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Abstract 
 

In this paper, we present a distributed implementa-

tion of a network based multi-objective evolutionary 

algorithmcalled EMOby using Offspring. Network 

based evolutionary algorithms have proven to be effec-

tive for multi-objective problem solving. They feature a 

network of connections between individuals that drives 

the evolution of the algorithm. Unfortunately, they re-

quire large populations to be effective and a distrib-

uted implementation can leverage the computation time. 

Most of the existing frameworks are limited to provid-

ing solutions that are basic or specific to a given algo-

rithm. Our Offspring framework is a plug-in based 

software environment that allows rapid deployment 

and execution of evolutionary algorithms on distrib-

uted computing environments such as Enterprise 

Clouds. Its features and benefits are presented by de-

scribing the distributed implementation of EMO. 

 

1. Introduction 
 

Many problems in science, engineering, and economics 

require solutions consisting of several incommensur-

able and possibly conflicting objectives, constraints, 

and/or problem parameters. Multi-objective evolution-

ary algorithms (MOEAs) are now a well-established 

population based metaheuristic used to find a set of 

Pareto-optimal solutions for such problems [1]. How-

ever, one of the major difficulties when applying 

MOEAs to real-world problems is the computational 

cost associated with the large number of function 

evaluations necessary to obtain a range of acceptable 

solutions. In the MOEA domain, there have only been a 

relatively small number of parallel models described as 

compared with the single objective domain (see Veld-

huizen et al. [2] for a review). Recently, we introduced 

a novel complex network-based MOEA [3, 4], called 

EMO, to address the many inherent challenges when 

attempting to find a range of solutions, particularly for 

problems with a large number of objectives. Initially, 

we restricted the implementation to a sequential model. 

In this paper, we introduce its distributed implemen-

tation by using Offspring, which is a framework we 

developed for distributing the execution of evolutionary 

algorithms. Enterprise Clouds [5] provide the required 

computational power to solve large optimization prob-

lems in a reasonable period. Offspring provides facili-

ties for distributing the large computation load gener-

ated by MOEAs, by simply asking the user to define the 

strategy to use for coordinating the distributed execu-

tion. The primary aim of this system is to provide a 

friendly user environment for researchers in combinato-

rial optimization who do not want to be concerned 

about building interconnection software layers and 

learning underlying middleware APIs. Specifically, we 

provide a visual user interface that manages the execu-

tion of population based optimization algorithms, a set 

of APIs allowing researchers to write a plug-in for this 

environment quickly. The distributed version of our 

serial implementation of MOEA has been developed as 

a plug-in for this system by simply defining a strategy 

which: (i) coordinates the different serial executions 

distributed among the nodes; and (ii) applies smart mi-

grations at the end of each of the iterations of the algo-

rithm. Even though the infrastructure provided by Off-

spring is general enough to deploy a distributed imple-

mentation of any population based algorithms, the real 

advantage is obtained when a distributed implementa-

tion is composed by coordinating the runs of the serial 

implementation of the same algorithm. In that case, the 

distributed implementation with Offspring is obtained 

with a minimal coding effort, because it is only neces-

sary to code the coordination strategy. These conditions 

apply to the population based metaheuristics making 

use of topology information to improve the quality of 

solutions. 

The rest of the paper is organized as follows. In Sec-

tion 2, we describe the related work in virtualization 

technologies and distributed metaheuristics. Section 3 

provides a very brief introduction to population based 

metaheuristics and introduces the challenges in distrib-



uting network based evolutionary algorithms.  Section 4 

and 5 describe the architecture of the distributed im-

plementation of EMO by using Offspring. Some pre-

liminary results are reported in Section 6. Conclusions 

and plans for future work follow in Section 7. 

