
Multi-Objective Problem Solving With Offspring on Enterprise Clouds

Christian Vecchiola, Michael Kirley, and Rajkumar Buyya

Department of Computer Science & Software Engineering

The University of Melbourne, 3053, Carlton, Victoria, Australia

{csve, mkirley, raj}@csse.unimelb.edu.au

Abstract

In this paper, we present a distributed implementa-

tion of a network based multi-objective evolutionary

algorithmcalled EMOby using Offspring. Network

based evolutionary algorithms have proven to be effec-

tive for multi-objective problem solving. They feature a

network of connections between individuals that drives

the evolution of the algorithm. Unfortunately, they re-

quire large populations to be effective and a distrib-

uted implementation can leverage the computation time.

Most of the existing frameworks are limited to provid-

ing solutions that are basic or specific to a given algo-

rithm. Our Offspring framework is a plug-in based

software environment that allows rapid deployment

and execution of evolutionary algorithms on distrib-

uted computing environments such as Enterprise

Clouds. Its features and benefits are presented by de-

scribing the distributed implementation of EMO.

1. Introduction

Many problems in science, engineering, and economics

require solutions consisting of several incommensur-

able and possibly conflicting objectives, constraints,

and/or problem parameters. Multi-objective evolution-

ary algorithms (MOEAs) are now a well-established

population based metaheuristic used to find a set of

Pareto-optimal solutions for such problems [1]. How-

ever, one of the major difficulties when applying

MOEAs to real-world problems is the computational

cost associated with the large number of function

evaluations necessary to obtain a range of acceptable

solutions. In the MOEA domain, there have only been a

relatively small number of parallel models described as

compared with the single objective domain (see Veld-

huizen et al. [2] for a review). Recently, we introduced

a novel complex network-based MOEA [3, 4], called

EMO, to address the many inherent challenges when

attempting to find a range of solutions, particularly for

problems with a large number of objectives. Initially,

we restricted the implementation to a sequential model.

In this paper, we introduce its distributed implemen-

tation by using Offspring, which is a framework we

developed for distributing the execution of evolutionary

algorithms. Enterprise Clouds [5] provide the required

computational power to solve large optimization prob-

lems in a reasonable period. Offspring provides facili-

ties for distributing the large computation load gener-

ated by MOEAs, by simply asking the user to define the

strategy to use for coordinating the distributed execu-

tion. The primary aim of this system is to provide a

friendly user environment for researchers in combinato-

rial optimization who do not want to be concerned

about building interconnection software layers and

learning underlying middleware APIs. Specifically, we

provide a visual user interface that manages the execu-

tion of population based optimization algorithms, a set

of APIs allowing researchers to write a plug-in for this

environment quickly. The distributed version of our

serial implementation of MOEA has been developed as

a plug-in for this system by simply defining a strategy

which: (i) coordinates the different serial executions

distributed among the nodes; and (ii) applies smart mi-

grations at the end of each of the iterations of the algo-

rithm. Even though the infrastructure provided by Off-

spring is general enough to deploy a distributed imple-

mentation of any population based algorithms, the real

advantage is obtained when a distributed implementa-

tion is composed by coordinating the runs of the serial

implementation of the same algorithm. In that case, the

distributed implementation with Offspring is obtained

with a minimal coding effort, because it is only neces-

sary to code the coordination strategy. These conditions

apply to the population based metaheuristics making

use of topology information to improve the quality of

solutions.

The rest of the paper is organized as follows. In Sec-

tion 2, we describe the related work in virtualization

technologies and distributed metaheuristics. Section 3

provides a very brief introduction to population based

metaheuristics and introduces the challenges in distrib-

uting network based evolutionary algorithms. Section 4

and 5 describe the architecture of the distributed im-

plementation of EMO by using Offspring. Some pre-

liminary results are reported in Section 6. Conclusions

and plans for future work follow in Section 7.

2. Background

The idea of providing support for distributed execution

of nature inspired population based metaheuristics has

been investigated with interest in the last two decades

[6]. In particular, this topic has been thoroughly inves-

tigated for genetic algorithms and different parallel

execution models have been devised [7, 8]. There exist

a wide range of grid middleware technologies, such as

Alchemi [9], Condor-G [10], the Globus Toolkit [11],

and grid resource brokering technologies, such as Nim-

rod/G [12] and Grid Service Broker [13], that have

simplified the development of distributed problem solv-

ing environments. In this work, we focus on developing

the Offspring framework in .NET based Cloud Com-

puting environments.

