Outsourcing Resource-Intensive Tasks from Mobile
Apps to Clouds: Android and Aneka Integration

Tiago Justind and Rajkumar Buyy4d
*Cloud Computing and Distributed Systems (CLOUDS) Labarato
Department of Computing and Information Systems
The University of Melbourne, Australia

fManjrasoft Pty Ltd, Melbourne, Australia
{tiago.vieira, rbuyyd@unimelb.edu.au

Abstract—Mobile Cloud Computing enables augmenting mo-
bile device capabilities and increasing battery lifetime through
the extension of cloud services and resources, resulting in an
enhanced user experience. However, the development of a mobile
cloud application is challenging because it involves dealing with
different cloud providers and mobile platforms. To tackle the
above issues, a mobile cloud architecture is proposed to asyn-
chronously delegate resource-intensive mobile tasks in order to
alleviate the mobile device load and, consequently, extend the
battery life. We demonstrate this capability by developing an
interface that supports the delegation of heavy tasks from mobile
apps running under the Android mobile platform to a cloud
computing environment managed by the Aneka Cloud Applica-
tion Platform. The Aneka Mobile Client Library encapsulates
the processes of communicating to cloud is provided, thus, the
effort and complexity of developing a mobile cloud application
is decreased. Two different resource-intensive mobile application
are presented in order to show the library effectiveness. A
performance evaluation is conducted showing the feasibility of
architecture through the reduction of application execution time
and extension of mobile device battery life.

Keywords—Mobhile Cloud Computing, Task Delegation, Mobile
Apps, Android, Aneka, Software Engineering.

I. INTRODUCTION

In this context, Mobile Cloud Computing (MCC) enables
augmenting SMD capabilities through extension of cloud
services and computational resources to SMD on demand
[3]. The augmentation of capabilities includes screentebat
life, storage, and application processing (CPU, memory) [5
Thereby, storage and processing are increased and battery
lifetime is extended, enhancing the user experience. Eurth
more, this solution inherits characteristics intrinsic doud
environments like, pay-as-you-go model, elasticity,sitn of
infinite resources, and task parallelization [6].

However, the development of a mobile application that
requires accessing distributed hybrid clouds is challengi
because it involves dealing with different Web APIs from
different cloud providers (e.g., Amazon, Microsoft Azure)
and different mobile platforms (e.g., Android, i0S, Window
Phone). Moreover, porting these APl to SMDs is a difficult
task due to compiler limitations, additional dependencies
and code incompatibility reasons [6]. To tackle the above
issues, a mobile cloud architecture is proposed to deldégate
asynchronous manner resource-intensive mobile tasksigr or
to alleviate the mobile device load and, consequently,nekte
the battery life.

We demonstrate this capability by developing an interface
that supports the delegation of heavy computing tasks from

The International Telecommunication Union (ITU) expects yopile apps running under the Android mobile platform to a

the number of mobile phone accounts to exceed the global

population in 2014 This growth is observed throughout all

loud computing environment managed by the Aneka Cloud
Application Platform. However, our proposed model for inte

the Smart Mobile Devices (SMDs) domain, such as: Persongjration of Android and Aneka platforms can be easily applied

Digital Assistants (PDAs), smart phones, and tablets. ¢eme

to other mobile platforms such as iOS and Windows Phone.

years, the advance in semiconductor technology enabled the

design of mobile devices increasingly powerful and compact

The main contribution of this paper is the Aneka Mobile

[1] A|though the techno'ogy has advanced’ the miniatuick anclient Library fOI’ Android platform that encapsulateS the

mobile nature of these devices impose intrinsic limitasiam
CPU, memory, and battery lifetime [2], [3].

processes of connecting to cloud, serializing and desznigl
messages, sending messages, and collecting their response
Thus, the effort and complexity of developing a mobile cloud

This technological advancement enabled the execution ofpplication is decreased. In addiction, the library wasgtesi

resource-intensive mobile applications, such as voicegec
nition, image processing, optical character recognizars]

to leverage the Aneka Cloud Application Platform, which
provides transparent resource provisioning and job sdimedu

online games. However, SMDs rely on finite energy sourceservices and encapsulates different cloud providers Wels. AP
and they are resource-poor compared to stationary machinghe user has no concern in allocating or deallocating Mirtua
such as desktops and servers [4]. Nevertheless, usersy@esumachines or distributing the jobs among the resources.

to execute resource-intensive applications on their SMidls w
the same quality expectations (performance and religpBj.

http://iwww.siliconindia.com/magazinarticles/World to_have more_
cell_phone accountsthan people by_2014-DASD767476836.html

This paper also presents two different resource-intensive
mobile applications (ray tracing image generation and Mé&nd
brot set generation) in order to show the Aneka Mobile Client
Library effectiveness. A performance evaluation is conedc

with objective of comparing the applications executionhe t are available in the platform running on cloud. Section V
mobile device and delegating to the cloud in view of metricsdiscusses an example of this advantage, where the software
battery consumption and processing time. for image rendering POV-R&yavailable only for the Windows
platform, is used from an Android application. Furthermore
the delegation approach allows the use of other charatitsris
intrinsic to cloud environments, such as dynamic resource
provisioning, elasticity, illusion of infinite resourcend task
parallelization [6], as presented in this work.

