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Simulation studies of Grid scheduling strategies require representative workloads to produce dependable
results. Real production Grid workloads have shown diverse correlation structures and scaling behavior,
which are different to the characteristics of the available supercomputer workloads and cannot be
captured by Poisson or simple distribution-based models. We present statistical models that are
able to reproduce various autocorrelation structures, including pseudo-periodicity and long range

dependence. By conducting model-based simulation, we quantitatively evaluate the performance impacts
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of workload autocorrelations in Grid scheduling. The results indicate that autocorrelations result in
system performance degradation, both at the local and the Grid level. It is shown that realistic workload
modeling is not only possible, but also necessary to enable dependable Grid scheduling studies.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Grid computing is rapidly evolving as the next-generation
platform for system-level sciences and beyond. In such a dynamic
and heterogeneous environment, good scheduling mechanisms are
needed to deliver nontrivial quality-of-service. Understanding the
workload characteristics is crucial because not only workload is
an indispensable part in scheduling evaluation but also a deep
understanding will give us hints on how to improve the scheduling
heuristics.

A study of workload dynamics on clusters and Grids has been
conducted in [13]. It is shown that workload characteristics on
clusters and Grids, particularly in data-intensive environments,
are significantly different to those on conventional supercomput-
ers. Job arrivals show a variety of correlation structures, including
short range dependence, pseudo-periodicity, and long range de-
pendence. “Bag-of-tasks” behavior with a strong degree of tem-
poral locality is observed, which leads to the long autocorrelation
lags in workload attributes such as run time. Simple models such
as Poisson or distribution-based methods are not able to capture
the second-order properties such as autocorrelation.
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In this paper, we present an overview of workload models
developed for Grid environments that are able to reproduce the
correlation structures as in the real traces. To show that the
models are not only possible but also practical, we conduct model-
driven simulations of Grid scheduling strategies. Experiments
are designed to quantify the performance impacts of workload
correlations in Grid scheduling. The impacts, as we will show later,
are very large. Long range dependence results in big performance
degradation, which effects should be taken into consideration in
the scheduling evaluation studies.

The rest of the paper is organized as follows. Section 2
provides an overview of some of the representative research in
Grid scheduling. The focuses are on how workloads are treated
and what is the simulation environment. Section 3 discusses
the workload models developed for capturing the statistical
properties of real Grid traces, including short range dependence,
pseudo-periodicity and long range dependence. A comprehensive
model is obtained by combining job arrival process and series
of job attributes such as run time. Section 4 describes the
simulation setup. We build the simulation environment based
on GridSim and develop two cases for performance evaluation
studies, namely Grid resource case and Grid broker case. Section 5
presents the experimental results for the two cases, namely, the
performance impacts of autocorrelations on one FCFS queue with
multiple servers, and on a Grid broker and multiple clusters with
background workload. Section 6 comes to the conclusion that
autocorrelations cause performance degradation in both cases and
future work on how to improve scheduling are discussed.
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2. Evaluation of scheduling algorithms