For what concerns distributed optimization, different

solutions are now available for researchers. Nimrod/O

[14] is a tool allowing running distributed optimization

problems by using any Nimrod based system, such as

Nimrod/G, as distribution infrastructure. Nimrod/O

allows users to take advantage of different optimization

algorithms (BGFS, Simplex, Divide and Conquer, and

Simulated Annealing). It requires users to specify the

structure of the optimization problem and the variable

that needs to be minimized. ParadisEO-MOEO [15] is

an object-oriented framework that provides a full fea-

tured object model for implementing distributed meta-

heuristics, by focusing on code reuse and efficiency. It

supports MPI, Condor-G, and Globus as distributing

middleware technologies. DREAM (Distributed Re-

source Evolutionary Algorithm Machine) [16] provides

a software infrastructure and a technology for the

automatic distribution of evolutionary algorithm proc-

essing. DREAM is based on a virtual machine that uses

a P2P mobile agent system for distributing the compu-

tation. Other minor projects such as TEA, JDEAL, and

JMETAL mostly focus on providing a good support for

metaheuristic implementation and put less emphasis on

the integration with distributed computing technologies.

Nimrod/O provides a technique for distributing a set

of built-in optimization algorithms that is based on pa-

rameter sweeping. Offspring provides a more general

approach and an extensible platform for creating dis-

tributed evolutionary algorithms. With Offspring, re-

searchers can either define the structure of the distrib-

uted algorithm or the single computation performed on

each of the nodes. These tasks cannot be performed

with Nimrod/O that simply provides a technique for

partitioning the problem space and distribute the com-

putation. For these reasons, Offspring is more similar to

DREAM since it provides a distribution engine making

the development of distributed evolutionary algorithms

straightforward. The approach used by DREAM to dis-

tribute the computation is based on mobile multi-agent

systems, while Offspring relies on the Enterprise

Clouds. Compared to ParadisEO-MOEO Offspring

provides a smaller set of features, especially for what

concerns the statistical analysis of the solutions. The

API provided by ParadisEO-MOEO allows developers

to virtually control any aspect of the implementation of

a distributed metaheuristic. This great flexibility makes

the development of a new metaheuristic not straight-

forward, but a good understanding of the APIs is re-

quired. The primary concern of Offspring is to provide

simple and easy to use abstractions allowing research-

ers to compose a distributed metaheuristic by giving

them the maximum freedom on the policies used to

coordinate the distributed execution. As a result, the

number of APIs to learn and use has been kept minimal.

Moreover, another feature that distinguishes Offspring

from the solutions presented is the use of Enterprise

Clouds and Computational Grids.

3. Distributed Evolutionary Algorithms

Evolutionary algorithms are a class of population based

metaheuristics [6] exploiting the concept of population

evolution to find solutions to optimization problems. A

population is a collection of individuals where each

individual representsor maintains information

abouta specific solution of the optimization problem.

The optimal solution is then found by using an iterative

process that evolves the collection of individuals in

order to improve the quality of the solution. Genetic

Algorithms (GAs) [17] are the most popular evolution-

ary algorithms. They imitate the process by which na-

ture creates new chromosomes by recombining and

mutating existing chromosomes in order to generate the

new population. Figure 1 describes the structure of

these algorithms.

When tackling real world problems, such as those

described in Handl et al. [18], the compute intensive

step is the evaluation of each individual. A range of

structured or parallel genetic algorithms has been pro-

posed where the population is decentralized in some

way (see Cantù-Paz [7] and Alba et al. [8] for an over-

view). The models may be loosely classified into one of

the following four types: single-population master-

slaves, multiple populations (island model), cellular

(diffusion model), and hierarchical combinations. Mas-

ter-slave models distribute only the evaluation phase,

while multiple populations distributed the whole execu-

tion of the algorithm.