The rest of this paper is organized as follow: Section I
analyses related works, highlighting similarities andfeatf
ences for this proposal. Section Il describes the archites
and software artifacts, and its deployment. Section IV diess
the Aneka Mobile Client Library development and shows its
operations. Section V presents two different resourcensitve Abolfazli et al. [2] implement mobile augmentation by
mobile applications developed using the proposed apprisach utilizing delegation and analyses how the number of hops
order to evaluate it. Finally, Section VI concludes the papeimpacts the execution time in a service call. They prefer

and highlights future research directions. SOC instead of offloading in order to avoid the overhead of
identifying, partitioning and transferring large amouofsiata
I[I. BACKGROUND AND RELATED WORK from mobile to cloud. They do not leverage cloud aspects like

) .. dynamic provisioning or parallel tasks execution.
In order to augment the processing power of mobile

devices, two main approaches have emerged [6]: offloading Flores and Srirama [6] propose a Mobile Cloud Middleware
and delegation. In offloading, applications are partitbingo (MCM) to work as an intermediary between the mobile phone
components, which are analyzed in order to determine whethend the cloud in order to manage the asynchronous delegation
they should be migrated to the cloud. This process can occwof mobile tasks to cloud resources. MCM abstracts the API
at development time or at runtime. These components can nd manages different cloud providers, as well as allows the
different entities depending on the granularity level,lsas development of customized services based on service com-
method, class, module, application partition, entire @mpgibn position. The mobile task computation happens on the cloud
or image [3]. Usually, the analysis considers two variablegproviders and a connection between MCM and the providers is
for deciding about migration: the amount of computationkept during all the execution. After the computation is firaid,

and the amount of data to communicate. A component iMCM stores the results in the transactional space and sends
migrated if intensive computation and little communicatare a message to the mobile application via push notification,
needed [1]. The finer the granularity, the more intensivdiés t signalling the end of execution.

synchronization mechanism between mobile device and cloud
The more abstract the granularity, the more traffic intemsv
the communication [3].

Although MCM communicates with the cloud resources,

the mobile application is responsible for managing the in-

formation about the services and the cloud providers, which
Shiraz et al. [3] describes and compares 17 differenincreases the mobile application complexity and reduces fle

works using offloading, considering several aspects such dbility. If any piece of this information changes, the mabil

partitioning approach and migration granularity. Amongrth application needs to be updated. In addition, MCM requires

we highlight the two following works. Hung et al. [7] propose services to be previously developed and deployed. In thigwo

an Android framework based on VM migration for appli- the Aneka cloud provides a dynamic resource provisioning

cation offloading. The framework installs an application onallowing scale up and down according to application needs,

the mobile phone for managing the offloading process. Thisvhich is not observed in MCM.

application encapsulates other running applications ins\M

migrate and execute on cloud servers. This approach require

a large amount of bandwidth and processing for ensuring IIl. ARCHITECTURE

consistency between the mobile phone and the cloud server. This section describes the elements that compose the

Cuervo et al. [8] propose Mobile Assistance Using Infrastru proposed solution architecture and how these element®rela
as shown in Figure 1. The deployment of the architecture is
bresented in Figure 2. The two main structures in the archite
re are: (i) Aneka service, which provides via web integfac
ntime environment for tasks execution; and (ii) mobilerd,
which allows mobile applications to send resource-intensi
Delegation utilizes Service Oriented Computing (SOC) intasks to execute on cloud and alleviate the mobile device loa
order to migrate the execution of resource-intensive {asks
prime verification or matrix multiplication, to cloud. Mdbi (g

the mobile device. MAUI leads to extra overhead on mobilet
devices to analyse the amount of computation needed for eagﬁ
method and to migrate and reintegrate this computation.

