
Future Generation Computer Systems 141 (2023) 414–432

h
s
p
C
n
t
a
s
c
I
I
s
a
I
s

t

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Multi-search-routes-basedmethods forminimizingmakespan of
homogeneous and heterogeneous resources in Cloud computing
Guangyao Zhou a, Wenhong Tian a,∗, Rajkumar Buyya b,a

a School of Information and Software Engineering, University of Electronic Science and Technology of China, China
b Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and Information Systems, The University of
Melbourne, Australia

a r t i c l e i n f o

Article history:
Received 17 January 2022
Received in revised form 22November 2022
Accepted 26 November 2022
Available online 29 November 2022

Keywords:
Cloud computing
Resource scheduling
LPT-OneStep search
BFD-OneStep search
Makespan

a b s t r a c t

Cloud computing, as a large-scale distributed computing system dynamically providing elastic services,
is designed to meet the requirement of delivering computing services to users as subscription-oriented
services. In general, the problems of resource scheduling in Cloud computing like minimizing makespan
are usually NP-Hard problems. Various common algorithms including heuristic, meta-heuristic and
machine learning are applied in resource scheduling of Cloud computing to obtain the solutions, which
however are still probable and imperative to be optimized. Through innovatively applying heuristic
algorithms namely LPT (Longest Processing Time) and BFD (Best Fit Decreasing) as the basic search
routes and integrating these with neighborhood search algorithm namely OneStep, this paper proposes
multi-search-routes-based algorithms containing LPT-OneStep, BFD-OneStep and their combinations
for the sake of enhancing theoretical performance and improving solutions of scheduling schemes
especially for problems of minimizing makespan for homogeneous and heterogeneous resources.
Theoretical derivations prove that the proposed algorithms possess better theoretical approximation
ratios for P||Cmax. Extensive experiments on simulation environment demonstrate the proposed
algorithms outperform than corresponding compared algorithms for minimizing makespan problems
in both homogenous resources and heterogeneous resources, which validates the superiority of the
proposed algorithms.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The emerging trend of Industry 4.0 and 5G significantly en-
ances the number of tasks that the Internet-based computing
ystems need to process in real-time. The increase in data size
roposes a demand for a large-scale distributed system such as
loud computing which can provide flexible, reliable and dy-
amic services to users [1]. Cloud computing, also as a policy
o provision high-performance computation services in a pay-
s-you-go manner, has supported increasingly complex software
ystems and computing programs substantially, which has indi-
ated the indispensability of Cloud computing. Currently, many
T companies, such as Amazon, Microsoft, Google, Alibaba and
BM [2–5], have established relatively mature Cloud computing
ystems. These systems usually have the stable structures such
s Software-as-a-Service (SaaS), Platform-as-a-Service(PaaS) and
nfrastructure-as-a-Service (IaaS), as well as can flexibly provide
ervices to meet numerous requests from users [6,7].

∗ Corresponding author.
E-mail addresses: guangyao_zhou@std.uestc.edu.cn (G. Zhou),

ian_wenhong@uestc.edu.cn (W. Tian), rbuyya@unimelb.edu.au (R. Buyya).
ttps://doi.org/10.1016/j.future.2022.11.031
167-739X/© 2022 Elsevier B.V. All rights reserved.
Resource scheduling is defined by [6] as to find an ‘‘optimal’’
mapping ‘‘Tasks → Resources’’ to meet one or several given
objectives. With the enlargement of the Cloud’s user groups and
facilities, extensive requests and reservations of users are chal-
lenging the resource scheduling of Cloud computing. Additionally,
inappropriate resource scheduling will cause the waste of users’
time, decrease QoS (quality of service), increase energy con-
sumption, and increase carbon dioxide emissions. As the Cloud
computing system is still expanding its scale and development of
multitudinous industries depends on the reasonable operation of
Cloud computing, therefore the research on its resource manage-
ment is a prominent issue from the birth of Cloud computing to
nowadays which will also affect the orientation and prospect of
Cloud computing in the society [8,9].

