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Abstract—Involving human in the loop of IoT offers numerous
advantages to a wide range of applications including emergency
management. However, building a collaborative system that is
capable of effectively responding to an emergency in timely
manner introduces a number of fundamental challenges. It
requires effective discovery of crowds for a given emergency and
also successful communication of information across discovered
crowds of different domains. In addition, the crowds may not
agree on a single solution when group decision making is
required. Therefore, consensus management such that consensus
is achieved in a timely manner is yet another challenge. In
this research, we propose a framework that uses ontology-based
discovery and data modelling and consensus theory to tackle
the aforementioned issues. We demonstrate the efficiency of the
discovery and consensus management approach via a case study
and set of experiments, respectively.

I. INTRODUCTION

With proliferation of Internet of Things (IoT) applications,
humans and things need to operate together more productively.
Involving human in the loop, although offers unique opportu-
nities to IoT solutions, is tremendously challenging [1]. This
is because in an IoT system, modelling human capabilities
and their behaviours and enabling effective communication
among them and the information system is a complex task.
Therefore, new research is necessary to identify creative
solutions for involving human in different IoT applications. To
this end, in this paper we focus on such solution for emergency
management system as a case study.

Responding to disaster of any kind requires continuous
participation of experts from different areas. This requires
successful communication of information across people from
different domains and likewise across different information
systems. One of the major challenges in this context is
lack of common understanding between involved experts and
machines. For example, a term such as “distress” has a
different meaning in information system domain compared to
transportation domain. This inadequacy results in miscommu-
nication leading to huge impact including loss of lives. In
addition, this heterogeneity makes the symmetric attribute-
based matching between requirements and available experts
and resources nearly impossible.

Moreover, if we assume experts and volunteers can com-
municate efficiently, we still have the problem of conflict
management. There will be a situation where involved crowds
have different opinions on a type of action or solution re-
quired to respond to an emergency. This issue is even more
challenging to address when crowds are distributed across
multiple locations, communication media is not stable, and
there is a time constraint on reaching the consensus. Therefore,
this research aims at tackling these two major challenges
by proposing a framework which uses ontology to overcome
miscommunication challenges and utilizes consensus theory to
manage conflicts.

To achieve semantic interoperability, the framework uses
ontologies for data modeling and reasoning. Such data mod-
eling enables semantic interoperability by providing common
specific terminologies that explicitly describe concepts. Hence,
it will lead to more efficient management of experts and
volunteers who are involved in the process of responding to
disasters. This has multiple benefits:

• Enabling effective automated reasoning, and
• Presenting an efficient ontology-based discovery of re-

quired crowds and resources that matches a particular
disaster.

Moreover, to tackle the problem of consensus management for
collaborative emergency response, the framework converges
diverse opinions to reach an agreement based on the col-
laborative knowledge sharing between discovered crowds. To
reach the consensus in an emergency when time is a constraint
and connections among crowds are unreliable, this research
investigates impacts of number of crowds and number of
connections among them on convergence time.

The remainder of the paper is organized as follows. First,
Section II highlights challenges in human-centric disaster
management system by presenting a case study. Then, we
describe the proposed architecture along with its components
in Section III. Next, in Section IV we discuss the process of
ontology design for the system following by a section on our
proposed consensus management strategy. Section VI presents
experiments which investigate the performance of the system
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Fig. 1. Architecture’s main components that enable effective crowd manage-
ment in response to disasters.

and Section VII highlights the uniqueness of our approach
compared to similar studies. Finally, the paper concludes
suggestions on future directions.

II. MOTIVATION SCENARIO AND CHALLENGES

In this section, a case study is described that helps us to
demonstrate the effectiveness of the proposed approach. Our
case study is a large research facility with a large number of
rooms. A researcher is working in one of the rooms. It is late
at night and no one is around except few researchers far-off
in another rooms in either the same or different buildings.
The researcher suddenly starts experiencing a distress (raising
blood pressure or abnormal heart beat rate) situation. His
smart phone detects that the researcher is in distress. The
phone determines the exact room through location-sensing
using the Wifi-routers located in the building. The phone
then broadcasts an emergency message along with location.
The message has to be received by other researchers with
necessary skills and access to required resources who can
help the researcher. Matching the events requirements to the
appropriate experts is the first challenge we face. In addition,
the discovered experts might have diverse opinions on how to
treat the distress situation e.g., transferring the patient to the
nearest medical center by private car, or call the ambulance,
or even the choice of medication. However, the time is against
them and they need to make a decision as early as possible.
How they can converge different opinions to make a decision
in timely manner and how reliability of the decision is another
challenge to overcome.