Efficient and effective scheduling at a meta-level is very
important in a Grid computing environment. In order to develop
and evaluate new Grid scheduling algorithms, two fundamental
issues have to be addressed for performance evaluation studies. On
one hand, representative workload traces are needed to produce
dependable results. On the other hand, a good testing environment
should be set up, most commonly through simulations. In this
section, we review some of the current research in Grid scheduling,
with a special emphasis on the mentioned two issues. A Grid
scheduling architecture typically consists of two levels, namely,
the Grid scheduler(s) and the local resource management systems.
Since the clusters/resources participating in a Grid have their own
local activities, the workloads are further categorized into Grid-
level jobs (Grid workload) and locally generated jobs (background
workload). Due to the lack of traces at the Grid level, simplified
assumptions on workloads are commonly made in scheduling
studies. In [5,22] bulk sizes of 200 to 1000 jobs are used to evaluate
the proposed “off-line” scheduling algorithms. For “on-line” mode
of scheduling, jobs either arrive in fixed intervals [7], or strictly in
sequence [17]. More realistic treatments include the use of real
workload traces. In [6] traces obtained from Network Weather
Service (NWS) are used to study a set of heuristics for parameter
sweep applications, including max-min, min-min, Sufferage, and
XSufferage. In [21] there are two specific traces under study: one
is obtained from iPSC/860 parallel workload at NAS, the other
consists of parameter sweep applications (PSA). In [2] traces from
a multi-cluster environment (DAS) are utilized in the study of
processor co-allocation strategies. In [18] workloads on parallel
supercomputers available from the Parallel Workload Archive
are used in evaluating a SLA-based cooperative superscheduling
algorithm. Work in [8,16] focus on workflow scheduling, in which
workflows are randomly generated or based on real traces. Trace-
based simulations have the advantages of being easy-to-use, and
the results obtained are reproducible and comparable. However,
it is not as flexible as models in case that many traces have
to be generated to enable a Grid scheduling study. The traces
available from parallel workloads can also have significantly
different characteristics compared with Grid workloads, which has
been empirically observed in [13]. Such differences, in return, may
lead to considerably different performance evaluation results.

Background workload is another important issue to be ad-
dressed in a heterogeneous and non-dedicated Grid environment.
Much previous work does not include background load informa-
tion because traces or characterization are not widely available
concerning the background workloads on clusters. Some research
employs models to generate local jobs as background. In [22] the
local system load is modeled as a Gaussian distribution with pre-
defined mean and variance. In [21,8] background job arrivals are
modeled as a Poisson process and run times are drawn from an ex-
ponential distribution in [8]. Although such models are simple to
use and analytically tractable, it might not reflect real job charac-
teristics at the cluster level.

The third problem is how to set up a simulation environ-
ment for performance evaluation. GridSim is a popular choice to
build Grid simulations [5,22,3,18,16,20]. Other simulators devel-
oped specially for Grids include Simgrid [6], GangSim [7] and Chic-
Sim [17]. Some researchers build their own version of simulators to
meet their research goals [8,21]. Commercially available products
are also employed in conducting simulations [2]. Although many
simplifications and assumptions are made in the simulations com-
pared to real Grid environments, simulations are commonly con-
sidered a flexible and tractable way of evaluating different Grid
scheduling algorithms as well as other design issues.

The main focus of this paper is on realistic workloads. Although
far from an exhaustive list of Grid scheduling literature, we can

see that a large amount of research work either use traces not
typically from real production Grids, or use simple workload
models (Poisson, fixed-interval arrivals, or Gaussian system
load). These traces or models, however, exhibit significantly
different characteristics than the traces on production Grids.
As has been studied and reported in [13], pseudo-periodicity,
long range dependence (LRD), and “bag-of-tasks” behavior with
strong temporal locality are the main properties that characterize
production Grid workloads. Therefore, it is important that
representative models be developed to capture the salient
properties of Grid workloads. In the following sections, we present
an overview of the recent work on workload modeling for clusters
and Grids. Moreover, by using the developed models we conduct
model-based simulation of Grid scheduling strategies and quantify
the performance impacts of various autocorrelation structures in
workloads.

3. Workload modeling in grids

Based on workload traces from a large production Grid and
several participating clusters (Table 1), we developed models that
are able to reproduce the statistical properties of traces at different
levels. The following presentations are based on research in [9-12]
and discuss job arrivals and job attributes, respectively.

3.1. Job arrivals

Job arrivals can be described as a point process and two
representations are commonly used, namely, interarrival time
process and count/rate process. The count process is formed by
dividing the time axis into equally spaced contiguous intervals and
counts the number of events within each interval. Forming the
sequence of counts generally loses information but it allows the
correlation in the counts to be readily associated with that in the
point process [14]. The rate process is basically the sequence of
counts normalized by the count interval.

