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A B S T R A C T   

Currently, core networking architecture is facing disruptive developments, due to the emergence of SDN for 
control, NFV for services and so on. SDN promises more versatility in routing and managing traffic flows, while 
NFV represents a large shift in how network functions and services are built, deployed, and managed. We present 
OpenPATH (aPplication Aware software-defined swiTcHing framework)—A software-defined switching frame-
work for NFV processing and orchestration of Network Functions (NFs) and steering the flows through service 
chains. Inspired by the potential benefits of encapsulating the application logic into the SDN dataplane, Open-
PATH is built on the concept of a modular dataplane, which consists of two layers - switching fabric layer to 
control packet forwarding; and switch management layer, which inspects the incoming packets, steers the flows 
through a sequence of NFs and determines the next forward/drop action. The application logic of the NFs can be 
introduced and pushed to the dataplane at runtime and the framework offers fast packet processing and I/O 
functionalities to support NF parallelism in the Service Function Chaining (SFC) scenarios. OpenPATH is a 
modular framework for software switches and offers flexibility for programming run time functions depending on 
the dynamic behavior of the network traffic and cyberattacks. The architecture components are not hard-coded 
or rigidly implementations in conventional switches/bridges and standard OpenFlow based SDN stacks. The 
design allows the vendors, operators, or developers to configure policies at run time and deploy custom logic and 
NF (also series of NFs) through software programs embedded in the switching fabric. While the basic concept is 
similar to some pioneering works in this area, OpenPATH does not sacrifice portability, performance, or security 
for programmability. The OpenPATH as a programmable switching platform takes a different approach to meet 
most of the requirements of application-aware and intent-based networking. OpenPATH helps administrators to 
quickly configure network security services using a rich set of standard APIs, with simplified flow tables. The 
evaluation shows that our design can leverage complex states in the data plane without overloading the SDN 
controller. Compared to conventional SDN methods, this provides much greater versatility and precision. The key 
findings indicate that OpenPATH achieves lower cost for scaling, higher overall throughput, and reductions in 
latency for real-world service chains.   

1. Introduction 

The Software-Defined-Networking (SDN) paradigm has transformed 
the way networks are managed, by using a logically structured control 
plane that can enforce carefully designed rules and programs that 
govern individual packet flows (Feamster et al., 2013) through all 
network groups and across modern virtualized datacenters. It changed 
the network vendor’s approach to networking. Network virtualization 
(NFV) (Han et al., 2015a) paradigm which replaces specialized 

middlebox systems in the network, has emerged as the enabling tech-
nology to operate a myriad of infrastructure services as software appli-
cations (Network Functions/NFs) running on virtual machines (VMs) in 
Commercially available Off-The-Shelf (COTS) systems (H wang et al., 
2014). The developments in softwarized networking infrastructures are 
aimed at improving network management, dataplane programmability, 
and the agility of networks. The software scheme also facilitates efficient 
traffic steering and orchestration of services and functions on the go. 
However, the limited interactions among current SDN controller(s) with 
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NFV platform(s) restrict the extent to which new transformations can be 
realized (Sherry and Ratnasamy, 2012). The control plane, which is 
represented by the controller, imposes the traffic rules, yet has no con-
trol or knowledge of the running status/details from the hosting ele-
ments of NFV. SDN controller does not usually take advantage of the 
information that can be derived from individual packets such as 
inter-packet arrival times, sequence, protocols meta-data, session and 
connection state info of the applications. This overly rigid data and 
isolation of the controller limits the awareness of the control decisions 
and the versatility of the flow handling functions. Although SDN seeks to 
provide a simplistic management interface of the streamlined dataplane 
(s), the fact is that the functions and logic that exist within the dataplane 
switches of a real network is becoming increasingly complicated and 
fluid. 

Modern Networks today are designed not only from simple elements 
such as routers and switches. It is also composed of appliances and 
middleboxes that perform various functions on network traffic such as 
proxy, cache, router, deep inspection, firewall, VPN, IDS, policies/ 
configuration enforcing, traffic shaping, and monitoring for QoS (Alim 
et al., 2016). The ability to optimally steer and process packets pose hard 
problems that current SDN approaches are not likely to solve, because 
the current match-action rules for switches are not concise enough to 
handle complex policies and functionalities. It is well known that it is too 
expensive to depend on the control plane for packet processing 
frequently, instead of making the decisions at the flow-level. This 
cost-effective flow-based approach is exactly the general spirit of the 
SDN model. Furthermore, the conventional networking architectures 
don’t help to dynamically track and modify the rules on flows with 
variable duration and time intervals (for example, a video stream that 
needs to be changed in time based on available capacity, ele-
phant/ant/mice flows). SDN with its global view has been able to 
address all of these critical aspects in the dataplane, such as costs, 
management, and programmability, as well as additional problems such 
as multi-tenancy. This also brought in new vendors as it reduced the 
barriers to entry. Furthermore, only the forwarding devices are 
software-defined in current SDN implementations, such as OpenFlow 
(McKeownet al., 2008) and its variants, while the other data plane de-
vices – middleboxes and network functions – tend to suffer from all of 
the above problems. Besides, these machines may often suffer from 
additional, more complicated issues, such as more complex tasks to 
process packets. Traditionally middlebox appliances, with their closed 
source software pre-installed in monolithic hardware systems are 
deployed as a vendor-built solution. These systems are expensive and 
vendor-locked in, causing barriers to scale and deliver customized ser-
vices to the end-users. Apart from simple routing and forwarding func-
tions, IP networks increasingly rely on a combination of advanced 
functions. The primary objective is to implement service-inferred for-
warding for traffic traversing a given domain and distinguished by the 
collection of invoked Service Functions. Service-inferred forwarding is a 
policy-driven process, and policies which include dynamic parameters 
such as: Subscriber-aware, based on flow characteristics, designed to 
optimize network resource usage, and any combination of all these 
factors. To apply policy to traffic or to provide network services to it, the 
traffic must pass through a specific series of VNFs referred to as a service 
chain. Service function chaining (SFC) (Service function chaining gen-
eral use cases) is a term that refers to the approaches for sequencing 
VNFs and enforcing the requirement that traffic must pass through the 
proper service chain. Service chaining has been applied manually in 
traditional networks (Joseph et al., 2008). NFV (European Telecom-
munications Standards Institute(ETSI), 2014)is proposed to reduce the 
management costs associated with hosting the SFC, and VNFs can be 
generated dynamically. Optimizing the location of dynamically gener-
ated VNFs and deciding the optimal route for VNFs to traverse a service 
chain are difficult problems. SDN enables the network to be viewed as a 
single global entity, and a centralized controller provides programmable 
forwarding rules that simplify service chaining compliance (Anwer 

et al., 2013; Fayazbakhsh et al., 2013; Qazi et al., 2013; Gember et al., 
2013). A closer review of the services/functions of an SFC, reveals that 
most of the network functions do not overlap/share dependence and can 
operate parallelly. In the SFC shown in Fig. 1, Monitor NF retains sta-
tistics from the packets without altering their content. As the chain 
length becomes 3, this results in a theoretical reduction of the latency by 
25 percent. While NFV enhanced scalability and availability, other 
problems such as minimal and autonomous control of NFs are not 
addressed. An exhaustive characterization of NFV applications exhibit 
similarity in processing blocks on the network traffic. For example, the 
majority of the networking elements/devices comprise of functions/-
logic that inspects the headers of the packets, categorizes into type-
s/class of flows, and executes the predefined logic on these flows. NFV 
vendors when they deploy their applications or services as VNFs provide 
a proprietary API for the customization and management of the policies 
and parameters. IETF has published several drafts (Service function 
chaining (sfc) architecture; Network service chaining problem state-
ment; Network service header) as references for the practical imple-
mentation of SFC. 

Network administrators support the “softwarization” trend because it 
enables flexibility and dynamic network configuration capabilities. 
However, implementing and deploying these strategies raises a number 
of realistic deployment issues. To fully exploit the advantages of NFV 
and SDN, the network must first carefully integrate a network orches-
tration strategy (Kim and Feamster, 2013), ensuring that the NFV inte-
gration does not complicate the network management environment 
excessively (i.e., a management challenge). For instance, in order to 
efficiently manage multiple network functions, a network administrator 
can create an orchestration strategy that generates a diverse set of 
associated network flow rules. It is critical to optimize the resulting flow 
orchestration. 

NFV service instances are autonomous software instances, and as 
such, they have the potential to reduce network service efficiency when 
compared to older hardware-based solutions (i.e., a performance chal-
lenge). As we argue, no modern approach addresses both challenges 
comprehensively. Our approach is inspired by previous works on effi-
ciently orchestrating virtualized network functions and middleboxes (e. 
g., CoMb (Sekar et al., 2012) and Bohatei (Fayaz et al., 2015)). Their 
main focus was on network service coordination, like controlling 
network flows, and not the most challenging part of managing network 
flow laws (i.e., at the data plane). Although Eswitch (Molnár et al., 
2016), ClickOS (Martins et al., 2014) and NetVM (H wang et al., 2014) 
focussed on lowering management overhead by the use of advanced I/O 
handling algorithms, NFV systems continue to incur systematic perfor-
mance overhead because of traffic detouring. This article investigates and 
tests a method for streamlining NFV flow processing by explicitly 
extending native services within the SDN data plane. 

In NFV hosting platforms –network functions (NFs) are implemented 
as applications and deployed in one of the following models:  

1. Physical machines (one NF/host), multiple hosts have to be utilized 
to deploy a SFC (a chain of NFs)  

2. Virtual machines (one NF/VM) and multiple VMs (VNFs) can be 
deployed on a physical host.  

3. Containers (one NF/container) and multiple containers (VNFs) can 
be deployed on a physical host.  

4. Micro-services on high-end switches/routers/middleboxes (each NF 
as a micro-service) and the orchestration of the micro-services 
happen in the advanced hardware components such as network 
processors and SOCs. 

We demonstrate another new model that implements each NF as a 
function (thread) and deploy these VNFs (implemented in software 
languages like C, P4) in a modular network operating system on high 
performance switching hardware platforms. The OpenPATH switches 
run NF/applications that are written in standard API/native API, 
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concurrently execute the logic of multiple NFs (chain of processes that 
share resources optimally) to execute them at the same data plane 
location (COTS node) and maintain complex stateful dataplane flows/ 
sessions/connection tables and packet characteristics. So fundamen-
tally, there is no notion of “virtual machines to NFs” (that usually run-on 
server class machine) in our platform, rather we have a mapping of 
“software processes to NFs” (that are running on switch network oper-
ating system) in OpenPATH. 

In an attempt to address these challenges and questions, our research 
has developed a framework called OpenPATH (a high-performance 
SDNFV platform) for deploying diverse types of NFV applications and 
for NF decomposition into lower-level components to resolve the limi-
tations in the previous approaches and boost the overall efficiency of the 
network. We focus on a particular component in the NFs service chain 
that is a known performance and security bottleneck, and we present 
algorithms to increase its overall turnaround time, efficiency, and 
resilience. We also leave traditional “SDN + NFV” as separate problems 
by running NFVs in conjunction with SDN to route packets between NFs, 
enabling the dataplane to handle these NFs (Sonchack et al., 2016; Qazi 
et al., 2013; Gember-Jacobson et al., 2014). OpenPATH handles the NFV 
orchestration and integration based on an entire topology view, which 
includes applications, computing, memory, and other networking re-
sources (e.g. NF location). We show that the flexibility of OpenPATH in 
conjunction with its coordinated approach to cross-NF management and 
traffic orchestration allows for significant performance optimizations, e. 
g., offering 20–30% saving in CPU cycles and 2-4x increase in processing 
rate/bandwidth. We maintain the SDN controller and NFV MANO 
(“Management and Network Orchestration”) in the integrated archi-
tecture. The central SDNFV Orchestrator represents the service chains as 
function graphs and distributes the sub-graphs (chain of NFs) across the 
nodes in the dataplane and at run time it manages packet steering 
through the NF chain. Each hardware node/machine hosts a vSwitch, 
which is managed by a software component called NF Manager. The 
ultimate objective of the OpenPATH architecture is to divide the 
network management functions and distribute control hierarchically. 
Finally, OpenPATH will effectively add application-awareness and 
stateful knowledge to the network, allowing Deep Packet Inspection 
(DPI) as micro-services for existing SDN deployments in ways that were 
not possible with legacy architecture. 

OpenPATH framework consists of four major functional blocks - i) 
provides operators with a policy-specification scheme through north-
bound API to intuitively define concurrent or parallel intent. ii) SDNFV 
orchestrator smartly recognizes dependencies and composes policies 
into an optimal service graph. iii) A logically centralized SDN controller 
can dynamically install multiple NF application logic on the switches 
and orchestrate the NFV service chaining with the global view. iv) NF 
chain is executed in the dataplane switch(es), either implemented solely 
in software or on different hardware accelerator platforms (e.g., 
SmartNIC, NetFPGA). The OpenPATH implementation as a program-
mable switching platform, takes a different approach to meet most of the 
requirements of application-aware and intent-based networking, e.g., 
Modular pipeline, that runs arbitrary/custom logic and autonomous and 
every element of the switching architecture is programmable, not just 

NFs or Flow tables. The datapath supports both in-kernel for fast- 
switching in short-lived connections and entirely in-userspace which 
binds directly to network interfaces (bypassing the kernel) using DPDK, 
for heavy-duty packet data-processing applications, facilitates the flex-
ible all programmable infrastructure for different use-cases, experi-
ments, and open innovations. 

Specifically, we make the following contributions to this research:  

• We present a comprehensive overview of the NFV ecosystem, i.e., 
functions that are virtualized, virtualization techniques, and soft-
ware acceleration. We articulated the guidelines for the design, 
development, and operation of a high-performance NFV ecosystem 
that can cope with heterogeneous and dynamic workloads effi-
ciently. Based on the critical study, we derived an SDN-based data-
path architecture that tackles the inter-NF dependencies and 
parallelism in NFV.  

• We design OpenPATH, a high-performance software switching 
framework for NFV, using the standard Northbound API and Open-
Flow protocol, along with algorithms to concurrently execute the 
logic of multiple NFs (service chain) to execute them at the same data 
plane location.  

• Address the key requirements for switching architecture in future 
software-defined datacenters: (1) high-programmability and appli-
cation awareness in the dataplane. (2) high throughput and packet 
rates. (3) efficient resource utilization (CPU, memory, network). (4) 
dynamically scalable and agile orchestration, packet-steering. and 
(5) security and fault-tolerance.  

• By integrating major classes of NF/applications into dataplane and 
various switch fabric combinations, we validate our approach. We 
test OpenPATH programmable platform based on in-kernel Linux 
bridge, OVS, and in-user space implementations such as OVS-DPDK 
and measure it against other experimental software switching 
systems.  

• Our research focuses on the performance of real-world network 
functions in a multi-host setting. We show that this framework not 
only makes development and administration easier, but it also im-
proves the network performance: By executing two or more NFs at 
the same physical host/switch, exploiting NF parallelism and 
resource optimization, we are improving throughput by 2x and 
reducing latency by 50%. 

2. Background and motivation 

With the increased adoption of SDN architecture in large enterprise 
networks, SDN-based NFV platforms are widely evaluated now. Fig. 2 
shows two potential approaches to implementing security services based 
on NFV. The network function and services (e.g., VPN or NAT) are 
usually deployed in middlebox appliances or COTS server machines. 
NFV operates with VMs and commodity servers, thus minimizing costs 
and simplifying deployment. A network service is rendered with a 
sequence of network-functions and steering the flows(packet) through 
that pipeline/chain (Service-function-chain (SFC). This chaining process 
could be customized to diverse policy settings on request. Multiple 

Fig. 1. Service function chaining implementation.  
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service chains in an NFV platform could re-use or leverage the pool of 
NFs for optimal resource usage. A single sequential trajectory path is not 
enough to orchestrate and form traffic in modern networks, as network 
traffic becomes more sophisticated. Since traffic needs to be handled by 
multiple NF elements, chokepoints occur in the network. Even the 
control plane of NFV has limited intelligence about the network. All 
these issues lead to siloed and isolated computing infrastructure to host 
inefficient NFV services. The NFs continue to change the packet state, 
and those changes are invisible to the control plane of the SDN. NFs can 
allow various types of state changes with operations on packets: modify 
payload/content/header fields (“e.g., NAT box switches IP addresses or 
port numbers”), drop packets (“e.g., firewall blocks a flow”), consuming 
and creating a new packet (“e.g., layer 7 load balancer terminates the TCP 
client session, proxies and creates a new session with the correct server”). The 
SDN controller thus is not equipped to track how the NFs in the center 
change packets and can lose the ability to monitor the flows. In recent 
years, high-performance DPI has been an active area of study, with 
plenty of algorithms for improving the DPI efficiency. Today every NF 
deploys its DPI engine, packets pass through a chain of DPI engines and 
use different matching pattern algorithms, although they all perform the 
same basic operation of matching the payload to a set of patterns. The 
drawbacks of such a situation are significant: first, packets go through an 
increasingly complex DPI phase, which means higher latency. Second, 
the Chain’s slowest DPI engine is a bottleneck performance for the entire 
chain. Similarly, if an attack is exposed to one DPI engine (e.g., a denial- 
of-service attack), the entire chain is exposed to this attack in terms of 
overall performance. A multi-prong approach is therefore required in 
the packet processing architecture, to construct SFC that combine func-
tions into sequences and also allow multiple service/functional blocks to 
do operations and examine each packet. Configuring these service 
chains within the data plane, however, poses an operational obstacle. To 
operate these service chains, the SDN data plane requires complicated 
flow rules, as shown in Fig. 3, which present flow-steering challenges in 

the process of service chaining. 
We believe that as open programmable switching platforms and 

frameworks (Fang et al., 2018) evolve, it encourages creativity in the NF 
domain and operators can use the building block-
s/API/language/compilers provided by the framework. Besides, the 
network infrastructure features can be expanded beyond these basic 
building blocks: an application may include a module extension code in 
the control/data plane. We demonstrated the use of the OpenPATH 
platform as a concrete deployment context for advancing this NFV 
domain: the broadband and cellular edge of a carrier network, as 
expressed in infrastructures of network operators. 

2.1. Stateful programmable dataplane solutions 

In recent progress, SDN standard bodies and researchers have begun 
to consider the possibility of offloading certain state-of-the-art packet 
inspection and control operations to the dataplane switches. This is 
primarily for reducing the signaling overhead of the switch/controller 
and the latency deficiencies caused by the two-tiered SDN programming 
model. More recently there was also a need to support API at the data-
plane, a set of registries with statements that persist across several flow 
packets (i.e., flow states) and which was fulfilled by P4 (Bosshartet al., 
2014). The Open Networking Foundation (ONF, standard body) has 
provided several suggestions to encourage designing the notion of “state 
labels” in OpenFlow. While maintaining of the state within the dataplane 
may seem to have been a step backward in respect of the SDN principles, 
initiatives such as (Hanet al., 2016) may be more conservative (hybrid) 
where the switches retain the flow-state, while the controller can 
continue to supervise/control handling stateful table within the data-
plane switches. Moreover, it is the central controller that formalize 
through dataplane program (for example, P4) to determine how the 
switches can respond to packet-level events and adjust forwarding rules. 
OpenState (Bianchi et al., 2014) and FAST (Moshref et al., 2014) were 

Fig. 2. NFV implementation in SDN infrastructure.  

Fig. 3. Traffic Steering Challenge for complex service chains.  
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the first ideas that proposed the stateful dataplane and programming 
abstractions. Given the inherent conceptual coupling between language 
constructs and packet processing, we give an overview of the basic 
classification of programmable dataplane.  