Recently, the easy access to Grid and Cloud comput-

ing infrastructures has made the deployment of hierar-

chical models quite common. These models compose

the previously discussed models to better exploit the

heterogeneity of distributed computing resources that

can be found within Enterprise Clouds or Computing

Grids. The execution of the evolutionary algorithm is

generally divided into layers and at each of the layers a

different model can be used. The most common imple-

mentation is based on a two level structure which uses a

multi-population coarse grained distribution model at

the first level and a master-slave or a cellular model at

the second level. A recent implementation of this model

has been proposed in Lim et al. [19] for genetic algo-

rithms.

The complex network based model introduced by

Kirley and Stevens [3, 4] is fundamentally a diffusion-

based evolutionary algorithm. Individuals in the evolv-

ing population are mapped to the nodes of a given

complex network – regular 2D lattice, small-world net-

work, scale-free network or random network [20]. Here,

the individuals interact in their local neighborhood,

which is defined by the topology of the given network,

and an external archive is used to store the evolved

Pareto optimal front. An important feature of the algo-

rithm was the variation in connectivity (node degree)

and corresponding selection pressure across a given

network. Reported results using the complex network-

based model suggest that there were significant differ-

ences between the network architectures considered

using the well-known ZDT benchmark multi-objective

problems [21]. Significantly, relatively large population

sizes are required if the inherent clustering properties of

alternative complex network architectures are to be

used. In order to handle these huge computation needs,

a scalable hierarchical version of complex network-

based model can be instantiated by employing multiple

isolated populations – or islands. This model is de-

scribed in Figure 2. Here, the individuals in each of the

islands are mapped on to a particular topology and the

evolution of the algorithm takes place separately. It is

possible to tune each of the islands with the same or

with different parameters settings, according to the spe-

cific distribution strategy implemented. Once the evolu-

tionary algorithm is completed on the single computa-

tion node, the front is sent to a central coordinator node

which: (i) aggregates all the fronts; (ii) performs statis-

tical analysis; and (iii) applies migrations of individuals

belonging to different populations.

Islands:

evolution algorithm

Coordination node:

-Migration

-Statistics

Figure 2. The Hierarchical Complex Network Based

Model.

Such a model allows us to perform smart migrations

and Offspring makes their implementation quite easy.

In the next section, we will show how, given this distri-

bution model, it is possible to rapidly prototype a dis-

tributed implementation that takes advantage of the

services of Enterprise Clouds.

4. Architecture

4.1. Design Considerations

Offspring has been designed to support researchers in

combinatorial optimization in quickly deploying their

algorithms on a distributed computing infrastructure. In

order to be effective the framework should require a

minimum knowledge of Computing Grids and Enter-

prise Clouds from users. The requirements for this class

of applications are: (i) simplicity of use; (ii) rapid de-

velopment of new heuristics; (iii) support for distrib-

uted execution; and (iv) support for result analysis.

In the following, we will show how Offspring ad-

dresses these issues by describing its architecture and

the main features of the system.

1. P[0] = a1[0], …, an[0] /* initialization */

2. while not stop condition S is met do

2.1 generate a new population P[t] by using:
mutation and recombination

2.2 evaluate the set of solutions

2.3 compute S

t = t + 1

endwhile

Figure 1. Genetic Algorithms.

Plug-in

Problem

Algorithm Information

Distribution Strategy

Distribution Engine

Control Endpoints

Visualizers

Aneka Scheduler
Offspring GUI

cluster

HP PC

HP PC

CS Labs PCs

Desktop PC

Aneka Enterprise Cloud

Plug-in

Problem

Algorithm Information

Distribution Strategy

Distribution Engine

Control Endpoints

Visualizers

Aneka Scheduler
Offspring GUI

cluster

HP PC

HP PC

CS Labs PCs

Desktop PC

Aneka Enterprise Cloud

Plug-in

Problem

Algorithm Information

Distribution Strategy

Distribution Engine

Control Endpoints

Visualizers

Problem

Algorithm Information

Distribution Strategy

Distribution Engine

Control Endpoints

Visualizers

Aneka Scheduler
Offspring GUI

cluster

HP PC

HP PC

CS Labs PCs

Desktop PC

Aneka Enterprise Cloud

Figure 3. System Architecture.