 

2. Background 
 

The idea of providing support for distributed execution 

of nature inspired population based metaheuristics has 

been investigated with interest in the last two decades 

[6]. In particular, this topic has been thoroughly inves-

tigated for genetic algorithms and different parallel 

execution models have been devised [7, 8]. There exist 

a wide range of grid middleware technologies, such as 

Alchemi [9], Condor-G [10], the Globus Toolkit [11], 

and grid resource brokering technologies, such as Nim-

rod/G [12] and Grid Service Broker [13], that have 

simplified the development of distributed problem solv-

ing environments. In this work, we focus on developing 

the Offspring framework in .NET based Cloud Com-

puting environments. 

For what concerns distributed optimization, different 

solutions are now available for researchers. Nimrod/O 

[14] is a tool allowing running distributed optimization 

problems by using any Nimrod based system, such as 

Nimrod/G, as distribution infrastructure. Nimrod/O 

allows users to take advantage of different optimization 

algorithms (BGFS, Simplex, Divide and Conquer, and 

Simulated Annealing). It requires users to specify the 

structure of the optimization problem and the variable 

that needs to be minimized. ParadisEO-MOEO [15] is 

an object-oriented framework that provides a full fea-

tured object model for implementing distributed meta-

heuristics, by focusing on code reuse and efficiency. It 

supports MPI, Condor-G, and Globus as distributing 

middleware technologies. DREAM (Distributed Re-

source Evolutionary Algorithm Machine) [16] provides 

a software infrastructure and a technology for the 

automatic distribution of evolutionary algorithm proc-

essing. DREAM is based on a virtual machine that uses 

a P2P mobile agent system for distributing the compu-

tation. Other minor projects such as TEA, JDEAL, and 

JMETAL mostly focus on providing a good support for 

metaheuristic implementation and put less emphasis on 

the integration with distributed computing technologies. 

Nimrod/O provides a technique for distributing a set 

of built-in optimization algorithms that is based on pa-

rameter sweeping. Offspring provides a more general 

approach and an extensible platform for creating dis-

tributed evolutionary algorithms. With Offspring, re-

searchers can either define the structure of the distrib-

uted algorithm or the single computation performed on 

each of the nodes. These tasks cannot be performed 

with Nimrod/O that simply provides a technique for 

partitioning the problem space and distribute the com-

putation. For these reasons, Offspring is more similar to 

DREAM since it provides a distribution engine making 

the development of distributed evolutionary algorithms 

straightforward. The approach used by DREAM to dis-

tribute the computation is based on mobile multi-agent 

systems, while Offspring relies on the Enterprise 

Clouds. Compared to ParadisEO-MOEO Offspring 

provides a smaller set of features, especially for what 

concerns the statistical analysis of the solutions. The 

API provided by ParadisEO-MOEO allows developers 

to virtually control any aspect of the implementation of 

a distributed metaheuristic. This great flexibility makes 

the development of a new metaheuristic not straight-

forward, but a good understanding of the APIs is re-

quired. The primary concern of Offspring is to provide 

simple and easy to use abstractions allowing research-

ers to compose a distributed metaheuristic by giving 

them the maximum freedom on the policies used to 

coordinate the distributed execution. As a result, the 

number of APIs to learn and use has been kept minimal. 

Moreover, another feature that distinguishes Offspring 

from the solutions presented is the use of Enterprise 

Clouds and Computational Grids. 

 

3. Distributed Evolutionary Algorithms 
 

Evolutionary algorithms are a class of population based 

metaheuristics [6] exploiting the concept of population 

evolution to find solutions to optimization problems. A 

population is a collection of individuals where each 

individual representsor maintains information 

abouta specific solution of the optimization problem. 

The optimal solution is then found by using an iterative 

process that evolves the collection of individuals in 

order to improve the quality of the solution. Genetic 

Algorithms (GAs) [17] are the most popular evolution-

ary algorithms. They imitate the process by which na-

ture creates new chromosomes by recombining and 

mutating existing chromosomes in order to generate the 

new population. Figure 1 describes the structure of 

these algorithms. 