In the following discussions, doubly stochastic models are the
so-called “full” models because they fit the interarrivals. Models
for pseudo-periodicity and long range dependence operate on the
count processes, by which the correlation structures can be reliably
revealed. Algorithms are also proposed to convert rates back to
interarrivals. Another advantage of modeling the count process
lies on its additive nature: models for different VOs can be added
together to generate an aggregated trace in which the VO labels
are preserved. This is useful for evaluating scheduling strategies in
which policies are based largely on VOs.

3.1.1. Doubly stochastic models

The homogeneous Poisson processes are well-known “zero-
memory” models, whose interarrivals and counts are indepen-
dently and identically distributed (L.LD.) random variables. A
generalization of the Poisson process is the so-called doubly
stochastic Poisson process (DSPP). Its rate w(t) is modulated by a
positive-valued continuous-time stochastic process rather than a
fixed constant. The resulting process is thus doubly random: one
source of randomness arises from the stochastic rate w(t) while
another comes from the intrinsic Poisson events. A Markov modu-
lated Poisson process (MMPP) is a DSPP whose rate is controlled by
a finite state continuous-time Markov chain. MMPP models have
several attractive properties, such as being able to capture correla-
tions between interarrival times while still remaining analytically
tractable. MMPPs are suitable to generate processes that are short
or middle range dependent [11].
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Table 1

Summary of workload traces used in the experimental study of this paper.

Trace Location Arch. Scheduler CPUs Period #Jobs
LCG1 Grid wide data Grid Grid Broker ~30K Nov 20-30, '05 188,041
LCG2 Grid wide data Grid Grid Broker ~30K Dec 19-30,’05 239,034
NIKO5 NIKHEF, NL PC cluster PBS/Maui 288 Sep - Dec, '05 63,449
RALO5 RAL, UK PC cluster PBS/Maui 1,000 Oct - Nov, '05 332,662
LPC05 LPC, FR PC cluster PBS/Maui 140 Feb - Apr, '05 71,271

3.1.2. Pseudo-periodicity

Pseudo-Periodicity is considered as one basic pattern that
originates from automated submission schemes, which is present
in large-scale data-intensive environments. Our approach for
modeling the pseudo-periodic pattern is inspired and adapted
from a signal decomposition methodology called matching pursuit.
It is a greedy, iterative algorithm which searches a family of
candidate functions (also called “atoms”) for the element that
best matches the signal and subtracts this function to form
a residual signal to be approximated in the next iteration.
Sinusoidal and harmonic models are used for fitting the job arrival
count processes, whose parameters are estimated via matching
pursuit. Matching pursuit is also shown to be able to extract
patterns from signals and makes it possible to model patterns
individually. For example, some long range dependent processes
could be mixed with certain high-frequency periodic components.
Matching pursuit is able to separate these two patterns so that
suitable models can be applied individually. We refer to [10] for
details about the matching pursuit approach in modeling pseudo-
periodic job arrivals.

3.1.3. Long range dependence

A process X (t) is said to be long range dependent (LRD) if either
its autocorrelation function (ACF) or power spectrum satisfies the
following conditions:

R(k) ~ ¢, k¥ 1, SEF) ~cf ™, f—0. (1)

The autocorrelation function R(k) decays so slowly that
Z,foz_oo R(k) = oo and S(0) = oo. LRD is one class of the gen-
eral scaling process [1]. Job arrival processes exhibit long range de-
pendence at many levels, including VO, cluster, and the Grid [13].
LRD is closely related to temporal burstiness, in which jobs tend
to arrive within bursty periods. This is in accordance with the
“bag-of-tasks” arrival behavior in data-intensive Grid environ-
ments. We apply the multifractal wavelet model (MWM) [19] to
fit the count/rate processes because it provides a coherent wavelet
framework for analysis and synthesis of the scaling behavior. It is
shown that second order properties such as the autocorrelation
function (ACF) and the scaling behavior can be well reconstructed
by MWM [9].