• Data flow graph: This represents computational logic as a line. The 
Vertex node representing elementary computing function (NF) and 
the Edge represents the path of data between two nodes. The Click 
modular software router (Kohler et al., 2000) pioneered this flow 
graph model. The packets traversing the graph through the vertices 
on which network functions are performed. ClickOS (Martins et al., 
2014), “Vector Packet Processing (VPP) FD.io " (VPP FD.io, 2016), 
and the “Berkeley Extensible Software Switch (BESS)" (Han et al., 
2015b) follow a similar design, with data units are represented as 
packet vectors rather than a packet.  

• match-action: The model defines programs with a series of search 
table(s) arranged hierarchically as lookup tables. These lookup tables 
perform ‘match’ operation with specific header fields (tuple) and 
based on the result of the match - hit/miss, some ‘action’ is per-
formed on the packet. OpenFlow is the most popular example of 
adopting this model for the forwarding dataplane and Open vSwitch 
is one widely used implementation of this highly programmable 
dataplane model.  

• Hybrid switch: By representing hierarchical “match-action pipeline 
in a data flow graph and look-up/NF as nodes and goto-table action as 
edges”, hybrid implementations are employing combined abstrac-
tions in a switching framework. 

FastClick (Barbette et al., 2015) extends the Click Modular Router 
codebase (Kohler et al., 2000) by integrating optimized I/O mechanisms 
DPDK and netmap for the datapath by using acceleration strategies. 
Snabb (Paolino et al., 2015) proposed a composable modular architec-
ture for faster switching in operating systems that hosts hypervisor VMs 
and demonstrated NFV services. Snabb realized their switch with a 
newly designed hypervisor called vhost-user that directly moves packets 
between processes bypassing the kernel. BESS (Han et al., 2015b) Ber-
keley Extensible Software Switch (formerly known as SoftNIC) is a 
modular framework for softwarized switch and network functions. It 
utilizes DPDK Poll-Mode Drivers (PMDs) to perform high-performance 
packet I/O with direct hardware NIC access. VPP (VPP FD.io, 2016) 
Vector Packet Processing is one of the well-designed routing stacks, that 
makes use of modern optimization approaches like packet batching and 
interleaving technique, where packets are received and grouped into 
super-frames as vectors. VALE (Rizzo and Lettieri, 2012) is another 
software switching solution that exploited the fast-I/O netmap mecha-
nism for packet buffer movement across the processes. They also 
adopted batch computations and packet pre-fetching and designed to be 
used as the interconnect between VMs. The mSwitch (Honda et al., 
2015) is an improved design of VALE targeted for SDN solutions, by 
using novel forwarding algorithm, kernel by-pass I/O, and no-CPU core 
bindings for the NF processes and at the same time scaling for a large 
number of ports. DPX (Park et al, 2019) proposed a framework that 
supported security service functions in the dataplane, and they are 
deployed through standard OpenFlow “match-action” rules. Their 
model avoids the decoding of packets by providing the operators with a 
simpler way to configure functions to the network. They enforced 
complex security policies through the implementation of “action clus-
tering” which aggregate activities from various flows to a smaller rule-
set. OpenFlow API is expanded by OFX (Sonchack et al., 2016) for 
deploying NFs in the dataplane, by installing an agent application that 
offloads some of the operations of a control plane for the switches. It 
supports the “Berkeley Packet Filter (BPF)" programming model in the 
Open vSwitch while retaining its high-performance benefits. SoftFlow 
(Jackson et al., 2016) retains the run-to-completion model based on 
Open vSwitch and runs arbitrary programs as Free-Flow activities in the 
datapath, but it is far more complex to configure policies/parameters to 

these programs. The Open Packet Processor (OPP) (Bianchi et al., 2016) is 
an attempt for combining configurable multiple hardware with limited 
dataplane capabilities. The OPP improves on the OpenState, even 
though it varies slightly from a design perspective, it provides SDN 
networks with a cutting-edge data plane using complete XFSM in place 
of the simpler OpenState version. The packet processing pipeline of a 
classic SDN architecture’s stateless data plane is limited to the initial 
primitives in OpenFlow. SNAP (Arashloo et al., 2016) is a programming 
language used for stateful SDN switches and it allows flexibility for the 
program to make the decisions on traffic policy and flow-rules at run 
time, almost providing the power to function as a proxy controller. In 
recent years, researchers (Kaljic et al., 2019) have introduced applica-
tions that run on stateful dataplane, and all the stateful schemes from the 
literature share similar design notion at a very high level. 

2.2. Switching and I/O management 

The following are research aspects that have been widely discussed 
among the many challenges of the ETSI NFV standard (European Tele-
communications Standards Institute(ETSI), 2014): NFV architectural 
design, NF parallelism performance, NF management, NF placements, 
and NF chaining. Many initiatives are considering how architectures in 
SDN and NFV need to grow such as ONF (ONF Solution Brief, 2014). 
Nevertheless, as yet there are few demonstrated solutions. Palkar et al. 
proposed E2 (Palkar et al., 2015) an NFV system that relies on a 
centralized SDN controller to handle the location, interconnection of 
services, and to dynamically scale a variety of NFs. The presence of SDN 
controllers is important for all the complex management of services and 
orchestration of the NFs. Mekky et al. (Mekky et al., 2014) proposed an 
application-aware SDN dataplane architecture that depends on func-
tionalities of the OVS based dataplane. NetVM (H wang et al., 2014) 
employed shared memory for fast data copying between VMs, while it 
leveraged on ClickOS to deploy more lightweight function modules in-
side VM instances. To reduce overhead packet movement, Zhang et al. 
(Zhang et al., 2016b) developed SDNFV on top of NetVM and added 
features for parallelizing NF Chain on a single server and over multiple 
hosts. Slick (Anwer et al., 2013) presented a virtual middlebox elastic 
architecture that consisted of a central controller and a dataplane of 
lightweight COTS servers, to develop NFV applications. They focused on 
solving the NF placement problem and the southbound protocol is not 
defined as well. Flowtags (Fayazbakhsh et al., 2013) suggested 
network-wide policies for dynamic middlebox behavior, through 
explicit tagging in the packet headers. However, explicit tagging oper-
ation in high-bandwidth and heavy traffic switching platforms with 
complex service chains and flows is cumbersome and can cause semantic 
errors in a parallelized SFC process. 

In data centers and enterprise networks, the service chain for the 
traffic is deployed with network functions and services (e.g. NAT, VPN, 
Firewall, IDS, encryption), which end users are normally unaware of 
their presence. In traditional networking settings, the network services 
are statically interconnected in a serial pipeline and predefined paths for 
the packets are configured. The introduction of NFV and SDN has 
significantly enabled SFC engineering (Qazi et al., 2013), exploiting the 
logically centralized control plane, providing flexibility in service 
chaining and forwarding plane programmability. OpenNF (Gember-Ja-
cobson et al., 2014) proposed a closed NFV architecture in which 
network functions are deployed in the dataplane COTS and the man-
agement/orchestration is done at the customized control application. 
The architecture retains the spirit of SDN, with the standard SDN con-
troller’s oversight and individual vertical subsystems for coordinating 
with the NFs running in the OpenNF domain. NEWS (Mekky et al., 2017) 
is an expanded SDN architecture that uses a modified flow-table data 
structure “NF/App table” to manage packets and implements service 
chaining inside the data plane as a static sequence of modular functions. 
CoMbs (Sekar et al., 2012) proposed to consolidate multiple middlebox 
appliances (decomposing NFs) to one software on a COTS-based 
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dataplane node for improving the overall networking performance. 
Click Modular Router was advanced further by PacketShader I/O (Han 
et al., 2010) which exploits parallelism and multi-queue support of 
recent NICs, batching to improve overall performances of Click and 
ClickOS (Martins et al., 2014) is a runtime platform for virtual NFs. 
ClickOS offers NF I/O enhancements and reduced latency for packets at 
the same physical location that traverse multiple NFs. OpenBox 
(Bremler-Barr et al., 2016) presented an SDN architecture with distinct 
dataplane and deployed the NFs as OpenBox instances and controlled 
through the OpenBox protocol. The instruction cycles of the NFs are 
divided into independent blocks and executed as modules in the 
switches and allows for the reuse of software modules across network 
functions and enables faster adoption of packet processing hardware 
accelerators. OpenBox generalizes Click’s modular approach to provide 
a network-wide platform for the development of modular NFs. 

2.3. NF service function chaining (SFC) 

Many research efforts (Bifulco and Rétvári, 2018) tackled the effi-
ciency downside of software-based NF switching frameworks. In 
particular, software-based NFs that add substantial overheads and la-
tencies, which may be unacceptable with the chain length for different 
applications operating under ultra-low response times. The literature 
(Fei et al., 2020) has suggested several groups of proposals that 
approach the problems in SFC from various perspectives. Some possible 
approaches for SFC latency optimization problems are i) accelerating NF 
cycles internally. ii) Instructions-Level Parallelism (ILP). iii) high-speed 
packet I/O. Some NFs do not share any dependence and can operate in 
parallel. So, we can perform acceleration vertically running parallelly 
multiple NFs on the same or copied set of data, on different dedicated 
CPU cores. ClickNP (Li et al., 2016) leveraged on offloading costly op-
erations to SmartNICs, NetFPGA, and specialized hardware for hori-
zontally accelerating NF to achieve overall performance on the NFV 
implementation. NetBricks (Panda et al., 2016) followed a similar 
approach as Click, but they designed the functions to run on a physical 
host, dedicating one core per VNF in the chain. ClickOS and NetVM (H 
wang et al., 2014; ntop; Zhang et al., 2016b) proposed solutions for the 
acceleration of packet delivery across the virtual machines and VNFs. 
These approaches proposed modular SDNFV architectures to distribute 
the network functions as “NF Blocks/Instances” onto the individual 
nodes and using efficient merging techniques, implemented an NFV 
platform to solve the SFC problem. NFVNice (Kulkarni et al., 2017) 
builds on OpenNetVM (Zhang et al., 2016a) DPDK platform, provides a 
userspace control, and efficient I/O management framework for NFs, 
that enables dynamic backpressure scheduling for NFV chains and 

demonstrates improved NF Throughput, Fairness, and CPU Utilization. 
ParaBox (Zhang et al., 2017) also attempts to explore NF parallelism in 
NFV. However, its NF parallelism detection remains preliminary and 
lacks a comprehensive analysis on NF action dependency. ParaBox has 
to provide different packet copies for NFs running in parallel which 
introduces large resource overhead. In comparison, we propose a 
comprehensive framework with three layers to enable NF parallelism 
and enhance NFV performance. NFs are implemented as a set of software 
modules in our system, at a finer granularity than the individual NFs. For 
example, one can build service by chaining the firewall module and 
DNAT module, making the composition of the service more versatile and 
effective. Our research proposes enriching the prior solutions, to address 
extensive processing in the data plane and tackles issues related to deep 
packet inspection NFs and meet the demands of other knowledge-based 
intelligent network functions. To tackle the management problems in 
the middlebox/Virtual NF world, prior efforts focus mainly on orga-
nizing network resources (“i.e., on the control plane”), only a few so-
lutions attempted to solve the inherent problems in packet I/O 
processing (“i.e. on the data plane”). Although the popular initiatives 
such as OpenBox, BESS, and NFP are attempting to boost NFV platforms 
by designing Fast I/O handling, Parallelism, Efficient packet processing 
mechanisms, the infrastructures are still lacking optimal performance 
and resource utilization due to complex traffic switching/routing 
overhead. 

Table 1 shows a summary of the taxonomy of software switching 
architectures. In comparison to the current literature, our work aims to 
advance our understanding of software switch efficiency, SFC, and to aid 
in the resolution of possible bottlenecks. 

This research work discusses and examines one method for stream-
lining the NFV traffic directly in SDN architecture by expanding native 
functions in the dataplane. We argue that NFV requires a packet- 
processing software environment that addresses the problems such as 
NF placement, SFC scalability and also grow at run time, parallelism and 
load balancing across nodes, isolating the NF resources, monitor, and 
fault recovery and other run-time parameters. To this end, our research 
addressed some of these key issues targeting performance and presents a 
framework, which we call OpenPATH. From a functional point of view, 
our approach offers advantages such as (i) enabling developers, to focus 
on the core applications logic and leverage on external frameworks for 
common standard functions. (ii) simplifying the operator’s tasks, by 
automation and shared management. 

3. OpenPATH framework 

OpenPATH is inspired by the desire to expand the data plane’s 

Table 1 
Summary of Software switching/NFV Works.  

Work Architecture and Programming Model Best Features for NFV 
SFC Placement, parallelism, security 

BESS (Han et al., 2015b) Modular, Data Flow Graph, Programmable NIC. Structured, C, 
Python, RTC, Pipelined 

Forwarding between physical NICs. 
Not compatible with the advances in QEMU. 

NetVM (H wang et al., 
2014) 

Modular Router, Data Flow Graph, Structured, C++, Run-To- 
Completion (RTC) 

VNF chaining. Live NF migration. 

OPP (Bianchi et al., 2016) Self-Contained, Flow Graph, C, RTC Full Router, VNF chaining, Supports live migration 
NfvNice (Kulkarni et al., 

2017) 
Self-Contained, SDN Switch, Structured, C, callbacks, RTC Stateless SDN deployments, Supports OpenFlow protocol, specifically designed 

for NFV management 
OpenNetVM (Zhang et al., 

2016a) 
NetVM on DPDK, Shared memory, Netmap, Structured, C, NUMA- 
aware, polling mode 

specifically designed for NFV management layer for flexible and efficient service 
chaining 

E2 (Palkar et al., 2015) Self-Contained, Virtual L2 SDN switch, Netmap, Structured, C, 
Berkeley Packet Filter (BPF), Pipelined 

flexible packet processing pipelines, large number of ports. Supports dynamic 
scaling and orchestration through NFs (e.g., location, device interconnection). 

OpenNF ( 
Gember-Jacobson et al., 
2014) 

This retains two distinct vertical sub-systems, outside of the SDN 
remain NF. Modular, Netmap, Structured, C, callbacks, NUMA 
aware, polling mode 

Their research focuses primarily on the sharing of the state and the transmitting 
problems that occur with replication and migration, 

OpenPATH (This work) Modular, SDN/NFV switch, DPDK, Shared Memory, Data Flow 
graph. Match-Action, C, Python, NUMA-aware, polling mode 

Allows for easy reconfiguration of the NFV chains and fine-grained and/or 
dynamic control of the forwarding rules. OpenFlow based API. Inter-VMs (or 
container) abstractions are not Defined. Supports SFC Security, Dynamic 
Expansion, Acceleration.  
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functionality and to enhance the current SDN architecture. SDN’s per-
formance enhancement challenge has been solved by modifying the data 
plane in a variety of ways:  

• Stateful packet processing - which is cognizant of the data plane’s 
state. Numerous studies have shown that the stateless design of the 
OpenFlow switch does not adequately accommodate packet pro-
cessing from stateful protocols (e.g., TCP, FTP). The most common 
way to achieve stateful packet processing is to introduce finite 
automata into the data plane.  

• Flow table structure - additional data to support the treatment of data 
plane, energy usage, and QoS issues, among others.  

• Flow table Look-up method - often occur in conjunction with systemic 
improvements to flow tables. In certain situations, the latest frame-
works are built on enhancements to the OpenFlow flow table lookup 
mechanisms already in place.  

• Packet classification mechanisms - permit classification of packets 
based on the headers of higher-layer protocols. As a result, sophis-
ticated mechanisms such as DPI can be implemented.  

• Data plane architecture and abstraction - have been suggested in a large 
number of studies as a solution to the existing OpenFlow standard’s 
restricted versatility. 

While theoretically feasible, application logic offloading presents sig-
nificant practical difficulties. Since simple extensions will not address 
the programmability and flexibility issues associated with current data 
plane architectures, we advocate for the creation of an entirely new SDN 
data plane architecture that will provide a high degree of flexibility for 
future network evolution. OpenPATH is built in a manner that seeks to 
maintain as much as possible the original SDN concept (i.e., simple data 
plane) by designing its extensions as modular components of the SDN 
data plane. “NFV Enablement Inside SDN Data Plane” is an approach that 
aims to do network management in a controller, but distributing the 
NFs/applications across the dataplane, providing them with organic, 
reliable, and scalable support. We show that the OpenPATH system 
programmatically fuses the processing of multiple NFs and greatly re-
duces latency and improves performance. 

3.1. Design challenges 

In this section, we discuss the key challenges we encountered in 
designing the proposed switching framework. 

Fast Packet I/O Processing: This topic brings us to a variety of 
design challenges and there is no need to reinvent the wheel in terms of 
efficiency and processing rate. Many current switches achieve good ef-
ficiency, and we adopt some of these techniques: packet-batching (Rizzo 
and Lettieri, 2012; Rizzo, 2012), lightweight packet and merging rep-
resentation (Honda et al., 2015), and optimized memory copies (ntop; 
Sun et al., 2017). The Packet I/O is the critical function of the switching 
system and data movement, memory overhead, excessive protocol in-
spection operations on the packets impact the latencies and throughput, 
as systematically discussed by works (Han et al., 2010; VPP FD.io, 2016; 
Rizzo, 2012). To this end, OpenPATH implemented software accelera-
tion mechanisms minimizing the datapath overhead in legacy hardware 
middlebox appliances. We performed a detailed analysis of the pro-
grammable dataplane for NFV’s high-speed I/O (Gallenmüller et al., 
2015; Lettieri et al., 2017) solutions. Some production grade solutions 
use SR-IOV (Dong et al., 2010) and softwarized switches such as 
OVS-DPDK (Open, 2019), Netmap (Rizzo, 2012), PF_RING ZC (ntop), 
and Snabb (Paolino et al., 2015). PF RING is a fast packet processing 
framework from NTOP corporation. PF_RING directly exposes the NIC 
ring buffer to applications in userspace, thus reducing the high overhead 
of the OS network stack. Netmap exposes userspace applications with a 
zero-copy network packet I/O for standard operating system environ-
ments. SR-IOV allows a physical NIC to export multiple 
virtual-interfaces to the hypervisor layer in the OS and VMs can access 

the network transparently like connecting to an interface. But, SR-IOV 
capabilities are vendor-dependent and can be connected directly to 
the guest OS running on VMs using PCI pass-through. Using Data Plane 
Development Kit (DPDK) gives an efficient user-space standard software 
I/O interface for the datapath to achieve throughput and ultra-low 
latency. 

Usage Scenarios of the Software Switching framework: (See Fig. 4)  

(a) Steering traffic between co-resident containers, VMs.  
(b) Instantiating separate overlay networks over a shared datacenter 

fabric, using VXLAN headers.  
(c) Steering packets between a sequence of network functions (NFs), 

by inspecting and modifying a Network Services Header (NSH). 

SFC Traffic Steering scheme: There has been several proposals from 
the IETF working groups through RFCs and reference designs for the 
practical implementation of service functions chaining in SDN/NFV 
converged infrastructures. To enforce traffic steering at the network 
level in SDN managed infrastructures, the following major approaches 
are recommended: 

• Network Overlay/Underlay: These methods give an efficient frame-
work for steering packets across the SFC by re-using the standard 
protocol header from the packets. The shortcoming is that meta-data 
is not shareable and hence lacks the ability to re-classify or modify 
SFC (after the initial chaining sequence is assigned), thereby inhib-
iting the dynamic extension/modification of NFs at run time.  

• Explicit tagging: “Network Service Header (NSH)" (Quinn and Elzur, 
2016) draft proposed by IETF addresses the SFC encapsulation 
(RFC8300). NSH specifies the topology independent format of 
overlay-headers that are carried by the packets on the dataplane. The 
NSH metadata gives the ability to the middleboxes/services/NFs in 
the SFC to distinguish the services that operated on flows and steer 
the packets forward in the chain. FlowTags (Fayazbakhsh et al., 
2013) allows SFC to identify tag-field-enhanced packets where NFs 
create and check the tagged fields when exchanging packets. Such 
approaches can encourage reclassification and steer the packets 
across any NF chain path, the caveat being the action-results cannot 
be shared as they operate in a different context. Moreover, these 
methods are more complex to manage and add steering overhead to 
SFC. 