III. ARCHITECTURE

The main goal of the architecture is to simplify management
of experts and volunteers who are involved in process of the
emergency response. The proposed architecture is depicted in
Figure 1 and its main components are described below.

1) Disaster Data Sources: Datasets are raw data collected
(for example sensors and social media feeds) from data
sources and are source of truth. They provide informa-
tion regarding several aspects of an emergency situation
including affected region and the people that occupy
it, impacted infrastructure, the severity of damage, and
response requirements.

2) Social Group Management: This component builds the
groups of different experts and volunteers based on:

a) The type and location of disaster, impacted people and
infrastructure information, and

b) The expertise and volunteer forces available.
This component is also responsible for building a social
group and requires ad-hoc communication systems that
people can use through their mobile devices to share data,
information, and thoughts in the process of emergency
response.

3) Ontologies: provide the domain specific emergency re-
sponse terminologies and is the key element for the
success of semantic interoperability and match-making.
Furthermore, they use formal semantics to connect ma-
chine and human terminologies. We used Web Service
Modeling Ontology (WSMO) [2] for describing our on-
tologies.

4) Reasoner: It is used by semantic queries on the ontology.
We used Web Service Modeling Language (WSML)
reasoner [3] for this component.

5) Crowd Discovery and Semantic-based Reasoner: This
component receives the disaster information and discov-
ers people that can get involved in a response team. It
uses an ontology-based reasoner to improve precision and
avoid low recall caused by lack of common understating
of concepts and terminologies that have been used to de-
scribe the expertise of people, disaster types and response
requirements.

6) Grounding Component: This component is built to
transform semi-structure data from data sources to a se-
mantic model. During the communication of a semantic-
level and a syntactic-level, two directions of data transfor-
mations (which is also called grounding) are necessary.
In this context we are interested in a direction which con-
verts semi-structured data sources to semantic data. We
utilize mapping extension offered in grounding package
of WSMO that defines how XML instance that is obtained
from data sources is transformed to a semantic model. For
more detail, refer to our previous research work [4].

7) Dynamic Crowd Planning: This component dynami-
cally assigns tasks to experts and volunteers and defines
their sequences.

8) Consensus Management: In circumstances where all



Fig. 2. Researcher concept and its properties and instances.

experts have been asked to collaborate to make a decision
on a next action, the consensus process converges diverse
opinions to reach an agreement based on the collab-
orative knowledge sharing between discovered experts.
This component guarantees that even with existence of
conflicts, a consensus will be reached.

IV. DESIGNING ONTOLOGY FOR DISASTER MANAGEMENT
SYSTEM

As mentioned earlier, this research aims at tackling the
problem of semantic interoperability between experts or in-
formation systems for emergency management systems. We
achieve this by developing ontologies that enable semantic
interoperability by providing the common specific terminolo-
gies that explicitly describe concepts. There are number of
advantages [5] to model data via ontology (using semantic-
based languages) compared to other methods such as XML,
JSON, SQL, etc. This is because these languages do not
have the capability of symbolizing subclass relationships. An
example of such relationships for our scenario can be defining
first aid kits as a subclass of medical resources. With highly-
expressive ontology-based language, it is even possible to
describe dynamic relationships and in general complex ideas
regarding the domain data. For example, to model resources
required for an emergency, a dynamic relationship of “an
automobile with 4 tires is a car” can be easily modeled
with such languages. In Section IV, we elaborate on this
and describe how we utilize axiom to provide automated
reasoning and build dynamic relationships. To build the data
model for the provided scenario, we first require an ontology-
based modeling framework and language. We have chosen
WSMO [2] that defines a model to describe concepts based
on the conceptual design set up in the Web Service Modeling
Framework (WSMF). In addition we utilized Web Service
Modeling Language (WSML) [3] that consists of logical
formalisms, namely, Description Logics, First-Order Logic and
Logic Programming, all of which are helpful for the modeling
concepts involved in emergency management. WSMO ontolo-
gies provide the (domain specific) terminologies and is the key
element to achieve interoperability in emergency management.

Fig. 3. A WSML relation that links a researcher to a location for a given
time.

Fig. 4. Concept and sub-concepts related to resources.

Fig. 5. Concept and sub-concepts related to events.