The architecture was designed in order to facilitate the
: ; : evelopment and deployment of mobile cloud applications.
tasks are delegated by invoking a cloud service [6] and n irstly, by using theAneka Mobile Client Library all the

code is migrated to cloud, what makes this approach mor lexity of N ka cl -
lightweight than offloading. On the other hand, as delegatio Complexity of communicating to Aneka ¢ oud and submitting

has dependency on the cloud service to execute part of tHEbS Is taken care for the developer. Secondly, by using the
SN . . . neka cloud, which provides transparently the resourceipro
computation, it requires always available network coriigt sioning and job schgduling servicgs theyuser has no cgncern

In the offloading approach, the cloud utilization is limited in allocating or deallocating virtual machines or disttibg
to executing applications that can run on mobile devices. Otthe jobs among the resources.
the other hand, delegation approach allows the utilizatibn
resources unavailable in the mobile device platform, bat th 2http://www.povray.org/

Mobile Clients
Voice Image Online
l‘angnmnn 6 Processing Ay cames
> _Aneka Client Aneka Client Aneka Client
ﬂﬂ Library g&'ﬁ? Library *')\") Library
|| Android Android Android
W' Platiorm W' riatorm W' platiorm
e AN
L FTP
—> Server
Viiualiaching B Aneka Service \ \
L £ Aneka Task
wWeb Service
Virtual Machine]
______________________________ Do _
1 V2 1
I Aneka ; Aneka 1
1 Master ¢ Master 1
1 Virtual Machine | Virtual Machine 1
(I g —— e — — — — e — — R e S _ _ - 1
: Aneka Aneka Aneka Aneka :
> Worker = ** Worker Worker ... Worker 1
| Virtual Machine Virtual Machine Virtual Machine Virtual Machine |
t
-G e bbb T ot ol !
(e (e
Public Cloud Private Cloud
Fig. 1. Architecture showing how mobile devices interacthwaéin Aneka

cloud through theAneka Task Web Servide order to outsource resource-
intensive tasks.

«device»
Host Server

«device»
Mobile Phone

Android Windows

Internet Information Services (IIS
TaskService.asmx B
(Aneka Task Web Service)

«device»
Host Server

AndroidApp.apk
REST

AnekaClientLibrary.jar|

Jackson.jar

HttpClient.jar Windows
«Runtime Environment»
Aneka Master
1|
Resource Provisioning Service
Scheduler |
- g]
«device»
Host Server
Windows
devi FTP «Runtime Environment»
Aneka Worker
ile Server E TCP
Execution Service

Fig. 2. Deployment Diagram showing how the different artifacan be
deployed and how they communicate.

A. Aneka Service

Aneka [9] is a PaaS solution for developing cloud ap-
plications that can be deployed on both public and privat

Thread, and MapReduce.

An Aneka cloud is defined as a collection of physical re-
sources (desktops, servers) and/or virtualized reso(vioésal
machines) connected though a network, each of these machine
running an instance of Aneka Container. This container rep-
resents the basic deployment unit of Aneka and it provides a
runtime environment composed éineka Masterand Aneka
Workersto execute the distributed applications.

Aneka is designed following a Service Oriented Archi-
tecture (SOA), which makes it customizable and extensible,
allowing developers to create new services that replace the
default ones or that add new functionalities to Aneka. The
default installation provides services such as dynamicues
provisioning, resource reservation, persistence, sépragcu-
rity and performance monitoring [9].

The Aneka Mastetosts the dynamic resource provision-
ing service, which is responsible for dynamically acqurin
and integrating newAneka Workersinto the Aneka cloud,
allowing it to elastically scale up and down to satisfy the
applications needs. It also hosts tBeheduling Servigavhich
is responsible for dispatching the collection of applicatjobs
to the Aneka Workersas shown in Figure 2. Thereby, when
a mobile cloud application is executed, its jobs are sulewhitt
to the Aneka Mastervia Aneka Task Web Servickach of
these jobs is moved téneka Workersaand processed by the
Execution Servigewnhich is the runtime environment in charge
of retrieving all the files required for execution, monitagijob
execution, and collecting results.

The Aneka Task Web Servienables applications devel-
oped in any language to send mobile jobs to run on Aneka
cloud [10]. This service exposes, via RepresentationaleSta
Transfer (REST), the main functionalities such as autbetdi
user, create application, submit jobs, and query inforomati
(see Figure 2). REST was preferred to SOAP because the
message serialization process is faster [11], configurimg a
advantage tdAneka Task Web Service

B. Mobile Client

The mobile client side of the architecture contains Mobile
Cloud ApplicationsAneka Mobile Client LibraryandAndroid
Platform layers, as presented in Figure 1. Mobile cloud appli-
cations, such as voice recognition, image processingcapti
character recognizers, and online games, benefit from cloud
computing resources to execute resource-intensive tasks.

Depending on the mobile application characteristics, inpu
files may need to be uploaded to the cloud. For instance,
an audio file needs to be uploaded for a voice recognition
application or, a image file for an image filtering applicatitn
order to keep a light implementation, the web service iatf
was designed not to allow user to upload or download files
through it. An easy way to transfer files to use in Aneka cloud
is through a storage service. As shown in Figure 2, the FTP

§s used to communicate with tile Server

clouds. It provides a runtime environment as well as an

Application Programming Interfaces (APIs) to build .NET
applications leveraging the parallel power of an Aneka d@lou

Once the mobile application developer identifies a
resource-intensive task, they can instantiateAhdroid Client

