In synthetic traffic conditions, the flow
caching further worsens the matching speed. OvS-DPDK suffers
performance degradation due to the match/action pipeline overhead
(Zhang, 2019).

• OVS-DPDK is slower than the other passthrough systems because of
the VirtIO. The design of VirtIO offers an additional degree of indi-
rection (helpful for live migration), which is not present in the other
options: each packet sent or received by the VM goes via the VirtIO
queues before reaching to the network backend (i.e., the software
switch) (Gallenmüller et al., 2015; Lettieri et al., 2017).

• There is a queuing delay in the pipeline architecture-model which
generally involves multiple threads and scheduling/wait state (Rx/
Worker/Tx) for a single packet forwarding and the packet is inter-
nally buffered twice to take over the packet handling between
threads. Though OVS-DPDK doesn’t incur queuing delay due to
DPDK’s Run-to-Completion model that entire packet processing is
performed by a single thread, there is buffer saturation and flow
control that could lead to packet drops.

We conducted experiments with service chains composed of 1–4 NFs
with three software switches (OVS-Kernel, OVS-DPDK and OpenPATH),
with 256 bytes packets. The packet delays due to the softwarized switch,
in the datapath between two physical ports, is measured. DPDK-based
packet I/O threads continuously poll the ports (in a busy-wait loop)
and do not rely on interrupt calls and so avoids the context switching
overhead. This makes 100% of CPU cycles available to the packet logic
processing rather than for moving(copying) the packets. But the inter-
rupt moderation overhead has an adverse effect on the OVS-kernel and
so higher latencies are seen. Table 5 shows that OpenPATH achieves low
latencies and high throughput rates for all chain lengths utilizing
available CPU cores for NF Parallelism (packets split across paths/
cores). As the chain length and cores increase, scale-out performance
closer to the theoretical limit of 10Gbps is achieved and OpenPATH
exhibits a consistent and lower latency profile.

We evaluated throughput sensitivity to concurrent flows, comparing
OpenPATH and OVS-DPDK on basic L2/L3 routing workloads and
concluded that OpenPATH maintained higher throughputs (See Table 5)
than OVS-DPDK as the number of concurrent flows increased. However,
a deeper inspection of the match/lookup algorithms reveals a more

complex story. OVS-DPDK uses a flow-caching strategy to reduce lookup
times for complex multi-table lookups required for network virtualiza-
tion. This flow-caching strategy introduces an additional step in packet
processing that increases per-flow overheads for short, single-table
lookups (e.g., L2/L3 switching). However, the authors of OVS claim it
improves throughputs for longer, multi-table tasks (e.g., network vir-
tualization) by benchmarking the differences in performance between
the algorithms in isolation of other design choices and optimizations
within the switch implementations and showing their strengths (e.g.,
multi-table lookups) and weaknesses (e.g., large numbers of indepen-
dent flows).

CPU Caching (Fig. 20): After the traffic locality is gone, performance
of OVS-DPDK flow caching deteriorates. With 100 active flows, packet
rate decreases by a factor of two (or even worse). When differing cache
hit intensities are experienced, the flow processing, shifts from the

Fig. 19. Testbed and SDN/NFV infrastructure for OpenPATH.

Table 5
Software switching performance.

Chain
Length

CPU
Cores

Throughput (Gbps) Latency (μs)

OVS
Kernel

OVS
DPDK

Open
PATH

OVS
Kernel

OVS
DPDK

Open
PATH

1 2 7.82 8.87 9.45 254 178 127
2 4 6.14 8.24 9.36 328 254 132
4 6 5.26 7.20 9.27 478 378 142

Fig. 20. CPU caching (LLC) behavior.

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

21

highly rapid microflow cache to the slower megaflow cache. Addition-
ally, cache affinity is compromised leading the flows through the
vSwitchd slow path. We monitor the LLC misses using perf tool, as the
active flow set develops.

CPU Latency (Fig. 21): As the active flow set expands, the latency on
the gateway pipeline increases. The OpenPATH processing time in the
data path depends on the active flow set, although latency for OVS-
DPDK might vary between 0.3 and 0.14 μs. The constructed datapath
(in OpenPATH) delivers reduced and predictable latency compared to a
flow-caching-based datapath (in OVS-DPDK).

We tested over a range of pipeline complexity levels and a growing
diversity of traffic mixtures. The key inferences are:

• OpenPATH side-steps flow caching and achieves a consistent and
high packet rate across virtually all OpenFlow pipelines and traffic
mixtures studied, routinely exceeding 12–14 Mpps packet rate (max
~ 15 Mpps). When applied to complex pipelines with many active
flows, OpenPATH can perform by two orders of magnitude better
than vanilla OVS-DPDK. For the Gateway domain, an OVS-DPDK
throughput decline of a hundredfold takes place, at 1 million
flows, resulting in a total denial of service for the user population.
Meanwhile, OpenPATH delivers above 9 Mpps packet rate, which
suggests that it is not vulnerable to these assaults. For everything
else, OpenPATH will employ OpenFlow style match-action tables.
This, together with global flow caching and categorization coa-
lescing, lets OpenPATH take advantage of both. For big packets, like
network virtualization, OpenPATH is the perfect fit.

• OVS delay can be traced to generic flow-caching in the datapath
code; In contrast, OpenPATH’s compact bespoke data pathways offer
significant switch performance and modest working set size. OVS-
DPDK is designed with the classical SDN architecture, wherein
Controller does all the heavy lifting work and complete decision
making and a stateless dataplane. But OpenPATH has a stateful
dataplane in which switches have been delegated with some control
over the decisions.

• Finally, the classical OVS stack is coded as a reference implementa-
tion for generic Linux architecture and there are scope for im-
provements, optimizations, software accelerations, customized logic
tuned to the deployed hardware platform.

We hope this explains the improved performance of “OpenPATH
(OVS-DPDK)” against “vanilla OVS-DPDK”, though we leveraged on the
code base of OVS-DPDK.

7.3. Stateful operations and flow table optimizations

Packet processing is among the most demanding operations for
network switches, and hence specialized hardware and advanced

software acceleration methods are used to complete it. For the hardware
side, it’s possible to implement the data plane functionality in an ASIC
(Application Specific IC), an FPGA (Field-programmable Gate Array), or
a network processor, using dedicated packet classification engine chips
(TCAM) to build a software switch. In hardware switches, ASIC capacity
and the built-in TCAM capacity limit the performance, but software
switches are hampered by the intrinsic computational difficulty of
packet classification on general purpose CPUs. In an SDN switch, a
forwarding table includes per-flow routes. Wildcard fields and concur-
rent lookup of all table entries are typical uses of TCAM forwarding
tables. For accurate rules, they can be implemented in TCAM or SRAM
(Liu et al, 2010). Though we see it as a single table, it may be imple-
mented using multi-tiered tables. Apparently, in order to properly
maintain the SDN in a dynamic network environment, we need to
consider dataplane switch reconfiguration to balance the on-chip
memory (TCAM and System RAM) utilization from time to time.
Although this idea is straightforward, realizing it effectively is still
challenging from both algorithmic and systemic aspects. Data paths in
DPDK-based appliances translate to flow entries in the action’s internal
flow table. The hardware-based middleboxes may perform lookup from
internal TCAM tables or other storage media. Action elements in the
processing graph represent each action’s read flow and write flow. The
match-action switching model represents the lookup tables (flow-tables)
layout, size, updating and dynamic management of the TCAM and the
SRAM. Whenever packets arrive at the Ingress ports the matching flow
in the tables are looked-up for match and the corresponding action (e.g.,
forward) are taken by the logic (ASIC in the hardware/application in the
software) as part of the pipeline in the switch. So, the delay and resource
usage for this function are some key parameters in SDN enabled
switching architecture.

As a substitute for the NIC with a programmable TCAM, we used a
software stack in the current testbed to imitate 1k TCAM entries. We
discovered that it scales smoothly when offload rates approach 100%.
The current simulation features a modest TCAM and a limited hash ta-
bles (SRAM) but provides all the functionalities needed for reverse path
applications. First, we collect performance-related metrics such as the
number of in-flight instructions, the current flow table occupancy, and
request batch size. To find key factors affecting rule lookup/update
speed, we sample the entire parameter space. The number of rules
contained in a flow table is critical for a switch. Bigger tables enable
finer-grained traffic control. However, TCAM space is expensive,
therefore tables that support intricate matching tend to have restricted
dimensions. We expanded on this feature by using generic OpenFlow-
like switch models. The OpenFlow Switch (running OpenPATH Switch
software) is a Whitebox switch (its private vendor who we had to ano-
nymize since we did not get a permission to use the vendor’s name,
running OpenWRT (OpenWrt Wiki, 2017)). We also experimented with
Pica8 (Pica8, 2013) P-3290 (with an Open-vSwitch (OVS) support and
CrossFlow technology enables mixing of switching, routing and Open-
Flow traffic, Modified Indigo OS (Indigo)).

To evaluate the efficiency of Stateful data plane management scheme
using synapses and truncated table maintenance with the given hard-
ware resource usage on the switch, we focus independently on the data
plane and on the control plane. To give a general insight into the per-
formance of these synapses scheme, we considered three different traffic
pattern, network function (VNFs) with usage scenarios that are common
in Firewall systems.

Flow Table Scalability: Table 6 presents the scalability gains of our
stateful firewall application deployed in the vSwitch (OVS) node, when
it is used to classify flows for covert protocol detection, HTTP finger-
printing, and botnet attack detection. For these experiments, we
generated the possible combinations of synapses for the three consid-
ered use case scenarios and assessed whether they allow for accurate
flow classification despite their compact size. Packet lengths (PL) vary
from 1 to 1500 bytes (MTU), and each cell of a synapse has a size of 2
bytes. In general, the absolute number of flows that stateful table Fig. 21. CPU Processing cycles.

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

22

management scheme can handle ultimately depends on the switches’
available SRAM.

Switch Resource Utilization: Table 7 shows the average hardware
resource consumption of synapses data store across all stages of the
switch, both in simulated TCAM/Whitebox switch). The table shows that
besides the SRAM required for the tables and register, the consumption
of other resources is negligible. Since our flow matching logic entirely
relies on exact matching, the vSwitch’s flow table consumes small
fraction of the TCAM resources on the switch. In tandem with the
deployment of flow tables in SRAM, our scheme leaves over 60% of
SRAM available. Overall, these results suggest that Synapses scheme
makes enough space in the switch memory and also bandwidth on the
control channel for the concurrent execution of many other common
forwarding behaviors, like access control, rate limiting or encapsulation,
that do not necessarily require an extensive use of the stateful memory in
the switch pipeline. We argue that the lookup/update operations are
very fast and optimized in the datapath pipeline and we hypothesize the
storage overhead of OpenPATH will be manageable even for hardware
targets with limited SRAM/TCAM (Liu et al, 2010).