Policy design to describe service graphs: Network operators 
delegate unique roles to NFs in a service chain for sequential chaining of 
operation. Nevertheless, since we expect to promote NF parallelism in 
NFV that conventional NF positions specification approaches were un-
able to describe. To this end, OpenPATH enriches the semantic repre-
sentation of the policies, and priorities in SFC. 

Orchestrator design to manage service graphs: The standard 
sequential chain is converted into an efficient parallel service graph. 
Therefore, managing and orchestrating the NFs at run-time to fulfill the 
order and dependency between the NFs in the chain is complex. To this 
end, OpenPATH provides an interface to the operator to define the 

Fig. 4. Software switching use cases.  
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order, dependencies, priorities and at execution time the SDNFV 
orchestrator utilizes an automated analysis and placement algorithm to 
fulfill the SFC efficiently. 

Optimizing the resource overhead: SFC parallelism demands both 
copy-free/copy-based functionalities from the underlying packet steer-
ing system, to execute the SFC graph. These copying operations and 
movement of packets may increase the load on the memory subsystem 
and communication fabric respectively, and it’s challenging to orches-
trate and optimize the usage of resources(Memory and Bandwidth). 
OpenPATH framework performs resource-overhead analysis considering 
the SDN dataplane capabilities and shared-memory, Fast I/O mecha-
nisms to define multiple graphs for the same SFC and installs the flow- 
table match-action rules. 

Designing efficient infrastructures: NFV parallelization poses 
some questions about the architecture of infrastructures. Next, the 
network should enable the lightweight copying of packets to reduce 
overhead copying and the network needs a merging module to combine 
processed packets in the final output from parallel NFs. Also, the packet 
movement and Fast I/O approaches in the NFV platforms (Martins et al., 
2014; Fayazbakhsh et al., 2013; Sun et al., 2017; Zhang et al., 2016a) 
rely on a virtual centralized switch to arbitrate and steer the packets 
between NFs. In these approaches, due to a centralized switch as the 
hub, packet queuing/routing would become a bottleneck and compro-
mise the efficiency. These problems may exacerbate during NFV paral-
lelism, which may multiply (copies) the packets to be steered across two 
or more parallel paths in the SFC graph. In OpenPATH we exploited 
shared-memory abstraction for packet copying and packet-steering 
through the NF handler engine attached to each VNF in the chain, 
thus avoiding the complexities. 

Placement of NF: Modern networks demand optimized infrastruc-
ture services and for deploying a NFV platform with a string of network- 
functions/services. The naive placement approach would be to divide 
the NFs equally across the available NFV nodes and due to multiple 
traversals of packets across the nodes, they incur additional overheads, 
throughput will also suffer in long NF chains that span multiple nodes. 
OpenPATH employs smart affinity-based placement for SFC which incurs 
lower latencies compared to traditional placement approaches. 

Service Chaining: Sophisticated networks and datacenters deploy 
complicated and scale-out network service plans with a large number of 
services (long and complex SFC pipelines). In the legacy configuration 
(NFs on VMs) the processing rate and throughput decrease as we in-
crease the NFs and number of disjoint paths in the chain. This bad 
performance is due to the non-optimal I/O, packets copying, across the 
stack and buffers, multiple contexts switching within the node and as the 
number of NFs increase the chokepoints, packet touring back and forth 
between the VMs through the switch. In OpenPATH architecture, with 
the NFs already embedded in the data plane switches nodes, we save all 
the above-mentioned overheads and the other resource optimization 
techniques such as zero-copy and smart load-balancing across multi- 
node SDNFV configuration have played a key role in achieving 
maximum practical sustained peak throughput even with the scaling of 
the chain. 

Scalable Deployment: Scalability and elasticity are accomplished 
by using OpenFlow or other load balancing strategies to dynamically 
reconfigure the flow tables on the vSwitch nodes (dataplane). This 
means that both the number of written services and the traffic in our 
proposed solution scale-out. The forwarding algorithm should be 
designed, which scales up with port density. 

Service Chain Management: The NFV platform orchestrator is 
provided with the global view and control to dynamically add network 
functions or services in the chain. To this end, OpenPATH’s central 
SDNFV orchestrator is responsible for enabling the NFV/applications at 
run time through the NFV MANO and other management processes, e.g., 
“load the connection restricting < blacklist IP> and restrict TCP connections 
to 80." 

In Summary, OpenPATH is designed with the following principles 

and requirements:  

• Performance: service chain management should have minimal 
latency.  

• Centralization: the control plane should offer a centralized overview 
of all network link states. NF order and dependencies in an SFC to be 
analyzed factoring in the correctness of SFC outcome.  

• Generalization: supports all standard stateful connection-oriented 
protocols. 

• Extensible: should not demand modifications to NFs code or appli-
cation logic. provide compatibility to run legacy NFs. OpenPATH 
supports new features offered by advancing the SDN and NFV 
standards.  

• High Scalability: SFC efficiency scales with the number of cores on the 
host nodes and supports complex placement graphs that span with 
the number of nodes in the chain.  

• Operational Complexity: running the framework control operations 
should not incur too much overhead and no single point of failure 
and coordinating with the stateful dataplane does not cause bottle-
necks in a broad set of use-cases. 

3.2. Framework overview 

OpenPATH framework builds upon the implementation of the 
stateful SDN architecture (Krishnan and Achuthan, 2019). The frame-
work offers a high-performance programmable dataplane switch called 
VARMAN (Krishnan et al., 2019a), API/SDK to implement a suite of 
security analytics on the control plane and lightweight VNFs (Virtual 
Network Functions) on the data plane for monitoring and policy 
enforcement. The network-wide policies have to be converted into 
flow-rules and match-action control for every domain. The SDN 
controller, NFV MANO, and NF Manager within each domain 
co-operatively decide and interact over control channel to enforce the 
rules on traffic flows and packets. Following the principles of several 
popular SDN-based frameworks (McKeownet al., 2008; Pfaff et al., 2015; 
Open, 2019; Barbette et al., 2015; Paolino et al., 2015; Rizzo and Let-
tieri, 2012; Honda et al., 2015; Sonchack et al., 2016; Jackson et al., 
2016; Bianchi et al., 2016; Arashloo et al., 2016; Fayazbakhsh et al., 
2013; Bremler-Barr et al., 2016; Zhang, 2019), OpenPATH offers the rich 
set of declarative/abstraction interfaces, that are used by the control 
plane applications to communicate to the SDNFV dataplane switches in 
each domain how traffic should be processed and rules/actions on the 
flows. We also export a native SDK/library package, that allows 
NF/applications to utilize the optimized functions, in contrast to 
un-changed “legacy” applications/NFs that are portable and directly run 
on standard sockets and northbound API supported by the OS. 

The OpenPATH framework has mainly two planes: management and 
smart dataplane as shown in Fig. 5.  

• Management & Control Plane - SDNFV orchestrator, SDN 
controller, NFV MANO processes manage the traffic packets that flow 
through the series of NFs in the SFC. The NF Dependency inspection 
process analyses the chain of NFs, their instruction sets, and function 
blocks, fields of the packet and the corresponding operations (read/ 
write), the dependencies between NFs. The results of the analysis will 
produce a dependency matrix to mark the parallel and sequential 
parts of the SFC. The head/tail NF of the chain and the intermediate 
distribute/merge functions are also setup. SDN controller manages 
the programming functionalities of the network devices and traffic 
and also hosts the NFV services. NFV-MANO is tasked to coordinate 
and manage the NFV services and network functions that are 
deployed in the vSwitch nodes.  

• SDNFV Data Plane - OpenPATH switches are configured and 
interconnected in different topologies in the dataplane layer and 
connected to the management layer through the standard OpenFlow 
protocol and the controller, and through both native/open standard 
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API to the applications at the top layer. The infrastructure for the 
data plane consists of a low-level packet processor, multi-physical- 
port network adapters, hardware whitebox switches, hypervisors 
and their internal virtual switches. The NFs and packet forwarding 
pipeline are designed for implementing in software/hardware/ 
hybrid-model with SmartNICs. Every node in the SDN domain is 
supervised by an NF Manager, that communicates with the SDN 
controller. A dataplane instance vSwitch receives a service chain 
graph from the NFV-MANO controller and the NF-Manager on that 
vSwitch node, apply the flow-rules on the packets (match-action). A 
packet would go through the VNFs in the service chain deployed 
across the corresponding switches. 

The OpenPATH framework is designed to provide efficient NFV 
management by employing a modular and extensible datapath and the 
standard OpenFlow communication protocol for orchestrating SFC and 
controlling the forwarding/steering the packets across the network. The 
Controller is responsible for launching and executing application logic in 
dataplane switches and enforcing the policies/actions on the matching 
flow/packets defined by the operator. The dataplane can be directly 
controllable (with delegated access levels by the SDN controller) using 
dataplane programming languages. (e.g., P4). Using the latest optimi-
zation algorithms, we present in this framework and the network-wide 
view of the packet processing tasks in the network available to the 
cross-plane SDNFV orchestrator, the controller fuses processing steps of 
multiple applications in such a way that eventual processing stays the 
same, but packets do not go through the same processing over and over 
again, thus improving the overall performance considerably. The com-
plete network state awareness of SDN can be managed in a central 
controller when supporting NFs natively in the dataplane. An extended 
SDNFV cohesive architecture is designed that hosts both NFV and 
network management services. It means that there are no separate NF 
agents or new API, so they do not have separate control protocols unlike 
the solutions proposed by (Sonchack et al., 2016; Fayazbakhsh et al., 
2013; Gember-Jacobson et al., 2014; Bremler-Barr et al., 2016). In 
OpenPATH, NFV integration and service function chaining technologies 
are hosted within the SDN architecture. The aim is to have only one 
common SDNFV orchestrator in the network who has the visibility of the 
networking infrastructure, manage the switching policies, and also 
control the deployed NFV services. 

4. Application-aware SDNFV architecture 

Fig. 6 shows the main system components in OpenPATH architecture 
to handle the applications and NFV services including a policy definition 
engine, SDN controller, NFV MANO, SDNFV orchestrator, and NF 
Manager. OpenPATH offers a versatile platform that can be used to 
speed up packet operations, an efficient packet I/O, and enables the 
application/NF to concentrate on programming the logic and run time 
policies. The framework provides an intuitive interface to the operators 
for representing SFC policies and intents for the orchestration of the 
applications/NFV services. The NF Chain represents a network function 
graph deployed in a series of VNF instances, distributed over one or 
more virtual switches (vSwitch) or server nodes. OpenPATH is designed 
on the concept of a “split data plane” comprising of a switching fabric for 
high-speed packet forwarding between ports; and switch management, 
that processes packets, runs application logic and policies and de-
termines the path/route/next hops for them. This disjoint design and 
loose coupling inside the dataplane allow OpenPATH to deliver a 
smooth, high-performance fabric and capabilities for programming the 
packet processing logic, operators to deploy custom service chains. 

The SDNFV orchestrator communicates with vSwitch nodes on the 
dataplane via an NF Manager (NFM) and provides flexible control 
functions from the management plane and VNFs/NF-Manager on the 
vSwitches are given independence for routing and steering the packets. 
The main aim of the framework is to provide a flexible open switching 
infrastructure and extended API. The SDN controller orchestrates the 
overall operation of a network domain, the NF Manager coordinates the 
operations/flow tables within each vSwitch node. Thus, the data plane 
operates like the softwarized switching fabric that underlays VNFs at 
each switch node. The standard interfaces such as sFlow, OpenFlow are 
used on the southbound control channel by all the management/control 
plane processes. 

4.1. SDNFV dataplane 

This paper builds on our earlier work VARMAN (Krishnan et al., 
2019a; Krishnan et al., 2019b) a software switch as the dataplane in 
OpenPATH. We followed the de-facto method for network management 
in production grade dataplane by using Open vSwitch (OVS) (Pfaff et al., 
2015) and OpenFlow (McKeownet al., 2008), although the Click (Kohler 
et al., 2000) styled interfaces are common in academic contexts. Fig. 6 

Fig. 5. High-level illustration of OpenPATH framework.  
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shows the OpenPATH overall architecture, the dataplane which consists 
of two internal layers that has divided the functions of a switching 
framework. The stateful dataplane makes the “match-action:for-
ward/drop” decision for the majority of the normal flows and executes 
the pre-defined “network-function/application logic” inside the data-
plane switching framework, without forwarding to the controller (“un-
less there are suspicious flows/exceptional conditions”). The design 
spans across both the planes of the SDN to cooperate in managing the 
stateful modules/NFs deployed in the dataplane and their corresponding 
control applications in the control plane. The NF Manager with the 
worker thread PacketQ coordinates the zero-copy packet movement 
operations by setting up reference-descriptors (Tx/Rx) and manage the 
I/O operations from the NIC to the VNF queues. The PacketQ poll-mode 
driver connects virtual or physical interfaces and the device modules. 
The OVS-DPDK abstraction establishes the queues/descriptor rings (VNF 
Qs) in the shared-memory regions for a direct copy of Rx/Tx packets 
from these NIC queues. OpenPATH PacketQ/DPDK handles the 
Ingressing packets and with the help of NF Manager steers it towards the 
head of the NF chain so it can also apply actions to the packet and with 
the unique forwarding mechanism built inside each VNF, the packet gets 
processed on the NFs in the chain until it reaches the tail NF and egresses 
the node. There is a delineation between a high-performance switching 
fabric (forwarding packets between ports) and switch management 
(deciding the egress ports). The switching network can be extended to 
large numbers of virtual ports and also provide parallel access to egress 
ports when multiple Tx VNFs forward packets independently in the 
chain. The dataplane is designed to support both software and hardware 
switches, to speed up the transfer of packets. Another advantage of 
OpenPATH is its inherent multi-tenancy support: Multiple network 
tenants may run their NFs in the same network, on the same data plane 
resources, while essentially isolating themselves. Two separate admin-
istrators, for example, could deploy two separate IPSs with different sets 
of rules. In OpenPATH, these two IPSs can be combined on the data 
plane to one NFM switch, while maintaining isolation on the control 
plane of the program. This greatly decreases ownership and running 
costs, since the data plane can be utilized even better. The OpenPATH 
switching fabric will employ all possible software acceleration tech-
niques for packet I/O processing. The NF Manager can dynamically 

install new policies to process packet flows which save from overhead 
involving the control plane. 

4.2. Management and control plane 

Fig. 6 shows the framework that integrates SDN/NFV control and is 
supervised by the SDNFV Orchestrator. 

SDN Controller is a critical management application, with various 
sub-systems and functional modules that run as worker threads. It im-
plements OpenFlow (OF)standards for the communication channel to 
dataplane and processes the messages from OF switches and provides 
standard REST/JSON/native OpenPATH API for the applications. The 
controller runs the entire network as the brain of the framework. The 
controller which has the purview over the entire network gathers and 
maintains high-level state of the vSwitch flow-tables, OpenFlow pipeline 
installed in VNFs, network path characteristics, health, policies, and 
topology changes in the network. The controller then launches the NFs 
on vSwitch nodes and transmits the flow-rule tables to the NF Manager 
on those nodes for steering the flows through the NFs. The other key 
operations include: Topology Collection (using the LLDP protocol), Flow 
Analyzer and OVSDB as the datastore for the OpenFlow network. 

NFV MANO is another critical management application that controls 
and orchestrates the NFV platform integrated inside the switch nodes. 
This centralized application schedules CPU and other resources for the 
VNF instances and places them on the vSwitch nodes in the data plane. 
The NFV MANO handles the NF parallelism, dependency analysis and 
placement and employs a smart affinity-based placement technique by 
co-hosting NFs that have shared operations/cycle, as this will decrease 
the unnecessary trips of packets flying back and forth between the NFs in 
the chain. The key function of the NFV MANO is to deploy NFV appli-
cations/programs as a service-chain on the data plane nodes and 
orchestrate them during the execution. 

NFVx augments the data plane and aids in the execution of light-
weight functions. On the switches, the OpenFlow software stack is 
enhanced to execute the applications/NFs and NFV functions. On 
receiving the service graph and the corresponding flow-tables, the NF 
Manager will install the NF functions in the SFC and set up the match- 
action OF pipeline in the VNFs. This module coordinates with the 

Fig. 6. Application-Aware NFV integrated SDNFV Architecture.  
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global service-chain-aware SDN controller. 
SDNFV Orchestrator- This is the most critical management and 

control software in the OpenPATH framework. It is a cross-functional 
application that communicates with all layers of the networking infra-
structure. It coordinates the integration of NFV platform services with 
SDN infrastructural components and protocols. In multi-domain SD- 
Cloud deployments, this interfaces with the controllers and network 
management services across the domains. The Network Operators can 
communicate their policies through the templates/interface provided to 
the orchestrator. The flow rules represent the policies, which include the 
intents and info for the service chain. Inside this plane, the SLA manager 
converts these logical policies into a machine-readable form for further 
application processing. It communicates with the Topology Manager, 
which maintains the network topology. The Topology Manager tracks 
and collects network data, i.e., network utilization, switch TCAMs, NF 
position, and load on nodes. This runs a heuristic that determines the 
order of NFs in service chains and optimal placement for NFs. The 
orchestrator supervises the fulfillment of the SLA/QoS policies at run 
time and monitors the Service Function chaining performance, NFV 
platform utilization, vSwitch health and efficiency, faults and recovery 
processes, controller responses. It gathers data from all components 
across the network, maintains the topology map and configurations of 
the deployed NFV. 

Control Applications- The management/control layer allows op-
erators to run custom apps for policy creation/management/monitoring 
their NFs deployed in the OpenPATH infrastructure or match-action 
tables in JSON format over southbound and northbound API. 

5. Network function service chaining 

This section describes the strategies and techniques we followed to 
transform the design requirements for an efficient NFV platform under 
the SDN architecture. The complete workflow in realizing the SFC 
optimization in OpenPATH is illustrated in Fig. 7. OpenPATH consists of 
two major functional units in the workflow: the order-dependency 
analysis function as part of the SFC Control engine, and the mirror/ 
merge functions on the software/vSwitch device. 

5.1. Service graph description 

The first challenge in the SFC process is to describe the intent of the 
operator in terms of Sequential chaining and priorities/preferences of 
the application in parallelizing certain functions in a particular order. 
Also, the description should be intuitive and expressive in the interface. 
OpenPATH provides an interface for the semantic representation of the 
policies, priorities in SFC. SDNFV Orchestrator is designed to define, 
construct and manage service graphs through the entire life cycle in 
execution. The standard sequential chain is converted into an efficient 
parallel service graph. Therefore, managing and orchestrating the NFs at 
run-time to fulfill the order and dependency between the NFs in the 
chain is complex. We provide an interface to the operator to define the 
order, dependencies, intents, priorities and at execution time the SDNFV 
orchestrator utilizes an automated analysis and placement algorithm to 
fulfill the SFC efficiently. The Policy Definition Templates are:  

• Order (NF#1, before/after, NF#2): defined to express the order in 
which any two NF#s have to be executed.  

• Priority (NF1 > NF2): defined to specify the Priority of one NF over 
another NF, in parallel execution.  

• Position (NF#, first/last): defined to specify the position of an NF in 
the chain. 