By using these APIs, developers can implement and deploiibrary in order to consume théneka Task Web Service

applications that automatically scale on demand, follgwin
different programming models such as Bag of Tasks (BoT)

The Android Client Libraryhides the complexity of delegating
tasks to Aneka, executing steps, such as connecting to the

|

ExecuteTaskltem iT__ | T__ .
-command: String AsyncPost «Interface»
-arguments: String -communicationWrapper: CommunicationWrapper [T T T T > OnPostFinishedListener
] +execute(content: Object, listener: OnPostFinishedListener): void|
I - +onPostFinished(result: T, exception: Exception): void
v AN A
«Interface» ~o :
Taskltem DAY |
CommunicationWrapper RN }
-networkCommunication: NetworkCommunication - !
-objectMapper: jackson::ObjectMapper = !
+<T>post(method: String, content: Object, type: Class<T>): T TaskWs

TaskWSjob

-tasks: List<Taskltem>
-inputFiles: List<TaskWSFile>
-outputFiles: List<TaskWSFile>
-reservationld: String

JobResult

JobSubmissionRequest

-applicationld: String
-reservationld: String
-jobs: List<TaskWSjob>

)

TaskWSRequest

-jobld: String

-name: String

-nodeld: String
-applicationld: String
-reservationld: String
-submitTime: Date
-queuedTime: Date
-scheduleTime: Date
-completionTime: Date
-maximumExecutionRuntime: Interval
-preemptableTag: boolean
-status: JobStatus

NetworkCommunication

-hostAddress: String
-port: int
-serviceEndpoint: String

-getUrl(method: String): String

+post(method: String, content: String): String|

JobSubmissionResult

-ids: List<String>

TaskWSResult
-success: bool
-error: TaskWSError

AuthenticateResult
-userCredential: byte[]

-communicationWrapper: CommunicationWrapper

A
I
—>(-userCredential: byte[]) ApplicationSubmissionResult| 1
-objectinstance: byte[] /{\ -applicationld: String }
I |
A ‘ N
| | I I
| | | [
lobQueryReguest -1 «Interface»
-jobld: String ITaskWs
-applicationld: String B
+authenticateUser(username: String, password: String, listener: OnPostFinishedListener): AuthenticateResult
ApplicationSubmissionRequest +createApplication(request: ApplicationSubmissionRequest, listener: OnPostFinishedListener): ApplicationSubmissionResult|
—displayName: Strin +submitjobs(request: JobSubmissionRequest, listener: OnPostFinishedListener): JobSubmissionResult
-melzadyata- Prlo ert gGrou +queryjob(request: JobQueryRequest, listener: OnPostFinishedListener): JobResult
-sharedFiIéS' Tgskvel,SFilep +queryApplication(request: ApplicationQueryRequest, listener: OnPostFinishedListener): ApplicationResult
_qos: TaskWéQoS - ——1 +abortjob(request: JobAbortRequest, listener: OnPostFinishedListener): TaskWSResult
qos: +abortApplication(request: ApplicationAbortRequest, listener: OnPostFinishedListener): TaskWSResult

Fig. 3. Class Diagram showing the main classes and interfaces asTaskWSand ITaskW$and how they interact.

server, serializing and encapsulating objects into rdgues TheAndroid Client Librarywas developed in Java in order
sending messages, and collecting their responses. Thais, tto execute over théndroid Platform However, the library
mobile cloud application development is simplified since th could be developed for iOS or Windows Phone, moreover, the
library can be easily reused by new applications. architecture does not depend on the mobile phone platform.

The serialization and deserialization process of messages
exchanged between thendroid Client Libraryand theAneka

Task Web Services provided by the third-party library called This section details the design and implementation of the
Jacksof. The messages are serialized to JSON format anf\ndroid Client Library proposed in this work. This library
sent to Aneka Task Web Servictarough the Http-Client cover all 7 operations provided by theeka Task Web Service
class, provided by ApacheThe JSON format simplifies the which are: user authentication, application creation|ieggon

communication between different platforms. Additionaltyis query, application abortion, job submission, job query] ab
more lightweight in comparison with XML [11]. abortion.

IV. DESIGN AND IMPLEMENTATION

TheAndroid Client Libraryinvokes the Aneka service in an Figure 3 shows the main library classes and interfaces. The
asynchronous manner since the resource-intensive taskeeq |TaskWSnterface holds théneka Task Web Serviceethods.
time to process and keeping the connection entails mobilehis interface is implemented byaskWSclass. TaskWSis
device bat'tery consumption. _A|SO, 't.hese dewce_s are prongsponsible for creating and storingCammWrappeimstance.
to connection loss due to their mobility characteristic,iakih CommWrappehas only one method, callgmbst implemented
makes the synchronous communication an unwise choice. S@sing Java Generics. This method receives as parameters a
in the event of connection loss during a synchronous tasktring containing the web service operation to be executed,

execution the information gets lost and the message needs f9e content to be sent to the web service, and return type for
be retransmitted, entailing consumption of time, mobileic which the response will be converted.