When tackling real world problems, such as those 

described in Handl et al. [18], the compute intensive 

step is the evaluation of each individual. A range of 

structured or parallel genetic algorithms has been pro-

posed where the population is decentralized in some 

way (see Cantù-Paz [7] and Alba et al. [8] for an over-

view). The models may be loosely classified into one of 

the following four types: single-population master- 

slaves, multiple populations (island model), cellular 



 
 

(diffusion model), and hierarchical combinations. Mas-

ter-slave models distribute only the evaluation phase, 

while multiple populations distributed the whole execu-

tion of the algorithm. 

Recently, the easy access to Grid and Cloud comput-

ing infrastructures has made the deployment of hierar-

chical models quite common. These models compose 

the previously discussed models to better exploit the 

heterogeneity of distributed computing resources that 

can be found within Enterprise Clouds or Computing 

Grids. The execution of the evolutionary algorithm is 

generally divided into layers and at each of the layers a 

different model can be used. The most common imple-

mentation is based on a two level structure which uses a 

multi-population coarse grained distribution model at 

the first level and a master-slave or a cellular model at 

the second level. A recent implementation of this model 

has been proposed in Lim et al. [19] for genetic algo-

rithms. 

The complex network based model introduced by 

Kirley and Stevens [3, 4] is fundamentally a diffusion-

based evolutionary algorithm. Individuals in the evolv-

ing population are mapped to the nodes of a given 

complex network – regular 2D lattice, small-world net-

work, scale-free network or random network [20]. Here, 

the individuals interact in their local neighborhood, 

which is defined by the topology of the given network, 

and an external archive is used to store the evolved 

Pareto optimal front. An important feature of the algo-

rithm was the variation in connectivity (node degree) 

and corresponding selection pressure across a given 

network. Reported results using the complex network-

based model suggest that there were significant differ-

ences between the network architectures considered 

using the well-known ZDT benchmark multi-objective 

problems [21]. Significantly, relatively large population 

sizes are required if the inherent clustering properties of 

alternative complex network architectures are to be 

used. In order to handle these huge computation needs, 

a scalable hierarchical version of complex network-

based model can be instantiated by employing multiple 

isolated populations – or islands. This model is de-

scribed in Figure 2. Here, the individuals in each of the 

islands are mapped on to a particular topology and the 

evolution of the algorithm takes place separately. It is 

possible to tune each of the islands with the same or 

with different parameters settings, according to the spe-

cific distribution strategy implemented. Once the evolu-

tionary algorithm is completed on the single computa-

tion node, the front is sent to a central coordinator node 

which: (i) aggregates all the fronts; (ii) performs statis-

tical analysis; and (iii) applies migrations of individuals 

belonging to different populations.  

Islands:

evolution algorithm

Coordination node:

-Migration

-Statistics

 
Figure 2. The Hierarchical Complex Network Based 

Model. 

 

Such a model allows us to perform smart migrations 

and Offspring makes their implementation quite easy. 

In the next section, we will show how, given this distri-

bution model, it is possible to rapidly prototype a dis-

tributed implementation that takes advantage of the 

services of Enterprise Clouds. 

 

4. Architecture 
 

4.1. Design Considerations 
 

Offspring has been designed to support researchers in 

combinatorial optimization in quickly deploying their 

algorithms on a distributed computing infrastructure. In 

order to be effective the framework should require a 

minimum knowledge of Computing Grids and Enter-

prise Clouds from users. The requirements for this class 

of applications are: (i) simplicity of use; (ii) rapid de-

velopment of new heuristics; (iii) support for distrib-

uted execution; and (iv) support for result analysis. 

In the following, we will show how Offspring ad-

dresses these issues by describing its architecture and 

the main features of the system. 

1. P[0] = a1[0], …, an[0]     /* initialization */ 

2. while not stop condition S is met do 

2.1 generate a new population P[t] by using: 
mutation and recombination 

2.2 evaluate the set of solutions 

2.3 compute S 

t = t + 1 

endwhile 

Figure 1. Genetic Algorithms. 
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Figure 3. System Architecture. 