k — oo, or

3.2. Job attributes

For data-intensive workloads running on production clusters
and Grids, it has been pointed out that strong temporal locality
and “bag-of-tasks” behavior lead to long correlation lags in job
attributes such as run time and memory consumption [13]. We
have proposed a model for workload attributes that can capture
not only the marginal distribution but also the second order
statistics such as the autocorrelation function (ACF) [12]. This is
fulfilled by a two-stage approach: first, a mixture of Gaussians
model is used to fit the probability density function (PDF), whose
parameters are estimated via a framework called model based
clustering (MBC). The MBC framework can further cluster the
data according to the Gaussian components, which plays an
important role in creating correlations in the next stage. Second,

a novel localized sampling algorithm is proposed to generate
correlations in the synthetic data series. It is discovered that
the number of repetitions of cluster labels obtained via MBC
empirically follow a Zipf-like (power law) distribution. Sampling
repeatedly from a certain cluster according to the Zipf law is
able to create correlations in the series. Furthermore, a cluster
permutation procedure is introduced so that the autocorrelations in
the synthetic data can be controlled to match those in the real trace
via a single parameter. Experimental results have shown that the
proposed model can fit the marginal distribution well at the same
time match the autocorrelation function of the original trace [12].
This model is referred as MBC-LSP in the context of this paper.

3.3. A comprehensive model

Although correlations and the scaling behavior can be reliably
revealed using the count/rate process, it is necessary to generate a
point process in the form of interarrival times so that a full descrip-
tion can be obtained. A so-called controlled-variability integrate-
and-fire (CV-InF) algorithm can be used for such conversion [9].
Since the rates are additive, it is possible to add up several rate pro-
cesses with different patterns to form an aggregated process, and
convert it into interarrivals. By combining job arrival process and
series of job attributes such run time, we obtain a comprehensive
model for independent tasks in data-intensive Grids. Parallelism is
not taken into account here because there are not enough parallel
jobs available for study in the production Grid traces, which mostly
consist of sequential jobs such as those from high energy physics
and biomedical sciences.

Our goal is to demonstrate the feasibility and advantages of
using workload models to drive simulations. The example is to
investigate the performance impacts of workload correlations in
Grid scheduling. For this purpose we generate synthetic traces with
different correlation structures. Job arrival processes can be not
dependent (NoD), short range dependent (SRD), and long range
dependent (LRD), which can be modeled by a Poisson process,
a 2-state Markov modulated Poisson process (MMPP2), and a
multifractal wavelet model with CV-InF conversion (MWM). Job
run times have the same three correlation structures and they can
be modeled by MBC-LSP with different permutation window sizes.
Experimental results of using these models to generate Grid-level
and background workloads are presented in Section 5.

4. Grid simulation

We build the simulation environment based on GridSim [4].
GridSim provides a discrete-event framework for simulating core
Grid entities such as jobs, resources, and information services. For
the performance evaluation of Grid scheduling under correlated
workloads we implement two case studies, which are elaborated
in the following sections.

4.1. Grid resource case

The first case is a computing cluster with one FCFS queue. The
simulated cluster is space-shared and has 100 CPUs. In order to
understand what are the workload characteristics we analyze the
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Fig. 1. Synthetic workload traces with different correlation structures. For job arrival rate processes, NoD — a Poisson process, SRD — a MMPP2 process, LRD — a MWM
process with CV-InF conversion. For job run times, NoD — MBC with random sampling, SRD — MBC with localized sampling (W = 1), LRD — MBC with localized sampling

(W = 500).

Table 2

Statistics for job rate processes on clusters (s — seconds, P.P. — Pseudo periodic).
View Mean cv Distribution ACF
Local 0.04/s 9.9 Long tail SRD

RALO5 Grid 0.02/s 2.1 Short tail MRD
All 0.06/s 6.3 Long tail SRD
Local 0.002/s 8.7 Long tail P.P.