4.2. System View

Offspring delivers to users (i) an environment through

which run, monitor, and control distributed applications;

(ii) a thin distribution middleware that takes care of

interacting with the Enterprise Cloud; and (iii) a refer-

ence model for implementing such applications. The

environment is fully customizable by using plug-ins

that: (i) expose control endpoints in order to let the

environment and the user visually control the execution

of the algorithm; (ii) embed a distribution engine in

charge of controlling the execution of the application;

(iii) provide the user interface support for configuring

and monitoring the execution of the application. The

environment is able to load and manage multiple plug-

ins and multiple applications at the same time.

Offspring provides two different integration models

for building distributed applications:

� It is possible to develop a complete plug-in and

then taking a finer control on how the environ-

ment interacts with the Cloud.

� It is possible to simply define distribution logic

of the application, which provides to the envi-

ronment the task that need to be executed at

each of the iterations.

The first approach is more powerful but requires the

users to know the APIs exposed by the Enterprise

Cloud. The second approach makes the use of the

Cloud completely transparent to the users and hence

has been chosen for developing the distributed meta-

heuristic discussed in this work.

4.3. Aneka

Offspring relies on Aneka [22] to distribute the compu-

tation of applications. Initially Aneka developed as a

third generation grid technology in .NET environments.

The recent advancement of Aneka introduced several

new Cloud computing capabilities, such as SLA ori-

ented resource allocation and the MapReduce pro-

gramming model [23]. The main features of the plat-

form are (i) a configurable service container hosting

pluggable services for discovering, scheduling, and

balancing workload; and (ii) a flexible and extensible

framework/API supporting a variety of programming

models such as threading, batch processing, and

MapReduce. These features allow the system adminis-

trator to fine tune the installation of Aneka by carefully

selecting the resources to use on each computational

node. From the developer’s point of view, Aneka pro-

vides a rich programming interface that allows enabling

applications with support for Cloud computing quickly.

Developers can choose between different execution

models and select the abstraction that better fit their

needs.

The distribution model of Offspring has been im-

plemented on top of the Task Model. The Task Model

is the easiest and the most general programming model

supported by Aneka. It provides ready to use task

classes for executing legacy code and a minimal inter-

face for programming tasks. By using the Task Model,

is possible to quickly parallelize legacy applications, or

to write simple distributed applications with almost no

knowledge of the distribution middleware. The use of

the Aneka Task Model together with the plug-in archi-

tecture offered by Offspring allows the development of

distributed metaheuristics without requiring users to

know Aneka APIs: the Offspring environment takes

care of interacting with Aneka, and by using the distri-

bution logic defined by the user executes the distributed

meta-heuristic.

IOffspringTask

+ Execute(): void

IOffspringStrategy

+ Init(): void
+ NextIteration(): bool

+ NextTask(): IOffspringTask
+ OnSuccess(IOffspringTask task): void

+ OnFailure(IOffspringTask task): IOffspringTask

+ Release(bool bStopRequested): void
+ GetPipe(): IDataPipe

- Complete: bool
- IterationComplete: bool

- Dependencies: List<AssemblyName>

EMOStrategy

IOffspringStrategy….

IDataPipe

EMOTask

- Inputs: InputData
- Outputs: OutputData

- Executable: byte[]

- ExitCode: int
- Timing:

+ Execute(): void

IOffspringTask

EMODataPipe

IDataPipe- Front: List<Individual>

- Archive: List<Individual>

StrategyController

- Connection: GridConnection

- DistributionStrategy: IOffspringStrategy

+ Start(): void

+ Stop(): void

IOffspringTask

+ Execute(): void

IOffspringStrategy

+ Init(): void
+ NextIteration(): bool

+ NextTask(): IOffspringTask
+ OnSuccess(IOffspringTask task): void

+ OnFailure(IOffspringTask task): IOffspringTask

+ Release(bool bStopRequested): void
+ GetPipe(): IDataPipe

- Complete: bool
- IterationComplete: bool

- Dependencies: List<AssemblyName>

EMOStrategy

IOffspringStrategy….

EMOStrategy

IOffspringStrategy….