 

4.2. System View 
 

Offspring delivers to users (i) an environment through 

which run, monitor, and control distributed applications; 

(ii) a thin distribution middleware that takes care of 

interacting with the Enterprise Cloud; and (iii) a refer-

ence model for implementing such applications. The 

environment is fully customizable by using plug-ins 

that: (i) expose control endpoints in order to let the 

environment and the user visually control the execution 

of the algorithm; (ii) embed a distribution engine in 

charge of controlling the execution of the application; 

(iii) provide the user interface support for configuring 

and monitoring the execution of the application. The 

environment is able to load and manage multiple plug-

ins and multiple applications at the same time. 

Offspring provides two different integration models 

for building distributed applications: 

� It is possible to develop a complete plug-in and 

then taking a finer control on how the environ-

ment interacts with the Cloud.  

� It is possible to simply define distribution logic 

of the application, which provides to the envi-

ronment the task that need to be executed at 

each of the iterations.  

The first approach is more powerful but requires the 

users to know the APIs exposed by the Enterprise 

Cloud. The second approach makes the use of the 

Cloud completely transparent to the users and hence 

has been chosen for developing the distributed meta-

heuristic discussed in this work. 

 

4.3. Aneka 
 

Offspring relies on Aneka [22] to distribute the compu-

tation of applications. Initially Aneka developed as a 

third generation grid technology in .NET environments. 

The recent advancement of Aneka introduced several 

new Cloud computing capabilities, such as SLA ori-

ented resource allocation and the MapReduce pro-

gramming model [23]. The main features of the plat-

form are (i) a configurable service container hosting 

pluggable services for discovering, scheduling, and 

balancing workload; and (ii) a flexible and extensible 

framework/API supporting a variety of programming 

models such as threading, batch processing, and 

MapReduce. These features allow the system adminis-

trator to fine tune the installation of Aneka by carefully 

selecting the resources to use on each computational 

node. From the developer’s point of view, Aneka pro-

vides a rich programming interface that allows enabling 

applications with support for Cloud computing quickly. 

Developers can choose between different execution 

models and select the abstraction that better fit their 

needs. 

The distribution model of Offspring has been im-

plemented on top of the Task Model. The Task Model 

is the easiest and the most general programming model 

supported by Aneka. It provides ready to use task 

classes for executing legacy code and a minimal inter-

face for programming tasks. By using the Task Model, 

is possible to quickly parallelize legacy applications, or 

to write simple distributed applications with almost no 

knowledge of the distribution middleware. The use of 

the Aneka Task Model together with the plug-in archi-

tecture offered by Offspring allows the development of 

distributed metaheuristics without requiring users to 

know Aneka APIs: the Offspring environment takes 

care of interacting with Aneka, and by using the distri-

bution logic defined by the user executes the distributed 

meta-heuristic. 
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Figure 4. Offspring Strategy and EMO++ Class Diagram. 

 

 

5. Implementation 
 

5.1. From EMO to EMO++ 
 

The reason for porting the EMO algorithm to a distrib-

uted version is twofold. On one side, we wanted to be 

able to run the algorithm with a reasonable number of 

individuals in order to take advantage of the network-

based model. On the other side we wanted to apply 

smart migration strategies among different population 

of individuals which evolved by using different net-

work topologies. Hence, we did not need to change the 

structure of the algorithm but simply put a coordination 

strategy on top of it, which distributed the computation, 

evaluated results, and took decisions for the next macro 

iteration. 

Figure 4 describes the object model exposed by Off-

spring for implementing population-based metaheuris-

tics together with the implementation provided for 

EMO++. A strategy provides a collection of tasks that 

are executed on the distribution middleware by the 

strategy controller. In order to implement the EMO++ 

metaheuristic we defined a concrete class for the strat-

egy (EMOStrategy), for the single task (EMOTask), 

and provided support for data visualization (EMO-

DataPipe). In this section, we will describe how these 

components interact together. 

 

5.2. Remote Node Execution 
 

For what concerns the execution of EMO on the single 

node, there are no special requirements. It is only nec-

essary to start the EMO algorithm with the proper input 

and configuration parameters and collect the results of 

execution. Given this, the implementation of the EMO-

Task class consists of a very thin software layer that 

performs the following operations: (i) retrieves the in-

put files and executable for the execution; (ii) starts a 

process and run the EMO application; (iii) waits for the 

termination and collects the results generated. 