To develop our ontology, we extend SSN ontology [6] and
utilize the conceptual model of disaster management which
was developed by Kruchten et al. [7]. The model consists of
four categories of concepts as follows:

A. Social Layer

This layer deals with communication and coordination
among experts, volunteers, and machines (as depicted in
Figure 2). For the given scenario, in this layer we define
the concept of human and then sub-concept of researcher.
Next, we define concept of skill, which describes capabilities
of dealing with distress or disasters. This includes first aid,



Fig. 6. Overview of the major portion of the developed ontology

CPR, fire aid, etc. Then we associate the skill to the researcher
concept. In addition, researcher has access to resources whose
concept is defined in other layer. The researcher concept
requires more properties which are inherited from the human
concept.

B. Location Layer

This layer describes a region and the people that occupy
it. In this layer, we define concept of location, its properties
and its sub-concepts of buildings, rooms, etc. In addition, we
define a relation (as depicted in Figure 3) in WSML named
“researcherHasLocation” to link a researcher to a location
at a given time. In addition, to model the distance between
locations, another relation called distance is created which is
a sub-relation of measurement.

C. Resources and infrastructure

For this layer, we require concepts that describe resources
required to response to distresses (e.g. medical emergencies).
For example as shown in Figure 4, medical resource and
vehicle are both sub-concepts of resources. They both have
their own sub-concepts and instances which are not shown
in Figure 4. Once instances of researchers are being created,
we define to which resources (resource instances) they have
access.

D. Events and Distresses

This layer describes events such as a disaster and its impact
on people. For this layer, we focus on concepts required to
model events, metrics, observations, and distresses. As it is

depicted by Figure 5, each event is observed by a sensor and
is at least related to a researcher and has at least one indicator
and a location.

After adding necessary concepts and relations for each layer,
the constructed ontology is similar to what is depicted in
Figure 6. In the following section, we show how the developed
ontology can be utilized for automated reasoning and crowd
discovery.

E. Enabling Automated Reasoning

As we mentioned earlier, one of the major motivations
behind using ontology for data modeling is enabling automated
reasoning. For example, in the aforementioned scenario, it
will be very helpful if we can use automated reasoning
to spot or mark distresses from other observed events. A
sample of such reasoning for the given scenario is presented
in Table I, which identifies blood pressure observations as
indicator of heart issue if it is above 180 mm. Moreover,
similar logical expressions can be defined as axioms to build
dynamic relationships as it was explained before. Table II
shows two logical expressions and describes how they can help
to dynamically add relationships to the developed ontology.

F. Crowd Discovery

In our project context, crowd discovery is the process of
searching for crowds of experts whose skills closely match the
one required for responding to a distress. For this purpose, we
present several types of matching operations based on well-
know studies [8], [9] as follows:



TABLE I
AUTOMATED REASONING TO DETECT DISTRESSES.

Query String Result

?event memberOf observedEvent and ?event[hasIndicator hasValue ?in-
dicator] and ?indicator memberOf upperBloodPressure and ?indica-
tor[observationOutput hasValue ?output] and ?output ≥ 180 implies
?event memberOf heartIssue.

Row event indicator output

1 event162432 ubp16 205
2 event152432 ubp15 195
3 event122432 ubp 200

• Exact-Match: The crowd is matched if its set of capa-
bilities is same as the set of the distress requirements.

• Subsumption-Match: The crowd is matched if its set of
capabilities is a subset of the distress requirements.

• Plugin-Match: The crowd is matched if its set of capa-
bilities is a superset of the distress requirements.

An example of discovery result for subsumption match is
presented in Table III where researchers who have either skills
of CPR or first aid that are related to a distress of heart type
issue are discovered.

V. CONSENSUS MANAGEMENT PROCESS

Once the crowd of experts is formed to make a decision,
they should reach a consensus on the next action regarding
distress situation. The trust-aware consensus process for the
purpose of converging diverse contributions (i.e., opinions) is
presented in Figure 7. The involved experts have to pursue
the following steps respectively in order to converge to an
agreement:

i) Crowds o are interconnected via an established social
network, where peers interact with each other based on
the existing relationships among them. The interaction
network is modeled as a connected digraph, whose nodes,
represent the crowds, and its edges reflect the interactions.
In the initialization phase, each expert assigns the same
trustworthiness level (i.e., Tij = 0) to all its connections
with other experts.

ii) The consensus process starts over the network, where the
discovered experts have different opinions (xi(k)) on how
to react to the disaster e.g., finding the nearest medical
center.