The key findings are:

• With compact synapses Stateful switch can monitor at least 32 times
more flows when compared to the baseline setup with complete raw
data from the flows maintained in the switch table and forwarded to
the controller.

• The system (combination of Controller/Switch) manages to achieve
a classification accuracy of 94%, only 2% shorter than the result
obtained using raw packet length distributions.

7.3.1. Stateful TCP-Offloading overhead
This experiment compares the TCP/IP Firewall in stateful and

stateless mode. Whenever the host on the internal network establishes or
terminates a network session, the flow rules are changed. The delay to
update the rules can affect TCP link timeouts. We used a software
gateway for the hosts to connect to the HTTP server. The number of
hosts ranges from 8 to 256. Fig. 22 shows that for new sessions, SDN
stateful TCP/Firewall creates a bump-in-the-wire causing an additional
delay than the stateless gateway switch. The OpenPATH based stateful
firewall requiring just extra 2 ms or around 10% longer time to manage
the state tables/sessions and flow tables in the switch. However, once
the connection is active, the switches manage the flows and sessions on
their own, so the control plane load does not have to be increased.

7.4. Comparing SDNFV switch and NFV-over-VMs

In this experiment, we ran a series of micro-benchmarks with a
cluster of machines (in hardware and simulation) to compare the

efficacy of the OpenPATH and the traditional NFV platforms. With
OpenPATH SDNFV switch, network functions are already integrated
into the switch node, and the chain is formed by creating a set of flow-
tables with output: action (call the next NF) function call in the same OS
context. We ran these tests in a controlled environment under a single
experimental node (as an OpenPATH switch or as physical host to VMs)
and this removes any outside network delays. This design gives the
flexibility to represent a complicated SFC graph, avoiding the I/O
transfers over the physical node across the VMs. We also ran simulations
with Mininet (Lantz et al., 2010) and performance benchmark iPerf
(Iperf) application. Fig. 23 shows the testbed design for the experiment.
In Fig. 23(a), the NFs are implemented in the VMs and interconnected
through a switch. A packet has to be processed for “n+1 match-action
lookups” in the OpenFlow flow-table, to be steered in an SFC
comprising “n NFs. In Fig. 23(b), with the OpenPATH SDNFV switch, the
NFs are implemented into a single node, and with 1 multi-fields
tuple-lookup, the traversal through the chain of NFs is just invoking
another function call. The differences in processing overhead are
measured through latencies and throughput.

TEST CASE 1: The overhead of changing the NFs (order or policy or
priority) in the SFC chain triggers more processing in the SDN pipeline as
the flow-tables have to be updated and we compared this key metric as it
indicates how agile the NFV platform is when the dynamic traffic pol-
icies are changing. In this test case, we measure the NF switching
overhead/delay for the new NF to be installed and the arrival of the first
packet. Fig. 24 shows the new NF switching delay in the legacy approach
(VM) is higher as it involves more I/O cycles and booting overhead of
the new VM in the chain. With the OpenPATH approach, the switching
does not change while spinning up the NFs in the initial stage and also at
run time re-installing another NF into the chain, as the overhead for
function calls and initializing the Tx/Rx packet queues are constant.

TEST CASE 2: In this test case, we compare the forwarding rate be-
tween OVS-DPDK, OVS-CLASSIC, and OpenPATH with a load balancer.
As discussed previously, due to redundant packet detours, sub-optimal
I/O and data copy overhead the classic and also the OVS-DPDK
perform badly with the scaling of NFs. Fig. 25 shows the effect of opti-
mizations such as fast I/O, load-balancing, and shared-memory/zero-
copy architecture. OpenPATH switch can perform close to the peak
network speed, sustaining with increasing the NF chain.

TEST CASE 3: We compare the latencies between the two ap-
proaches. Fig. 26 shows that as the number of NFs increases, the pro-
cessing latency increases considerably when running NFs on VMs. The
processing latency is increased due to each VM’s I/O transmission delay
to direct traffic to specific NFs on a service chain. A packet often requires
multiple lookups on the switch so that various NFs can be reached in the
correct order. More packets are waiting in the queue for a longer service
chain, which increases transfer latency than a shorter service chain.

Table 6
Scalability of flow tables.

Firewall NF Type Synapse Size
(Bytes)

Full Data Size
(Bytes)

Scaling

Covert Channel Detection 20 300 150 x
HTTP Monitor

Fingerprint
94 300 32 x

DDoS Botnet Detection 302 10200 34 x

Table 7
Switch resource consumption.

Resources Computational Memory

Lookup- Match-
Action

Routing
Gateway

SFC
Tagging

TCAM SRAM

Usage 7.56% 4.21% 3.19% 1.2% 37.21%

Fig. 22. Connection setup time.

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

23

With OpenPATH, as the NFs are placed in one node, the network
transfers across the switch are optimized.

In this experiment, we measured the throughput with a varying
count of NFs in the chain. In the legacy configuration (NFs on VMs) the
processing rate and throughput decrease as we increase the NFs in the
chain. As discussed before, this bad performance is due to the non-
optimal I/O, packets copying, across the stack and buffers, multiple
contexts switching within the node and as the number of NFs increase
the packet touring back and forth between the VMs through the switch.
In the OpenPATH switch, with the NFs embedded in the single node, we
save all the above-mentioned overheads and the other resource opti-
mization techniques such as zero-copy have a played key role in

achieving maximum practical sustained peak throughput even with the
scaling of the chain.

7.5. SFC placement efficiency

With several NFV hosting nodes, VNF chains can be extended beyond
the limits of a single node. We used a single core switch vSwitch node,
which is linked to two edge vSwitch nodes, to set load balance and smart
cross-node placement chaining. We also tested OpenPATH with other
hierarchical leaf-spine topologies and configurations. SFC requests are
parallelized using the NF Parallelism algorithm, SFC sub-graphs are
generated and deployed using the proposed placement heuristic.

The Key evaluation metrics include:

1. Cluster overall-throughput, the bandwidth utilization ratio.
2. Total Accepted SFC Requests processed in the Cluster.
3. SFC Path Lengths, Average latency in processing.
4. Resource Utilization - The amount of used resource in the Cluster.
5. Acceptance Ratio-network wide accepted SFC requests.
6. Scaling with SFC chain lengths/no. of NFs.

The following approaches are Compared and Contrasted:

• Strawman Simple: placement algorithm (Pfaff et al., 2015) that does
not take SFC parallelism into consideration, divides the NFs equally
across the available NF hosts and keeps all VNFs as close as possible.

• NFP (Sun et al., 2017): “Packing” that greedily packs nodes onto
servers while traversing the graph depth-first. It only allows placing
an entire SFC on one server as required by NFP (Sun et al., 2017).

• ParaBox (Zhang et al., 2017): a naïve placement algorithm, in which
VNFs are placed on different servers running in parallel.

• ParaMatch (Cai et al., 2020): deploying more NFs on a single node.

Fig. 23. NFV Platform (a) VM based Processing (b) Switch based processing.

Fig. 24. Overhead for spinning up an NF.

Fig. 25. Forwarding Rate comparison.

Fig. 26. Latency comparison.

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

24

• FlexChain (Xie et al., 2021): parallelism-aware approximation
placement algorithm.

Cluster wide overall-Throughput: OpenPATH seeks to maximize
overall throughput by using NFs in a way that uses the least switch ca-
pacity. We consider a SFC graph, a linear chain with 7 NFs, and a more
realistic random graph with 12 NFs. Fig. 27 shows that our approach
outperforms the baseline strawmen approaches and 4 other works in all
cases. We achieve about 15% higher throughput compared to other
works; FlexChain does well on a simple chain but only achieves 5% more
throughput for more realistic SFC graphs. Thus, we see that our place-
ment heuristic in OpenPATH can improve the overall cluster throughput
over the baseline algorithm. OpenPATH’s overhead doesn’t increase
drastically when scaling out the number of nodes and VNFs, even if
VNF’s are placed in multiple physical nodes. The throughput reduces
only a small level (~9.6 Gbps/NIC/node) compared with placing all
VNFs in one physical node, which is due to the smart placement tech-
nique in SFC. With traditional approaches due to multiple traversals of
packets across the nodes, they incur additional overheads, throughput is
much lower in long NF chains that span multiple nodes.

Resource Utilization: Node resource usage was greater in the
OpenPATH algorithm than in the strawman simple approach and other
works shown in Fig. 28, as illustrated. Some VNFs may only use a portion
of a host’s resources, leading to a waste of fragmented resources. In
contrast, OpenPATH allocates numerous sub-chains on separate nodes
to take advantage of these dispersed resources. Our adaptability helps
boost the SFC acceptance ratio.

Acceptance Ratio: Our goal is to maximize the overall number of
accepted SFC requests, and a request can be granted only when all its
limitations can be met. We conduct performance tests on a variety of
network configurations. Between 20 and 300 SFC requests arrive at each
topology. Fig. 29 shows the consistency in acceptance of SFC requests.
Simple method has around 30% fewer SFC requests than our solution in
latency-sensitive situations. Accepting the fewest SFC requests indicates
the limitation in the NFP, that an SFC can only be placed on one server.

Chaining Placement Latencies: In this experiment, we measure the
impact of the switch fabric type on the latency when running heavy
Snort chains and complex SFCs across multiple hosts. OpenPATH em-
ploys smart affinity-based placement for SFC which shows lower la-
tencies and saves up to 40% overall overhead for varying chain lengths.
SFCs’ path length had major impact on network delay and bandwidth.
Using the strawman algorithm, the SFC path length output was shorter,
but using the NFP it was longer. As shown in Fig. 30 the OpenPATH data
path latency was around 52% lower than the simple strawman tech-
nique, and ~33% lower than the NFP approach. In addition, NFP
exhibited superior capacity and stability to that of our placement
approach in lowering the SFC delay. The average path length between
the entrance and exit of SFCs grows as the network size increases.

7.6. NF parallelism overhead

The NFV parallelism and packet steering in SFC can cause consid-
erable overhead due to copy/merge-operations. By employing mecha-
nisms such as asynchronous ring buffer, header-only copy, and large
shared memory regions for zero-copy access, we avoid the overhead. By
implementing producer/consumer synchronizing mechanisms we avoi-
ded locking primitives. Also, we avoid central switch for packet steering,
because of the NF handler which pushes the packet through the chain Fig. 27. Cluster wide throughput.

Fig. 28. Resource utilization.

Fig. 29. Total accepted requests.

Fig. 30. Average latency of accepted requests.