NIKO5 Grid 0.005/s 4.1 Long tail MRD
All 0.006/s 44 Long tail MRD

LPCO5 All 0.01/s 22 Short tail LRD

Table 3

Statistics for job run times on clusters (the unit of run time is seconds).
View Mean cv Distribution ACF
Local 10,401 1.9 Long tail LRD

RALO5 Grid 13,973 1.7 Long tail LRD
All 11,727 19 Long tail LRD
Local 14,584 1.9 Long tail MRD

NIKO5 Grid 16,934 1.9 Long tail LRD
All 16,336 19 Long tail LRD

LPCO5 All 4,585 3.7 Long tail LRD

traces on three representative data-intensive clusters (Table 1).
For RALO5 and NIKO5 we are able to roughly distinguish the
Grid jobs and the locally generated jobs. By examining the “user
name” field in the traces, jobs from “pool account” (usually a
VO name plus a unique number) are considered Grid jobs while
jobs from a “real” user name are seen as local jobs. As is shown
in Table 2, different clusters have different job arrival rates and
autocorrelation structures. The arrival ratio and patterns of local
jobs versus Grid jobs are also highly diversified. The job run times,
on the other hand, have relatively smaller variances and are almost
all long range dependent. These statistics give us a good reference
on how to adjust the model parameters for synthetic workload
generation (Table 3).

4.2. Grid broker case

The second case naturally extends to the Grid level. In
our environment we simulate 8 space-shared clusters whose
properties resemble those of the eight largest clusters in the LHC
production Grid (LCG).2 These properties are shown in Table 4.
Each cluster has its own local background workload, in which

21CG is a data storage and computing infrastructure for the high energy
physics community that will use the Large Hadron Collider (LHC) at CERN.
http://lcg.web.cern.ch/LCG/.

the job arrival rate scale with the capacity of the resource. The
chosen algorithm for the Grid broker case is called MCT (Minimum
Completion Time) [15]. MCT assigns each incoming job to the
cluster with the minimum expected completion time for that
job. Clusters are assumed to be FCFS-based so the minimum
completion time can be estimated by simulating FCFS scheduling
for the local queue. The estimated minimum completion times
are published to the Information Service and can be used by the
broker for making a scheduling decision. The job flow at the Grid
level is sent to the broker and has an average arrival rate of 0.1/s.
The workload models generate synthetic traces with different
structures and are stored in text files. GridSim reads the workloads
from the files and carries out the simulation.

5. Experimental studies

In previous sections, we discussed the workload models and
the simulation environment setup. In this section, we present
the evaluation results that quantify the performance impacts of
workload correlations in Grid scheduling. Table 5 shows the model
parameters used to generate synthetic workload traces. For the
interpretation of these parameters we refer to the corresponding
papers. In terms of parameter space, the tradeoff is that we
need more complex models to generate processes with longer
range dependence. Different correlation structures and associated
models are shown in Fig. 1. For all generated processes the means
and standard deviations remain unchanged, only the dependencies
in the series are different. This is the basis of the comparison
studies presented as follows.

1. What is the performance impact of autocorrelations on one FCFS
queue with multiple servers?

We study the Grid resource case first. Performance is measured
by the average job slowdown? as a function of system utilization,*
which is shown in Fig. 2. We can see that the impact of
autocorrelations is very large: the bigger the ACF, the worse the
performance. Similar results have been reported in a clustered
web server environment [23]. The cause of such performance
degradation is the high degree of temporal burstiness in a LRD
process. Bursty arrivals, which is the opposite of smoothness
(e.g. Poisson), result in a long queue of waiting jobs. Consequently
it leads to much longer queueing delays (bigger slowdown for jobs)
and overall lower system utilization.

2. What is the performance impact of autocorrelations on a Grid
broker and multiple clusters with background workload?

3 Slowdown is defined as the average job response time (run time plus queue wait
time) divided by the average job run time.

4 Utilization means the average system utilization and it is calculated as the
proportion of system’s resources which are busy.
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Table 4
Characteristics of the largest eight clusters in the LCG Grid (data obtained in April, 2007) and corresponding parameters used in the simulation. BG workload shows the local
job arrival rate on the cluster. Run times of local jobs are scaled for different utilizations.