5.2. NF dependency analysis and parallelization 

OpenPATH designs a hybrid SFC platform, in which both paral-
lelism/sequential chaining is facilitated. OpenPATH recognizes paral-
lelism opportunities through its dependency analysis feature. The NF 
Parallelism has some key requirements: i) When a set of NFs are paral-
lelized, packet data are distributed (multiple copies) and once the par-
allel NFs are executed the output packets are merged for the processed 
packet traverses through the chain. ii) No source code or logic core 
changes should be done to the NF/application for parallelism or scaling 
the instances. We employed the dependency-analysis and NF Parallelism 
algorithm as illustrated in Fig. 8, to determine parallelizable NFs from 
all possible pairs in the SFC. This algorithm decides whether two NFs can 
be parallelized (with-copy/copy-free) or not. Several critical parameters 
are taken into account when performing NF dependency analysis: (1) 
The read and write operations performed by NFs on data packets. (2) 
Flow termination or packet drops (e.g., by a firewall) in an NF. (3) 
packet reconstruction (e.g., by a WAN optimizer|, NAT). (4) load bal-
ancer in front of several instances of the same NF. The consistency 
condition ensures that the packet coming out from the final node in the 
parallel parts must be similar to that packet if it had crossed the NFs in a 
conventional sequential manner. The algorithm depicted in Fig. 8 ac-
cepts a serial SFC (“designated as s”) as input, with the help of two tables 
(Table 2, Table 3) and outputs the parallelism indicator for each pair of 
adjacent VNFs in the SFCs. In a service graph, a parallelism indicator is 
added to show whether two adjacent VNFs will operate in parallel. 

P(m,m+ 1)=

{
1, if f s

m and f s
m+1 can run in parallel

0, otherwise 

Fig. 7. Workflow of the SFC implementation.  

Fig. 8. NF parallelism analysis.  
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5.3. Service graph construction 

OpenPATH represents a service graph for a network-function/service 
sequence/chain. The graphs can represent vertex nodes and edges, the 
multi-path trajectories of the packets based on the content inspection. 
The edges leaving a vertex node determines the next hop for the packet. 
The NFV MANO constructs the final service graph (Fig. 9) from the 
outcome of the NF Dependency Analysis and operator’s policy template. 
The resulting service graph and (possible sub-graphs) are transformed to 
OpenPATH flow-table rule definitions so that the SDN controller can 
install and manage the NFV processing at the dataplane switches. When 
a VNF is done processing a packet, the NF handler invokes - “Match: 
<result of the VNF>, Action: Discard/Send to/Default”. The SDNFV 
Orchestrator/operator defines the “Default path” for every node, one of 
the edges (highlighted with bold lines), and “Default action” is usually 
taken by the VNFs. 

In other dynamic SFC cases (Fig. 10), the NFV MANO can install 
match-actions rules for some VNFs that can take a custom action/ 
execute a logic based on the result from the current VNF. This decision is 
taken on per-packet for the next path/edge to traverse. In an Enterprise 
Edge gateway use-case, the SFC may have a sequence of NFs for the 
packets to go through - e.g., IDS, Firewall, Sandbox, DoS scrubber, 
honeypot, and so on. The IDS will be coupled with Sandbox, so that 
when it detects anomalies and malicious flows the packets are detoured 
to Sandbox (with the match: action rule configured to call Sandbox VNF). 
With this scheme on the IDS VNF, only the suspicious packets are steered 

through the Sandbox VNF path and the benign traffic flows through the 
default path. Also, through feedback messaging, the future packets of 
that flow would be re-routed through the path of the Sandbox NF or 
dropped at the Firewall itself, much ahead in the chain. 

5.4. Fault Tolerance and smart placement 

OpenPATH represents a service graph for a network-function/service 
sequence/chain. OpenPATH is optimized for virtualized SDN environ-
ments, enabling smooth failover, load balancing and fault-tolerance by 
careful route allocation. A significant limitation of generic topology- 
aware routing methods is their reliance on topology structures and 
their inability to handle temporary connection changes and failures. 
SDN enables the introduction of new networking abstractions and the 
simplification of network management. Three types of errors can be 
tolerated from a fault-tolerance standpoint: (1) VNF process failures or 
software application faults inside a vSwitch node which may lead to 
breaking/blocking the chain of NFs. (2) If a lower-level switch goes 
down, hosts can lose connectivity with the VNFs attached to it. We also 
consider connection faults on the data plane, because switch failures 
activate the same warnings and generate the same answers. (3) Man-
agement/control plane failure - control channel saturation or congested 
link disconnects leading to split SDN stack. Controller application fail-
ures or overloading. NFV-MANO failure, NF-Manager un-responsive or 
terminate to co-ordinate with the SDNFV orchestrator. The dataplane 
failure recovery capability is described by the VARMAN (Krishnan et al., 
2019a) as the stateful OVS stack is derived completely from that work. 
The failure of any of the OpenPATH components such as NF-Manager or 
termination of any of the NF handler threads on the vSwitch node is 
considered as a break in the SFC path and hence backup-paths are 
calculated ahead of time so that the traffic interruption to switch the 
VNFs is minimal at run-time. The NF parallelization mechanism breaks 
up larger flows into smaller flows. Switches forward separate sub-flows 
through the associated operating VNFs in the sub-SFC. Each sub-SFC is 
allocated a distinct sub-flow. Fig. 11 shows method in which the main 
SFC is divided into sub-SFC graphs. When a fault happens in an oper-
ating sub-SFC, the state and metadata of the VNF is migrated in the 
back-up SFC nodes and will be activated for future flows. OpenPATH 
provides immediate protection against all single-failure scenarios, 
without requiring the controller to compute alternate routing or update 
flow tables. It is, nevertheless, possible to detect several or additional 
failures in a single network domain with the help of the controller’s 
reactive measures. The serialization module can aggregate sub-SFC data. 
In parallelization, some information and state data often need to be 
synchronized. Based on usability criteria, the length and proportions of 
the VNFs may be modified in the SFC, Sub-SFC and back-up SFCs. The 
backup sub flow increases the overall availability of the SFC. The NFV 
MANO constructs the final service graph from the outcomes of the NF 
Dependency Analysis/Parallel and Placement algorithms and operator’s 
policy template. The resulting service graph and (sub-graphs) are 
transformed to flow-table rule definitions. 

After provisioning back-up sub-graphs and for parallel service graph, 
the sub-SFCs are mapped to vSwitch-nodes, considering affinity factors 

Table 2 
Operation table.  

Virtual Network Function Packet Flow 

Firewall R Y 
Gateway  N 
Intrusion Detection System (IDS) R N 
Video Optimization Controller (VOC) R N 
Netcache R N 
Virtual Private Networking (VPN) R/W Y 
Network Address Translation (NAT) R/W N 
WAN Optimization and Bandwidth Shaper R/W N 
Traffic Monitor R N 

Packet Operations: R denotes Reading. W denotes Writing. 
Flow Operations: Y denotes ‘Can Modify’, N denotes ‘Cannot Modify’. 

Table 3 
Capabilities table.  

VNF1 \ VNF2 Read Packet Write Packet Modify Flow 

Read Packet Y Y Y 
Write Packet N Y Y 
Modify Flow N N N 

Column 1 corresponds to actions of first VNF. 
Row 1 Corresponds to actions of the second VNF. 
Y denotes “VNF1 and VNF2 Can run in Parallel”. 
N denotes “VNF1 and VNF2 Cannot run in Parallel”. 

Fig. 9. Default service graph example.  

Fig. 10. Dynamically Changing Service graph.  
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for the best overall SFC processing time and also fail-safe factors for the 
reliable completion of the SFC. In summary, VNF failures and node 
availability characteristics are factored-in for deploying the serial/par-
allel sub-SFCs. The placement strategy involves splitting the paths of the 
working-SFCs and the corresponding backup-SFCs based on affinity 
levels namely: High-Affinity and Low-Affinity. This design reduces 
steering overhead between VNFs. When a fault or attack happens in the 
operating sub-SFC, the state and metadata of the VNF in back-up SFC 
nodes incur additional overhead. 

High-Affinity: All the NFs within one SFC are deployed in one node. 
There is no internal overhead for steering flows between VNFs and 
during failures. 

Low-Affinity: The active sub-SFCs and the associated back-up SFCs 
are not placed in the same node. There is additional synchronization 
overhead when failures occur. 

Fig. 12 shows the algorithm for deploying a set of VNFs that form a 
given SFC. The general strategy is to first place the active sub-SFCs on 
the nodes, and then the associated back-up SFCs are deployed depending 
on the degree of affinity. In summary, to recover from failures in the 
Management/Control Plane, OpenPATH framework uses ‘active-active’ 
fail-safe method with two machines actively in sync to take over when 
one of these critical components fail. For the failures of any of the 
components (network partition or chain broken), the backup-path 
approach will be followed. 

5.5. SFC packet forwarding 

The SDNFV Orchestrator coordinates with the NFV-MANO and SDN 
Controller to create flow-tables for each of the VNFs in the SFC. Besides, 
the SDN controller can set rules to accommodate a broad category of 

flows to reduce the flow table size. The categorized packets of those 
flows are steered through the chain of NFs. We use Flow-based traffic 
management, and this method is not based on header fields, proxy, and 
other additional tags. Rather, it employs an independent forwarding 
scheme leveraging the OpenFlow, from overlaying and preserving 
packets unchanged/transparent in the SFC. Our scheme uses the com-
bination of most recent updated OpenFlow 1.5.1, forwarding policies 
defined in Yang format, in the SFC friendly OpenDayLight (ODL) 
controller. A global forwarding table for managing the flows is created 
by NFV MANO and transmitted to the NF Manager. Fig. 13 shows the 
path mapping technique to steer the packets/flows through different 
paths/NF pipeline. 

The NF Manager divides the global table and applies individual VNF 
flow-table rules. NFV MANO distributes the packet forwarding task 
across the dataplane switch nodes and configures VNFs to directly/ 
parallelly forward packets to the next VNF in the chain without any 
coordination. An NF handler function is plugged into each VNF for-
warding path, to participate in the packet steering process, and as this is 
transparently done by the OpenPATH so VNFs don’t require code 
changes. The NF Manager in the vSwitch is the communicating agent at 
run time and manages a forwarding table (FT), that corresponds to the 
sub-graph view of the global service graph. This node manager installs 
the most updated packet-steering rules in each NF handler in the VNF 
chain. PacketQ module is a poll-mode driver that manages the Ingress/ 
Egress queues and the physical network interface adapters in the 
vSwitch node. This module receives the packets from the virtual-NIC and 
performs lookup with 5-tuple matching on the flow-table and forwards to 
the first VNF in the service-graph. In a typical SFC scenario, the VNF at 
the head of the chain receives the packet, runs the logic on the packet 
and NF handler will pass on the packet to the next VNF in the sequence 
or make copies to forward to the next VNFs in parallel. This packet 
processing and steering continue until the packets reach the tail of the 
chain where they are merged for output Egress processing. Network 
topologies have been configured in such a way that all VNFs that are 
connected to a common edge switch are on their own subnet. NFV- 
MANO will have full knowledge of the interconnecting network topol-
ogy. Other traffic is redirected and therefore must go through a lower- 
layer VNF. The lower- and upper-layer switches in any given pod in a 
fat tree are set up to perform forwarding/filtering functions. As a result, 
all upper-level switches in the pod will contain a route to the destination 
subnet, and each one underneath them will too. For all other inter-pod 
traffic, the default/0 prefix has a secondary path TAG (PT) (the least- 
significant byte of the destination IP address). We use the Service 
Chain (SCID values) as a source of probabilistic entropy; it will distribute 
network traffic equally across the outgoing links. Also, the subsequent 
packets will travel the same direction, so there will be no packet reor-
dering. Forwarding state can be incrementally built into the switches. 

5.6. Flow table management 

The NFV MANO constructs the final service graph based on the NFV 
dependency analysis and operator’s policy templates. After the service- 
graph is generated (possible sub-graphs) at the controller, they are 

Fig. 11. SFC distribution.  

Fig. 12. SFC placement strategy.  
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transformed to flow rule definitions. The flow tables at the vSwitch 
nodes are managed by the NF Manager. We need to account for saving 
flow table capacity of SDN devices through aggregating micro-flow for 
high scalability. The flow-table installed by the SDN controller to each 
vSwitch follows the standard OpenFlow but is expanded to support our 
SFC steering scheme, by re-purposing some of the fields in the packet 
headers: i) some fields are added - SFC ID, PATH ID, TAG, SERVICE ID. 
ii) match-action rule has a new “flag” that indicates if the current packet 
is split into multiple copies to traverse through parallel paths. For par-
allel action paths, multiple VNFs will be invoked next for the same 
packet. iii) match-action rule also has a field for the tag that carries 
metadata used by NF handlers in the VNF for run-time monitoring and 
statistics collected by the NF manager. Fig. 14 shows the flow table 
management. 

5.7. Network status synchronization and SDNFV Co-ordination 

In OpenPATH, we do not directly address external state coordination 
across NF replicas; rather, we concentrate on how the state handled at 
each layer influences flow routing decisions made across both the 
Control Plane and Data Plane in complex service chains. The hierar-
chical control system makes decisions based on the internal and external 
states that each layer maintains. OpenPATH forwarding decisions are 
not just based on flow rules, but on flow states, which the switch retains 
and modifies in response to packets and timeout events. The concern is, 
therefore, whether this new state should be reported and reapplied 
during reconciliation. Flow state synchronization and reconciliation are 
unnecessary for OpenPATH operations to be reliable. Furthermore, the 
switch’s forwarding action is independent of the flow condition of every 
other switch. Since flow-based networking makes more frequent use of 
the control plane than conventional networking, it has higher over-
heads. Its dependence on the control plane entails inherent overheads: 
the bandwidth and latency associated with communication between a 
switch and the central controller. The stateful data plane of OpenPATH 
appears to contradict the classic architecture, which centralizes the 
stateful decisions with the controller, removing the need for devices to 

implement complex software to manage state distribution. Indeed, 
modern SDN platforms (such as our research work OpenPATH) use a 
distributed flow rule database to synchronize the switches. The latency 
and overhead associated with inter-switch communication on the data 
plane fabric is much lesser in our architecture compared to traditional 
SDN architecture with stateful dataplane, where the decisions have to be 
routed across the much slower control channel and centralized switches 
as in the case of VM based NFV platforms. 

The OpenPATH network describes the overall service as a hierar-
chical network of network functions that are distributed over one or 
more vSwitches (VNFs). All nodes keep track of NF state, and make 
decisions based on that. “NF Managers” allow for the development of 
load balancing data and reaction to errors/overload. Additionally, the 
SDN Controller contains the flow table, which may be maintained by the 
NFs. We coordinate with each node’s SDNFV Orchestrator to decide flow 
rules but allow local table rules to be updated as appropriate. We 
organize the control and system administration into a three-layered 
structure. OpenPATH’s mission is to consolidate state visibility, while 
distributing information. state inside the VNF is contained as a node 
specific. Transient states include things like the application and data 
caches, i.e., state that is needed for the NF, but does not impact on the 
rest of the network and the SDN controller. The node-specific state 
presents the current utilization of the vSwitch (OVS), as well as resource 
utilization on the vSwitch. There is a state from the outside that de-
termines how packets are handled. Internal and external state relevant 
for flows are stored in the VNFs. This state has to be consistent across all 
or some of the NFs, particularly if they are handling network flows. 
When an NF has to take notice of an external state, we use the NF 
Manager to notify other NFs. In multi-node SFC scenarios, as the NF state 
is distributed across multiple nodes, the SDN controller initializes the 
tables across the nodes and periodically synchronizes the state tables. 
This problem and the management overhead are not unique to Open-
PATH, and we solve this issue efficiently through the native design 
choice of “Statefulness” in the data plane. Since flow-based networking 
makes more frequent use of the control plane than conventional 
networking, it has higher overheads. Its dependence on the control plane 

Fig. 13. Packet Paths mapping Methods.  

Fig. 14. Flow Table generated for Complex service chain.  
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entails inherent overheads: the bandwidth and latency associated with 
communication between a switch and the central controller. OpenPATH 
has defined messaging interface over OpenFlow between all the com-
ponents in the SDNFV ecosystem - SDN controller, NF Manager, NF 
handler, VNFs and the NFV MANO for the following actions: (i)Specify 
processing graph and block configuration. (ii)Events. (iii) Load infor-
mation. (iv) Isolation between NFs. (v) Network-wide view. (vi) Auto-
matic scaling, provisioning, placement, and steering. (vii) NF/ 
application match-action definitions. Each command message applies to 
flows matching some criteria, F, for a Switch Node N and Service S (one 
or more flows or wild card) in the SFC. Some example commands are:” 
SkipMe (F, N), RequestMe (F, N), ChangeDefault (F, N, S) and Message (N, 
X, Y) for sending JSON format (key/value) from VNF N to NF Manager.” 
The control communication through Messages that happen on the 
southbound channel is encapsulated in special message “OpenFlow 
VENDOR” and handled by the SDN Controller. 

OpenPATH provides a rich set of inter-VNF messaging abstraction 
API- that facilitates communication between VNFs for cooperative SFC 
processing. Some example API actions: "(i) reconstruct TCP byte streams 
(to avoid the redundant overhead at each NF), (ii) per-packet metadata 
tags that accompany the packet even across NF boundaries, and (iii) 
inter-NF signals (e.g., a notification to block traffic from an IDS NF to a 
firewall NF)." These inter-NF messaging are useful for SFC optimization 
and facilitate designing fine-grained NFs modules that can be manipu-
lated at run-time. OpenPATH extends a control API exposed to NF 
manager: i) boot-up/spin-down VNFs instance. ii) for creating/ 
destroying virtual interfaces to VNFs. iii) merging/splitting multiple 
VNFs in a chain inside a vSwitch host or between nodes. iv) exchanging 
alerts/events between NFV MANO such as faulty/rogue/overloading 
nodes, that could trigger exceptions to respond/remediate/recover. The 
cross-layer control interface is provided over JSON-like structured 
messages and three programmable APIs - Python/C/Rest and scriptable 
configuration language - CLI and every parameter in the SDNFV and SFC 

environment is run-time configurable. 

6. Implementation 

Having defined a set of design principles, this OpenPATH imple-
mentation is based on a high-performance, programmable stateful 
dataplane SDN stack and an application aware SDNFV framework. The 
hierarchical framework reference implementation is illustrated in 
Fig. 15. OpenPATH is an all-softwarized switching framework to inte-
grate the NFV platform with the SDN architecture, at the distributed 
dataplane switches (programmable white boxes or server nodes) and 
sharing/coordinating the control and service chaining with the SDN 
controller. A dataplane instance/node of OpenPATH is called as 
vSwitch, which is installable fully as software on a high-core density 
server host machine or deployed in a hybrid software/offloaded- 
hardware-NIC model. The software switching and management com-
ponents are developed in the Open vSwitch (OVS) opensource code base 
and we augmented the core stack with native VNF modules for sup-
porting NFV services. 

6.1. Stateful dataplane 

Software switch solutions following the “match/action” approach 
such as OvS-DPDK (Open, 2019) and P4 (Osiński et al., 2020) 
(Bosshartet al., 2014), employ high-performance lookup algorithms for 
matching (packet header metadata) and applying the respective actions. 
The proposed design of the dataplane is realized by re-architecting the 
stock OVS code. We ground our discussion in our experience imple-
menting OvS-DPDK (Open, 2019), a faster variant of Open vSwitch 
(Fayaz et al., 2015). It relocates Open vSwitch’s data plane into user 
space and uses DPDK poll-mode drivers to send packets, fully elimi-
nating the overhead associated with kernel and interrupt handlers. 

The key components of the data plane are: 

Fig. 15. OpenPATH switching framework Implementation.  

P. Krishnan et al.                                                                                                                                                                                                                               



Journal of Network and Computer Applications 193 (2021) 103196

16

• vSwitch- These are called nodes that host the VNFs/applications 
deployed by the NFV-MANO. The nodes can be Whitebox program-
mable switches that can boot Custom-Linux kernel with Open 
vSwitch and other modules, that exports the ports as software in-
terfaces to the kernel. The nodes can also be server-grade machines 
with multi-core and high-memory configuration (COTS) which can 
host multiple NICs for emulating a multi-port software switch. 
Multiple vSwitch nodes can be interconnected through another 
switch to build a scale-out SDNFV cluster platform. The node is built 
with dual Xeon X5650 @ 2.67 GHz CPUs (2 × 12 cores), NVidia 
GPGPU, Intel 82599EB 10G Dual-Port NIC (Both are connected to an 
experimental LAN for data-plane traffic), 48 GB (8 GB for huge 
pages), Ubuntu 16.10 (kernel 3.5, DPDK, QEMU). Each machine has 
one 1 GbE Intel NIC for control and management traffic.  