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

25

across the shared memory using descriptor Tx/Rx queues. We compared
the overall performance with 2 instances of the same NFs of sequentially
and parallelly configured in a chain. The three testbed configurations
are illustrated in Fig. 31. The testbed is installed with 7 VNFs in multiple
vSwitch nodes and the OpenPATH switching framework.

7.6.1. Effect of different NF complexity
Each test case runs traffic through 2 VNFs instances and we expect

OpenPATH overhead to vary across the test cases, depending on the
complexity of the application logic. Fig. 32 plot the (a) latencies and (b)
throughputs for the 7 test cases/7 NFs. We observed that the optimiza-
tion level increases with more complex network functions and process-
ing. e.g., the Forwarder NF has simplified instruction cycles and
processing overhead is less, whereas IDS/VPN NFs consist of heavier
processing, instructions and consequently OpenPATH’s parallelism ef-
fect is profound.

Effect of Packet Sizes: We plotted in Fig. 33 (a) how the latencies of
NF processing vary inside the vSwitch node, for the network packet sizes
(64–1500 bytes). We chose one exemplar VNF - Forwarding Function -
that can have the lowest number of CPU cycles and least data operations
on the packet fields and expected to perform closest to wire-rate. As
shown in Fig. 32 (c), OpenPATH achieves a wire-rate, close to 9.6 Gbps
across all packet sizes.

7.6.2. Effect of parallelism degree
We measured the effect of the number of parallel NFs that the

OpenPATH can facilitate. To test this function, the test configuration
deployed IDS NF on multiple VNFs in both sequential/parallelized
chain. The traffic packets were 64 bytes size and both copy-less/copy-
packet policies were tested. The results in Fig. 33 (b) and (c) show
that the optimization effect raises with the parallel instances, proving
that OpenPATH performs well with a higher parallel degree. The la-
tencies reduce by 55% for copy-less, and by 35% for copy-packet op-
erations, while throughput numbers remain the same across the NF
degrees.

7.6.3. Optimization effect with-respect-to graph structure
With a given set of NFs, different structures of the graph can be

generated. Fig. 34 illustrates an example set of graphs for the same
service chain. The experiments revealed improved latencies for graphs
with short chains. In the same experiment, the graph structure (2)
measured the lowest latencies, because the chain length is 1. Graph (5)
measured the highest as the length was 03.

7.7. Management and control operations overhead

The main benefit of OpenPATH was to reduce the complexity of flow
tables. But because flow tables differ due to network configurations,
policies and traffic conditions, it is challenging to generalize flow rules.
There is no guarantee of effectiveness for this particular use case or to-
pology, but we do assume benefits close to a traditional NFV de-
ployments could be reached.

For traditional SDN based NFV implementation, we took the leaf-
based topology from DPX (Park et al, 2019) and built it out into two
layers: connecting the end nodes to the switches as depicted in Fig. 35. A
node in the leaf fabric is a NFV host that handles NF service. Addition-
ally, we measure the flow table size that is needed to talk to all of the
NFV service chain components (including path traversal). Fig. 36 shows
that the number of necessary flow rules exponentially increases as the
number of nodes in the NFV/SDN platform grows and as the length of
the service chain increases. The network will need around 1280 rules
when the leaf nodes reach 8 and the SFC length 4.

OpenPATH will bypass the SDN controller with an enhanced data-
plane (seen in Fig. 37), as the NFs (NFV)are located in the SDN data
plane. Therefore, the OpenPATH network does not need any flow rules
to route the flows to the final destination. We also contend that poor
NFV efficiency on the traditional SDN/NFV platforms is caused by a
combination of associated re-processing overhead on the NFV and
switching overheads. Connecting an additional NFV system can
lengthen the service chain. Policies that have the ability to be articulated
in an OpenPATH-architecture flow-rule framework may reduce both
data plane and network functions. For any SFC length and complexity
there are fewer flow rules required. For example, even for service chain
length 4/16 hosts, OpenPATH requires approximately 128 rules to
ensure communications between all and every link in the network. The
OpenPATH architecture also lowers the number of NFV packet man-
agement functions, while simplifying complex network and SFC policies
are accessible from a single table.

7.7.1. Flow table installation and controller load
We increase the load on the network by flooding it with new con-

nections/flows, triggering a burst. Switches forward packet in messages
to the controller via the OpenFlow channel, and the controller responds
with “flow modification” messages to the switches. As a result, the
controller’s CPU and network port will be consumed by processing these
“new-flows.” This is a critical performance criterion for SDN-enabled
networks. The controller on the OpenPATH system (See Fig. 38(a))
maintained the number of “flow installations/second” when the number
of vSwitch nodes increased in our tests (See Fig. 38(b)). With a Classic-
SDN OvS switch, the controller was overloaded by new-flow flooding
and finally crashed due to CPU/Memory overload.

7.7.2. Control channel/southbound interface load optimization
OpenPATH’s expanded SDN architecture has a minimum controller

overhead compared to typical OpenFlow-based SDN. The data plane
processing does not cause any extra overhead in the switches’ typical
OpenFlow pipeline. Using microbenchmarks, we investigated the
controller overhead (traffic flow from the data plane to the control
plane) and the redirection ratio (traffic flow to DPI and the other NFV
modules) to get valuable insight into how to optimize the design. Only
TCP packets, which account for 77% of the input traffic, are forwarded
to the controller. In OpenPATH, the augmented switches will retrieve
events using DPI capabilities, and ~1.5 percent traffic flows get through
the southbound interface and analyzed for security policy violations or

Fig. 31. Three modes of NFV Configuration.

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

26

suspicious cases. (See Fig. 38 c). The dataplane is responsible for the
majority of the classification processing workload. Additionally, only
necessary traffic will be forwarded to the controller and the ratio varies
depending on the traffic composition.

Fig. 32. (a) NF Complexity Latency (b) NF Throughput (c) Throughput Effect for packet sizes.

Fig. 33. (a) Latency Effect for packet sizes (b) Latencies varying parallelism degree (c) Processing Rate with parallelism degree.

Fig. 34. Performance with different Graph structure.

Fig. 35. NFV Platform with traditional SDN.

Fig. 36. Flow Table update load.

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

27

7.8. SFC orchestration in large simulated network

To better explain packet steering (routing), we compare it to two use
cases: 1. Data Center deployments, 2. Research networks. We mainly
focus on two data center architectures: a leaf-spine and a fat-tree
(referred to as a Clos topology here). We evaluate the convergence
time for the routing algorithm, end-to-end overhead for new path setup
and the control operation overhead due to the flow table installation
across the switches in the data plane. We used Mininet (Lantz et al.,
2010) to simulate large network topologies. We emulate a typical 4-pod
Fat-tree network topology (Fig. 39), the elements in the topology are
termed hierarchically as: core, aggregation and edge switches. In a

Fat-tree topology, all core switches connect to all pods. In our network,
we set up 16 servers, four pods (each with four switches), and four core
switches. Thus, there is a total of 20 switches and 16 end hosts (for larger
clusters, the number of switches will be smaller than the number of
hosts).

We built and compared NFV implementation under following three
platforms:

1) Quagga’s (Quagga Routing Suite, 2019) OSPF routing protocol suite
with virtual Linux switch(es)

2) Floodlight (Big Switch Networks, 2016) as a conventional SDN stack
with traditional stateless OpenvSwitch dataplane

3) OpenPATH SDN stack with controller and vSwitch nodes with
modified OVS replacing the Pods. The pods act as ‘vSwitch’
(consolidating aggregate and edge switches), host the NFV applica-
tions and service function chains. The nodes (equivalent to pods in
OSPF setup) have capabilities for light-weight applications and deep-
packet inspection logic. ii) high-speed control channel with the
controller. iii) sufficient memory (TCAM) for maintaining OpenFlow
group tables and stateful data plane pipeline. iv) backup/fail-safe for
controller failures. The Controller offloads these Core switches
certain functions and delegates flow table management and routing.

7.8.1. network convergence time for topology construction
We evaluate the scalability of the routing protocols with respect to

network topology and size. The convergence principle is different for
traditional OSPF routing protocol and in SDN flow establishment. For

Fig. 37. NFV platform in OpenPATH.

Fig. 38. (a) Network Load on controller, (b) Flow Installation Scaling, (c) Southbound Interface Optimization.

Fig. 39. Testbed network Architecture with Fat Tree topology (Clos).

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

28

the Quagga’s distributed OSPF configuration-the time for all hosts in the
network to receive packets from all other hosts (i.e.,” routing tables in all
the switches in all paths are determined and populated”) in the network.
For Floodlight SDN, as part of the OpenFlow principle, the initial to-
pology across all the switches is discovered by the controller through
LLDP protocol. The convergence time is measured as the time taken by
the controller to install flow tables for all the devices in the network
(including the switches). In OpenPATH which has stateful data plane,
through the out-of-band control connection with the controller and core
switches, the bi-directional flow rules are delegated to the vSwitch
nodes. So, the convergence is considered complete when the first packet
(new flow) is received by the destination host. Fig. 40 shows that for the
network topology (K = 4/8/16), the convergence in OpenPATH is faster
than OSPF/LLDP- Floodlight. For OpenPATH, the main overhead for
convergence is for establishing the OpenFlow out-of-band secure
connection between the control plane and data plane switches and
delegating the group of flow-tables to the switches, all of these incurs
lesser overhead. For Quagga’s-OSPF & Floodlight-SDN, the time for
convergence increases with the network size, as more routing protocol
messages are shared between switches and controllers (“e.g., LSAs/DBs
in OSPF and Floodlight LLDP”). Also, the topology detection mechanism
is a heavy weight protocol and has high demands from SDN controllers,
which makes this a bottleneck for the network startup, when compared
to the OpenPATH which is built on the same SDN principle but with the
stateful notion.

7.8.2. End-to-end routing delay for SDN
In this experiment, we tested with the only two platforms (Floodlight

and OpenPATH) that use the SDN OpenFlow paradigm. We used
different traffic models in data centers to evaluate the Round-Trip-Time
(RTT) performance: Ping (“One-to-One, One-to-All, and All-to-All”).
Fig. 41 shows that in the three separate traffic modes, the delay for
OpenPATH is below that of Quagga’s Floodlight SDN. The rationale is
that the SFC algorithm for OpenPATH SFC forwarding works better than
the Floodlight SDN Dijkstra’s Spanning Tree algorithm. The routing
paths/forwarding decision are determined on switches locally and with
no intervention by the controller.

7.8.3. Control message overhead
During the execution of all the above experiments, we observed the

control messages that are exchanged out-of-band on the secure channels
between the controller and switches, switches down the tier all the way
to the leaf nodes. In OSPF specification, “Message type:xx” and in
OpenFlow SDN standards – “Message type: Hello/Packet-In/Packet-Out,
Proto Type: LLDP” are some examples. We collected the packet dump on
the control connection for a specific sampling period and gathered
insight from the packets.