Site Location #CPUs Downscale SpecINT2k BG workload
CERN-PROD CH 3534 354 970 0.05/s
FZK-LCG2 DE 2662 266 1289 0.04/s
USCMS-FNAL us 1925 193 1600 0.033/s
UKI-QMUL UK 1644 164 1381 0.033/s
IN2P3-CC FR 1454 145 892 0.025/s
SARA-LISA NL 1352 135 1636 0.025/s
RAL-LCG2 UK 1266 127 1000 0.02/s
INFN-T1 IT 1238 124 747 0.02/s
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Table 5

Model parameters used in the experimental study. MWM parameters are fitted
using biomed, LPCO5. MBC-LSP parameters are fitted for hep1, RALO5 (parameters
for Gaussian mixtures are not shown).

Model Parameters

Poisson n =10

MMPP2 o1 =0.04,0, =0.01,A; =8.0,1, = 1.0

MWM p=1[3.3,53,6.6,7.5,6.7,7.1,4.8,3.0,2.2, 1.4],
e =0.28,0. = 0.33

MBC-LSP o =179, N = 1262, W = 1,500

In the Grid broker case, at the cluster level the resource
generates its own local background workload. At the Grid level,
one stream of jobs flow into the broker. Therefore there are two
levels of freedom in combining the autocorrelation structures,
with each level having two attributes - job arrival and job run
time. In this case, the performance is measured by the average job
slowdown for Grid-level jobs as a function of the run time scaling
ratio on resources. The run time scaling ratio is the job MIPS rating
versus resource MIPS rating and a higher ratio indicates a larger
average run time. By varying the run time scaling ratio we get the
results as shown in Fig. 3. First, we investigate the impacts of Grid-

level autocorrelations by setting the local background workloads
to be not dependent (Fig. 3 left). Although not as large as in the
Grid resource case, performance degradation is observed for larger
autocorrelations in the lower range of the scaling ratios. Second,
we study the implications of different autocorrelation structures
in the local background workloads (Fig. 3 middle). Interestingly,
we can see that Grid-level jobs actually perform better when
the background workloads have stronger autocorrelations. This is
explained by the lower system utilization resulted by the stronger
temporal locality in more autocorrelated processes at the cluster
level. If we set the local background workloads to be long range
dependent and vary the correlation structures at the Grid level, we
can see a large performance degradation by long autocorrelations.
By combining these effects we conclude that autocorrelations in
the workloads result in performance degradation both at the local
and the Grid level.

6. Conclusions
In this paper, we propose the use of workload models to

drive simulations of Grid scheduling strategies. Real production
Grid workloads have shown rich correlation and scaling behavior,



H. Li, R. Buyya / Future Generation Computer Systems 25 (2009) 460-465 465

which are different to conventional parallel workloads and cannot
be captured using simple models such as Poisson or distribution-
based methods. The introduced models are able to reproduce
a variety of correlation structures, including pseudo-periodicity,
short range dependence (SRD), and long range dependence (LRD),
for job arrivals and job attributes such as run time. The practical
use of these models is also demonstrated by simulation studies. By
using the synthetic traces we are able to quantify the performance
impacts of workload correlations in Grid scheduling. The results
indicate that autocorrelations in workload attributes can cause
performance degradation, in many situations this effect is huge.
We can see that the development of good workload models are
not only possible, but also necessary for dependable performance
evaluation of scheduling strategies.

Further research includes how to improve scheduling under
autocorrelations. In a two-level Grid scheduling scenario, long
range dependence is not necessarily a bad situation. For instance,
Fig. 3 (middle) shows that better performance is obtained for Grid-
level jobs under LRD background workloads on clusters. Temporal
burstiness, the opposite of smoothness, implies that the system
has more idle periods or “holes” in the time line. This provides
opportunities for the broker to do better load balancing at the Grid
level.
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