IDataPipeIDataPipe

EMOTask

- Inputs: InputData
- Outputs: OutputData

- Executable: byte[]

- ExitCode: int
- Timing:

+ Execute(): void

IOffspringTask

EMOTask

- Inputs: InputData
- Outputs: OutputData

- Executable: byte[]

- ExitCode: int
- Timing:

+ Execute(): void

IOffspringTask

EMODataPipe

IDataPipe- Front: List<Individual>

- Archive: List<Individual>

EMODataPipe

IDataPipe- Front: List<Individual>

- Archive: List<Individual>

StrategyController

- Connection: GridConnection

- DistributionStrategy: IOffspringStrategy

+ Start(): void

+ Stop(): void

StrategyController

- Connection: GridConnection

- DistributionStrategy: IOffspringStrategy

+ Start(): void

+ Stop(): void

Figure 4. Offspring Strategy and EMO++ Class Diagram.

5. Implementation

5.1. From EMO to EMO++

The reason for porting the EMO algorithm to a distrib-

uted version is twofold. On one side, we wanted to be

able to run the algorithm with a reasonable number of

individuals in order to take advantage of the network-

based model. On the other side we wanted to apply

smart migration strategies among different population

of individuals which evolved by using different net-

work topologies. Hence, we did not need to change the

structure of the algorithm but simply put a coordination

strategy on top of it, which distributed the computation,

evaluated results, and took decisions for the next macro

iteration.

Figure 4 describes the object model exposed by Off-

spring for implementing population-based metaheuris-

tics together with the implementation provided for

EMO++. A strategy provides a collection of tasks that

are executed on the distribution middleware by the

strategy controller. In order to implement the EMO++

metaheuristic we defined a concrete class for the strat-

egy (EMOStrategy), for the single task (EMOTask),

and provided support for data visualization (EMO-

DataPipe). In this section, we will describe how these

components interact together.

5.2. Remote Node Execution

For what concerns the execution of EMO on the single

node, there are no special requirements. It is only nec-

essary to start the EMO algorithm with the proper input

and configuration parameters and collect the results of

execution. Given this, the implementation of the EMO-

Task class consists of a very thin software layer that

performs the following operations: (i) retrieves the in-

put files and executable for the execution; (ii) starts a

process and run the EMO application; (iii) waits for the

termination and collects the results generated.

The amount of code required to perform these op-

erations in C# does not exceed the body the Execute

method of the IOffspringTask interface. The actual im-

plementation provides some utility methods to monitor

and control more accurately the execution but does not

change the essence of the execution.

5.3. Implementing the Distribution Strategy

The concrete implementation of the strategy is defined

in the EMOStrategy class that defines the distribution

and coordinating logic of our metaheuristic. It provides

the tasks that will be executed by means of Strategy-

Controller on Aneka. It controls the evolution of each

of the iterations, merges the results obtained by the

execution of tasks, and performs statistical analysis of

data.

In Figure 5 we can see the interaction between the

StrategyController and the EMOStrategy at runtime.

The main execution flow is characterized by a sequence

of iterations, and for each of the iterations the controller

queries the strategy for a task to be executed. This exe-

cution model perfectly fits population-based metaheu-

ristics, which are characterized by an iterative behavior.

For what concerns network-based model of EMO, it is

possible to distribute the computation of each of the

iterations by taking advantage of the topology informa-

tion connecting individuals. In this way, we can easily

create a task for each group of individuals connected

together. Since the execution of EMO on the single

node is driven by topology information, it is not

Init Application

Init Strategy

Submit Tasks

Wait

Complete?
Or Stop?

Release Strategy

Shutdown
Application

Task Failed?

Invoke OnSuccess Invoke OnFailed

New Task?

Submit

Iteration
Complete?signal

Control Thread

Task Feedback

Monitoring Thread

no

no

no

yes

yes

yes

yesno

Init Application

Init Strategy

Submit Tasks

Wait

Complete?
Or Stop?

Release Strategy

Shutdown
Application

Task Failed?

Invoke OnSuccess Invoke OnFailed

New Task?

Submit

Iteration
Complete?signal

Control Thread

Task Feedback

Monitoring Thread

no

no

no

yes

yes

yes

yesno

Figure 5. Strategy Execution.

necessary to have the complete population running on

the single node but only the connected individuals.