The key findings from the experiments in this section:

• OSPF converges in 50 s and Floodlight SDN takes 10 s. Once the
network is converged, both Floodlight and OSPF will be steady and
quiet. During the whole operation (including convergence) there is a
modest increase in the number of maintenance/control messages,
but Floodlight shows big spike.

• The frequency of “Hello” messages in OSPF- 10 s, Floodlight’s LLDP-
15 s, OpenPATH -every 1 s. The majority of OpenPATH’s control
communication are “Hello” messages, which is more than others. In
OpenPATH, “Hello” traffic is exchanged solely between the switches
and is not transmitted to the controller, resulting in no additional
burden on the controller. So, switches and controllers’ CPU and
network resources are thus lowered.

• From a control message overhead viewpoint, OpenPATH generates
consistent traffic and seldom encounters bursty traffic. Due to the
increased usage of “Hello”, OpenPATH is able to detect network to-
pology changes and errors more quickly.

7.9. Application-aware SDNFV architecture

In this experiment, we discuss the benefits of the Flow Analysis
function implemented in the SDNFV stack, for monitoring and dynamic
applications. The southbound protocols such as OpenFlow and sFlow are
standard network monitoring and management wire protocols that are
supported across all vendor devices. The flow analyzer engine classifies
and tags the flows for priority queuing, with minimal impact on
throughput for large flows, while greatly improving latency for small
flows. The NF classifies the flows based on their phase change, burst
intervals, packet sizes, and dynamically adjusts paths through Change-
Path message.

Flow-based QoS Engine: This Engine monitors the live flows to
determine their traffic behavior. It divides traffic flows into different
buckets by measuring the size, rate, and interval in packets arrivals. A
Traffic shaping/slicing mechanism will classify elephant flows and
latency-sensitive Mice flows traffic. After the detection, the SFC flow-
tables output “action” is reconfigured to provide a faster-processing
path for Ant/Mice and higher bandwidth for elephant flows. We used
Pktgen-DPDK to emulate different flows and plotted the flows recorded
in Fig. 42. By rapid classification of traffic and detection of anomalies in
the network, the dynamic flow-analyzer engine installs an action to
optimize the latencies for Ants/Mice flows, as shown in Fig. 42(a). At the
same time, the bandwidth for the Elephant Flows is increased due to
lesser traffic contention as shown in Fig. 42(b).

Dynamic DDoS Detector: We evaluated the effectiveness of the
OpenPATH flow-analyzer and dynamic NF insertion for SFC, in an
emulated network that is under mixed attacks. Multiple traffic generator
applications are run from within the network and through the gateway,
flooding the network with mixed protocol attacks targeting the servers
and just filling the pipe. The Smart Monitoring mechanisms that are
built natively in the OpenPATH dataplane will find anomalies and Fig. 40. Topology construction time.

Fig. 41. Flow establishment time.

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

29

malicious traffic patterns in the flows and will raise alarm events to the
NF manager. The IPS and Defensive firewall appliances are installed
with policy filters and dynamic policies/thresholds for reacting to
network attacks at run-time. We also run traffic from normal benign
clients to measure the impact of malware attacks on the network and
how OpenPATH responds to the incidents. Fig. 43 plots the network
throughput for the traffic. The attack begins around 10 s into the
experiment, and we can see that the OpenPATH detects and responds to
the attack in 35 s and the normal service is restored. While we observe
small differences in reaction times to different types of attacks (e.g.,
TCP, UDP, DDoS, etc.), the overall recovery time is still reasonably short.

Dynamic SFC Expansion: In the following test case we demonstrate
how OpenPATH makes modifications to the service-graph at run-time to
respond to the situation. The dataplane defines packet sequence-based
flows but also has historical data for correlating, drawing insight, and
finding anomalous patterns in the network traffic. We configured an
NFV chain for an Edge Protection/Firewall system (Fig. 12) in which
there is a Volumetric DoS detection IDS, filters packets based on the
count of packets(threshold) carrying similar IP segment. (Indicating the
origin of a DoS attack). The VNF alerts NF-Manager to ADD new VNF in
the chain when packet drops increase over the threshold. Consequently,
the new DDoS Sandbox VNF is added in the chain, which re-routes/
detours the packets from the DDoS VNF after breaching the threshold
to the Sandbox for further scrubbing. The Sandbox VNF inspects the
packets for attacks and decides to mark benign/forward or malign/drop
the packets. This experiment demonstrates the efficiency and autono-
mous operation of the NFV system in the OpenPATH dataplane, saving
all the complexity and overhead on the control plane. Fig. 44 plots the
traffic for a certain period in the network. We generate benign traffic
@10 Gbps. At time#10s, we begin the attack (mixed volumetric traffic
with the same IP-Prefix) @1 Gbps and gradually ramped up to heavily

hit the network. The DDoS Detector NF monitors the flow patterns in the
packets passing through the chain and records the suspicious flows.
Using the simple threshold-based IDS, when the traffic reaches (4.8
Gbps), the IDS raises an alarm to mark those flows as malicious and
detoured for further scrubbing. The IDS VNF raises the alarm to NF
Manager and NFV-MANO for any change in action for the particular
VNF. The NFV-MANO installs a command to insert a Sandbox VNF in the
SFC to handle the detoured suspicious packets. This VNF was booted in
under 4 s (could be improved by having redundant VNFs in sleep mode
and woken up at run time quickly). It can be observed from Fig. 44 at
time#30s, the outbound traffic rate is restored (Sandbox dropped the
attack packets), even as traffic increases inbound.

7.10. Comparison of SDNFV software switch performance

To test NFV configurations, there are four different scenarios
employed, the “physical to physical (p2p), physical to virtual (p2v),
virtual to virtual (v2v), and loopback. All of the four case studies are
depicted in Fig. 45. We believe the performance indicators and scenarios
outlined above and these four use cases are crucial for NFV. When in-
tegrated with SDN/NFV, an in-depth understanding of the performance
characteristics of any network virtualization solution is possible. The
latest software-based NFV platforms use “kernel bypass” and zero-copy
I/O (“NETMAP, DPDK”). The state-of-the-art software NFV platforms
utilizing software switches, that implements kernel bypass and high-
speed I/O mechanism on DPDK, NETMAP. BESS and OvS-DPDK aim to
provide the benefits of SDN (i.e., separation of data and control planes)
with the flexibility of a software solution and highly optimized data
paths. We have chosen to do a comparison study of software switch

Fig. 42. Performance of Flow Analyzer (a) Actual plot of flows (b) Plot with Flow-based bandwidth shaping.

Fig. 43. Dynamic DoS detection.

Fig. 44. Dynamic SFC expansion.

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

30

based NFV platforms - OvS-DPDK (Open, 2019), FastClick (Barbette
et al., 2015), BESS (Han et al., 2015b) and VPP (VPP FD.io, 2016) with
our solution OpenPATH.

The aim of this experiment is to demonstrate and discuss the
throughput sustained by software switches in four test scenarios
involving simulated bi-directional traffic and packet sizes of 64, 256,
and 1024 Bytes (Fig. 46).

(a) p2p: BESS, FastClick, and VPP all surpass 5 Gbps for 64B packets.
BESS exceeds 7.5 Gbps when performing very basic tasks such as
data collection. FastClick extracts and updates packet header
fields, while VPP performs a variety of checks. Due to the over-
head imposed by its match/action pipeline, OvS-DPDK achieves a
lower cost. Due to the fact that the synthetic traffic is composed of
identical packets that correspond to a single flow, OvS-flow
DPDK’s cache is ineffective.

(b) v2p: BESS and FastClick are able to maintain line rate for 256B
and 1024B packets, but the effect of vhost-user is noticeable on the
other switches. We observe a small degradation in throughput for
VPP, as it incurs a performance penalty when receiving packets
from vhost-user ports.

(c) v2v: In contrast to other cases, v2v is restricted only by memory
bandwidth, illustrating the upper limit of inter-VM

communication via software switches and packet copying via
virtio rings for the switches.

(d) Loopback: OpenPATH achieves the highest throughput rate for
all packet-sizes, even as the NF-chain length increases (default is
1-VNF) due to distributed optimized packet steering and zero-
copy shared memory for I/O processing. BESS gives high rate
for the single-VNF chain. However, as the service chain lengthens
due to the addition of VMs, BESS must conduct an increasing
number of packet copies and packet detouring/trips through the
central switch. FastClick and VPP operate at a slower rate due to
the bottlenecks and packet-copying in the “vhost-user”.

In all the scenarios, the performance for the compared NFV platforms
is affected mainly due to the non-optimal I/O, packets copying, across
the stack and buffers, multiple contexts switching within the node and as
the number of NFs increase the packet touring back and forth between
the VMs through the switch. Even for the OVS-DPDK switch, it incurs
detouring and concurrent processing overhead (two streams) which
lowers the throughput. In OpenPATH, with the NFs already embedded in
the single node, we save all the detouring overheads and the other
resource optimization techniques such as zero-copy have played key role
in achieving maximum practical sustained peak throughput in all sce-
narios. FastClick and VPP work well in all cases due to VirtIO mecha-
nism. BESS performs well in all cases except in multi-VNFs loopback

Fig. 45. Test scenarios - physical-to-physical (p2p), physical-to-virtual (p2v), virtual-to-virtual (v2v), loopback.

Fig. 46. Throughput in (a) p2p, (b) p2v, (c) v2v and (d) loopback scenarios.

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

31

configuration. We have summarized the salient aspects of some of the
popular software switches in Table 8.

7.11. Comparison of server-based NFV platform performance

We compare OpenPATH’s end-to-end performance against custom-
ized, high-performance NFV platforms OpenNetVM, NFVNice and
Metron. We explore how OpenPATH’s performs when running an NF
chain of various lengths and varying function complexity.

About the compared NFV Platforms:

• NFVNice (Kulkarni et al., 2017) – A VM based NFV platform that
supports isolation with packet copying technique to the master
module that acts as the message bus for transmitting packets between
processes. has similar performance (95%) with a single-NF chain, but
as chain length increases its throughput decreases despite its extra
CPU cores for transmitting packets.

• Metron (Katsikas et al., 2018) - high performance NFV platform that
compiles NFs into a single process and runs-to-completion each chain
as a thread. It implements a runtime and scaling algorithm. Each
Metron runtime is a single thread process that runs an NF chain.
Packets are transmitted between NFs with no isolation mechanisms.