• Data Traffic Switch: NFV Nodes connect to a Cisco SX350X-24F 
Managed Switch | 24 Ports 10 Gigabit Ethernet (GbE).  

• OpenFlow Switch (running OpenPATH Switch software): Whitebox 
high-end switch for control and management traffic (its private 
vendor who we had to anonymize since we did not get a permission 
to use the vendor’s name, running OpenWRT (OpenWrt Wiki, 2017)) 
We also experimented with Pica8 (Pica8, 2013) P-3290 (with a 
modified Indigo OS (Indigo)). For applications, a Stateful API library 
is exported. We used the OFPT EXPERIMENTER extension to 
encapsulate OpenPATH control messages in the OpenFlow protocol 
packets.  

• NF Manager is the core system process that runs on every vSwitch in 
the dataplane. This is a kernel process that runs with high priority 
and handles packet movement between the VNFs and maintains the 
flow-tables.  

• Upcall-handler as part of the vSwitch node is a key process that 
interfaces NF Manager with the SDN Controller and so it maintains a 
separate queue for OpenFlow pipeline messages to-Controller/from- 
Controller in a separate memory space and forwards the new-flows/ 
packets/unknown-flows over a safe channel to the SDN controller. 
We are repurposing OFPT FLOW MOD messages from the OpenFlow 
protocol to define the forwarding behaviors across the VNFs in a 
service chain. 

The opportunity for combining match-action on flows with “state 
labels” on the chain of tables is an integral aspect of our scheme (See 
Fig. 16). A packet that enters the switch is matched in flow-table(s) and 
based on the lookup result; the action may be - forward/modify/drop the 
packet. We extended the OpenFlow v1.5 +, with the entries by the 
corresponding headers describing the events, sessions, and connection 
state (metadata). We added supplementary fields - “State labels, Flow 
ID, ID, Path ID” that would be employed by the match-action right from 
the head VNF in the service chain and subsequent VNF tables and until 
the end of the SFC. As most of the NFV applications are stateful type, (i. 

e., they maintain connection or transient session data across multiple 
instantiations of the network function) and the infrastructure is expected 
to provision a high-speed memory for storage of protocol, metadata, 
headers, options, and other flags. Hence, the OpenPATH framework 
defines special data structures synapses (maintained by the connection 
tracking module) that are provided by the shared-memory infrastruc-
ture, for storing and retrieving state information. A high-speed “key- 
value” database is provisioned in each vSwitch node, and it is widely 
utilized by many stateful network applications such as IDS, FIREWALL, 
WEB PROXY. 

While building the stateful extension to Open vSwitch we had to 
address flow-table cache preservation strategy. As OVS is designed on 
the premise that the flow-table rules seldom vary relative to the rate of 
arrival of packets, it follows a conservative caching scheme, which is 
important for its high efficiency. In comparison, after each change of 
state, switches may have to rebuild cache entries, removing any caching 
advantages. The NF Managers integrated into the switches are intended 
for data plane state maintenance and communication between the 
controller and the switches through OpenPATH southbound APIs. The 
controller will initialize an application contained within a switch. The 
controller can add, alter, and delete table entries in vSwitch nodes pro- 
actively during runtime. Additionally, the controller may configure 
switch properties, such as the interval between state reports. The 
controller exposes north bound APIs to allow applications to change 
state tables in order to enforce stateful processing logic. The data plane 
maintains state and updates it in response to incoming packets or in-
ternal/external events. The state information can be uploaded to the 
controller, allowing the controller to maintain the network’s global state 
information. The controller may specify the frequency at which switches 
send update messages based on the application’s requirements. For 
instance, switches can be programmed to communicate with the 
controller on a periodic basis rather than sending a single message for 
each update. The controller will regularly obtain state reports from the 
data plane and update the local record in order to maintain state syn-
chronization. The controller’s internal state can be used to recover from 
failures. The controller will replicate the state of a failed switch and 
redirect flows appropriately. Due to the fact that the controller does not 
have the most recent state when a switch fails, the state to be configured 
in the replacement switch may be inconsistent with the most recent state 
in the failed switch. Take note that in the OpenPATH architecture, the 
controller continues to serve as the centralized intelligence. The 
controller continues to perform traditional functions such as connection 
discovery, topology detection, and forwarding. We incorporate the 
OpenPATH API into the architecture and store state in the data plane to 
improve the efficiency and scalability of stateful applications. 

To address the challenges of implementing agile data plane with 
stateful operations and managing the trade-off between the resource 
constraints in the switches and optimizing the controller interface, we 

Fig. 16. Stateful Flow Table Operations workflow.  
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make two key implementations.  

• We aim at collecting a compact representation of packet distributions 
while retaining enough information about flows to enable high ac-
curacy on packet inspection and flow classification tasks. Achieving 
such a representation requires the design of a flow compression 
scheme that is simple enough to be efficiently implemented by the 
primitives available in current programmable switches, but which is 
able to retain meaningful features for classification purposes.  

• Computing compact representations of packet distributions should 
not consume the majority of resources in the switch, enabling the 
system to co-exist with other typical applications, e.g. forwarding, or 
to be used in tandem with complementary network telemetry 
solutions. 

It is imperative to find the correct balance between memory savings 
and accuracy. OpenPATH balances this trade-off, for different use cases, 
through a parameterization during the profiling phase. First, we devised 
a new compact representation of packet length and inter-time packet 
arrival distributions which is small yet provides enough information to 
perform accurate application-specific traffic classification. We name 
such representations as synapses. OpenPATH data plane layer (called as 
VARMAN) offers similar accuracy scores while using significantly less 
memory, e.g., covert channels can be detected with at most 3% loss in 
accuracy using only a 20-byte memory footprint per flow. When 
compared with related methods for capturing compressed packet fre-
quency distributions (Nasr et al., 2017), OpenPATH consistently out-
performs them in terms of the classification accuracy under similar 
memory restrictions, considerable bandwidth savings when compared to 
network telemetry approaches (Sonchack et al., 2018) that rely on a 
server infrastructure responsible for flow analysis. The synapses gener-
ated by vSwitch profiler depend on the parameters, i.e., the compaction 
table, dictated by an application-specific profile which determines how 
efficiently the switch SRAM will be used and how accurate the flow 
classification will be. In general, finding the parameters that offer an 
optimal trade-off would require an exhaustive search of the parameter 
space. To search on the parameter space for a configuration that offers a 
good trade-off between synapse size and classification accuracy, the 
profiler implements alternative customization policies that can be 
enabled by the OpenPATH operator. Note, that synapses are tightly 
coupled to a specific implementation of the profiler in VARMAN 
(Krishnan et al., 2019a) and nothing prevents the use of alternate 
optimization techniques. Unlike other ideas, such as OpenNF (Gem-
ber-Jacobson et al., 2014), we envision a more distributed, hierarchical 
architecture for state management. Internal and external non-NF-related 
states will be managed and adjusted by the centralized SDN controller. 
This reduces the SDN controller’s potential overhead. In addition, it 
enables finer-grained state maintenance at lower levels of the hierarchy, 
which obviates the need for regular SDN controller updates and the 
associated communication overheads. As the NF state is distributed 
across multiple nodes, the SDN controller initializes the tables across the 
nodes and periodically synchronizes the state tables. This problem and 
the management overhead are not unique to OpenPATH, and we solve 
this issue efficiently through the native design choice of “Statefulness” in 
the data plane. It is critical to enable the data plane to not only char-
acterize flows using packet sequences, but also handle traffic using 
aggregated data and compact representations across multiple flows. Our 
experiments demonstrate that OpenPATH can handle traffic in a 
multi-flow aware manner without requiring costly communication with 
the SDN controller. 

6.2. NF manager 

NF Manager is the core system process that runs on every vSwitch in 
the dataplane. This is a kernel process that runs with high priority and 
handles packet movement between the VNFs and maintains the flow- 

tables. Zero-copy exchange of packets between the VNFs is accom-
plished by allocating DPDK DMA packets from NIC buffers to the “shared 
memory huge pages” region in userspace. The descriptors to the Tx/Rx 
ring buffers are passed for the VNFs to give access to packets in the 
queues. When packets enter the NIC Rx threads in the NF Manager use 
the polling mode worker module (PacketQ) in DPDK to move packets 
into the SM area that all VNFs can access. The Rx threads check the 
packets of a flow and execute the match-action for the matching rule in 
the TCAM, copy the packet descriptors to Ring Buffers, and finally the 
waking up the NF processes to running state in the dedicated CPU cores. 
Once the application logic of the NFs on a packet is run, the NF Handler/ 
Tx Thread transfer the packet descriptors to the next VNF Rx queue 
through shared memory. When the packet reaches the end of the chain, 
the NF handler on the last VNF moves the packet to the NF-Manager 
which merges the packets from all the paths of the SFC and invokes 
the PacketQ to forward the flows on Egress ports. For each VNF the NFM 
holds “a pair of ring buffers Tx/Rx” for exchanging packet any VNFs in 
the Chain. The Rx threads of PacketQ (“DPDK polling mode device 
driver that avoids interrupt handling overhead”) receive the packets 
arriving at the Ingress ports of the vSwitch node. The PacketQ looks up at 
the SFC flow-table setup by the NF Manager and finds the head VNF in 
the chain and the SC- ID defined for the new packet. The descriptors to 
the new packet are added to the Rx Queue of that VNF. If the PacketQ 
lookup returns a table-miss/no path is defined, then the new flow packet 
is moved to Upcall-handler’s queue (to be forwarded to the controller). 
We are repurposing OFPT FLOW MOD messages from the OpenFlow 
protocol to define the forwarding behaviors across the VNFs in a service 
chain. The SDN Controller must recall the forwarding-rules imple-
menting the part of the SFC graph from one node and rules to properly 
forward packets from the last NF in the chain. The packets are forwarded 
from one network domain to another domain, deploying different seg-
ments of a single SFC graph across multiple nodes (or a transfer on the 
way to that node). The controller installs service SC-ID to process flow 
and sets the flow operation to be “output to port SC-ID.” When a packet 
reaches the end of the chain (tail/last VNF), the merging of all the 
versions of that packet has to be done. This process is defined by the NF- 
Manager and done by a dedicated VNF process. The NF Manager raises 
the parallelization factor by the reference counter. If multiple VNFs are 
processing a packet, it is likely that each will ask for a different action at 
the end or merged into a single match-action. The “match-action” on the 
final result is executed to either drop/forward to the Egress port or steer 
the packet to another SFC/SC-ID path. When running network functions 
involving complex operations/analyzes of packets, packet-processing 
overhead varies across the flows. As a consequence, routing packets to 
NFs using round-robin scheme will possibly cause an imbalance in the 
queuing that could lead to dropped packets and erratic latencies. So, the 
NFM is designed to load balance the NFs based on the active ring-buffers 
used by the VNFs. The simple methods such as “round robin or queue- 
size balancing” cannot be used for scheduling VNFs involving tempo-
ral flow state, as the descriptors have to be defined for each thread to 
avoid contention. To tackle this problem, we implemented flowID based 
load balancer making sure that all the packets of a flowID go through the 
same NF instances/threads to avoid context switching complexity. We 
extended the DPDK with data-structures and fast-lookup tables for 
storing the VNF-packet-paths and dependencies to handle concurrent 
access on packets by multiple VNFs. 

6.3. Management and controller plane 

The OpenPATH Management/Control plane system comprises three 
major centralized software services: SDNFV Orchestrator, per-domain 
SDN Controller, and ETSI (European Telecommunications Standards 
Institute(ETSI), 2014) compliant NFV MANO. SDN Controller manages 
the dataplane instantiations (vSwitch): setting processing logic, con-
trolling provisioning, flow-table, loading VNF modules dynamically on 
the switches, routing, and scaling of network bandwidth. The SDN 
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controller, NFV MANO components use a secure communication 
OpenFlow over TLS and OpenPATH control overlay in simple JSON 
(Bray, 2017). On SDN side, Open vSwitch (OVS) control plane design 
was implemented without modification, on OpenDaylight(ODL) Open-
Flow controller (Medved et al., 2014). There are three ways to control 
the OpenPATH: Python/C APIs/Scriptable configuration language, 
OVS-like CLI and everything component is run-time configurable. 

6.4. NF processing 

NF/application processing logic is implemented in the OVS context 
and through the netlink interface, the flow-tables in the kernel space are 
updated. The VNF table is handled in conjunction with the traditional 
OpenFlow tables. Every Packet is looked up with the flow-table for 
matching-rule and the action function () for that rule is run. If table-miss 
in lookup, that packet is sent to the control plane. An NF Manager has 
these responsibilities: (i) determines the action for the current flows. (ii) 
modifies the corresponding state table persistent state. (iii) generates or 
modifies the rules for the kernel flow-table. (iv) generates/receives 
packets to/from vSwitches nodes. (v) forwards “Packet_In, Flow_-
Removed, or NF_update vendor” messages to the control plane. Each VNF 
is provided an NF handler, which handles OpenFlow instructions and 
flow updates through the NF Manager from the controller. OpenPATH 
framework is designed to allow new applications or VNFs to be deployed 
on the fly even when vSwitches are running. Through OF_VENDOR ac-
tion command, the new NFs are sent as sub-actions by the SDN 
controller to the NF Manager which installs the appropriate flow rule in 
the VNF NF handler agent in the SFC. 

6.5. SFC placement 

Traditionally, network services are deployed as function chains 
(SFCs). As, each SFC’s overall performance is limited, we define the 
parallelized SFC in which the data within each working sub-SFC is less. 
To get closer to reality, we include both VNF and PM failures when we 
evaluate parallelized SFC availability. OpenPATH NFV Placement al-
gorithm maps a set of SFCs. The operational sub-SFCs are mapped first, 
and then the backup sub-SFCs are mapped. Each NF instance must be 
mapped to a single NFV server (vSwitch node). The purpose is to reduce 
inter-node traffic since it incurs reduced delay and requires fewer pro-
cessor cycles to traverse via the NICs while also constraining the link 
bandwidth between nodes and the switch.  

• Dependency and affinity: The metadata sharing between the NFs 
(for e.g., sharing the same IP headers in the NAT and Load Balancer) 
have full dependencies and placed adjacent in the process-queue 
chain. A majority of stateful firewalls can only operate on one 
instance at a time, making affinity important. There are instances, 
where separating an NF’s instance (and accompanying input traffic) 
is necessary. Any methods that retain cohesion rely on state migra-
tion methods, which is expensive and not compatible with legacy 
functions. There is no switching overhead across the switches to 
VMs.  

• Fault Tolerance: Fault tolerance and backup SFC nodes (except one 
work by Wang et al. (2020), the failures and recovery are not 
addressed). The two existing NFV execution paradigms are RTC and 
Pipeline. Reduced PL cost is one of RTC’s objectives. By distributing a 
single VNF in a PM, network operators are able to manage VNFs. We 
create the placement strategy and a hybrid placement algorithm that 
incorporate the advantages of two existing NFV execution models. To 
retain affinity, the software switch and controller work together to 
build a novel placement technique. Our system doesn’t require state 
migration, uses less flow table entries than the switch when trans-
ferring traffic to NF instances. Our offered solutions can reduce SFC 
delay and resource utilization while guaranteeing Availability.  

• Microservice model: the placed NFs are application processes that 
are already deployed in the system. The processes are in Sleep-Wait 
state and will be scheduled (chain of processes) as soon as a SFC 
request is ready for execution. (Our model is akin to “micro-services” 
deployed in high-end enterprise class routers and process the SFC 
requests in non-blocking mode at wire-speed) 

6.6. Software acceleration 

OpenPATH uses the DPDK I/O abstraction and improves it with SM 
that enables VNF/processes/apps to pass buffer descriptors via the zero- 
copy API feature. The OpenPATH threads DMA data by-passing the 
Linux kernel to the SM region. We employed “NUMA-awareness (forcing 
socket locality)" and network driver in polling-mode to avoid costly 
interrupt handling operations and other types of notifications. The 
performance improvements such as tuple-space search algorithms for 
table lookups (Srinivasan et al., 1999), Read-Copy-Update rather than 
traditional locking (McKenney and Slingwine, 1998), and packet 
batching (Kim et al., 2012) have all brought substantial benefits to 
switching in both code-and data-driven designs. The 
zero-overhead/copy-free Shared Memory based communication channel 
is utilized to move packets and other messages between the proc-
esses/VMs/containers and the physical vSwitch host. We use asyn-
chronous ring buffers mechanism in conjunction with shared memory to 
implement zero-copy operations on packets and also ensured consis-
tency without the use of locks. The Receive Queue resides in the SM 
(user-space), so that the VNF NF handler has to write a descriptor to the 
Rx Q of the next VNF in the chain for moving the packets. To further 
reduce copying overhead for parallel operations, we implemented 
optimization techniques such as “Header-Only Copying”. The PacketQ 
engine is a kernel poll-mode driver that runs on a dedicated CPU core 
that transfers frames from the hardware via DPDK and kick starts the 
SFC workflow with the head VNF in the chain. The softwarized 
switching implementations are nowadays comparable with hardwar-
e/ASIC based solutions and high-speed software networking requires 
acceleration techniques in various axes which are illustrated in Fig. 17. 
OpenPATH implemented various software acceleration methodologies 
as listed in Table 4. 

6.7. OpenPATH API and applications 

We use our taxonomy to build a Stateful API for flow-aware NF/ 
application logic for exporting, importing, and minimizing changes to 
their code. We use the specified transport layer connection-oriented 
protocols (TCP/UDP) metadata fields (e.g., TCP or UDP connections) 
and define the abstraction for the controllers to specifically determine 
which state to be exported or imported to the switches. OpenPATH 

Fig. 17. Acceleration techniques and benefits.  

P. Krishnan et al.                                                                                                                                                                                                                               



Journal of Network and Computer Applications 193 (2021) 103196

19

library and SDK enumerates various types of API for NFs and control 
applications to implement application logic in the dataplane and to 
manage/monitor state transitions of the corresponding flows and con-
nections. The APIs provide programming interface (1)to configure 
global state table and the state management table, (2) to retrieve state 
information from the global state table, (3) to register call-back func-
tions in OpenPATH to subscribe specific state-based events and (4) to 
manage and manipulate the flows based on the state-based events in 
VNF. 

In Fig. 18, a basic NF/app module is shown in full as an example. The 
NF/application requires OpenPATH to register a function. To realize the 
design explained, OpenPATH has incorporated a set of core network 
functions that are employed as worker processes in the SDNFV data-
plane. Some key functions that operate on packets are: load monitoring, 
flow tracking, load balancing, packet classification, merging/splitting, 
boot-up/shutdown/placement, DoS detector/scrubber/sandbox. We 
export a native API to provide direct access to the optimized library and 
use OpenPATH socket abstractions. The legacy NF/applications can be 
unchanged and utilize the standard sockets/other northbound APIs 
supported by the OS. OpenPATH SDK and OVS-DPDK library export API 
to implement custom NF and packet/flow-based inspection/moni-
toring/filter policy definitions. Also, the native modules and special 
datapath application modules that are already built in the OpenPATH 
vSwitch software can be utilized to experience the highly programmable 
switching framework. 

7. Performance evaluation 

The findings of our research on the programmability and efficiency 
of this proposed switching platform are summarized here. The evalua-
tion environment is intended to serve as a laboratory for experimenting 
with various design choices, benchmarks (Tahhan et al., 2017) and 
reconfiguring the OpenPATH SDN-based-NFV Platform software for 
various test cases. We evaluated both in real hardware-based testbed 
(described in Section 7.1) and in simulated Mininet-based network 
testbed (Section 7.8). Against each sub-section in the Evaluation section, 
we specify the testbed setup (hardware or simulated) for the 

experiments in that section. 