One of the keys to address resource management of Cloud
computing is the scheduler lying on the platform layer based
on the resource scheduling algorithm. Cloud architecture and
resource scheduling process are shown in Fig. 1. The users operate
the clients in the application layer to submit task requests to
the Cloud center through the high-speed networks of the con-
nection layer; The Cloud center on the platform layer collects
tasks, generates scheduling schemes leveraging scheduling algo-
rithms, and allocates tasks to server nodes including VMs and

https://doi.org/10.1016/j.future.2022.11.031
https://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2022.11.031&domain=pdf
mailto:guangyao_zhou@std.uestc.edu.cn
mailto:tian_wenhong@uestc.edu.cn
mailto:rbuyya@unimelb.edu.au
https://doi.org/10.1016/j.future.2022.11.031

G. Zhou, W. Tian and R. Buyya Future Generation Computer Systems 141 (2023) 414–432
Fig. 1. Cloud architecture with resources scheduling process.
a
e
s
T
a

PMs on the resource layer and fabric layer; The server nodes
then provide corresponding services to users. In Cloud comput-
ing, the scheduling algorithm is a crucial component affecting
the quality of resource management. As the resource scheduling
problem of Cloud computing is commonly an NP-Hard problem
without a feasible method in polynomial time to ensure the
global optimization of resource scheduling unless P = NP [1,10,
11], hence it is usually settled by heuristic, meta-heuristic, ran-
domization and machine learning algorithms [12]. Some existing
algorithms like Ant colony algorithm [13], NSGA II algorithm [14]
and deep reinforcement learning algorithm [15,16] have achieved
excellent performance in the research results. However, most
of them with quite high computational complexity are unstable
with randomness, which makes the worst case of scheduling
results unpredictable with inevitable risk. For Cloud computing
systems in the realistic scenario, some algorithms with determi-
nacy and rapidity such as LPT (Longest Processing Time), FCFS
(First Come First Server), RR (Round-Robin), BFD (Best Fit De-
creasing), and SPT (Shortest Processing Time) are still practical,
whose results nevertheless require to be optimized yet [16,17].

Considering iterative optimization properties of the search
algorithm as well as the low complexity and analyzable ap-
proximation ratio of heuristic, we apply heuristic algorithms as
search routes in the general local search algorithm based on
the neighbors of dual resources and propose heuristic-based lo-
cal search algorithms. For the heuristic-based search algorithm,
the selection of the heuristic will directly affect its convergence
and optimization performance. Hence, leveraging LPT and BFD
as its search routes in light of the better theoretical approxi-
mation ratios of LPT and BFD than other heuristic algorithms
such as RR, FCFS and SPT to the optimization problems studied
in this paper. Based on the heuristic-based search algorithm,
we propose multi-search-routes-based local search algorithms
combining the One-Step search route (or K -Step search route)
and heuristic-based search routes for the instances of minimizing
makespan for homogeneous and heterogeneous resources. Ac-
cording to different combinations of search routes, we obtain var-
ious multi-search-routes-based algorithms containing LPT-One,
BFD-One, LPT-BFD-One, etc, where the combination of multi-
search routes is conducive to jumping out of the local optimum
of the single search route to improve the performance of algo-
rithms. As the proof of the theoretical approximation ratio of
the search algorithm is rare in the previous research, this paper
theoretically proves the approximation ratios of several multi-
routes local search algorithms for the problem of minimizing
415
makespan in homogenous resources (i.e. the scheduling problem
of minimizing makespan on parallel machines abbreviated as
P||Cmax), which breaks the dilemma that the search algorithm
rarely has approximation ratio proof in previous research. And
then, this paper provides experimental results for minimizing
makespan of both homogenous and heterogeneous resources to
validate the performance of proposed algorithms.

For P||Cmax, the approximation ratios of existing algorithms are
as that ArLPT ≤

4
3 −

1
3M , ArLPT−REV ≤

4
3 −

1
3(M−1) [18,19], ArMultifit ≤

72
61 + 2−k where k is the number of attempts to find the small-
est number of machines (by binary search) [11]. A principle as
PTAS (Polynomial-Time Approximation Scheme) revealed that the
guarantee of Ar ≤ 1+ϵ required complexity of O

(
(N/ϵ)1/ϵ

2
/M
)

nd no FPTAS (Fully Polynomial-Time Approximation Scheme)
xists for P||Cmax unless P = NP [11]. Additionally, few existing
tudies proved the approximation ratio of local search algorithms.
he approximation ratios of our proposed LPT-One and BFD-One
re proved as 5

4 −
1
4M and that of LPT-K and BFD-K are not greater

than 1 +
M−1

(3+K)M for P||Cmax where M is the number of resources,
which reveals the increasing K can ameliorate the upper limit of
the approximation ratio even to 1.