iii) Each expert begins to interact and send signals to its
neighbors to update their opinions based on a trust-
aware consensus protocol (ui(k)). In general the idea
is to converge to opinion of the most trustworthy peers
as described in previous research [10]–[12]. Interested
readers can refer to our previous work [12] for further
detailed information on consensus protocol.

iv) The trustworthiness of each expert evolves over time.
Therefore, a model to update and maintain this trust
should be in place. This model works based on the
cooperative knowledge sharing between crowd members.
The trustworthiness levels between experts are updated
based on their collaborations and interaction with other
crowds.
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Fig. 7. Consensus Process.

v) These interactions continue until the network reaches a
predefined convergence (ϑd). In other words, all experts
agree on a certain opinion for the next action e.g., shortest
route to the nearest medical center. This evaluation is
guaranteed by a consensus process that converges to the
most trustworthy opinion.

VI. EXPERIMENTAL RESULTS

In this section, we conduct experiments to evaluate the
proposed consensus management approach in the context of
emergency response. The conducted experiments investigate
how number of experts and connections among them in the
discovered crowd affect the convergence time. These two
factors of convergence time and number of connection are
specifically critical in the context of emergency management.
The experimental setup is firstly presented. Following this, the
conducted experiments are discussed in the next two sections.



TABLE II
AXIOMS AND THEIR FUNCTIONALITIES.

Axioms Functionality

?x memberOf heartIssue implies ?x [hasSkillRequirenments has-
Value CPR, firstAid].

This WSML logical expression dynamically adds skill re-
quirements of CPR and first aid to a distress event if it is
a heart issue.

?x memberOf heartIssue and ?y memberOf car and ?z memberOf
medicalResource implies ?x[hasResourceRequirenments hasValue
?y,?z].

This WSML logical expression dynamically adds medical
resources as requirements for a distress event if it is a heart
issue.

TABLE III
CROW DISCOVERY RESULTS.

Row ?distress ?req ?human ?humanskill

1 e1 firstAid Lars firstAid
1 e1 firstAid Amir firstAid
1 e1 CPR Lars CPR
1 e1 CPR Lars CPR
1 e1 firstAid Simone firstAid

A. Experimental Setup

Three different types of crowd are defined as shown in
Equation (1) based on the Density Ratio (DR), the ratio of
the number of connections between experts involved in the
consensus process to the total number of possible connec-
tions among them. The Crowd Type (CT) includes Weakly
Connected (WC), Moderately Connected (MC), and Strongly
Connected (SC).

Crowd Type =


WC if 10 < DR ≤ 40

MC if 40 < DR < 80

SC if DR ≥ 80

(1)

In the experiments, we vary the number of experts from 5 to
20 with a step value 5 and vary the type of crowds based on the
abovementioned definition. As discussed before, involved ex-
perts have diverse opinions to react the distress situation. This
diversity necessitates the definition of a difference threshold
(ξ), a predefined acceptable difference agreed by all experts
to converge their opinions to reach an agreement. Last but
not least, the convergence time specifies how fast the involved
experts can converge to make a decision to response to the
distress situation. It is noteworthy to mention that making
reliable decision in the shortest possible convergence time is
of paramount importance for emergency response in disaster
situations. Table IV presents the experimental parameters and
their descriptions.

B. Impact of Number of Connections

This experiment investigates how increasing number of
connections affects the convergence time. For this purpose,
12 different crowds are considered in this experiment that
are categorized in four groups in terms of number of experts
involved. Each group has its unique difference threshold
because of different distributions of the experts opinions. The
acceptable convergence time is also supposed to be less than
200 time steps.

TABLE IV
DESCRIPTIONS OF SYMBOLS.

Symbols Description

N Number of experts
NC Number of connections
DR Density ratio
ξ Difference threshold
T Convergence time
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Fig. 8. Impact of number of connections on the convergence time.

Figure 8 shows that when the number of connections
increased from WC to MC and SC crowds, the convergence
time is significantly shortened. This reduction is 95.3% in
average when type of crowd changed from WC to SC. This
observation indicates that, for each set of experts, there is a
limit on the number of connections that can be lost during
the emergency. If the connections cannot be recovered in



such situation, the best action is to decrease number of
involved crowds (but keeping the same number of connections)
to decrease the convergence time. In addition, this means
that when connections are not reliable or there is a limited
connectivity, group decision making is not recommended as it
may delay the emergency response significantly. Therefore,
the result of this experiment (estimating the convergence
time based on connectivity) along with information regarding
expert availability and reliability of connections helps in more
efficient discovery of crowds and delegation of tasks.