battery, and cloud resources. _ . . : .
TaskWSalso instantiate &syncPostobject every time it

needs to execute an asynchronous operation with the web ser-
vice. TaskWSransfer itsCommWrappeimstance toAsyncPost

Shttp://jackson.codehaus.org/
“4http://hc.apache.org/httpcomponents-client-ga/

: idApp : : i -
2:AndroidA It TaSkWSI Is storageservice I a:AndroidApp It:TaskWSI Ip:AsyncPost I Ic:CommWrapper

authenticateUser(user, pass)

[:
userCredential | <asyncMethod> :

"""""""""""""""" H ntent, listener H
createApplication(name, userCredential) N (conte istener) P

______________________ applicationid] | proir
upload(inputFiles) jJ listener)
"b' '.t' -b- " -b- - E' -d- -t'- I- . -I'- -t'- -IZI __________________ New thread
submitjobs(jobs, userCredential, application ') #J created.

post(method,

while)
content,
h finished job
[has unfinished job] : : returnType) R
queryjob(jobld, userCredential, applicationid) N ’ typedResuIt’
‘< -------- - - - J‘o_b_St_aEu_sJ_J listener.
) H i onPostFinished ;
download(outputFiles) N
P o yt_pyt_Fi_le_sjj (typedResult)
Fig. 4. Basic lifecycle for a mobile application using Aneka. Fig. 5. Sequence diagram for asynchronous methods.

through the constructoAsyncPosimplements theAsyncTask yestriction is imposed because network I/O operations @ th
interface from Android API, which is responsible for cre- main thread entails blocking the user interface. In thistexin
ating thread for executing th€ommWrapper posmethod. e developed theAsyncPostclass extending thé\syncTask

CommWrappeuses theNetComnlass, which is responsible ¢ass provided by Android. The latter instantiate a newatire
for generating the HTTP message, assembling the URL fofeleasing the application to continue its flow.

HTTP call and sending the message to the web service

through the apachidttpClientclass.TaskWSheeds also to give Figure 5 shows the sequence diagram for a method called in
AsyncPostan OnPostFinishedListeneinstance. This instance an asynchronous way. In order to call a method fréeskWS

will be called by AsyncPostafter CommWrapperfinishes its class, e.g.authenticateUser AndroisApp needs to input a

post operation. content, e.g. user name and password, and a listener. This
input is forwarded to théAsyncPostlass, that creates a new
A. Job Submission thread and calls th@ost method fromCommWrapper This

method encapsulates the network 1/0O operations and returns
the method result tdsyncPostin the case of user authenticate
example, it returns the user credential. Finally, &syncPost
calls the listener delivering the result f&ndroidApp

Mobile applications usingAneka Mobile Client Library
will commonly follow the lifecycle described by Figure 4 to
submit jobs toAneka Masterthrough Aneka Mobile Client
Library. The main library element is theaskWSclass which

encapsulates all the communication wifineka Task Web Figure 6 details how the exchange of messages between
Service Thus, a mobile application, represented in the figurehe Aneka Mobile Client Libraryand the Aneka Task Web

by the classAndroidApp starts the job submission process by Serviceis performed. TheCommWrappelis responsible for
using theauthenticateUsemethods. This method returns the encapsulating the process of serializing and deseriglittie

user credentials, which will be required by all the othiaskWS messages via thdlapper class provided by Jackson library
methods. After authenticating the user, a mobile appbeati as well as communicating to the remote service through the
creates the application entity in the Aneka cloud efi@ateAp- NetCommclass. Thereby, when th€ommWrappes post
plication method, which returns the application id. The FTP method is called, it receives a Java object as parametes. Thi
server is represented in Figure 4 by tBorageServicelass. object is serialized and sent detComm

The file transfer is done through thipload method.

The NetCommclass is responsible for assembling the
Uniform Resource Locator (URL), generating the POST re-
huest message, and sending it through ItigpClient class.
When the network operation finishes, the result is returned to
CommWrapperwhich uses again th#apper class in order
to deserialize the JSON content to Java object and returns it
to AsyncPostlass.

Following the createAppplicatioormethod, and input files
upload if needed, the mobile application is able to submi
jobs by using the methosubmitJobswhich returns the job id
for each successfully submitted job. This identifier is uszd
query jobs status vigueryJobmethod during their execution.
Once the job execution has finished, tiAadroidApp can
download the output files, e.g. a text file for a voice recagnit
application or a new image for an image filtering one.