7.1. Hardware testbed configuration 

To measure how well our OpenPATH framework would perform on 
industry-grade switch hardware for the vSwitch nodes, we tested our 
implementation of a Whitebox router that supports Open vSwitch 
switching software. 

The Major components of the testbed as shown in Fig. 19 are:  

• vSwitch Nodes (NFV platform running OpenPATH): 4 server class 
machines with dual Xeon X5650 @ 2.67 GHz CPUs (2 × 12 cores), 
NVidia GPGPU, Intel 82599EB 10G Dual-Port NIC (Both are con-
nected to an experimental LAN for data-plane traffic), 48 GB (8 GB 
for huge pages), Ubuntu 16.10 (kernel 3.5, DPDK-1.4 and QEMU- 
1.5). Each machine has one 1 GbE Intel NIC for control and man-
agement traffic.  

• Data Traffic Switch: NFV Nodes connect to a Cisco SX350X-24F 
Stackable Managed Switch | 24 Ports 10 Gigabit Ethernet (GbE)  

• Traffic Generator: Network Function Performance Analyzer (NFPA, 
(Csikor et al., 2015)), is a benchmarking tool using the DPDK pktgen. 
NFPA and OpenPATH ingress run on dedicated machines.  

• OpenFlow Switch (running OpenPATH Switch software): Whitebox 
high-end switch (its private vendor who we had to anonymize since 
we did not get a permission to use the vendor’s name, running 
OpenWRT (OpenWrt Wiki, 2017)) We also experimented with Pica8 
(Pica8, 2013) P-3290 (with a modified Indigo OS (Indigo)). 

7.2. Comparison of OVS-DPDK SDN stack 

The softwarized switching implementation in OpenPATH is compa-
rable with hardware/ASIC based solutions exploiting acceleration 
techniques in various axes which are illustrated in Fig. 17 and in Table 4. 
The OVS-DPDK classical implementation doesn’t adopt the above opti-
mizations and acceleration in software. This is explained in Section 6.6 
Software Acceleration. 

The observations in the design and implementation of OVS-DPDK are 

Table 4 
Software acceleration methods.  

Flow awareness Zero-copy Packet processing Coding Practices 

Per-flow processing Limited state I/O batching Multiloop: Many packets at once 
NIC calculates hash function of 5-tuple Using shared memory Compute Batching  • More instructions per clock cycle 
Hash value is exported at userspace NIC use Direct-memory access Poll-mode device drivers  • CPU pipeline always full 
Packets traverse Rx/Tx queues Independent processing Reduce Interrupt pressure Prefetching: start reading next packets 
Multi-core scalability Payload is unmodified Packet Arrivals in Batches  • Reduce overhead of memory access 
One CPU core/HW queue Only metadata is accessed No individual packet departure  • Exploit cache hits 
Receive-side Scaling (RSS)     

Fig. 18. Example network function implementation.  
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enumerated below:  

• The major overhead in the OVS is the match/action pipeline to 
orchestrate flows, flow table. OVS tries to optimize this function with 
aggressive flow-caching. In synthetic traffic conditions, the flow 
caching further worsens the matching speed. OvS-DPDK suffers 
performance degradation due to the match/action pipeline overhead 
(Zhang, 2019).  

• OVS-DPDK is slower than the other passthrough systems because of 
the VirtIO. The design of VirtIO offers an additional degree of indi-
rection (helpful for live migration), which is not present in the other 
options: each packet sent or received by the VM goes via the VirtIO 
queues before reaching to the network backend (i.e., the software 
switch) (Gallenmüller et al., 2015; Lettieri et al., 2017).  

• There is a queuing delay in the pipeline architecture-model which 
generally involves multiple threads and scheduling/wait state (Rx/ 
Worker/Tx) for a single packet forwarding and the packet is inter-
nally buffered twice to take over the packet handling between 
threads. Though OVS-DPDK doesn’t incur queuing delay due to 
DPDK’s Run-to-Completion model that entire packet processing is 
performed by a single thread, there is buffer saturation and flow 
control that could lead to packet drops. 

We conducted experiments with service chains composed of 1–4 NFs 
with three software switches (OVS-Kernel, OVS-DPDK and OpenPATH), 
with 256 bytes packets. The packet delays due to the softwarized switch, 
in the datapath between two physical ports, is measured. DPDK-based 
packet I/O threads continuously poll the ports (in a busy-wait loop) 
and do not rely on interrupt calls and so avoids the context switching 
overhead. This makes 100% of CPU cycles available to the packet logic 
processing rather than for moving(copying) the packets. But the inter-
rupt moderation overhead has an adverse effect on the OVS-kernel and 
so higher latencies are seen. Table 5 shows that OpenPATH achieves low 
latencies and high throughput rates for all chain lengths utilizing 
available CPU cores for NF Parallelism (packets split across paths/ 
cores). As the chain length and cores increase, scale-out performance 
closer to the theoretical limit of 10Gbps is achieved and OpenPATH 
exhibits a consistent and lower latency profile. 

We evaluated throughput sensitivity to concurrent flows, comparing 
OpenPATH and OVS-DPDK on basic L2/L3 routing workloads and 
concluded that OpenPATH maintained higher throughputs (See Table 5) 
than OVS-DPDK as the number of concurrent flows increased. However, 
a deeper inspection of the match/lookup algorithms reveals a more 

complex story. OVS-DPDK uses a flow-caching strategy to reduce lookup 
times for complex multi-table lookups required for network virtualiza-
tion. This flow-caching strategy introduces an additional step in packet 
processing that increases per-flow overheads for short, single-table 
lookups (e.g., L2/L3 switching). However, the authors of OVS claim it 
improves throughputs for longer, multi-table tasks (e.g., network vir-
tualization) by benchmarking the differences in performance between 
the algorithms in isolation of other design choices and optimizations 
within the switch implementations and showing their strengths (e.g., 
multi-table lookups) and weaknesses (e.g., large numbers of indepen-
dent flows). 

CPU Caching (Fig. 20): After the traffic locality is gone, performance 
of OVS-DPDK flow caching deteriorates. With 100 active flows, packet 
rate decreases by a factor of two (or even worse). When differing cache 
hit intensities are experienced, the flow processing, shifts from the 

Fig. 19. Testbed and SDN/NFV infrastructure for OpenPATH.  

Table 5 
Software switching performance.  

Chain 
Length 

CPU 
Cores 

Throughput (Gbps) Latency (μs) 

OVS 
Kernel 

OVS 
DPDK 

Open 
PATH 

OVS 
Kernel 

OVS 
DPDK 

Open 
PATH 

1 2 7.82 8.87 9.45 254 178 127 
2 4 6.14 8.24 9.36 328 254 132 
4 6 5.26 7.20 9.27 478 378 142  

Fig. 20. CPU caching (LLC) behavior.  
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highly rapid microflow cache to the slower megaflow cache. Addition-
ally, cache affinity is compromised leading the flows through the 
vSwitchd slow path. We monitor the LLC misses using perf tool, as the 
active flow set develops. 

CPU Latency (Fig. 21): As the active flow set expands, the latency on 
the gateway pipeline increases. The OpenPATH processing time in the 
data path depends on the active flow set, although latency for OVS- 
DPDK might vary between 0.3 and 0.14 μs. The constructed datapath 
(in OpenPATH) delivers reduced and predictable latency compared to a 
flow-caching-based datapath (in OVS-DPDK). 

We tested over a range of pipeline complexity levels and a growing 
diversity of traffic mixtures. The key inferences are:  

• OpenPATH side-steps flow caching and achieves a consistent and 
high packet rate across virtually all OpenFlow pipelines and traffic 
mixtures studied, routinely exceeding 12–14 Mpps packet rate (max 
~ 15 Mpps). When applied to complex pipelines with many active 
flows, OpenPATH can perform by two orders of magnitude better 
than vanilla OVS-DPDK. For the Gateway domain, an OVS-DPDK 
throughput decline of a hundredfold takes place, at 1 million 
flows, resulting in a total denial of service for the user population. 
Meanwhile, OpenPATH delivers above 9 Mpps packet rate, which 
suggests that it is not vulnerable to these assaults. For everything 
else, OpenPATH will employ OpenFlow style match-action tables. 
This, together with global flow caching and categorization coa-
lescing, lets OpenPATH take advantage of both. For big packets, like 
network virtualization, OpenPATH is the perfect fit.  

• OVS delay can be traced to generic flow-caching in the datapath 
code; In contrast, OpenPATH’s compact bespoke data pathways offer 
significant switch performance and modest working set size. OVS- 
DPDK is designed with the classical SDN architecture, wherein 
Controller does all the heavy lifting work and complete decision 
making and a stateless dataplane. But OpenPATH has a stateful 
dataplane in which switches have been delegated with some control 
over the decisions. 

• Finally, the classical OVS stack is coded as a reference implementa-
tion for generic Linux architecture and there are scope for im-
provements, optimizations, software accelerations, customized logic 
tuned to the deployed hardware platform. 

We hope this explains the improved performance of “OpenPATH 
(OVS-DPDK)” against “vanilla OVS-DPDK”, though we leveraged on the 
code base of OVS-DPDK. 

7.3. Stateful operations and flow table optimizations 

Packet processing is among the most demanding operations for 
network switches, and hence specialized hardware and advanced 

software acceleration methods are used to complete it. For the hardware 
side, it’s possible to implement the data plane functionality in an ASIC 
(Application Specific IC), an FPGA (Field-programmable Gate Array), or 
a network processor, using dedicated packet classification engine chips 
(TCAM) to build a software switch. In hardware switches, ASIC capacity 
and the built-in TCAM capacity limit the performance, but software 
switches are hampered by the intrinsic computational difficulty of 
packet classification on general purpose CPUs. In an SDN switch, a 
forwarding table includes per-flow routes. Wildcard fields and concur-
rent lookup of all table entries are typical uses of TCAM forwarding 
tables. For accurate rules, they can be implemented in TCAM or SRAM 
(Liu et al, 2010). Though we see it as a single table, it may be imple-
mented using multi-tiered tables. Apparently, in order to properly 
maintain the SDN in a dynamic network environment, we need to 
consider dataplane switch reconfiguration to balance the on-chip 
memory (TCAM and System RAM) utilization from time to time. 
Although this idea is straightforward, realizing it effectively is still 
challenging from both algorithmic and systemic aspects. Data paths in 
DPDK-based appliances translate to flow entries in the action’s internal 
flow table. The hardware-based middleboxes may perform lookup from 
internal TCAM tables or other storage media. Action elements in the 
processing graph represent each action’s read flow and write flow. The 
match-action switching model represents the lookup tables (flow-tables) 
layout, size, updating and dynamic management of the TCAM and the 
SRAM. Whenever packets arrive at the Ingress ports the matching flow 
in the tables are looked-up for match and the corresponding action (e.g., 
forward) are taken by the logic (ASIC in the hardware/application in the 
software) as part of the pipeline in the switch. So, the delay and resource 
usage for this function are some key parameters in SDN enabled 
switching architecture. 

As a substitute for the NIC with a programmable TCAM, we used a 
software stack in the current testbed to imitate 1k TCAM entries. We 
discovered that it scales smoothly when offload rates approach 100%. 
The current simulation features a modest TCAM and a limited hash ta-
bles (SRAM) but provides all the functionalities needed for reverse path 
applications. First, we collect performance-related metrics such as the 
number of in-flight instructions, the current flow table occupancy, and 
request batch size. To find key factors affecting rule lookup/update 
speed, we sample the entire parameter space. The number of rules 
contained in a flow table is critical for a switch. Bigger tables enable 
finer-grained traffic control. However, TCAM space is expensive, 
therefore tables that support intricate matching tend to have restricted 
dimensions. We expanded on this feature by using generic OpenFlow- 
like switch models. The OpenFlow Switch (running OpenPATH Switch 
software) is a Whitebox switch (its private vendor who we had to ano-
nymize since we did not get a permission to use the vendor’s name, 
running OpenWRT (OpenWrt Wiki, 2017)). We also experimented with 
Pica8 (Pica8, 2013) P-3290 (with an Open-vSwitch (OVS) support and 
CrossFlow technology enables mixing of switching, routing and Open-
Flow traffic, Modified Indigo OS (Indigo)). 

To evaluate the efficiency of Stateful data plane management scheme 
using synapses and truncated table maintenance with the given hard-
ware resource usage on the switch, we focus independently on the data 
plane and on the control plane. To give a general insight into the per-
formance of these synapses scheme, we considered three different traffic 
pattern, network function (VNFs) with usage scenarios that are common 
in Firewall systems. 

Flow Table Scalability: Table 6 presents the scalability gains of our 
stateful firewall application deployed in the vSwitch (OVS) node, when 
it is used to classify flows for covert protocol detection, HTTP finger-
printing, and botnet attack detection. For these experiments, we 
generated the possible combinations of synapses for the three consid-
ered use case scenarios and assessed whether they allow for accurate 
flow classification despite their compact size. Packet lengths (PL) vary 
from 1 to 1500 bytes (MTU), and each cell of a synapse has a size of 2 
bytes. In general, the absolute number of flows that stateful table Fig. 21. CPU Processing cycles.  
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management scheme can handle ultimately depends on the switches’ 
available SRAM. 

Switch Resource Utilization: Table 7 shows the average hardware 
resource consumption of synapses data store across all stages of the 
switch, both in simulated TCAM/Whitebox switch). The table shows that 
besides the SRAM required for the tables and register, the consumption 
of other resources is negligible. Since our flow matching logic entirely 
relies on exact matching, the vSwitch’s flow table consumes small 
fraction of the TCAM resources on the switch. In tandem with the 
deployment of flow tables in SRAM, our scheme leaves over 60% of 
SRAM available. Overall, these results suggest that Synapses scheme 
makes enough space in the switch memory and also bandwidth on the 
control channel for the concurrent execution of many other common 
forwarding behaviors, like access control, rate limiting or encapsulation, 
that do not necessarily require an extensive use of the stateful memory in 
the switch pipeline. We argue that the lookup/update operations are 
very fast and optimized in the datapath pipeline and we hypothesize the 
storage overhead of OpenPATH will be manageable even for hardware 
targets with limited SRAM/TCAM (Liu et al, 2010). 

The key findings are:  

• With compact synapses Stateful switch can monitor at least 32 times 
more flows when compared to the baseline setup with complete raw 
data from the flows maintained in the switch table and forwarded to 
the controller.  

• The system (combination of Controller/Switch) manages to achieve 
a classification accuracy of 94%, only 2% shorter than the result 
obtained using raw packet length distributions. 

7.3.1. Stateful TCP-Offloading overhead 
This experiment compares the TCP/IP Firewall in stateful and 

stateless mode. Whenever the host on the internal network establishes or 
terminates a network session, the flow rules are changed. The delay to 
update the rules can affect TCP link timeouts. We used a software 
gateway for the hosts to connect to the HTTP server. The number of 
hosts ranges from 8 to 256. Fig. 22 shows that for new sessions, SDN 
stateful TCP/Firewall creates a bump-in-the-wire causing an additional 
delay than the stateless gateway switch. The OpenPATH based stateful 
firewall requiring just extra 2 ms or around 10% longer time to manage 
the state tables/sessions and flow tables in the switch. However, once 
the connection is active, the switches manage the flows and sessions on 
their own, so the control plane load does not have to be increased. 

7.4. Comparing SDNFV switch and NFV-over-VMs 

In this experiment, we ran a series of micro-benchmarks with a 
cluster of machines (in hardware and simulation) to compare the 

efficacy of the OpenPATH and the traditional NFV platforms. With 
OpenPATH SDNFV switch, network functions are already integrated 
into the switch node, and the chain is formed by creating a set of flow- 
tables with output: action (call the next NF) function call in the same OS 
context. We ran these tests in a controlled environment under a single 
experimental node (as an OpenPATH switch or as physical host to VMs) 
and this removes any outside network delays. This design gives the 
flexibility to represent a complicated SFC graph, avoiding the I/O 
transfers over the physical node across the VMs. We also ran simulations 
with Mininet (Lantz et al., 2010) and performance benchmark iPerf 
(Iperf) application. Fig. 23 shows the testbed design for the experiment. 
In Fig. 23(a), the NFs are implemented in the VMs and interconnected 
through a switch. A packet has to be processed for “n+1 match-action 
lookups” in the OpenFlow flow-table, to be steered in an SFC 
comprising “n NFs. In Fig. 23(b), with the OpenPATH SDNFV switch, the 
NFs are implemented into a single node, and with 1 multi-fields 
tuple-lookup, the traversal through the chain of NFs is just invoking 
another function call. The differences in processing overhead are 
measured through latencies and throughput. 

TEST CASE 1: The overhead of changing the NFs (order or policy or 
priority) in the SFC chain triggers more processing in the SDN pipeline as 
the flow-tables have to be updated and we compared this key metric as it 
indicates how agile the NFV platform is when the dynamic traffic pol-
icies are changing. In this test case, we measure the NF switching 
overhead/delay for the new NF to be installed and the arrival of the first 
packet. Fig. 24 shows the new NF switching delay in the legacy approach 
(VM) is higher as it involves more I/O cycles and booting overhead of 
the new VM in the chain. With the OpenPATH approach, the switching 
does not change while spinning up the NFs in the initial stage and also at 
run time re-installing another NF into the chain, as the overhead for 
function calls and initializing the Tx/Rx packet queues are constant. 

TEST CASE 2: In this test case, we compare the forwarding rate be-
tween OVS-DPDK, OVS-CLASSIC, and OpenPATH with a load balancer. 
As discussed previously, due to redundant packet detours, sub-optimal 
I/O and data copy overhead the classic and also the OVS-DPDK 
perform badly with the scaling of NFs. Fig. 25 shows the effect of opti-
mizations such as fast I/O, load-balancing, and shared-memory/zero- 
copy architecture. OpenPATH switch can perform close to the peak 
network speed, sustaining with increasing the NF chain. 

TEST CASE 3: We compare the latencies between the two ap-
proaches. Fig. 26 shows that as the number of NFs increases, the pro-
cessing latency increases considerably when running NFs on VMs. The 
processing latency is increased due to each VM’s I/O transmission delay 
to direct traffic to specific NFs on a service chain. A packet often requires 
multiple lookups on the switch so that various NFs can be reached in the 
correct order. More packets are waiting in the queue for a longer service 
chain, which increases transfer latency than a shorter service chain. 

Table 6 
Scalability of flow tables.  

Firewall NF Type Synapse Size 
(Bytes) 

Full Data Size 
(Bytes) 

Scaling 

Covert Channel Detection 20 300 150 x 
HTTP Monitor 

Fingerprint 
94 300 32 x 

DDoS Botnet Detection 302 10200 34 x  

Table 7 
Switch resource consumption.  

Resources Computational Memory 

Lookup- Match- 
Action 

Routing 
Gateway 

SFC 
Tagging 

TCAM SRAM 

Usage 7.56% 4.21% 3.19% 1.2% 37.21%  

Fig. 22. Connection setup time.  
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With OpenPATH, as the NFs are placed in one node, the network 
transfers across the switch are optimized. 

In this experiment, we measured the throughput with a varying 
count of NFs in the chain. In the legacy configuration (NFs on VMs) the 
processing rate and throughput decrease as we increase the NFs in the 
chain. As discussed before, this bad performance is due to the non- 
optimal I/O, packets copying, across the stack and buffers, multiple 
contexts switching within the node and as the number of NFs increase 
the packet touring back and forth between the VMs through the switch. 
In the OpenPATH switch, with the NFs embedded in the single node, we 
save all the above-mentioned overheads and the other resource opti-
mization techniques such as zero-copy have a played key role in 

achieving maximum practical sustained peak throughput even with the 
scaling of the chain. 