The StrategyController class authenticates with

Aneka by using the credential obtained from the Off-

spring environment, initializes the distributed applica-

tion, and then the strategy. During initialization, the

strategy configures the initial population, and prepares

the common data for each task, such as the executable

running defining the EMO algorithm. The main loop of

the controller executes the iterations until the strategy

does not set its Complete property to true. For each of

the iterations the controller repeatedly asks new tasks

to execute until the strategy provides a null task. The

controller then puts itself in waiting mode. At the same

time, a monitoring thread is responsible of collecting

the tasks that completed their execution andaccord-

ing to their statusof forwarding them to the strategy.

The strategy merges the front with the current active

front and updates statistics. For each task collected, the

controller queries the strategy in order to know whether

the current iteration has completed or not. If the itera-

tion is completed the control thread is woken up and

the execution proceeds to the next iteration.

This architecture concentrates within the strategy

controller concurrency and distributed middleware

management by keeping the definition of a strategy

simple and only concerned with the implemented algo-

rithm. The plug-in architecture previously described

makes the integration with Offspring straightforward.

This is done just by deploying the library containing

the strategy definition and the executable of the EMO

algorithm in the plug-in directory of the environment.

6. Performance Considerations

In order to evaluate our model, we conducted an ex-

periment in the Computer Science department at the

University of Melbourne. The Enterprise Cloud of the

department is composed of one scheduler node (Dell

OPTIPlex GX 270 Pentium IV 3.00 GHz, 3.25 Gb of

RAM running Windows XP SP2 and .NET 2.0) and 33

computing nodes (Dell OPTIPlex GX 2f0 Pentium IV

3.40 GHz, 1.5 G of RAM running Windows XP SP2

and .NET 2.0). The Cloud resources are located into

three different student laboratories connected by a 100

MB switched LAN. For what concerns the configura-

tion of Aneka, the scheduler and the computing nodes

have been set up to support the Task and the Thread

programming model.

In order to test the gain obtained by the aggregate

computing power of the system we executed a test suite

of benchmark problems (ZDT1–ZDT6 and DLTZ1–

DLTZ6) with different number of individuals and a

fixed number of iterations. The numbers of individuals

tested are 100, 300, 500, 1000, while the number of

iterations used has been kept constant to 100. In order

to compare the timing data of the serial execution with

the timing data of the distributed execution we adopted

the following convention: for a given serial run charac-

terized by X individuals, we set up a distributed run

that creates 10 islands with X divided by 10 individuals

each.

Figure 6 shows the speed up obtained by using the

distributed version compared to the serial execution.

As we can notice, there is no advantage in executing

the distributed version when the total number of indi-

viduals is 100. The only two benchmark problems that

are actually solved faster are DTLZ4 and DTLZ6,

which are the most compute intensive. With a number

of 300 individuals, we have a positive speed up for all

the benchmark problems, but the only two problems

that have super linear speed up are DTLZ4 and DTLZ6.

With a number of individuals equal 500, all the DTLZ

problems have a super linear speed up.

Figure 6. Speed up Gain.

We also measured the overhead introduced by

Aneka and Offspring for each of the iterations of the

algorithm. The overhead has been computed by consid-

ering the time spent from the creation of the task and

the collection of its results. This value has been then

compared with pure execution time of the EMO algo-

rithm recorded on the computing node.

Figure 7. Distribution Overhead.

Figure 7 confirms the results obtained for the speed

up. As it can be noticed, when the total number of indi-

viduals is 100, the average distribution overhead is

about 85% of the whole execution time, and this ex-

plains why for that number of individuals we have a

negative speed up. With the increase of the number of

individuals, the average overhead decreases and falls

below 6% of the whole computation time for popula-

tions composed by 1000 individuals.

The tests performed on the EMO++ plug-in demon-

strate that there is a continuous increase in the execu-

tion speed up as the number of individuals increases.

We also identified the lower bound of 100 individuals,

under which the distribution infrastructure provided by

Offspring does not provide any advantage. The reason

why we have such a slow performance with 100 indi-

viduals is that the distribution overhead is the same

order of magnitude of the execution on the local ma-

chine. In the case of network-based evolutionary algo-

rithms this is not an issue, because this class of algo-

rithms, in order to take advantage of the connection

between individuals, requires a minimum population

size that is at least ten times bigger 100 individuals.