• OpenNetVM (Zhang et al., 2016a)- employs fast and zero-copy I/O
through shared-memory between NFs. VNFs are run as independent
processes on VMs. It runs the central software switch (bridge) on a
dedicated CPU core for packet forwarding.

7.11.1. Throughput Effect with varying SFC length
We focus on a per-packet processing throughput for 64 B packets

with a single server for OpenPATH and server-based NFs. For simplicity,
we use a test NF (a firewall IDS module with 200 rules) and run chains
with a sequence of the same NF. Fig. 47 shows the throughput of

different NFV approaches for different length chains. OpenPATH ach-
ieves more than 95% of the peak rate across all packet sizes, for NFV
processing. The key findings are:

• OpenPATH throughput remains steady regardless of the chain
length.

• In legacy NFV platforms (NFs on VMs) the processing rate and
throughput decrease as we increase the NFs in the chain. The bad
performance is due to the non-optimal I/O, packets copying, across
the stack and buffers, multiple contexts switching within the node
and as the number of NFs increase the packet touring back and forth
between the VMs through the switch. The legacy OVS switch in-
volves detouring and concurrent processing overhead (two streams)
which lowers the throughput.

• In OpenPATH switch, with the NFs already embedded in the single
node, we save all the detouring overheads and the other resource
optimization techniques such as zero-copy have played key role in
achieving maximum practical sustained peak throughput even with
scaling of the chain.

• OpenPATH outperforms all other server-based NFV platforms with
line-rate throughput for all types of traffic.

7.11.2. Latency Effect with varying NF complexity
We compared the processing overhead with 2 instances of the same

NFs configured in a chain. The testbed uses 7 VNFs in NFV nodes. Each
test case runs traffic through 2 VNFs instances and we expect the
overhead to vary across the test cases, depending on the complexity of
the application logic. The key findings (See Fig. 48) are:

• Latency benefits due to NF parallelism in OpenPATH increases with
NF complexity. For the least complex NF (300 cycles) to most com-
plex NF (3000 cycles)

Table 8
Software switches use cases summary.

Best at Remarks

OvS-DPDK (Open,
2019)

Stateless SDN deployments Supports OpenFlow protocol and P4, works with third-party SDN controllers and
newly introduced protocols

BESS (Han et al.,
2015b)

Forwarding between physical NICs and one or multiple paralleled
VMs

Natively provides scheduling capabilities, Incompatible with newer versions of QEMU
and scalability issues with VMs

FastClick (Barbette
et al., 2015)

VNF chaining, linear and parallel NFV environments with reasonable
trade-offs.

Supports live migration, high latency at low workload, Modular high-speed router
design

VPP (VPP FD.io,
2016)

VNF chaining, linear and parallel NFV environments with lowest
latencies

Supports live migration, For Fully featured software network function (e.g., switch,
router, or security Appliance)

OpenPATH Intent based VNF Chaining, high-performance linear and parallel
NFV environments, line rate NF (middlebox) application and SFC
processing.

Supports OpenFlow protocol and P4, works with third-party SDN controllers and
newly introduced protocols, preferable when some state is required (e.g., for a
firewall). All programmable SDN/NFV infrastructure.

Fig. 47. Throughput vs chain length. Fig. 48. Latency vs. NF complexity.

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

32

• The optimization level increases with more complex network func-
tions and processing. e.g., the Forwarder NF has simplified instruc-
tion cycles and overhead is less, whereas IDS/VPN NFs consist of
heavier processing, instructions.

• OpenPATH’s optimization effect is profound due to NF parallelism
and zero-copy/minimal packet steering overhead in the pipeline and
brings about 45% latency reduction compared with other platforms.

7.12. Result discussion

Network functions (NFs), or middleboxes, are widely common in
large-scale networks. These appliances are usually very expensive, hard
to manage, to scale, and to provision. They usually perform complex
packet processing tasks, and thus, play a major role in the overall
network performance. SDN and NFV work together to build a highly
scalable network with a lower operational cost for data centers. The
current way of connecting network functions to an existing network,
however, introduces new problems such as duplicating operations be-
tween various network functions, overlapping packet data sharing in
packet processing, and unnecessary network traffic with co-existing
service chains. An NFV-enabled SDN architecture is proposed here to
solve these challenges by merging duplicated processes, the fast packet
I/O, parallel processing, and avoiding traffic detours in the software-
defined networks. Table 9 presents the evaluation strategy we fol-
lowed to test various design aspects and key findings from our experi-
ments under micro benchmarks, comparative test cases, and application
scenarios, on SDN/NFV testbed infrastructure.

8. Future work

The modern virtualized/SDNFV data centers demand an agile/pro-
grammable switching platform that can encompass the complete
distributed network for high-speed packet processing and routing in the

complex network function/service chains. Network functions and mid-
dleboxes are an active area of research. The inherent limitations of
current packet processing technologies, and the growth in bandwidth
requirements, require a rethinking of network functions in all aspects,
from traffic engineering aspects such as placement and steering, through
operational aspects as scaling, provisioning, and security, to functional
aspects such as programming abstractions, runtime I/O packet pro-
cessing frameworks, and improved algorithms for specific tasks.
Addressing some of these issues, OpenPATH enables NFV with the SDN
architecture. In this research direction, we are pursuing a few open is-
sues and a sketch of future work are listed here.

• Enriching the scope of the policy definition templates for more
complicated service graphs in SFC, also tools to inspect and verify
policies. Expanding the OpenPATH to container platforms as they
facilitate portability, elastic scaling, and fast boot-up of instances.
Applying Graph partitioning techniques and sub-graphs, map/reduce
computing model. To evaluate the NF dependencies and conflicts
when we transform into sub-graphs for parallelism, we must develop
an automated formal method to define diverse functionalities and
complex policies (Sekar et al., 2012).

• The heterogeneity of network functions is a motivating factor for
hardware acceleration and this aspect is not dealt in this article. We
will design outsourcing of NFs to hardware GPU and NIC accelerators
by providing an OpenCL-like interface for COTS hardware (e.g.,
GPU, Intel Phi, Netronome AgilioTM CX, NetFPGA, Intel FlexPipe,
Barefoot Tofino). Some work is in progress to implement the archi-
tecture presented in a proof-of-concept hardware prototype using an
FPGA platform. The hardware prototype is being designed using as
target development board NetFPGA SUME (Zilberman et al., 2014),
an x8 Gen3 PCIe adapter card incorporating a Xilinx Virtex-7 690T
FPGA.

Table 9
Summary of the key findings.

ASPECTS EVALUATED DISCUSSION

NF placement The processing rate or throughput is higher in OpenPATH compared to the unoptimized “back-and-forth” policy. The output is
almost the same as the single-node case (as the fabric connection is not crossed multiple times). Similarly, the production of easy
forwarding tests is typically flat at around 9.4 Mb/s, suggesting that adding NF Manager has limited effects on the efficiency of
medium to heavy NFs.

NF Scalability OpenPATH consolidates NFs in a service graph inside one server to optimize resource overhead. Load balancing with two NF
nodes is identical to load balancing with a single node. When adding replicas, we use a different node. The throughput increases
linearly up to the rate of the input line (10 Gb/s). With a number of instances ranging from one to ten, throughput is just
marginally slower than with a single server, despite the addition of the chaining server, fabric connections, and a separate NF
placement.

Flow Table Management The flow entries can have compact representation called synapse of packet length and inter-time packet arrival distributions
which is small yet provides enough information to perform accurate application-specific traffic classification. This provides a
significant reduction in the size of the flow entries for OpenFlow communication, reducing the bandwidth usage, less memory
space for flow tables, which in turn yields a reduction in power dissipation for core switches.

Packet Steering management In OpenPATH, for steering the packets across the VNFs in the chain the NF Manager delegates the packets to NF handlers
attached to them. The packets are accessed by using references to shared memory buffers and alleviates the hot spot in packet
forwarding.

Algorithmic Complexity The smart placement single-node algorithm (See Fig. 7) consumes O(n) operations to select optimal nodes. So, the complexity
can be O (2n + n log n). The multi-node placement (See Fig. 9) O(Ln) operations (length L as a constant) to traverse the graph.
The worst-case complexity takes O(Kn2). Thus, we can infer the approach has reasonable scalability even for large complex
service graphs/SFC.

Resource overhead (Flow table updates, packet
copying overhead)

To minimize copying overhead, OpenPATH makes use of DPDK’s zero-copy interfaces. For a complex NF, it can incur an average
of 100 micro secs of latency and a negligible throughput penalty while still achieving a 35% latency reduction over sequential
composition. The latency overhead percentage of copying and merging will be further reduced with longer chains and more
complex NFs (e.g., VPN). This framework provides throughput improvements such as 67%, and reduces latency by 35%, in the
scenarios tested in NF parallel configurations (copying and no-copy, degrees and packet sizes.

Modularity OpenPATH decomposes NFs into independent building blocks. This characteristic is exploited for both monolithic and modular
SFC, for block-level parallelism, to further reduce latency.

Processing Rate In the Conventional method, the throughput is bounded by the slowest NF in the pipeline. With OpenPATH, the SDNFV
orchestrator merges the NFs into subgraphs and executes in parallel. The overall improvement in throughput is 2x and the
latency is 50%, as packets are processed parallelly by one of the vSwitch nodes.

State Management As the NF state is distributed across multiple nodes, the SDN controller initializes the tables across the nodes and periodically
synchronizes the state tables. This problem and the management overhead are not unique to OpenPATH, and we solve this issue
efficiently through “Statefulness” in the data plane.

P. Krishnan et al.

Journal of Network and Computer Applications 193 (2021) 103196

33

• The NFV deployment solution has to ensure security (i.e., authen-
ticity, integrity of VNFs) and reliability (i.e., order of services) in the
SDN infrastructures. Despite the advantages of NFV/SDN for SFC
implementation, major protection and reliability problems exist such
as i) Difference among high-level SFC policies and their data plane
compliance. ii)ensuring that the authentic VNFs are assembled in the
proper and optimal order when the actual traffic flows through the
SFC.

• The Consistency issues in SFC, analysis of attack models to deviate
the SFC path (e.g., flow redirection) are still a major concern and
relatively neglected by the research community. The issue is how do
we ensure that packet flows linked to a particular SFC are steered and
traverse through appropriate and legitimate VNFs in relation to the
predefined policies.

• We are examining the protection and explain how security signature
aggregation techniques can preserves the security, reliability and
resistance to the attacks defined in the common threat models for the
SDN/NFV enabled data centers.

• We have to investigate light-weight attestation mechanisms to verify
the behavior of packet traversals across the SFC chain and resistance
to attacks like flow diversion, adversarial rerouting and un-
authorized path de-touring.