The main contributions of this paper are as follows:

(1) Proposing a new framework of local search algorithms
based on the neighbors of dual resources and heuristic-
based search routes: this paper proposes a framework of
the local search algorithm based on the neighbors of dual
resources. With neighbors of dual resources, this paper
defines various heuristic-based neighborhoods including
neighborhoods of LPT, MLPT, BFD and Best-BFD, which cor-
respond to heuristic-based search routes as LPTS, MLPTS,
BFDS and BestBFDS respectively. Different from existing
algorithms, heuristic-based search routes endowing heuris-
tic algorithms with a novel role can significantly reduce
the computational complexity of the local search algorithm
and is advantageous to the theoretical derivation of the
approximation ratio.

(2) Proposing multi-routes-based search algorithms: to fur-
ther improve the performance of the scheduling algorithm,
this paper proposes the multi-routes-based local search
algorithms to resolve minimizing makespan of homoge-
neous and heterogeneous resources in Cloud based on
the combination of heuristic-based search routes and On-
eStep (K -Step) search route. Different combinations ob-
tain various multi-routes algorithms containing dual routes

G. Zhou, W. Tian and R. Buyya Future Generation Computer Systems 141 (2023) 414–432

l

A
f
a
r
a

o
s
o
t
m
t
r
t
a

g
C

search algorithms such as LPT-OneStep search (LPT-One,
LPTO), BFD-OneStep search (BFD-One, BFDO) and MLPT-
One search, as well as triple routes search algorithm as LPT-
BFD-One search, which outperform existing algorithms.

(3) Providing theoretical proofs of approximation ratios for
multi-routes-based search algorithms: in theory, it is not
easy to prove the approximation ratio of search algorithms.
This paper gives theoretical proofs of the approximation
ratios for multi-routes-based search algorithms as that
ArLPTO, ArBFDO ≤

5
4 −

1
4M and ArLPT−K , ArBFD−K ≤ 1 +

M−1
(3+K)M

for P||Cmax, which are better than existing algorithms and
have significance for the theoretical exploration of search
algorithms.

(4) Simulation experiments: this paper executes experiments
with abundant instances to verify the performance of the
proposed algorithms in both homogeneous and heteroge-
neous resources.

The remainder of this paper is organized as follows. We review
the related works in Section 2. The problem formulation and gen-
eral local search algorithm are presented in Section 3. Based on
various basic search routes, we propose the multi-search-routes-
based algorithms and provide theoretical proof of approximation
ratios of several specific algorithms in Section 4. The experiment
results and discussion are given in Section 5. Finally, we conclude
this paper in Section 6.

2. Related work

According to the focus of this paper, we review related work
from two aspects, i.e. types of scheduling algorithms and the
assumption of system model, to reflect the relationship between
this paper and existing research.

2.1. Reviews of scheduling algorithms

To optimize the utilization of resources, energy consump-
tion, response time, makespan, etc, multi-phase method [20,21],
virtual machine migration [13,22], queuing model [10], joint
optimization [4] and resource scheduling algorithm are frequent
strategies used in Cloud computing, where scheduling algorithm
is a critical component attracting scholars. Current scheduling
algorithms in Cloud computing include local search algorithm,
heuristic algorithm, meta-heuristic algorithm, randomization,
machine learning algorithm and hybrid algorithm.

Machine Learning in scheduling algorithms mainly contains
three types that deep learning (DL) such as DREP [23] and DLSC
[24], reinforcement leaning (RL) such as QEEC [25], unified rein-
forcement learning (URL) [26], adaptive reinforcement learning
(ARL) [27] and ADEC [28], as well as Deep reinforcement learning
(DRL) such as DRM_Plus [16], A3C RL [29], MDRL [30], DPM [31],
DQTS [32] and DQN [15].