7. Conclusion and Future Works

In this paper, we presented the approach proposed by

Offspring for distributed multi objective evolutionary

algorithms on Enterprise Clouds. The aim of Offspring

is to minimize the code required to provide a distrib-

uted implementation of a population based metaheuris-

tics without requiring the researchers to know distribu-

tion middleware APIs. Few still active frameworks

have such level of abstraction and none of them relies

on Enterprise Clouds. This is what motivated the au-

thors to implement a new framework. A specific em-

phasis has been put in providing high degree of flexi-

bility, ease of use, and rapid prototyping features. The

most appropriate approach for delivering such support

is by using plug-in architecture APIs allowing third

parties to implement new solution without knowing the

detail of the entire code-base.

The effectiveness of Offspring has been tested by

deploying EMO++, a distributed implementation of

EMO. EMO++ is a port of a real world network

basedand computationally intensivepopulation

metaheuristic. It keeps information about the connec-

tions among individuals and exploits them to evolve

the population towards a better solution. This class of

algorithms requires a large number of individuals in

order to be effective and for this reason, it constitutes

the perfect candidate for a distributed implementation

and deployment with Offspring. We developed

EMO++ as a strategy for Offspring and made some

preliminary tests. Results show that the model pro-

posed by Offspring is effective when there is a real

need for a distributed implementation. In order to be

effective network based evolutionary algorithms re-

quire at least 1000 individuals and the model proposed

by Offspring provides an increasing speed up when the

Distribution Overhead

0
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

100 300 500 1000

Individuals

ZDT1
ZDT2
ZDT3
ZDT4
ZDT5
ZDT6
DLTZ1
DLTZ2
DLTZ3
DLTZ4
DLTZ5
DLTZ6

Overhead

Speed Up

0.1

1

10

100

100 300 500
Individuals

Speed up

(log10)

ZDT1
ZDT2
ZDT3
ZDT4
ZDT5
ZDT6
DLTZ1
DLTZ2
DLTZ3
DLTZ4
DLTZ5
DLTZ6

number of individuals is only 300. A preliminary

analysis of the overhead introduced by Offspring and

the Cloud middleware used shows encouraging results

for large population sizes. We can then conclude that in

this case the distribution infrastructure provided by

Offspring does not affect the performance.

To the best of our knowledge Offspring is unique in

its nature, even though is still missing some important

features if compared with other solutions. In particular,

support for built-in statistical analysis that is something

that still need to be implemented in plug-ins.

8. References

[1] C.C. Coello, D.V. Veldhuizen, and G.B. Lamont, EA for

Solving Multi-Objective Problems, Kluwer, 2002.

[2] D.A.V. Veldhuizen, J.B. Zydallis, G.B. Lamont, “Con-

siderations in engineering parallel multiobjective evolution-

ary algorithms”, IEEE Trans. Evol. Comput. vol. 7, pp. 144–

173, 2003.

[3] M. Kirley and R. Stewart, “An analysis of the effects of

population structure on scalable multiobjective optimization

problems”, in Proc. of the 9th annual conference on Genetic

and evolutionary computation (GECCO-2007), ACM Press,

London, July, 2007, pp. 845–852.

[4] M. Kirley, and R. Stewart, “Multiobjective evolutionary

algorithms on complex networks”, in Proc. of the Fourth

International Conference on Evolutionary Multi-Criterion

Optimization, Lecture Notes Computer Science 4403,

Springer Berlin, Heidelberg, 2007, pp. 81–95.

[5] R. Buyya, C.S. Yeo, and S. Venugopal, S., “Market-

Oriented Cloud Computing: Vision, Hype, and Reality for

Delivering IT Services as Computing Utilities”, Keynote

Paper, in Proc. of the 10th IEEE International Conference

on High Performance Computing and Communications

(HPCC 2008), IEEE CS Press, Los Alamitos, CA, USA, Sept.

25–27, 2008.

[6] E. Alba, Parallel Metaheuristics: A New Class of Algo-

rithms, Wiley, 2005.

[7] E. Cantú-Paz, Efficient and Accurate Parallel Genetic

Algorithms, Kluwer Academic Publisher, Boston, MA, 2000.