. V. USECASES AND PERFORMANCEEVALUATION
B. Asynchronicity

Each of TaskWS'’s method is accessed in an asynchronoys tT his sec’:irc])n shrc])\;\;]s tge Alneka MtObmiI? Client Librag\’ts ef-
way. The library was purposefully designed this way to fa- ectiveness through the development of two resource-smien

cilitate the developers work with Android, as it does notAndrOid applications, one for image rendering called DRud
allow network I/O operations in the main thredd This and one for generating the Mandelbrot set called MandetDroi

Furthermore, this section evaluates the MandelDroid agpli
Shttp://developer.android.com/reference/android/os/ tion in order to qu‘?m'fy the gain by using the C|Oljld resoarce
NetworkOnMainThreadException.html in terms of execution time and battery consumption.

Ip:AsyncPostI Ic:CommWrapperl lj:jackson.Magger In:NetCommI h:apache.HttpClient I

7 : : i DroidPov

post(method, : H
content, Scene:
returnType) abyss P
writeValueAsString lution:
(content) R ; Resolution:
777777777 data | 640x480
post(method, Columns: Rows:
data) N
»
execute & &
(uri, data) >
e - result]] 2 2
,,,,,,,,,,,,,,,,,, result
readValue(result, . o
returnType) N
)
¢ - - - - typedResult :
Ll¢ _ typedResult | | Render

.) L (a) DroidPovMain Activity.
Fig. 6. Sequence diagram f@ommunicationWrappetlasspost method.

Fig. 7. DroidPov Screens showing (a) the user input parasietee
Resolutionand theSceneto be generated and the number @blumnsand
Rowsto split the image generation; and (b) the generated image I[daded
to the mobile phone.

Alrokayan and Buyya [12] show how the use cases pre-
sented in this section benefit from the programming models _ :
supported by the Aneka Cloud Application Platform. However
in this section, the same applications are ported to run on ..
Android mobile phones. i

A. Use Cases

-0.5
Y: o
DroidPov uses the Persistence of Vision Ray-Tracer (POV- gjze: »
RayY tool for generating images through the ray-tracing tech-
nigue [13] from a text file which describes a scene, defining)
aspects such as light, objects, camera position and atm@sph Height: 150
effect. This file is stored on the mobile phone and sent to Generate locally
Aneka cloud through a FTP server. This type of application
has a resource-intensive nature [14]. The delegation appro
enables the mobile platform to use the POV-Ray software, Rows: 2
available only for Windows platform. Thereby, this approac Generate on cloud
adds the advantage of allowing the utilization of resources
unavailable to the mobile device platform, but that arelatée

in the platform running in the cloud. Fig. 8. MandelDroid screens showing (a) the user input paemsieX and
. . . . Y representing the central point, tiézeof the set, andVidth and Height of
As shown in Figure 7a, in order to use the DroidPov,the image to be generated; and (b) Mandelbrot set generateg ighmwn in

the application user has to set the scene to be rendered, tig mobile phone.
generated image resolution, and the number of columns and

rows to generate the image in parallel. The product of numbe . .

of rows and columns defines the number of jobs that will bel(/la}nd_e_lbrot set. On the other hand, the white points converge
processed by Aneka Workers. Once the image processing hifs Infinity so they do not belong to the Mandelbrot set.

been completed, the image is downloaded and rendered on the |n both applications, the user must configure the connection
mobile phone screen as shown in Figure 7b. parameters of Web Aneka Task Service and FTP server, and
define a username and password for Aneka authentication.

Width: 150

Columns: 2

(a) MandelDroidMain Activity. (b) Mandelbrot set generated image.

The other developed application is MandelDroid, which
consists of a mobile application to generate the Mandelbro
set. This application receives as input a range in the pldéne
complex numbers. This range is defined by the origin point |n this section, a performance evaluation is conducted to
coordinates and its size, as illustrated in the Figure 8& Thcompare the application execution in a mobile device and
user also specifies the generated image resolution andg if thn the Aneka cloud and demonstrate the advantage of using
application runs in the cloud, the number of columns andhe proposed approach, considering the execution time and
rows that define how many jobs demanded to split the imag@attery consumption metrics. Since the POV-Ray software is
generation. not available for Android platform, only the MandelDroid
n:i\pplic:ation is employed in the experiments.

. Performance Evaluation

The Mandelbrot algorithm assesses how quickly each poi
belonging to the range converges to infinity. A gray-scalerco The first experiment consists of executing the MandelDroid
is assigned to each point, as shown in Figure 8b. The blacpplication, both on the mobile phone and on the cloud, for
points do not converge to infinity, therefore, they belongh® generating Mandelbrot set images with 5 different resonsi

500x500, 1000x1000, 1500x1500, 2000x2000 and 2500x2500.
Shttp://www.povray.org/ The origin point was fixed in (-0.5, 0) and the range size to 2.