The amount of code required to perform these op-

erations in C# does not exceed the body the Execute 

method of the IOffspringTask interface. The actual im-

plementation provides some utility methods to monitor 

and control more accurately the execution but does not 

change the essence of the execution. 

 

5.3. Implementing the Distribution Strategy 
 

The concrete implementation of the strategy is defined 

in the EMOStrategy class that defines the distribution 

and coordinating logic of our metaheuristic. It provides 

the tasks that will be executed by means of Strategy-

Controller on Aneka. It controls the evolution of each 

of the iterations, merges the results obtained by the 

execution of tasks, and performs statistical analysis of 

data. 

In Figure 5 we can see the interaction between the 

StrategyController and the EMOStrategy at runtime. 

The main execution flow is characterized by a sequence 

of iterations, and for each of the iterations the controller 

queries the strategy for a task to be executed. This exe-

cution model perfectly fits population-based metaheu-

ristics, which are characterized by an iterative behavior. 

For what concerns network-based model of EMO, it is 

possible to distribute the computation of each of the 

iterations by taking advantage of the topology informa-

tion connecting individuals. In this way, we can easily 

create a task for each group of individuals connected 

together. Since the execution of EMO on the single 

node is driven by topology information, it is not 
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Figure 5. Strategy Execution. 

 

necessary to have the complete population running on 

the single node but only the connected individuals. 

The StrategyController class authenticates with 

Aneka by using the credential obtained from the Off-

spring environment, initializes the distributed applica-

tion, and then the strategy. During initialization, the 

strategy configures the initial population, and prepares 

the common data for each task, such as the executable 

running defining the EMO algorithm. The main loop of 

the controller executes the iterations until the strategy 

does not set its Complete property to true. For each of 

the iterations the controller repeatedly asks new tasks 

to execute until the strategy provides a null task. The 

controller then puts itself in waiting mode. At the same 

time, a monitoring thread is responsible of collecting 

the tasks that completed their execution andaccord-

ing to their statusof forwarding them to the strategy. 

The strategy merges the front with the current active 

front and updates statistics. For each task collected, the 

controller queries the strategy in order to know whether 

the current iteration has completed or not. If the itera-

tion is completed the control thread is woken up and 

the execution proceeds to the next iteration. 

This architecture concentrates within the strategy 

controller concurrency and distributed middleware 

management by keeping the definition of a strategy 

simple and only concerned with the implemented algo-

rithm. The plug-in architecture previously described 

makes the integration with Offspring straightforward. 

This is done just by deploying the library containing 

the strategy definition and the executable of the EMO 

algorithm in the plug-in directory of the environment. 

6. Performance Considerations 
 

In order to evaluate our model, we conducted an ex-

periment in the Computer Science department at the 

University of Melbourne. The Enterprise Cloud of the 

department is composed of one scheduler node (Dell 

OPTIPlex GX 270 Pentium IV 3.00 GHz, 3.25 Gb of 

RAM running Windows XP SP2 and .NET 2.0) and 33 

computing nodes (Dell OPTIPlex GX 2f0 Pentium IV 

3.40 GHz, 1.5 G of RAM running Windows XP SP2 

and .NET 2.0). The Cloud resources are located into 

three different student laboratories connected by a 100 

MB switched LAN. For what concerns the configura-

tion of Aneka, the scheduler and the computing nodes 

have been set up to support the Task and the Thread 

programming model. 

In order to test the gain obtained by the aggregate 

computing power of the system we executed a test suite 

of benchmark problems (ZDT1–ZDT6 and DLTZ1–

DLTZ6) with different number of individuals and a 

fixed number of iterations. The numbers of individuals 

tested are 100, 300, 500, 1000, while the number of 

iterations used has been kept constant to 100. In order 

to compare the timing data of the serial execution with 

the timing data of the distributed execution we adopted 

the following convention: for a given serial run charac-

terized by X individuals, we set up a distributed run 

that creates 10 islands with X divided by 10 individuals 

each. 