While we did our best to make the study as comprehensive and
thorough as possible, we expect to discover only a small part of the
iceberg. Even the findings presented here should inspire further inves-
tigation of OpenFlow and SDN assumptions for NFV.

9. Summary and conclusions

SDN/NFV technologies are converging, evolving, maturing and new
players are entering the market and we have proposed a flexible and
high-performance SDN/NFV switching framework. OpenPATH aims at
completely leveraging virtualizing-based network features in enhancing
network capabilities through an integrated hierarchical control and
stateful flow management system to resolve the constraints of a stateless
dataplane that are over-simplified in the current SDNs. We’ve main-
tained the spirit of the SDN paradigm’s simplified-programmable model
by keeping the concept flexible and extensible. The proposed architec-
ture can be used to implement NFV/middlebox functions as well as
stateful applications. Our findings demonstrate that OpenPATH pro-
vides superior performance over other switching architectures in NFV
services infrastructure. More significantly, OpenPATH is developed to
be conformant to the OpenFlow standards and can be integrated as a
datapath (without recompile) in the existing SDN-enabled environment.
OpenPATH provides an effective intuitive and expressive interface to the
operators for semantic representation of the policies, priorities in SFC,
sequential or parallel NFV composition intent. Our experiment results
show that OpenPATH based NFV deployments can reduce latency by
about 55% and increase throughput by up to 70%. With the stateful
dataplane design, OpenPATH infrastructure provides a robust SDN
switching stack, without overloading the control channel. The added
intelligence in dataplane ensues far more dynamism and accuracy when
comparing to the legacy approaches in SDN which employ proactive
rules and static flow management. Through this work, we have estab-
lished the need for new research directions in software switching and
discussed the design strategies associated with hosting the NFV services
in the next generation converged SDNFV architectures.

Authors credit statement

The following is the statement of contributions for this research
paper: Prabhakar Krishnan devised the project, the main conceptual
ideas, Methodology, Software and worked out almost all of the technical
details, design, implementation of the research and performed the ex-
periments. Subhasri Duttagupta helped supervise the project critical

feedback and helped shape the research, analysis and contributed to the
interpretation of the results. Prabhakar Krishnan took the lead in
writing the manuscript in consultation with Subhasri Duttagupta.
Rajkumar Buyya provided critical feedback and helped shape the
research, analysis and manuscript. All authors discussed the results and
contributed to the final manuscript.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

Alim, Abdul, Clegg, Richard G., Luo, Mai, Rupprecht, Lukas, Seck-ler, Eric, Costa, Paolo,
Peter, Pietzuch, Wolf, Alexander L., Sultana, Nik, Crowcroft, Jon, et al., 2016. Flick:
developing and running application-specific network services. In: 2016 USENIX
Annual Technical Conference (USENIX ATC 16).

Anwer, Bilal, Benson, Theophilus, Feamster, Nick, Levin, Dave, Rexford, Jennifer, 2013.
A slick control plane for network middleboxes. In: Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking, HotSDN ’13.
ACM, New York, NY, USA, pp. 147–148.

Arashloo, Mina Tahmasbi, Koral, Yaron, Greenberg, Michael, Rexford, Jennifer,
Walker, David, 2016. SNAP: Stateful Network-wide Abstractions for Packet
Processing. SIGCOMM.

Barbette, Tom, Soldani, Cyril, Mathy, Laurent, 2015. Fast userspace packet processing.
In: 2015 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS). IEEE, pp. 5–16.

Bianchi, G., Bonola, M., Capone, A., Cascone, C., 2014. OpenState: programming
platform-independent stateful OpenFlow applications inside the switch. Comput.
Commun. Rev. 44 (2), 44–51.

Bianchi, G., Bonola, M., Pontarelli, S., Sanvito, D., Capone, A., Cascone, C., 2016. Open
Packet Processor: a Programmable Architecture for Wire Speed Platform-
independent Stateful In-Network Processing. arXiv preprint arXiv:1605.01977.

Bifulco, R., Rétvári, G., 2018. A survey on the programmable data plane: abstractions,
architectures, and open problems. In: 2018 IEEE 19th International Conference on
High Performance Switching and Routing (HPSR), Bucharest, Romania, pp. 1–7.

Big Switch Networks, 2016. Project Floodlight - Floodlight OpenFlow Controller. http:
//www.projectfloodlight.org/floodlight/. (Accessed 17 September 2016).

Bosshart, P., et al., 2014. P4: programming protocol-independent packet pro- cessors.
Comput. Commun. Rev. 44 (3), 87–95.

Bray, T., 2017. The Java Script Object Notation(JSON) Data Interchange Format
(RFC8259). https://tools.ietf.org/html/rfc8259.

Bremler-Barr, A., Harchol, Y., Hay, D., 2016. OpenBox: A software- defined framework
for developing, deploying, and managing net- work functions. In: Proc. SIGCOMM.

Cai, J., Huang, Z., Luo, J., Liu, Y., Zhao, H., Liao, L., 2020. Composing and deploying
parallelized service function chains. J. Netw. Comput. Appl. 163, 102637.

Csikor, L., Szalay, M., Sonkoly, B., Toka, L., 2015. NFPA: network function performance
analyzer. In: IEEE NFV-SDN. Demo Track, pp. 17–19.

Dong, Y., Yang, X., Li, X., Li, J., Tian, K., Guan, H., 2010. High performance network
virtualization with SR-IOV. In: HPCA - 16 2010 the Sixteenth International
Symposium on High-Performance Computer Architecture, pp. 1–10.

European Telecommunications Standards Institute(ETSI), 2014. Network Functions
Virtualisation (Nfv). White Paper.

Fang, Vivian, Lvai, T., Han, Sangjin, Ratnasamy, Sylvia, Raghavan, Barath,
Sherry, Justine, 2018. Evaluating software switches: hard or hopeless?. In: EECS
Department, University of California, Berkeley Tech. Rep. UCB/EECS-2018-136
(2018).

Fayaz, S.K., Tobioka, Y., Sekar, V., Bailey, M., 2015. Bohatei: flexible and elastic ddos
defense. In: 24th USENIX Security Symposium (USENIX Security 15). USENIX
Association, Washington, D.C., pp. 817–832

Fayazbakhsh, Seyed Kaveh, Sekar, Vyas, Yu, Minlan, Mogul, Jeffrey C., 2013. Flowtags:
Enforcing network-wide policies in the presence of dynamic middlebox actions. In:
Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, HotSDN ’13. ACM, pp. 19–24.

Feamster, Nick, Rexford, Jennifer, Zegura, Ellen, 2013. The road to sdn. Queue 11 (12),
20:20–20:40.

Fei, Xincai, Liu, Fangming, Zhang, Qixia, Jin, Hai, Hu, Hongxin, 2020. Paving the Way
for NFV acceleration: a taxonomy, survey and future directions. ACM Comput. Surv.
53 (4), 42. https://doi.org/10.1145/3397022. Article 73 (August 2020).

Gallenmüller, S., Emmerich, P., Wohlfart, F., Raumer, D., Carle, G., 2015. Comparison of
frameworks for high-performance packet IO. In: Proc. ACM/IEEE Symp. Archit.
Netw. Commun. Syst. (ANCS), Oakland, CA, USA, pp. 29–38.

Gember, A., Krishnamurthy, A., John, S.S., Grandl, R., Gao, X., Anand, A., Benson, T.,
Akella, A., Sekar, V., 2013. Stratos: A network-aware orches- tration layer for
middleboxes in the cloud. CoRR abs/1305, 209.

Gember-Jacobson, Aaron, Viswanathan, Raajay, Prakash, Chaithan, Grandl, Robert,
Khalid, Junaid, Das, Sourav, Akella, Aditya, 2014. OpenNF: enabling innovation in
network function control. In: ACM Conference on Special Interest Group on Data
Communication (SIGCOMM), Chicago, IL.

P. Krishnan et al.

http://refhub.elsevier.com/S1084-8045(21)00202-2/sref1
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref1
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref1
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref1
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref2
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref2
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref2
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref2
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref3
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref3
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref3
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref4
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref4
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref4
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref5
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref5
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref5
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref6
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref6
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref6
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref7
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref7
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref7
http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref9
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref9
https://tools.ietf.org/html/rfc8259
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref11
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref11
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref12
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref12
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref13
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref13
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref14
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref14
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref14
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref15
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref15
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref16
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref16
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref16
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref16
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref17
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref17
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref17
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref18
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref18
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref18
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref18
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref19
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref19
https://doi.org/10.1145/3397022
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref21
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref21
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref21
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref22
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref22
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref22
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref23
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref23
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref23
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref23

Journal of Network and Computer Applications 193 (2021) 103196

34

Han, S., Jang, K., Park, K., Moon, S., 2010. Packetshader: A gpu-accelerated software
router. In: Proceedings of the ACM SIGCOMM 2010 Conference, SIGCOMM ’10.
ACM, New York, NY, USA, pp. 195–206.

Han, B., Gopalakrishnan, V., Ji, L., Lee, S., 2015a. Network function virtualization:
challenges and opportunities for innovations. IEEE Commun. Mag. 53 (2), 90–97.
https://doi.org/10.1109/MCOM.2015.7045396.

Han, Sangjin, Jang, Keon, Panda, Aurojit, Palkar, Shoumik, Han, Dongsu,
Ratnasamy, Sylvia, 2015b. BESS SoftNIC: A Software NIC to Augment Hardware.
Dept. EECS, Univ. California, Berkeley, Berkeley, CA, USA. Tech. Rep. UCB/EECS-
2015-155 (2015).

H wang, Jinho, Ramakrishnan, K.K., Wood, Timothy, 2014. Netvm:High performance
and flexible networking using virtualization on commodity platforms. In:
Proceedings of the 11th USENIX Conference on Net- Worked Systems Design and
Implementation, NSDI’14. USENIX Association, pp. 445–458.

Han, W., et al., 2016. State-aware network access management for software- defined
networks. In: Proc. 21st ACM Symp. Access Control Models Technol. SACMAT,
Shanghai, China, pp. 1–11.

Honda, Michio, Huici, Felipe, Lettieri, Giuseppe, Rizzo, Luigi, 2015. mSwitch: a highly-
scalable, modular software switch. In: Proceedings of the 1st ACM SIGCOMM
Symposium on Software Defined Networking Research. ACM, 1.

Indigo. Indigo - open source OpenFlow switches [Online]. Available: http://www.pro
jectfloodlight.org/indigo/.

Iperf. https://iperf.fr/.
Jackson, E.J., Walls, M., Panda, A., Pettit, J., Pfaff, B., Rajahalme, J., Koponen, T.,

Shenker, S., 2016. SoftFlow: a middlebox architecture for Open vSwitch. In: Proc.
USENIX ATC.