[8] E. Alba, A.J. Nebro, and J.M. Troya, “Heterogeneous

Computing and Parallel Genetic Algorithms”, Journal of

Parallel and Distributed Computing, vol. 62, pp. 1362–1385,

2002.

[9] A. Luther, R, Buyya, R. Ranjan, and S. Venugopal, “Al-

chemi: A .NET-Based Enterprise Grid Computing System”,

Proc. of the 6th International Conference on Internet Com-

puting (ICOMP'05), CSREA Press, Las Vegas, USA, 2005.

[10] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S.

Tuecke, “Condor-G: A Computation Management Agent for

Multi-Institutional Grids”, Cluster Computing, Volume 5(3),

pp. 237–246, 2004.

[11] I. Foster and C. Kesselman, “Globus: A Toolkit-Based

Grid Architecture”, Foster, I. and Kesselman, C. eds., The

Grid: Blueprint for a New Computing Infrastructure, Mor-

gan Kaufmann, 1999, pp. 259–278.

[12] R. Buyya, D. Abramson, J. Giddy, “Nimrod/G: An Ar-

chitecture for a Resource Management and Scheduling Sys-

tem in a Global Computational Grid”, in Proc. of the HPC

ASIA’2000, the 4th International Conference on High Per-

formance Computing in Asia-Pacific Region, IEEE Com-

puter Society Press, USA, 2000.

[13] S. Venugopal, R. Buyya, and L. Winton, “A Grid Ser-

vice Broker for Scheduling e-Science Applications on Global

Data Grids”, Concurrency and Computation: Practice and

Experience, vol. 18(6), pp. 685–699, Wiley Press, New York,

USA, May, 2006.

[14] D. Abramson, A. Lewis, and T. Peachy, “Nimrod/O: A

Tool for Automatic Design Optimization Using Parallel and

Distributed Systems”, in Proc. 4th International Conference

on Algorithms & Architectures for Parallel Processing

(ICA3PP 2000), World Scientific, 2000.

[15] S. Cahon, N. Melab, and E.-G. Talbi, “ParadisEO: A

Framework for the Reusable Design of Parallel and Distrib-

uted Metaheuristics”, Journal of Heuristics, vol. 10(3), pp.

357–380, May 2004.

[16] M.G. Arenas, P. Collet, A.E. Eiben, M. Jelasity, J.J.

Merelo, B. Paechter, M. Preuß, and M. Schoenauer, “A

Framework for Distributed Evolutionary Algorithms”, in

Proc. of the 7th International Conference on Parallel Prob-

lem Solving from Nature (PPSN VII), Granada, September

2002.

[17] K.A. De Jong, Evolutionary Computation: A Unified

Approach, MIT Press, 2006.

[18] J. Handl, D. Kell, and J. Knowles, “Multiobjective op-

timization in computational biology and bioinformatics”,

IEEE Transactions on Computational Biology and Bioin-

formatics, vol. 4(2), pp. 279–292, 2007.

[19] D. Lim, Y.S. Ong, Y. Jin, B. Sendhoff, and B.S. Lee,

“Efficient Hierarchical Parallel Genetic Algorithms Using

Grid Computing”, Future Generation Computer Systems, vol.

23(4), pp. 658–670, Elsevier, 2007.

[20] S. Dorogovtsev and J. Mendes, Evolution of Networks:

From Biological Nets to the Internet and WWW, Oxford

University Press, Oxford, 2003.

[21] E. Zitzler and L. Thiele, “Multiobjective evolutionary

algorithms: A comparative case study and the strength pareto

approach”, IEEE Transactions on Evolutionary Computation,

vol. 3(4), pp. 257–271, 1999.

[22] X. Chu, K. Nadiminti, C. Jin, S. Venugopal, and R.

Buyya, “Aneka: Next-Generation Enterprise Grid Platform

for e-Science and e-Business Applications”, in Proc. of the

3rd IEEE International Conference on e-Science and Grid

Computing, IEEE Computer Society Press, Los Alamitos, CS,

2007. pp. 151–159.

[23] J. Dean and S. Ghemawat, “MapReduce: Simplified

Data Processing on Large Clusters”. Presented at OSDI'04:

Sixth Symposium on Operating System Design and Imple-

mentation, San Francisco, CA, December, 2004.