1500 — ;
Ll
: <
/‘;’\ - 9_, 15_ [
; = ? -
E 1000 - - =
= 3 d
S S 104
=
3 T >
Q ' Y
X 9 -
- 1
5 |
1
-
w— — M
D — '!'D —
! ' —
0 - -_— - 0 —— - (I - -
[[[[[[[[[[
o o o o o o o o o o o o o o o o o o o o
S o S o S o S o S o S o S o S o S o S o
N S o 0 0 o o 0 D 0 0 S o N o o 0 D
X X — - — AN N AN N X X — — - AN N AN N
S & X X X X X X X X S & X X X X X X X X
S O S & S & S & S & S o S & S & S & S &
N 0 o o o O o o S O O 1D o o lele) o o o O
S _i S o 0 0 o o TolTe] S _i S o 0 0 o o [ToRTe)
© e s R I T A © S s A I T A
o - o - o - o - o - o - o - o -
Local / on Cloud . Width x Height Local / on Cloud . Width x Height
(a) Execution time, in seconds, for each parameter combination (b) Percentage of battery consumed for each parameter comobinat

Fig. 9. Boxplot graphs comparing the results karcal and orCloud execution with different image resolutions: 500x50000x1000, 1500x1500, 2000x2000
and 2500x2500. Each combination of parameters was execuigtks. t

Also, the application was split in 4 jobs in order to execute o —_—
mobile device and Aneka cloud. Each experiment was executed
5 times, resulting in a total 60 rounds. The observed metrics
were battery consumption, in percentage, and executios, tim
in seconds, both monitored using the Android API.

3000
1

2500
1

The experimental scenario is composed of a Asus Padfon
Infinity a86 (T004) mobile phone with Android 4.2.2, 32 GB
of storage, 2 GB RAM, support WLAN 802.11a/b/g/n/ac and
CPU Snapdragon 800 quad-core (2.2GHz) and one Azure
Standard tier A3 virtual machine, with 4 2.1GHz cores and 7
GB memory, running Windows Server 2012 R2. The internet “ -
connection used to connect the mobile device to FTP server
and the Aneka Task Web Service has upload and download
rates of 12.11 Mbps and 11.79 Mbps, respectively.

Time (s)rI>
2000
|

xecution

1500
1

Figure 9a presents the MandelDroid local (L) and on cloud =
(C) execution time with the different image resolutionsisTh
plot shows that the time spent for the application execution
cloud is lesser for all the resolutions. This differenceiggler 1 2 8 4 5
as the resolution increases, representing an economy af up t Number of Aneka Workers

87% for the 2500x2500 resolution.
10. Boxplot graph comparlng the impact of the number of Anek
Figure 9b presents the battery consumption during thQVorkers on execution time. The image resolution is fixed to 0282500
experiment execution, where it can be observed that thend the image generation was split in 25 jobs.

consumption showed by the mobile device is bigger for all

resolutions except 500x500. This result is expected, vesere

during the execution on cloud, the mobile device uses energinpact to battery consumption. The battery savings carhreac
only to wait for the remote execution result, for instanae, t 95.23% for the 2500x2500 resolution.

keep the Wi-Fi connection and display active. For the 500x50

resolution, the required processing to generate the image i The second experiment aims to evaluate the impact of dif-
low, both using the cloud or not, which represents a nedigib ferent numbers of Aneka Workers on the execution time. This

1000
|

experiment scenario differs from the first because c3.glargto the pooling approach currently used to check the status

Amazon EC2 virtual machines were used instead of Azuref submitted jobs; (i) port the Aneka Mobile Client Library
ones. Each virtual machine has 4 2.8GHz cores and 7.5 Gy other mobile platforms such as iOS and Windows Phone;

and runs Windows Server 2008 R2.

and (iii) design new scheduling and provisioning policieatt
Figure 10 presents the execution time for generating a Maronsider user preferences, such as budget and application

delbrot set image with 12500x12500 resolution. The imagéXecution deadline, and mobile context parameters, such as
generation is split in 25 jobs and distributed among workerdattery level and internet connection type (WiFi of mobile)

that vary from 1 to 5 and each boxplot in the figure corresponds
to 5 application execution rounds. For each worker added to
the experiment, the total number of CPU cores increases by 4,
varying from 4 to 20 cores.

ACKNOWLEDGEMENTS

This work is supported by the Australian Research Council
through Future Fellowship program. We would like to thank

By increasing the number of workers from 1 to 3, theAm?r Vahid Dastjerdi_, Nikolay Grozev, Rodrigg N. Calheir_os
execution time is significantly reduced. However, an exgives ~ Satish Narayana Srirama, and Deborah Maggedhfor their
gain is not observed when the number of workers increasegomments on improving the quality of the paper.

from 4 to 5. Two different situations can explain this: (icha

of the 25 jobs have similar execution time and at least one cor
needs to execute 2 jobs; or (ii) the execution time of the jobs
are different and the longest jobs are limiting the appiicat
execution time. In this context, the ideal number of workers
is 4, considering the image resolution and the number of jobs
aforementioned and having the reduction of execution tie a
main goal.