C. Impact of Number of Experts

The aim of this experiment is to investigate the effect
of the number of experts on the convergence time. In this
experiment, the previous MC crowds are utilized and the
acceptable convergence time is the same as the previous
experiment. However, in contrast to the last experiment that
the same difference threshold is used for all crowds to achieve
the goal of the experiment. As depicted in Figure 9, increasing
number of experts prolongs the convergence time to reach a
decision. The speed of convergence time increment accelerates
with the increase of number of experts. This increase is more
pronounced when smaller values of difference threshold are
considered. For example, the convergence time become 673
(time steps) and 1031 (which is beyond the acceptable range)
when the crowd includes 15 and 20 experts and the difference
threshold is 2. It can be concluded that smaller numbers
of experts along with higher values of difference threshold
increase the chance of shorter convergence time to reach
consensus provided that the discovered crowd is at least MC.
This improvement becomes more perceptible with increasing
number of experts. This means that in a time-critical situation
and when it is essential to involve a large number of crowds in
the decision making process, it is recommended to set greater
values for the difference threshold. Likewise, in a time-critical
situation and when it is essential to make a decision with the
minimum difference threshold, the best action is to minimize
the number of crowds involved. Similar to the findings of
the previous experiment, the information regarding the latency
requirement and the minimum acceptable threshold has to pass
to the discovery component. Then, it considers the trade-off
between number of experts, minimum acceptable threshold,
and latency requirement to select appropriate group of crowds.

VII. RELATED WORK

There is a large body of research on information technology
systems for managing disasters of all types. These systems
have been proposed for different stages of an emergency such
as disaster prevention and emergency response. In addition,
those systems play different roles in responding to an emer-
gency. Here, we focus on research that helps in emergency
response coordination and information integration and com-
munication. As we discussed earlier, the use of ontology and
semantic languages improve interoperability across different
communities of experts responding to a disaster. Ramanathan
et al. [13] developed a multi-level ontology-based modeling

approach that enables collaboration across multiple teams of
experts and machines in a disaster management scenario. The
models are described in Web Ontology Language (OWL) [14],
the semantic Web standard for metadata.
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Fig. 9. Impact of number of experts on the convergence time.

In addition, there are number of researches [15]–[17] that
build ontology (knowledge) of disaster management domain
from multiple unstrcutued data sources in a semi-automatic
way. Chou et al. [18] created an ontology structure for
a disaster management website. This is because Hurricane
Katrina has shown the effectiveness of employing a Web site



for communication and information management once dealing
with natural disasters. The ontology, which is also coded into a
Web-based system, was built from multiple web page sources.
Similarly, we have proposed a grounding approach [4] for con-
verting unstructured data to ontology. In this research, unlike
other researches which only focused on interoperability aspect,
we have used ontology and semantic languages for crowd
management (expert discovery). In addition, we have shown
the advantages of adopting ontology in modeling dynamic
relationships in an emergency response system through few
examples.

Consensus management is a critical element of all collabo-
rative disaster management system. The importance of consen-
sus process has been discussed in many disaster management
researches [19]–[21]. In disaster response, time is too limited,
therefore Casse [20] investigated the impact of crowd culture
and step-by-step consensus group decision making on consen-
sus time. Likewise, Kapucu [22] discussed the same issue and
concluded that a more balanced and similar views in groups
of decision makers reduces consensus time during emergency
situations. Nevertheless, to the best of our knowledge, none of
previous research proposed a concrete solution to consensus
management problem that can be utilized when there are both
human experts and machines involved in making a decision.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper not only we discussed the interoperability
issue in responding to an emergency, but also investigated
two fundamental challenges of crowd management. First, the
issue of crowd discovery was discussed and is tackled with
a semantic-based discovery approach. Next, we provided a
solution for reaching a consensus among discovered experts
who could not agree on an action for responding to a distress.
Based on the obtained results, we can conclude that when
the number of connections increases, the consensus time
is significantly shortened. In addition, it can be concluded
that smaller numbers of experts along with higher values of
difference threshold increase the chance of having shorter
convergence time to reach consensus. In summary, for our
system this means that if (in an emergency) number of reliable
connection decreases, it is best to decrease the number of
involved crowds (but keeping the same number of connections)
to decrease the convergence time.

We plan to investigate crowd formation and composition
considering compatibility rules derived from organizations’
policies and preferences of users. In addition, another promis-
ing research topic is to study algorithms for crowd planning
based on disaster priority reasoning, distance from disaster,
and resource availability.
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