7.5. SFC placement efficiency 

With several NFV hosting nodes, VNF chains can be extended beyond 
the limits of a single node. We used a single core switch vSwitch node, 
which is linked to two edge vSwitch nodes, to set load balance and smart 
cross-node placement chaining. We also tested OpenPATH with other 
hierarchical leaf-spine topologies and configurations. SFC requests are 
parallelized using the NF Parallelism algorithm, SFC sub-graphs are 
generated and deployed using the proposed placement heuristic. 

The Key evaluation metrics include:  

1. Cluster overall-throughput, the bandwidth utilization ratio.  
2. Total Accepted SFC Requests processed in the Cluster.  
3. SFC Path Lengths, Average latency in processing.  
4. Resource Utilization - The amount of used resource in the Cluster.  
5. Acceptance Ratio-network wide accepted SFC requests.  
6. Scaling with SFC chain lengths/no. of NFs. 

The following approaches are Compared and Contrasted:  

• Strawman Simple: placement algorithm (Pfaff et al., 2015) that does 
not take SFC parallelism into consideration, divides the NFs equally 
across the available NF hosts and keeps all VNFs as close as possible.  

• NFP (Sun et al., 2017): “Packing” that greedily packs nodes onto 
servers while traversing the graph depth-first. It only allows placing 
an entire SFC on one server as required by NFP (Sun et al., 2017).  

• ParaBox (Zhang et al., 2017): a naïve placement algorithm, in which 
VNFs are placed on different servers running in parallel.  

• ParaMatch (Cai et al., 2020): deploying more NFs on a single node. 

Fig. 23. NFV Platform (a) VM based Processing (b) Switch based processing.  

Fig. 24. Overhead for spinning up an NF.  

Fig. 25. Forwarding Rate comparison.  

Fig. 26. Latency comparison.  
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• FlexChain (Xie et al., 2021): parallelism-aware approximation 
placement algorithm. 

Cluster wide overall-Throughput: OpenPATH seeks to maximize 
overall throughput by using NFs in a way that uses the least switch ca-
pacity. We consider a SFC graph, a linear chain with 7 NFs, and a more 
realistic random graph with 12 NFs. Fig. 27 shows that our approach 
outperforms the baseline strawmen approaches and 4 other works in all 
cases. We achieve about 15% higher throughput compared to other 
works; FlexChain does well on a simple chain but only achieves 5% more 
throughput for more realistic SFC graphs. Thus, we see that our place-
ment heuristic in OpenPATH can improve the overall cluster throughput 
over the baseline algorithm. OpenPATH’s overhead doesn’t increase 
drastically when scaling out the number of nodes and VNFs, even if 
VNF’s are placed in multiple physical nodes. The throughput reduces 
only a small level (~9.6 Gbps/NIC/node) compared with placing all 
VNFs in one physical node, which is due to the smart placement tech-
nique in SFC. With traditional approaches due to multiple traversals of 
packets across the nodes, they incur additional overheads, throughput is 
much lower in long NF chains that span multiple nodes. 

Resource Utilization: Node resource usage was greater in the 
OpenPATH algorithm than in the strawman simple approach and other 
works shown in Fig. 28, as illustrated. Some VNFs may only use a portion 
of a host’s resources, leading to a waste of fragmented resources. In 
contrast, OpenPATH allocates numerous sub-chains on separate nodes 
to take advantage of these dispersed resources. Our adaptability helps 
boost the SFC acceptance ratio. 

Acceptance Ratio: Our goal is to maximize the overall number of 
accepted SFC requests, and a request can be granted only when all its 
limitations can be met. We conduct performance tests on a variety of 
network configurations. Between 20 and 300 SFC requests arrive at each 
topology. Fig. 29 shows the consistency in acceptance of SFC requests. 
Simple method has around 30% fewer SFC requests than our solution in 
latency-sensitive situations. Accepting the fewest SFC requests indicates 
the limitation in the NFP, that an SFC can only be placed on one server. 

Chaining Placement Latencies: In this experiment, we measure the 
impact of the switch fabric type on the latency when running heavy 
Snort chains and complex SFCs across multiple hosts. OpenPATH em-
ploys smart affinity-based placement for SFC which shows lower la-
tencies and saves up to 40% overall overhead for varying chain lengths. 
SFCs’ path length had major impact on network delay and bandwidth. 
Using the strawman algorithm, the SFC path length output was shorter, 
but using the NFP it was longer. As shown in Fig. 30 the OpenPATH data 
path latency was around 52% lower than the simple strawman tech-
nique, and ~33% lower than the NFP approach. In addition, NFP 
exhibited superior capacity and stability to that of our placement 
approach in lowering the SFC delay. The average path length between 
the entrance and exit of SFCs grows as the network size increases. 

7.6. NF parallelism overhead 

The NFV parallelism and packet steering in SFC can cause consid-
erable overhead due to copy/merge-operations. By employing mecha-
nisms such as asynchronous ring buffer, header-only copy, and large 
shared memory regions for zero-copy access, we avoid the overhead. By 
implementing producer/consumer synchronizing mechanisms we avoi-
ded locking primitives. Also, we avoid central switch for packet steering, 
because of the NF handler which pushes the packet through the chain Fig. 27. Cluster wide throughput.  

Fig. 28. Resource utilization.  

Fig. 29. Total accepted requests.  

Fig. 30. Average latency of accepted requests.  
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across the shared memory using descriptor Tx/Rx queues. We compared 
the overall performance with 2 instances of the same NFs of sequentially 
and parallelly configured in a chain. The three testbed configurations 
are illustrated in Fig. 31. The testbed is installed with 7 VNFs in multiple 
vSwitch nodes and the OpenPATH switching framework. 

7.6.1. Effect of different NF complexity 
Each test case runs traffic through 2 VNFs instances and we expect 

OpenPATH overhead to vary across the test cases, depending on the 
complexity of the application logic. Fig. 32 plot the (a) latencies and (b) 
throughputs for the 7 test cases/7 NFs. We observed that the optimiza-
tion level increases with more complex network functions and process-
ing. e.g., the Forwarder NF has simplified instruction cycles and 
processing overhead is less, whereas IDS/VPN NFs consist of heavier 
processing, instructions and consequently OpenPATH’s parallelism ef-
fect is profound. 

Effect of Packet Sizes: We plotted in Fig. 33 (a) how the latencies of 
NF processing vary inside the vSwitch node, for the network packet sizes 
(64–1500 bytes). We chose one exemplar VNF - Forwarding Function - 
that can have the lowest number of CPU cycles and least data operations 
on the packet fields and expected to perform closest to wire-rate. As 
shown in Fig. 32 (c), OpenPATH achieves a wire-rate, close to 9.6 Gbps 
across all packet sizes. 

7.6.2. Effect of parallelism degree 
We measured the effect of the number of parallel NFs that the 

OpenPATH can facilitate. To test this function, the test configuration 
deployed IDS NF on multiple VNFs in both sequential/parallelized 
chain. The traffic packets were 64 bytes size and both copy-less/copy- 
packet policies were tested. The results in Fig. 33 (b) and (c) show 
that the optimization effect raises with the parallel instances, proving 
that OpenPATH performs well with a higher parallel degree. The la-
tencies reduce by 55% for copy-less, and by 35% for copy-packet op-
erations, while throughput numbers remain the same across the NF 
degrees. 

7.6.3. Optimization effect with-respect-to graph structure 
With a given set of NFs, different structures of the graph can be 

generated. Fig. 34 illustrates an example set of graphs for the same 
service chain. The experiments revealed improved latencies for graphs 
with short chains. In the same experiment, the graph structure (2) 
measured the lowest latencies, because the chain length is 1. Graph (5) 
measured the highest as the length was 03. 

7.7. Management and control operations overhead 

The main benefit of OpenPATH was to reduce the complexity of flow 
tables. But because flow tables differ due to network configurations, 
policies and traffic conditions, it is challenging to generalize flow rules. 
There is no guarantee of effectiveness for this particular use case or to-
pology, but we do assume benefits close to a traditional NFV de-
ployments could be reached. 

For traditional SDN based NFV implementation, we took the leaf- 
based topology from DPX (Park et al, 2019) and built it out into two 
layers: connecting the end nodes to the switches as depicted in Fig. 35. A 
node in the leaf fabric is a NFV host that handles NF service. Addition-
ally, we measure the flow table size that is needed to talk to all of the 
NFV service chain components (including path traversal). Fig. 36 shows 
that the number of necessary flow rules exponentially increases as the 
number of nodes in the NFV/SDN platform grows and as the length of 
the service chain increases. The network will need around 1280 rules 
when the leaf nodes reach 8 and the SFC length 4. 

OpenPATH will bypass the SDN controller with an enhanced data-
plane (seen in Fig. 37), as the NFs (NFV)are located in the SDN data 
plane. Therefore, the OpenPATH network does not need any flow rules 
to route the flows to the final destination. We also contend that poor 
NFV efficiency on the traditional SDN/NFV platforms is caused by a 
combination of associated re-processing overhead on the NFV and 
switching overheads. Connecting an additional NFV system can 
lengthen the service chain. Policies that have the ability to be articulated 
in an OpenPATH-architecture flow-rule framework may reduce both 
data plane and network functions. For any SFC length and complexity 
there are fewer flow rules required. For example, even for service chain 
length 4/16 hosts, OpenPATH requires approximately 128 rules to 
ensure communications between all and every link in the network. The 
OpenPATH architecture also lowers the number of NFV packet man-
agement functions, while simplifying complex network and SFC policies 
are accessible from a single table. 

7.7.1. Flow table installation and controller load 
We increase the load on the network by flooding it with new con-

nections/flows, triggering a burst. Switches forward packet in messages 
to the controller via the OpenFlow channel, and the controller responds 
with “flow modification” messages to the switches. As a result, the 
controller’s CPU and network port will be consumed by processing these 
“new-flows.” This is a critical performance criterion for SDN-enabled 
networks. The controller on the OpenPATH system (See Fig. 38(a)) 
maintained the number of “flow installations/second” when the number 
of vSwitch nodes increased in our tests (See Fig. 38(b)). With a Classic- 
SDN OvS switch, the controller was overloaded by new-flow flooding 
and finally crashed due to CPU/Memory overload. 

7.7.2. Control channel/southbound interface load optimization 
OpenPATH’s expanded SDN architecture has a minimum controller 

overhead compared to typical OpenFlow-based SDN. The data plane 
processing does not cause any extra overhead in the switches’ typical 
OpenFlow pipeline. Using microbenchmarks, we investigated the 
controller overhead (traffic flow from the data plane to the control 
plane) and the redirection ratio (traffic flow to DPI and the other NFV 
modules) to get valuable insight into how to optimize the design. Only 
TCP packets, which account for 77% of the input traffic, are forwarded 
to the controller. In OpenPATH, the augmented switches will retrieve 
events using DPI capabilities, and ~1.5 percent traffic flows get through 
the southbound interface and analyzed for security policy violations or 

Fig. 31. Three modes of NFV Configuration.  
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suspicious cases. (See Fig. 38 c). The dataplane is responsible for the 
majority of the classification processing workload. Additionally, only 
necessary traffic will be forwarded to the controller and the ratio varies 
depending on the traffic composition. 

Fig. 32. (a) NF Complexity Latency (b) NF Throughput (c) Throughput Effect for packet sizes.  

Fig. 33. (a) Latency Effect for packet sizes (b) Latencies varying parallelism degree (c) Processing Rate with parallelism degree.  

Fig. 34. Performance with different Graph structure.  

Fig. 35. NFV Platform with traditional SDN.  

Fig. 36. Flow Table update load.  
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7.8. SFC orchestration in large simulated network 

To better explain packet steering (routing), we compare it to two use 
cases: 1. Data Center deployments, 2. Research networks. We mainly 
focus on two data center architectures: a leaf-spine and a fat-tree 
(referred to as a Clos topology here). We evaluate the convergence 
time for the routing algorithm, end-to-end overhead for new path setup 
and the control operation overhead due to the flow table installation 
across the switches in the data plane. We used Mininet (Lantz et al., 
2010) to simulate large network topologies. We emulate a typical 4-pod 
Fat-tree network topology (Fig. 39), the elements in the topology are 
termed hierarchically as: core, aggregation and edge switches. In a 

Fat-tree topology, all core switches connect to all pods. In our network, 
we set up 16 servers, four pods (each with four switches), and four core 
switches. Thus, there is a total of 20 switches and 16 end hosts (for larger 
clusters, the number of switches will be smaller than the number of 
hosts). 

We built and compared NFV implementation under following three 
platforms:  

1) Quagga’s (Quagga Routing Suite, 2019) OSPF routing protocol suite 
with virtual Linux switch(es)  

2) Floodlight (Big Switch Networks, 2016) as a conventional SDN stack 
with traditional stateless OpenvSwitch dataplane  

3) OpenPATH SDN stack with controller and vSwitch nodes with 
modified OVS replacing the Pods. The pods act as ‘vSwitch’ 
(consolidating aggregate and edge switches), host the NFV applica-
tions and service function chains. The nodes (equivalent to pods in 
OSPF setup) have capabilities for light-weight applications and deep- 
packet inspection logic. ii) high-speed control channel with the 
controller. iii) sufficient memory (TCAM) for maintaining OpenFlow 
group tables and stateful data plane pipeline. iv) backup/fail-safe for 
controller failures. The Controller offloads these Core switches 
certain functions and delegates flow table management and routing. 

7.8.1. network convergence time for topology construction 
We evaluate the scalability of the routing protocols with respect to 

network topology and size. The convergence principle is different for 
traditional OSPF routing protocol and in SDN flow establishment. For 

Fig. 37. NFV platform in OpenPATH.  

Fig. 38. (a) Network Load on controller, (b) Flow Installation Scaling, (c) Southbound Interface Optimization.  

Fig. 39. Testbed network Architecture with Fat Tree topology (Clos).  
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the Quagga’s distributed OSPF configuration-the time for all hosts in the 
network to receive packets from all other hosts (i.e.,” routing tables in all 
the switches in all paths are determined and populated”) in the network. 
For Floodlight SDN, as part of the OpenFlow principle, the initial to-
pology across all the switches is discovered by the controller through 
LLDP protocol. The convergence time is measured as the time taken by 
the controller to install flow tables for all the devices in the network 
(including the switches). In OpenPATH which has stateful data plane, 
through the out-of-band control connection with the controller and core 
switches, the bi-directional flow rules are delegated to the vSwitch 
nodes. So, the convergence is considered complete when the first packet 
(new flow) is received by the destination host. Fig. 40 shows that for the 
network topology (K = 4/8/16), the convergence in OpenPATH is faster 
than OSPF/LLDP- Floodlight. For OpenPATH, the main overhead for 
convergence is for establishing the OpenFlow out-of-band secure 
connection between the control plane and data plane switches and 
delegating the group of flow-tables to the switches, all of these incurs 
lesser overhead. For Quagga’s-OSPF & Floodlight-SDN, the time for 
convergence increases with the network size, as more routing protocol 
messages are shared between switches and controllers (“e.g., LSAs/DBs 
in OSPF and Floodlight LLDP”). Also, the topology detection mechanism 
is a heavy weight protocol and has high demands from SDN controllers, 
which makes this a bottleneck for the network startup, when compared 
to the OpenPATH which is built on the same SDN principle but with the 
stateful notion. 

7.8.2. End-to-end routing delay for SDN 
In this experiment, we tested with the only two platforms (Floodlight 

and OpenPATH) that use the SDN OpenFlow paradigm. We used 
different traffic models in data centers to evaluate the Round-Trip-Time 
(RTT) performance: Ping (“One-to-One, One-to-All, and All-to-All”). 
Fig. 41 shows that in the three separate traffic modes, the delay for 
OpenPATH is below that of Quagga’s Floodlight SDN. The rationale is 
that the SFC algorithm for OpenPATH SFC forwarding works better than 
the Floodlight SDN Dijkstra’s Spanning Tree algorithm. The routing 
paths/forwarding decision are determined on switches locally and with 
no intervention by the controller. 

7.8.3. Control message overhead 
During the execution of all the above experiments, we observed the 

control messages that are exchanged out-of-band on the secure channels 
between the controller and switches, switches down the tier all the way 
to the leaf nodes. In OSPF specification, “Message type:xx” and in 
OpenFlow SDN standards – “Message type: Hello/Packet-In/Packet-Out, 
Proto Type: LLDP” are some examples. We collected the packet dump on 
the control connection for a specific sampling period and gathered 
insight from the packets. 

The key findings from the experiments in this section:  

• OSPF converges in 50 s and Floodlight SDN takes 10 s. Once the 
network is converged, both Floodlight and OSPF will be steady and 
quiet. During the whole operation (including convergence) there is a 
modest increase in the number of maintenance/control messages, 
but Floodlight shows big spike.  

• The frequency of “Hello” messages in OSPF- 10 s, Floodlight’s LLDP- 
15 s, OpenPATH -every 1 s. The majority of OpenPATH’s control 
communication are “Hello” messages, which is more than others. In 
OpenPATH, “Hello” traffic is exchanged solely between the switches 
and is not transmitted to the controller, resulting in no additional 
burden on the controller. So, switches and controllers’ CPU and 
network resources are thus lowered.  

• From a control message overhead viewpoint, OpenPATH generates 
consistent traffic and seldom encounters bursty traffic. Due to the 
increased usage of “Hello”, OpenPATH is able to detect network to-
pology changes and errors more quickly. 

7.9. Application-aware SDNFV architecture 

In this experiment, we discuss the benefits of the Flow Analysis 
function implemented in the SDNFV stack, for monitoring and dynamic 
applications. The southbound protocols such as OpenFlow and sFlow are 
standard network monitoring and management wire protocols that are 
supported across all vendor devices. The flow analyzer engine classifies 
and tags the flows for priority queuing, with minimal impact on 
throughput for large flows, while greatly improving latency for small 
flows. The NF classifies the flows based on their phase change, burst 
intervals, packet sizes, and dynamically adjusts paths through Change-
Path message. 

Flow-based QoS Engine: This Engine monitors the live flows to 
determine their traffic behavior. It divides traffic flows into different 
buckets by measuring the size, rate, and interval in packets arrivals. A 
Traffic shaping/slicing mechanism will classify elephant flows and 
latency-sensitive Mice flows traffic. After the detection, the SFC flow- 
tables output “action” is reconfigured to provide a faster-processing 
path for Ant/Mice and higher bandwidth for elephant flows. We used 
Pktgen-DPDK to emulate different flows and plotted the flows recorded 
in Fig. 42. By rapid classification of traffic and detection of anomalies in 
the network, the dynamic flow-analyzer engine installs an action to 
optimize the latencies for Ants/Mice flows, as shown in Fig. 42(a). At the 
same time, the bandwidth for the Elephant Flows is increased due to 
lesser traffic contention as shown in Fig. 42(b). 

Dynamic DDoS Detector: We evaluated the effectiveness of the 
OpenPATH flow-analyzer and dynamic NF insertion for SFC, in an 
emulated network that is under mixed attacks. Multiple traffic generator 
applications are run from within the network and through the gateway, 
flooding the network with mixed protocol attacks targeting the servers 
and just filling the pipe. The Smart Monitoring mechanisms that are 
built natively in the OpenPATH dataplane will find anomalies and Fig. 40. Topology construction time.  

Fig. 41. Flow establishment time.  
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malicious traffic patterns in the flows and will raise alarm events to the 
NF manager. The IPS and Defensive firewall appliances are installed 
with policy filters and dynamic policies/thresholds for reacting to 
network attacks at run-time. We also run traffic from normal benign 
clients to measure the impact of malware attacks on the network and 
how OpenPATH responds to the incidents. Fig. 43 plots the network 
throughput for the traffic. The attack begins around 10 s into the 
experiment, and we can see that the OpenPATH detects and responds to 
the attack in 35 s and the normal service is restored. While we observe 
small differences in reaction times to different types of attacks (e.g., 
TCP, UDP, DDoS, etc.), the overall recovery time is still reasonably short. 