Joseph, D.A., Tavakoli, A., Stoica, I., 2008. A policy-aware switching layer for data
centers. In: Proceedings of the ACM SIGCOMM 2008 Conference on Data
Communication, ser. SIGCOMM ’08. ACM, New York, NY, USA, pp. 51–62.

Kaljic, Enio, Maric, Almir, Begovic, Pamela, Hadzialic, Mesud, 2019. A survey on data
plane flexibility and programmability in software-defined networking. IEEE Access
7, 47804–47840. https://doi.org/10.1109/ACCESS.2019.2910140.

Katsikas, Georgios P., Barbette, Tom, Kostíc, Dejan, Steinert, Rebecca,
Maguire Jr., Gerald Q., 2018. Metron: NFV service chains at the true speed of the
underlying hardware. In: 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18). USENIX Association, pp. 171–186.

Kim, H., Feamster, N., 2013. Improving network management with software defined
networking. IEEE Commun. Mag. 51 (2), 114–119.

Kim, J., Huh, S., Jang, K., Park, K., Moon, S., 2012. The power of batching in the click
modular router. In: Proceedings of the Asia-Pacific Workshop on Systems, APSYS
’12. ACM, New York, NY, USA, pp. 14:1–14:6.

Kohler, Eddie, Morris, Robert, Chen, Benjie, Jannotti, John, Kaashoek, M Frans, 2000.
The Click modular router. ACM Trans. Comput. Syst. 18 (3), 263–297, 2000.

Krishnan, P., Achuthan, K., 2019. Managing network functions in stateful application
aware SDN, security in computing and communications. In: SSCC 2018.
Communications in Computer and Information Science, vol. 969. Springer,
Singapore. https://doi.org/10.1007/978-981-13-5826-5_7.

Krishnan, P., Duttagupta, S., Achuthan, K., 2019a. VARMAN: multi-plane security
framework for software defined networks. Comput. Commun. 148, 215–239.
https://doi.org/10.1016/j.comcom.2019.09.014.

Krishnan, P., Duttagupta, S., Achuthan, K., 2019b. SDNFV based threat monitoring and
security framework for multi-access edge computing infrastructure. Mobile Network.
Appl. 24, 1896–1923. https://doi.org/10.1007/s11036-019-01389-2.

Kulkarni, S.G., Zhang, W., Hwang, J., Rajagopalan, S., Ramakrishnan, K., Wood, T.,
Arumaithurai, M., Fu, X., 2017. Nfvnice: Dynamic backpressure and scheduling for
nfv service chains. In: Proceedings of the Conference of the ACM Special Interest
Group on Data Communication. ACM, pp. 71–84.

Lantz, B., Heller, B., McKeown, N., 2010. Mininet:A Network in a Laptop: Rapid
Prototyping for Software-Defined Networks. In: Proc. ACM Hot Topics, pp. 19:1–19:
6.

Lettieri, G., et al., 2017. A Survey of Fast Packet I/O Technologies for Network Function
Virtualization. ISC Workshops.

Li, Bojie, Tan, Kun, Luo, Layong Larry, Peng, Yanqing, Luo, Renqian, Xu, Ningyi,
Xiong, Yongqiang, Cheng, Peng, 2016. ClickNP: highly flexible and high-
performance network processing with reconfigurable hardware. In: Proceedings of
the 2016 Conference on ACM SIGCOMM 2016 Conference. ACM, pp. 1–14.

Liu, A.X., et al., 2010. TCAM razor: a systematic approach towards minimizing packet
classifiers in TCAMs”. IEEE/ACM Trans. Netw. 18 (2).

Martins, Joao, Ahmed, Mohamed, Raiciu, Costin, Olteanu, Vladimir, Honda, Michio,
Bifulco, Roberto, Huici, Felipe, 2014. Clickos and the art of network function
virtualization. In: 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14). USENIX Association, pp. 459–473.

McKenney, P.E., Slingwine, J.D., 1998. Read-copy-update: using execution history to
solve concurrency problems. In: Parallel and Distributed Computing and Systems,
pp. 509–518.

McKeown, N., et al., 2008. OpenFlow: enabling innovation in campus networks. In: ACM
SIGCOMM CCR 38.2.

Medved, J., Varga, R., Tkacik, A., Gray, K., 2014. Opendaylight: towards a model-driven
sdn controller architecture. In: A World of Wireless, Mobile and Multimedia
Networks (WoWMoM), 2014 IEEE 15th Inter-national Symposium on. IEEE, pp. 1–6.

Mekky, H., Hao, F., Mukherjee, S., Lakshman, T., Zhang, Z.L., 2017. Network function
virtualization enablement within sdn data plane. In: IEEE INFOCOM, pp. 1–9.

Mekky, Hesham, Fang, Hao, Mukherjee, Sarit, Zhang, Zhi-Li, Lakshman, T.V., 2014.
Application-aware data plane processing in sdn. In: Proceedings of the Third
Workshop on Hot Topics in Software Defined Networking, HotSDN ’14, pp. 13–18.
New York, NY, USA.

Molnár, et al., 2016. ESwitch: Dataplane Specialization for High-Performance OpenFlow
Software Switching. ACM SIGCOMM, New York, NY, USA, pp. 539–552. https://doi.
org/10.1145/2934872.2934887.

Moshref, M., Bhargava, A., Gupta, A., Yu, M., Govindan, R., 2014. FAST: flow- level state
transition as a new switch primitive for SDN. In: Proc. 3rd Workshop Hot Topics
Softw. Defined Netw. (HotSDN), Chicago, IL, USA, pp. 61–66.

Nasr, M., Houmansadr, A., Mazumdar, A., 2017. Compressive traffic analysis: a new
paradigm for scalable traffic analysis. In: Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security, Dallas, TX, USA,
pp. 2053–2069.

Network service chaining problem statement [Online]. Available: https://tools.ietf.
org/html/draft-%20quinn-%20nsc-%20problem-%20statement-%2003.

Network service header [Online]. Available: https://tools.ietf.org/html/draft- quinn- sfc-
nsh- 07.

ntop. PFRING. http://www.ntop.org/products/packet-capture/pf_ring.
ONF Solution Brief, 2014. Openflow-enabled Sdn and Network Fatunctions

Virtualization.
Open vSwitch with DPDK. http://docs.openvswitch.org/en/latest/intro/install/dpdk/,

2019.
OpenWrt Wiki [Online].Available: https://wiki.openwrt.org/start.
Osiński, T., Tarasiuk, H., Chaignon, P., Kossakowski, M., 2020. P4rt-OVS: programming

protocol-independent, runtime extensions for open vSwitch with P4. In: 2020 IFIP
Networking Conference (Networking), pp. 413–421.

Palkar, Shioumik, Chang, Lan, Han, Sangjin, Jang, Keon, Panda, Aurojit,
Ratnasamy, Sylvia, Rizzo, Luigi, Scott, Shenker, 2015. E2: a framework- work for nfv
applications. In: Proceedings of the 25th Symposiumsium on Operating Systems
Principles, SOSP ’15. ACM, pp. 121–136.

Panda, Aurojit, Han, Sangjin, Jang, Keon, Walls, Melvin, Ratnasamy, Sylvia,
Scott, Shenker, 2016. NetBricks: taking the V out of NFV. In: 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16), vol. 16.
USENIX OSDI, pp. 203–216.

Paolino, Michele, Nikolaev, Nikolay, Fanguede, Jeremy, Raho, Daniel, 2015. Snabb
Switch user space virtual switch benchmark and performance optimization for NFV.
In: 2015 IEEE Conference on Network Function Virtualization and Software Defined
Network (NFV-SDN). IEEE, pp. 86–92.

Park, Taejune, et al., 2019. DPX: data-plane eXtensions for SDN security service
instantiation. DIMVA. https://doi.org/10.1007/978-3-030-22038-9_20.

Pfaff, B., et al., 2015. The design and implementation of open vSwitch. In: USENIX NSDI
’15. USENIX Association, USA, pp. 117–130.

Pica8, 2013. Pica8 3920 [Online]. Available: http://www.pica8.org/documents/pica8-d
atasheet-64x10gbe-p3780-p3920.pdf.

Qazi, Z.A., Tu, C.-C., Chiang, L., Miao, R., Sekar, V., Yu, M., 2013. SIMPLE- fying
middlebox policy enforcement using SDN. In: Proc. SIGCOMM.

Quagga Routing Suite. Accessed: Nov. 16, 2019. [Online]. Available: https://www.
nongnu.org/quagga/index.html.

Quinn, P., Elzur, U., Sep. 2016. “Network Service Header,” Internet Engineering Task
Force. Internet-Draft draft-ietf-sfc-nsh-10 work in Progress. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-sfc- nsh-10.

Rizzo, Luigi, 2012. netmap: a novel framework for fast packet I/O. In: USENIX Annual
Technical Conference. USENIX, Berkeley, CA, pp. 101–112.

Rizzo, Luigi, Lettieri, Giuseppe, 2012. Vale, a switched ethernet for virtual machines. In:
Proceedings of the 8th International Conference on Emerging Networking
Experiments and Technologies. ACM, pp. 61–72.

Sekar, Vyas, Egi, Norbert, Ratnasamy, Sylvia, Reiter, Michael K., Shi, Guangyu, 2012.
Design and implementation of a consolidated middlebox architecture. In: NSDI,
pp. 323–336.

Service function chaining general use cases [Online]. Available: https://tools.ietf.org/h
tml/draft- liu- sfc- use- cases- 08.

Service function chaining (sfc) architecture [Online]. Available: https://tools.ietf.org/h
tml/draft- merged- sfc- architecture- 02.

Sherry, J., Ratnasamy, S., 2012. A Survey of Enterprise Midlebox Deploy- Ments.
Technical report, Technical Report No. UCB/EECS-2012-24.

Sonchack, J., Smith, J.M., Aviv, A.J., Keller, E., 2016. Enabling practical software-
defined networking security applications with OFX. In: NDSS.

Sonchack, J., Michel, O., Aviv, A., Keller, E., Smith, J., 2018. Scaling hardware
accelerated network monitoring to concurrent and dynamic queries with *flow. In:
Proceedings of the USENIX Annual Technical Conference, Boston, MA, USA,
pp. 823–835.

Srinivasan, V., Suri, S., Varghese, G., 1999. Packet classification using tuple space search.
In: Proceedings of the Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, SIGCOMM ’99. ACM, New York, NY, USA,
pp. 135–146.