Figure 6 shows the speed up obtained by using the 

distributed version compared to the serial execution. 

As we can notice, there is no advantage in executing 

the distributed version when the total number of indi-



viduals is 100. The only two benchmark problems that 

are actually solved faster are DTLZ4 and DTLZ6, 

which are the most compute intensive. With a number 

of 300 individuals, we have a positive speed up for all 

the benchmark problems, but the only two problems 

that have super linear speed up are DTLZ4 and DTLZ6. 

With a number of individuals equal 500, all the DTLZ 

problems have a super linear speed up. 

 

 
Figure 6. Speed up Gain. 

 

We also measured the overhead introduced by 

Aneka and Offspring for each of the iterations of the 

algorithm. The overhead has been computed by consid-

ering the time spent from the creation of the task and 

the collection of its results. This value has been then 

compared with pure execution time of the EMO algo-

rithm recorded on the computing node. 

 

 
Figure 7. Distribution Overhead. 

 

Figure 7 confirms the results obtained for the speed 

up. As it can be noticed, when the total number of indi-

viduals is 100, the average distribution overhead is 

about 85% of the whole execution time, and this ex-

plains why for that number of individuals we have a 

negative speed up. With the increase of the number of 

individuals, the average overhead decreases and falls 

below 6% of the whole computation time for popula-

tions composed by 1000 individuals. 

The tests performed on the EMO++ plug-in demon-

strate that there is a continuous increase in the execu-

tion speed up as the number of individuals increases. 

We also identified the lower bound of 100 individuals, 

under which the distribution infrastructure provided by 

Offspring does not provide any advantage. The reason 

why we have such a slow performance with 100 indi-

viduals is that the distribution overhead is the same 

order of magnitude of the execution on the local ma-

chine. In the case of network-based evolutionary algo-

rithms this is not an issue, because this class of algo-

rithms, in order to take advantage of the connection 

between individuals, requires a minimum population 

size that is at least ten times bigger 100 individuals. 

 

7. Conclusion and Future Works 
 

In this paper, we presented the approach proposed by 

Offspring for distributed multi objective evolutionary 

algorithms on Enterprise Clouds. The aim of Offspring 

is to minimize the code required to provide a distrib-

uted implementation of a population based metaheuris-

tics without requiring the researchers to know distribu-

tion middleware APIs. Few still active frameworks 

have such level of abstraction and none of them relies 

on Enterprise Clouds. This is what motivated the au-

thors to implement a new framework. A specific em-

phasis has been put in providing high degree of flexi-

bility, ease of use, and rapid prototyping features. The 

most appropriate approach for delivering such support 

is by using plug-in architecture APIs allowing third 

parties to implement new solution without knowing the 

detail of the entire code-base.  

The effectiveness of Offspring has been tested by 

deploying EMO++, a distributed implementation of 

EMO. EMO++ is a port of a real world network 

basedand computationally intensivepopulation 

metaheuristic. It keeps information about the connec-

tions among individuals and exploits them to evolve 

the population towards a better solution. This class of 

algorithms requires a large number of individuals in 

order to be effective and for this reason, it constitutes 

the perfect candidate for a distributed implementation 

and deployment with Offspring. We developed 

EMO++ as a strategy for Offspring and made some 

preliminary tests. Results show that the model pro-

posed by Offspring is effective when there is a real 

need for a distributed implementation. In order to be 

effective network based evolutionary algorithms re-

quire at least 1000 individuals and the model proposed 

by Offspring provides an increasing speed up when the 
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number of individuals is only 300. A preliminary 

analysis of the overhead introduced by Offspring and 

the Cloud middleware used shows encouraging results 

for large population sizes. We can then conclude that in 

this case the distribution infrastructure provided by 

Offspring does not affect the performance. 

To the best of our knowledge Offspring is unique in 

its nature, even though is still missing some important 

features if compared with other solutions. In particular, 

support for built-in statistical analysis that is something 

that still need to be implemented in plug-ins. 
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