Dynamic SFC Expansion: In the following test case we demonstrate 
how OpenPATH makes modifications to the service-graph at run-time to 
respond to the situation. The dataplane defines packet sequence-based 
flows but also has historical data for correlating, drawing insight, and 
finding anomalous patterns in the network traffic. We configured an 
NFV chain for an Edge Protection/Firewall system (Fig. 12) in which 
there is a Volumetric DoS detection IDS, filters packets based on the 
count of packets(threshold) carrying similar IP segment. (Indicating the 
origin of a DoS attack). The VNF alerts NF-Manager to ADD new VNF in 
the chain when packet drops increase over the threshold. Consequently, 
the new DDoS Sandbox VNF is added in the chain, which re-routes/ 
detours the packets from the DDoS VNF after breaching the threshold 
to the Sandbox for further scrubbing. The Sandbox VNF inspects the 
packets for attacks and decides to mark benign/forward or malign/drop 
the packets. This experiment demonstrates the efficiency and autono-
mous operation of the NFV system in the OpenPATH dataplane, saving 
all the complexity and overhead on the control plane. Fig. 44 plots the 
traffic for a certain period in the network. We generate benign traffic 
@10 Gbps. At time#10s, we begin the attack (mixed volumetric traffic 
with the same IP-Prefix) @1 Gbps and gradually ramped up to heavily 

hit the network. The DDoS Detector NF monitors the flow patterns in the 
packets passing through the chain and records the suspicious flows. 
Using the simple threshold-based IDS, when the traffic reaches (4.8 
Gbps), the IDS raises an alarm to mark those flows as malicious and 
detoured for further scrubbing. The IDS VNF raises the alarm to NF 
Manager and NFV-MANO for any change in action for the particular 
VNF. The NFV-MANO installs a command to insert a Sandbox VNF in the 
SFC to handle the detoured suspicious packets. This VNF was booted in 
under 4 s (could be improved by having redundant VNFs in sleep mode 
and woken up at run time quickly). It can be observed from Fig. 44 at 
time#30s, the outbound traffic rate is restored (Sandbox dropped the 
attack packets), even as traffic increases inbound. 

7.10. Comparison of SDNFV software switch performance 

To test NFV configurations, there are four different scenarios 
employed, the “physical to physical (p2p), physical to virtual (p2v), 
virtual to virtual (v2v), and loopback. All of the four case studies are 
depicted in Fig. 45. We believe the performance indicators and scenarios 
outlined above and these four use cases are crucial for NFV. When in-
tegrated with SDN/NFV, an in-depth understanding of the performance 
characteristics of any network virtualization solution is possible. The 
latest software-based NFV platforms use “kernel bypass” and zero-copy 
I/O (“NETMAP, DPDK”). The state-of-the-art software NFV platforms 
utilizing software switches, that implements kernel bypass and high- 
speed I/O mechanism on DPDK, NETMAP. BESS and OvS-DPDK aim to 
provide the benefits of SDN (i.e., separation of data and control planes) 
with the flexibility of a software solution and highly optimized data 
paths. We have chosen to do a comparison study of software switch 

Fig. 42. Performance of Flow Analyzer (a) Actual plot of flows (b) Plot with Flow-based bandwidth shaping.  

Fig. 43. Dynamic DoS detection.  

Fig. 44. Dynamic SFC expansion.  
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based NFV platforms - OvS-DPDK (Open, 2019), FastClick (Barbette 
et al., 2015), BESS (Han et al., 2015b) and VPP (VPP FD.io, 2016) with 
our solution OpenPATH. 

The aim of this experiment is to demonstrate and discuss the 
throughput sustained by software switches in four test scenarios 
involving simulated bi-directional traffic and packet sizes of 64, 256, 
and 1024 Bytes (Fig. 46).  

(a) p2p: BESS, FastClick, and VPP all surpass 5 Gbps for 64B packets. 
BESS exceeds 7.5 Gbps when performing very basic tasks such as 
data collection. FastClick extracts and updates packet header 
fields, while VPP performs a variety of checks. Due to the over-
head imposed by its match/action pipeline, OvS-DPDK achieves a 
lower cost. Due to the fact that the synthetic traffic is composed of 
identical packets that correspond to a single flow, OvS-flow 
DPDK’s cache is ineffective.  

(b) v2p: BESS and FastClick are able to maintain line rate for 256B 
and 1024B packets, but the effect of vhost-user is noticeable on the 
other switches. We observe a small degradation in throughput for 
VPP, as it incurs a performance penalty when receiving packets 
from vhost-user ports.  

(c) v2v: In contrast to other cases, v2v is restricted only by memory 
bandwidth, illustrating the upper limit of inter-VM 

communication via software switches and packet copying via 
virtio rings for the switches.  

(d) Loopback: OpenPATH achieves the highest throughput rate for 
all packet-sizes, even as the NF-chain length increases (default is 
1-VNF) due to distributed optimized packet steering and zero- 
copy shared memory for I/O processing. BESS gives high rate 
for the single-VNF chain. However, as the service chain lengthens 
due to the addition of VMs, BESS must conduct an increasing 
number of packet copies and packet detouring/trips through the 
central switch. FastClick and VPP operate at a slower rate due to 
the bottlenecks and packet-copying in the “vhost-user”. 

In all the scenarios, the performance for the compared NFV platforms 
is affected mainly due to the non-optimal I/O, packets copying, across 
the stack and buffers, multiple contexts switching within the node and as 
the number of NFs increase the packet touring back and forth between 
the VMs through the switch. Even for the OVS-DPDK switch, it incurs 
detouring and concurrent processing overhead (two streams) which 
lowers the throughput. In OpenPATH, with the NFs already embedded in 
the single node, we save all the detouring overheads and the other 
resource optimization techniques such as zero-copy have played key role 
in achieving maximum practical sustained peak throughput in all sce-
narios. FastClick and VPP work well in all cases due to VirtIO mecha-
nism. BESS performs well in all cases except in multi-VNFs loopback 

Fig. 45. Test scenarios - physical-to-physical (p2p), physical-to-virtual (p2v), virtual-to-virtual (v2v), loopback.  

Fig. 46. Throughput in (a) p2p, (b) p2v, (c) v2v and (d) loopback scenarios.  
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configuration. We have summarized the salient aspects of some of the 
popular software switches in Table 8. 

7.11. Comparison of server-based NFV platform performance 

We compare OpenPATH’s end-to-end performance against custom-
ized, high-performance NFV platforms OpenNetVM, NFVNice and 
Metron. We explore how OpenPATH’s performs when running an NF 
chain of various lengths and varying function complexity. 

About the compared NFV Platforms:  

• NFVNice (Kulkarni et al., 2017) – A VM based NFV platform that 
supports isolation with packet copying technique to the master 
module that acts as the message bus for transmitting packets between 
processes. has similar performance (95%) with a single-NF chain, but 
as chain length increases its throughput decreases despite its extra 
CPU cores for transmitting packets.  

• Metron (Katsikas et al., 2018) - high performance NFV platform that 
compiles NFs into a single process and runs-to-completion each chain 
as a thread. It implements a runtime and scaling algorithm. Each 
Metron runtime is a single thread process that runs an NF chain. 
Packets are transmitted between NFs with no isolation mechanisms.  

• OpenNetVM (Zhang et al., 2016a)- employs fast and zero-copy I/O 
through shared-memory between NFs. VNFs are run as independent 
processes on VMs. It runs the central software switch (bridge) on a 
dedicated CPU core for packet forwarding. 

7.11.1. Throughput Effect with varying SFC length 
We focus on a per-packet processing throughput for 64 B packets 

with a single server for OpenPATH and server-based NFs. For simplicity, 
we use a test NF (a firewall IDS module with 200 rules) and run chains 
with a sequence of the same NF. Fig. 47 shows the throughput of 

different NFV approaches for different length chains. OpenPATH ach-
ieves more than 95% of the peak rate across all packet sizes, for NFV 
processing. The key findings are:  

• OpenPATH throughput remains steady regardless of the chain 
length.  

• In legacy NFV platforms (NFs on VMs) the processing rate and 
throughput decrease as we increase the NFs in the chain. The bad 
performance is due to the non-optimal I/O, packets copying, across 
the stack and buffers, multiple contexts switching within the node 
and as the number of NFs increase the packet touring back and forth 
between the VMs through the switch. The legacy OVS switch in-
volves detouring and concurrent processing overhead (two streams) 
which lowers the throughput.  

• In OpenPATH switch, with the NFs already embedded in the single 
node, we save all the detouring overheads and the other resource 
optimization techniques such as zero-copy have played key role in 
achieving maximum practical sustained peak throughput even with 
scaling of the chain.  

• OpenPATH outperforms all other server-based NFV platforms with 
line-rate throughput for all types of traffic. 

7.11.2. Latency Effect with varying NF complexity 
We compared the processing overhead with 2 instances of the same 

NFs configured in a chain. The testbed uses 7 VNFs in NFV nodes. Each 
test case runs traffic through 2 VNFs instances and we expect the 
overhead to vary across the test cases, depending on the complexity of 
the application logic. The key findings (See Fig. 48) are:  

• Latency benefits due to NF parallelism in OpenPATH increases with 
NF complexity. For the least complex NF (300 cycles) to most com-
plex NF (3000 cycles) 

Table 8 
Software switches use cases summary.   

Best at Remarks 

OvS-DPDK (Open, 
2019) 

Stateless SDN deployments Supports OpenFlow protocol and P4, works with third-party SDN controllers and 
newly introduced protocols 

BESS (Han et al., 
2015b) 

Forwarding between physical NICs and one or multiple paralleled 
VMs 

Natively provides scheduling capabilities, Incompatible with newer versions of QEMU 
and scalability issues with VMs 

FastClick (Barbette 
et al., 2015) 

VNF chaining, linear and parallel NFV environments with reasonable 
trade-offs. 

Supports live migration, high latency at low workload, Modular high-speed router 
design 

VPP (VPP FD.io, 
2016) 

VNF chaining, linear and parallel NFV environments with lowest 
latencies 

Supports live migration, For Fully featured software network function (e.g., switch, 
router, or security Appliance) 

OpenPATH Intent based VNF Chaining, high-performance linear and parallel 
NFV environments, line rate NF (middlebox) application and SFC 
processing. 

Supports OpenFlow protocol and P4, works with third-party SDN controllers and 
newly introduced protocols, preferable when some state is required (e.g., for a 
firewall). All programmable SDN/NFV infrastructure.  

Fig. 47. Throughput vs chain length.  Fig. 48. Latency vs. NF complexity.  
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• The optimization level increases with more complex network func-
tions and processing. e.g., the Forwarder NF has simplified instruc-
tion cycles and overhead is less, whereas IDS/VPN NFs consist of 
heavier processing, instructions.  

• OpenPATH’s optimization effect is profound due to NF parallelism 
and zero-copy/minimal packet steering overhead in the pipeline and 
brings about 45% latency reduction compared with other platforms. 

7.12. Result discussion 

Network functions (NFs), or middleboxes, are widely common in 
large-scale networks. These appliances are usually very expensive, hard 
to manage, to scale, and to provision. They usually perform complex 
packet processing tasks, and thus, play a major role in the overall 
network performance. SDN and NFV work together to build a highly 
scalable network with a lower operational cost for data centers. The 
current way of connecting network functions to an existing network, 
however, introduces new problems such as duplicating operations be-
tween various network functions, overlapping packet data sharing in 
packet processing, and unnecessary network traffic with co-existing 
service chains. An NFV-enabled SDN architecture is proposed here to 
solve these challenges by merging duplicated processes, the fast packet 
I/O, parallel processing, and avoiding traffic detours in the software- 
defined networks. Table 9 presents the evaluation strategy we fol-
lowed to test various design aspects and key findings from our experi-
ments under micro benchmarks, comparative test cases, and application 
scenarios, on SDN/NFV testbed infrastructure. 

8. Future work 

The modern virtualized/SDNFV data centers demand an agile/pro-
grammable switching platform that can encompass the complete 
distributed network for high-speed packet processing and routing in the 

complex network function/service chains. Network functions and mid-
dleboxes are an active area of research. The inherent limitations of 
current packet processing technologies, and the growth in bandwidth 
requirements, require a rethinking of network functions in all aspects, 
from traffic engineering aspects such as placement and steering, through 
operational aspects as scaling, provisioning, and security, to functional 
aspects such as programming abstractions, runtime I/O packet pro-
cessing frameworks, and improved algorithms for specific tasks. 
Addressing some of these issues, OpenPATH enables NFV with the SDN 
architecture. In this research direction, we are pursuing a few open is-
sues and a sketch of future work are listed here.  

• Enriching the scope of the policy definition templates for more 
complicated service graphs in SFC, also tools to inspect and verify 
policies. Expanding the OpenPATH to container platforms as they 
facilitate portability, elastic scaling, and fast boot-up of instances. 
Applying Graph partitioning techniques and sub-graphs, map/reduce 
computing model. To evaluate the NF dependencies and conflicts 
when we transform into sub-graphs for parallelism, we must develop 
an automated formal method to define diverse functionalities and 
complex policies (Sekar et al., 2012).  

• The heterogeneity of network functions is a motivating factor for 
hardware acceleration and this aspect is not dealt in this article. We 
will design outsourcing of NFs to hardware GPU and NIC accelerators 
by providing an OpenCL-like interface for COTS hardware (e.g., 
GPU, Intel Phi, Netronome AgilioTM CX, NetFPGA, Intel FlexPipe, 
Barefoot Tofino). Some work is in progress to implement the archi-
tecture presented in a proof-of-concept hardware prototype using an 
FPGA platform. The hardware prototype is being designed using as 
target development board NetFPGA SUME (Zilberman et al., 2014), 
an x8 Gen3 PCIe adapter card incorporating a Xilinx Virtex-7 690T 
FPGA. 

Table 9 
Summary of the key findings.  

ASPECTS EVALUATED DISCUSSION 

NF placement The processing rate or throughput is higher in OpenPATH compared to the unoptimized “back-and-forth” policy. The output is 
almost the same as the single-node case (as the fabric connection is not crossed multiple times). Similarly, the production of easy 
forwarding tests is typically flat at around 9.4 Mb/s, suggesting that adding NF Manager has limited effects on the efficiency of 
medium to heavy NFs. 

NF Scalability OpenPATH consolidates NFs in a service graph inside one server to optimize resource overhead. Load balancing with two NF 
nodes is identical to load balancing with a single node. When adding replicas, we use a different node. The throughput increases 
linearly up to the rate of the input line (10 Gb/s). With a number of instances ranging from one to ten, throughput is just 
marginally slower than with a single server, despite the addition of the chaining server, fabric connections, and a separate NF 
placement. 

Flow Table Management The flow entries can have compact representation called synapse of packet length and inter-time packet arrival distributions 
which is small yet provides enough information to perform accurate application-specific traffic classification. This provides a 
significant reduction in the size of the flow entries for OpenFlow communication, reducing the bandwidth usage, less memory 
space for flow tables, which in turn yields a reduction in power dissipation for core switches. 

Packet Steering management In OpenPATH, for steering the packets across the VNFs in the chain the NF Manager delegates the packets to NF handlers 
attached to them. The packets are accessed by using references to shared memory buffers and alleviates the hot spot in packet 
forwarding. 

Algorithmic Complexity The smart placement single-node algorithm (See Fig. 7) consumes O(n) operations to select optimal nodes. So, the complexity 
can be O (2n + n log n). The multi-node placement (See Fig. 9) O(Ln) operations (length L as a constant) to traverse the graph. 
The worst-case complexity takes O(Kn2). Thus, we can infer the approach has reasonable scalability even for large complex 
service graphs/SFC. 

Resource overhead (Flow table updates, packet 
copying overhead) 

To minimize copying overhead, OpenPATH makes use of DPDK’s zero-copy interfaces. For a complex NF, it can incur an average 
of 100 micro secs of latency and a negligible throughput penalty while still achieving a 35% latency reduction over sequential 
composition. The latency overhead percentage of copying and merging will be further reduced with longer chains and more 
complex NFs (e.g., VPN). This framework provides throughput improvements such as 67%, and reduces latency by 35%, in the 
scenarios tested in NF parallel configurations (copying and no-copy, degrees and packet sizes. 

Modularity OpenPATH decomposes NFs into independent building blocks. This characteristic is exploited for both monolithic and modular 
SFC, for block-level parallelism, to further reduce latency. 

Processing Rate In the Conventional method, the throughput is bounded by the slowest NF in the pipeline. With OpenPATH, the SDNFV 
orchestrator merges the NFs into subgraphs and executes in parallel. The overall improvement in throughput is 2x and the 
latency is 50%, as packets are processed parallelly by one of the vSwitch nodes. 

State Management As the NF state is distributed across multiple nodes, the SDN controller initializes the tables across the nodes and periodically 
synchronizes the state tables. This problem and the management overhead are not unique to OpenPATH, and we solve this issue 
efficiently through “Statefulness” in the data plane.  
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• The NFV deployment solution has to ensure security (i.e., authen-
ticity, integrity of VNFs) and reliability (i.e., order of services) in the 
SDN infrastructures. Despite the advantages of NFV/SDN for SFC 
implementation, major protection and reliability problems exist such 
as i) Difference among high-level SFC policies and their data plane 
compliance. ii)ensuring that the authentic VNFs are assembled in the 
proper and optimal order when the actual traffic flows through the 
SFC.  

• The Consistency issues in SFC, analysis of attack models to deviate 
the SFC path (e.g., flow redirection) are still a major concern and 
relatively neglected by the research community. The issue is how do 
we ensure that packet flows linked to a particular SFC are steered and 
traverse through appropriate and legitimate VNFs in relation to the 
predefined policies.  

• We are examining the protection and explain how security signature 
aggregation techniques can preserves the security, reliability and 
resistance to the attacks defined in the common threat models for the 
SDN/NFV enabled data centers.  

• We have to investigate light-weight attestation mechanisms to verify 
the behavior of packet traversals across the SFC chain and resistance 
to attacks like flow diversion, adversarial rerouting and un- 
authorized path de-touring. 

While we did our best to make the study as comprehensive and 
thorough as possible, we expect to discover only a small part of the 
iceberg. Even the findings presented here should inspire further inves-
tigation of OpenFlow and SDN assumptions for NFV. 

9. Summary and conclusions 

SDN/NFV technologies are converging, evolving, maturing and new 
players are entering the market and we have proposed a flexible and 
high-performance SDN/NFV switching framework. OpenPATH aims at 
completely leveraging virtualizing-based network features in enhancing 
network capabilities through an integrated hierarchical control and 
stateful flow management system to resolve the constraints of a stateless 
dataplane that are over-simplified in the current SDNs. We’ve main-
tained the spirit of the SDN paradigm’s simplified-programmable model 
by keeping the concept flexible and extensible. The proposed architec-
ture can be used to implement NFV/middlebox functions as well as 
stateful applications. Our findings demonstrate that OpenPATH pro-
vides superior performance over other switching architectures in NFV 
services infrastructure. More significantly, OpenPATH is developed to 
be conformant to the OpenFlow standards and can be integrated as a 
datapath (without recompile) in the existing SDN-enabled environment. 
OpenPATH provides an effective intuitive and expressive interface to the 
operators for semantic representation of the policies, priorities in SFC, 
sequential or parallel NFV composition intent. Our experiment results 
show that OpenPATH based NFV deployments can reduce latency by 
about 55% and increase throughput by up to 70%. With the stateful 
dataplane design, OpenPATH infrastructure provides a robust SDN 
switching stack, without overloading the control channel. The added 
intelligence in dataplane ensues far more dynamism and accuracy when 
comparing to the legacy approaches in SDN which employ proactive 
rules and static flow management. Through this work, we have estab-
lished the need for new research directions in software switching and 
discussed the design strategies associated with hosting the NFV services 
in the next generation converged SDNFV architectures. 
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