Sun, Chen, Bi, Jun, Zheng, Zhilong, Yu, Heng, Hu, Hongxin, 2017. NFP: enabling
network function parallelism in NFV. In: Proceedings of SIGCOMM ’17, USA.
https://doi.org/10.1145/3098822.3098826.

Tahhan, Maryam, O’Mahony, Billy, Morton, Al, 2017. Benchmarking Virtual Switches in
the Open Platform for NFV (OPNFV). RFC 8204. (Sept. 2017). https://doi.org/
10.17487/RFC8204.

VPP FD.io, 2016. The Fast Data Project. project website.
Wang, M., Cheng, B., Chen, J., 2020. Joint availability- and traffic-aware placement of

parallelized service chain in NFV-enabled data center. In: 2020 IEEE International
Conference on Web Services (ICWS), pp. 216–223. https://doi.org/10.1109/
ICWS49710.2020.00035.

Xie, Sihao, Ma, Junte, Zhao, Jin, 2021. FlexChain: bridging parallelism and placement
for service function chains. IEEE Trans. on Netw. and Serv. Manag 18 (1), 195–208.
https://doi.org/10.1109/TNSM.2020.3047834. March 2021.

P. Krishnan et al.

http://refhub.elsevier.com/S1084-8045(21)00202-2/sref25
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref25
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref25
https://doi.org/10.1109/MCOM.2015.7045396
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref27
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref27
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref27
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref27
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref24
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref24
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref24
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref24
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref28
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref28
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref28
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref29
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref29
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref29
http://www.projectfloodlight.org/indigo/
http://www.projectfloodlight.org/indigo/
https://iperf.fr/
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref32
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref32
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref32
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref33
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref33
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref33
https://doi.org/10.1109/ACCESS.2019.2910140
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref35
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref35
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref35
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref35
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref36
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref36
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref37
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref37
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref37
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref38
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref38
https://doi.org/10.1007/978-981-13-5826-5_7
https://doi.org/10.1016/j.comcom.2019.09.014
https://doi.org/10.1007/s11036-019-01389-2
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref42
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref42
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref42
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref42
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref43
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref43
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref43
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref44
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref44
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref45
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref45
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref45
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref45
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref46
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref46
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref47
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref47
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref47
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref47
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref48
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref48
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref48
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref49
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref49
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref50
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref50
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref50
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref51
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref51
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref52
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref52
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref52
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref52
https://doi.org/10.1145/2934872.2934887
https://doi.org/10.1145/2934872.2934887
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref54
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref54
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref54
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref55
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref55
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref55
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref55
https://tools.ietf.org/html/draft-%20quinn-%20nsc-%20problem-%20statement-%2003
https://tools.ietf.org/html/draft-%20quinn-%20nsc-%20problem-%20statement-%2003
https://tools.ietf.org/html/draft-%20quinn-%20sfc-%20nsh-%2007
https://tools.ietf.org/html/draft-%20quinn-%20sfc-%20nsh-%2007
http://www.ntop.org/products/packet-capture/pf_ring
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref59
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref59
http://docs.openvswitch.org/en/latest/intro/install/dpdk/
https://wiki.openwrt.org/start
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref62
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref62
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref62
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref63
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref63
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref63
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref63
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref64
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref64
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref64
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref64
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref65
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref65
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref65
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref65
https://doi.org/10.1007/978-3-030-22038-9_20
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref67
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref67
http://www.pica8.org/documents/pica8-datasheet-64x10gbe-p3780-p3920.pdf
http://www.pica8.org/documents/pica8-datasheet-64x10gbe-p3780-p3920.pdf
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref69
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref69
https://www.nongnu.org/quagga/index.html
https://www.nongnu.org/quagga/index.html
https://tools.ietf.org/html/draft-ietf-sfc-%20nsh-10
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref72
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref72
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref73
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref73
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref73
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref74
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref74
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref74
https://tools.ietf.org/html/draft-%20liu-%20sfc-%20use-%20cases-%2008
https://tools.ietf.org/html/draft-%20liu-%20sfc-%20use-%20cases-%2008
https://tools.ietf.org/html/draft-%20merged-%20sfc-%20architecture-%2002
https://tools.ietf.org/html/draft-%20merged-%20sfc-%20architecture-%2002
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref77
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref77
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref78
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref78
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref79
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref79
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref79
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref79
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref80
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref80
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref80
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref80
https://doi.org/10.1145/3098822.3098826
https://doi.org/10.17487/RFC8204
https://doi.org/10.17487/RFC8204
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref83
https://doi.org/10.1109/ICWS49710.2020.00035
https://doi.org/10.1109/ICWS49710.2020.00035
https://doi.org/10.1109/TNSM.2020.3047834

Journal of Network and Computer Applications 193 (2021) 103196

35

Zhang, Wei, Liu, Guyue, Zhang, Wenhui, Shah, Neel, Lopreiato, Phil, Todeschi, Gregoire,
Ramakrishnan, K.K., Wood, Timothy, 2016a. OpenNetVM: a plat- form for high
performance network service chains. In: 2016 ACM SIGCOMM Workshop on Hot
Topics in Middleboxes and Network Function Virtualization.

Zhang, Tianzhu, et al., 2019. Comparing the performance of state-of-the-art software
switches for NFV. In: The 15th International Con Ference on Emerging Networking
EXperiments and Technologies (CoNEXT ’19). ACM, pp. 68–81.

Zhang, Yang, Anwer, Bilal, Gopalakrishnan, Vijay, Han, Bo, Reich, Joshua,
Shaikh, Aman, Zhang, Zhi-Li, 2017. ParaBox: exploiting parallelism for virtual
network functions in service chaining. In: Proceedings of the Symposium on SDN
Research. ACM, pp. 143–149.

Zhang, Wei, et al., 2016b. SDNFV: Flexible and Dynamic Software Defined Control of an
Application- and Flow-Aware Data Plane, Middleware’16. https://doi.org/10.1145/
2988336.2988338.

Zilberman, N., Audzevich, Y., Covington, G., Moore, A., 2014. NetFPGA SUME: Toward
100 Gbps as research commodity. Micro, IEEE 34 (5), 32–41.

Dr. Prabhakar Krishnan is a research scientist and is currently
a PhD Scholar at the Department of Cyber Security Systems and
Networks at Amrita Vishwa Vidyapeetham, India. He has over
two decades of Industry experience in the USA. His current
research interests are primarily in Cybersecurity, with special
focus in designing network security and architecture, Network
Softwarization, SDN/NFV, Cyber Forensics and IoT standardi-
zation. He was a visiting adjoint professor with the Department
of Computer Science, University of Texas at San Antonio, USA.
He is a working member of the core-development group of
OpenAirInterface Software Alliance(OSA) 5G Wireless com-
munity at Eurecom in Europe. He is a member of the IEEE and
the IEEE Computer Society.

Dr. Subhari Duttagupta has received her M. Tech. degree in
1993 in the area of Parallel Computing and received the
doctoral degree in 2010 in the area of sensor networks, both
from Indian Institute of Technology-Bombay. Between 1994
and 2002, she worked in various organizations such as IBM,
Micron and HP in USA. Areas of interest: Performance Eval-
uation And Modelling Of Systems And Networks, Distributed
Systems, Real-Life Applications Using Sensor Networks And
Analysing IoT Applications, Internet of Things, Performance
Engineering, Modelling and Simulation.

Rajkumar Buyya is a Redmond Barry Distinguished Professor
and Director of the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory at the University of Melbourne,
Australia. He is also serving as the founding CEO of Manjrasoft,
a spin-off company of the University, commercializing its in-
novations in Cloud Computing. He has authored over 725
publications and seven textbooks including “Mastering Cloud
Computing” published by McGraw Hill, China Machine Press,
and Morgan Kaufmann for Indian, Chinese and international
markets respectively. He is one of the highly cited authors in
computer science and software engineering worldwide (h-
index = 137, g-index = 304, 100000+ citations). He is a Fellow
of the IEEE.

P. Krishnan et al.

http://refhub.elsevier.com/S1084-8045(21)00202-2/sref86
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref86
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref86
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref86
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref89
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref89
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref89
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref87
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref87
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref87
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref87
https://doi.org/10.1145/2988336.2988338
https://doi.org/10.1145/2988336.2988338
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref90
http://refhub.elsevier.com/S1084-8045(21)00202-2/sref90

	OpenPATH: Application aware high-performance software-defined switching framework
	1 Introduction
	2 Background and motivation
	2.1 Stateful programmable dataplane solutions
	2.2 Switching and I/O management
	2.3 NF service function chaining (SFC)

	3 OpenPATH framework
	3.1 Design challenges
	3.2 Framework overview

	4 Application-aware SDNFV architecture
	4.1 SDNFV dataplane
	4.2 Management and control plane

	5 Network function service chaining
	5.1 Service graph description
	5.2 NF dependency analysis and parallelization
	5.3 Service graph construction
	5.4 Fault Tolerance and smart placement
	5.5 SFC packet forwarding
	5.6 Flow table management
	5.7 Network status synchronization and SDNFV Co-ordination

	6 Implementation
	6.1 Stateful dataplane
	6.2 NF manager
	6.3 Management and controller plane
	6.4 NF processing
	6.5 SFC placement
	6.6 Software acceleration
	6.7 OpenPATH API and applications

	7 Performance evaluation
	7.1 Hardware testbed configuration
	7.2 Comparison of OVS-DPDK SDN stack
	7.3 Stateful operations and flow table optimizations
	7.3.1 Stateful TCP-Offloading overhead

	7.4 Comparing SDNFV switch and NFV-over-VMs
	7.5 SFC placement efficiency
	7.6 NF parallelism overhead
	7.6.1 Effect of different NF complexity
	7.6.2 Effect of parallelism degree
	7.6.3 Optimization effect with-respect-to graph structure

	7.7 Management and control operations overhead
	7.7.1 Flow table installation and controller load
	7.7.2 Control channel/southbound interface load optimization

	7.8 SFC orchestration in large simulated network
	7.8.1 network convergence time for topology construction
	7.8.2 End-to-end routing delay for SDN
	7.8.3 Control message overhead

	7.9 Application-aware SDNFV architecture
	7.10 Comparison of SDNFV software switch performance
	7.11 Comparison of server-based NFV platform performance
	7.11.1 Throughput Effect with varying SFC length
	7.11.2 Latency Effect with varying NF complexity

	7.12 Result discussion

	8 Future work
	9 Summary and conclusions
	Authors credit statement
	Declaration of competing interest
	References