(1]

VI. CONCLUSIONS ANDFUTURE WORK 3l

Currently, developers are facing complex mobile applica-
tions that require accessing distributed clouds. The devel
ment of these applications is challenging because it imslv
dealing with different cloud providers Web APIs and mobile
platforms. Moreover, porting these APIs to mobile devices i [5)
a difficult task due to compiler limitations, additional d&p
dencies, and code incompatibility. In order to reduce theref
and complexity of developing mobile cloud applicationsg th [6]
Aneka Mobile Client Library was proposed and described in
this paper. This library encapsulates the processes ofeconn [7]
ing to cloud, serializing and deserializing messages, ingnd
messages, and collecting their responses.

(4]

A mobile cloud architecture was also proposed to delegatel®!
resource-intensive mobile tasks in an asynchronous manner
order to alleviate the mobile device load and, consequently
extend the battery life. This architecture was designed topg
leverage the Aneka PaaS solution, which provides transpare
resource provisioning and job scheduling services andpenca
sulates different cloud providers Web APIs. Thereby, ther us [10]
has no concern in allocating or deallocating virtual maekin
or distributing the jobs among the resources.

This paper also investigated the effectiveness of théll]
Aneka Mobile Client Library through the development of
two resource-intensive mobile applications: ray tracimgge
generation and Mandelbrot set generation. A performanc[elz]
evaluation was conducted and the results showed the fligsibi
of the architecture, since the Aneka cloud spends less time t
execute the MandelDroid application, representing a réaiuc
of up to 87% of execution time while reducing battery con-[13]
sumption by up to 95.23%.

. - L. [14]
As future work, we are planning to (i) improve the verifica-

tion process of job execution by integrating with Androidspu
notification service, avoiding the battery consumptiomimnsic

REFERENCES

K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy€omputey vol. 43, no. 4, pp.
51-56, 2010.

S. Abolfazli, Z. Sanaei, M. Alizadeh, A. Gani, and F. Xi&n exper-
imental analysis on cloud-based mobile augmentation in mobiedc
computing,” Consumer Electronics, IEEE Transactions, orol. 60,
no. 1, pp. 146-154, 2014.

M. Shiraz, A. Gani, R. H. Khokhar, and R. Buyya, “A reviewn o
distributed application processing frameworks in smart neotévices

for mobile cloud computing,"Communications Surveys & Tutorials,
IEEE, vol. 15, no. 3, pp. 1294-1313, 2013.

M. Satyanarayanan, “Fundamental challenges in mobile coimg,” in
Proceedings of the fifteenth annual ACM symposium on Piegipf
distributed computing ACM, 1996, pp. 1-7.

S. Abolfazli, Z. Sanaei, and A. Gani, “Mobile cloud comimg:
A review on smartphone augmentation approachasXiv preprint
arXiv:1205.0451 2012.

H. Flores and S. N. Srirama, “Mobile cloud middlewardgurnal of
Systems and Softwar2013.

S.-H. Hung, T.-W. Kuo, C.-S. Shih, J.-P. Shieh, C.-P. L@eW. Chang,
and J.-W. Wei, “A cloud-based virtualized execution erwireent for
mobile applications,ZTE Communicationsvol. 9, no. 1, pp. 15-21,
2011.

E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S.o&ar
R. Chandra, and P. Bahl, “Maui: making smartphones last longgér
code offload,” inProceedings of the 8th international conference on
Mobile systems, applications, and service&CM, 2010, pp. 49-62.

C. Vecchiola, X. Chu, and R. Buyya, “Aneka: a softwaretfdem for
.NET-based cloud computingtigh Speed and Large Scale Scientific
Computing pp. 267-295, 2009.

R. N. Calheiros, C. Vecchiola, D. Karunamoorthy, and Ruy{a,
“The Aneka platform and QoS-driven resource provisioniagédlastic
applications on hybrid cloudsFuture Generation Computer Systems
vol. 28, no. 6, pp. 861-870, June 2012.

K. Hameseder, S. Fowler, and A. Peterson, “Performanedysis of
ubiquitous web systems for smartphones,Parformance Evaluation of
Computer & Telecommunication Systems (SPECTS), 201 hatienal
Symposium an |IEEE, 2011, pp. 84-89.

M. Alrokayan and R. Buyya, “A web portal for management of
Aneka-based multicloud environments,” ftoceedings of the Eleventh
Australasian Symposium on Parallel and Distributed Cormgat/olume
140 Australian Computer Society, Inc., 2013, pp. 49-56.

A. S. GlassnerAn introduction to ray tracing Morgan Kaufmann,
1989.

C. Mateos, A. Zunino, M. Hirsch, M. Feamdez, and M. Campo, “A
software tool for semi-automatic gridification of resourngensive java
bytecodes and its application to ray tracing and sequerigenaént,”

Advances in Engineering Softwanl. 42, no. 4, pp. 172-186, 2011.