A local search algorithm is to select the neighbor solution
according to a strategy by comparing the current solution with
the neighbor solution, where neighborhood structure and neigh-
borhood selection (search route) are the basic components. In
Cloud computing, some local search algorithms, including Neigh-
borhood Search (NS) [33], Correlation-Aware Heuristic Search
(CAHS) [34], IBGSS [35], Crow Search [36], Dynamic Grouping
Integrated Neighboring Search (DGINS) [37] and Tabu Search [38],
are applied to solve the problems of resource management.

The meta-heuristic algorithm is a combination of local search
algorithm and randomization containing Ant Colony Optimization
(ACO), Genetic Algorithm (GA), FireFly, Particle Swarm Optimiza-
tion (PSO), etc [12].

ACO imitates ant colony to search for food as a search route.
Liu et al. [39] proposed OEMACS combining OEM local search
416
techniques and ACO to resolve VMs deployment in Cloud com-
puting, which reduced the energy consumption and improved the
effectiveness of different resources compared with conventional
heuristic and other evolutionary-based approaches. Chakravarthy
et al. [13] proposed two ant colony-based algorithms (TACO) to
address VM scheduling and routing in multi-tenant Cloud data
centers aiming at improving the utilization of energy in Cloud
computing.

GA imitates the process of natural evolution as the search
route of the local search algorithm. Refs. [14,40] improve the
search strategy based on NSGA-II to reduce the energy con-
sumption, response time, load imbalance and makespan in Cloud
computing. Xu et al. [41] applied NSGA-III to optimize the exe-
cution time and energy consumption of IoT-enabled Cloud-edge
computing. MOGA proposed by Jiang et al. [42] and MOEAs pro-
posed by Cong et al. [20] improved the search route strategies
based on NSGA-II and were utilized to settle resource scheduling
in Cloud.

FireFly including FA [43] and FIMPSOA [44], PSO including
MOPSO [45], APDPSO [46], and TSPSO [47], are other meta-
heuristic algorithms applied in scheduling of Cloud.

For each instance I of a scheduling problem, assuming the so-
ution of an algorithm Al as Al(I) and the theory optimal solution
as OPT (I), if ∃τ (a function) for ∀I s.t. Al(I) ≤ τ (|I|) · OPT (I) (or
l(I) ≥ τ (|I|) ·OPT (I)) and the running time of Al is bounded by a
ixed polynomial in |I|, then Al is defined as an approximation
lgorithm with approximation ratio τ [48]. The approximation
atio is a momentous index to evaluate the performance of an
lgorithm.
The heuristic algorithm is a type of algorithm to solve an

ptimization problem based on intuitionistic or empirical con-
truction. Currently, some heuristic algorithms in the scheduling
f Cloud computing have given approximation ratios and other
ypes of algorithms can rarely obtain the theoretical approxi-
ation ratio generally. For the justification of the huge scale of

asks in Cloud computing, higher computational complexity and
andomness of meta-heuristic and machine learning, as well as
imeliness requirements for processing tasks, heuristic algorithms
re still widely applied in practical Cloud.
Zhang et al. [49] adopted Lagrange Relaxation based Aggre-

ated Cost (LARAC) to reduce the energy consumption of Mobile
loud computing. Dynamic Bipartition-First-Fit (BFF), a (1+

g−2
k −

g−1
k2

) competitive algorithm based on First-Fit algorithm, was
proposed and its performance was proved theoretically by Tian
et al. [50]. Hong et al. [51] proposed QoS-Aware Distributed
Algorithm based on first-come-first-improve (FCFI) and all-come-
then-improve (ACTI) algorithms to reduce computation time and
energy consumption of Industrial IoT-Edge-Cloud Computing.
Tian et al. [52] proposed Longest Loaded Interval First Algo-
rithm (LLIF), a 2-approximation algorithm with theoretical proof,
to minimize the energy consumption of VMs reservations in
the Cloud. Other algorithms such as RR (Round-Robin) algo-
rithm, greedy, BFD (Best Fit Decreasing), LPT (Longest Processing
Time), and Jacobi Best-response Algorithm are frequent algo-
rithms in realistic and have likewise become baselines in existing
research [53].

The hybrid of two or more algorithms is also a strategy to
improve the search route of the local search algorithm. Kumar
et al. [54] proposed a hybrid algorithm called HGA-ACO com-
bining GA and ACO to solve task allocation and ensure QoS
parameters in the Cloud environment. Compared with the single
search route of GA and ACO, HGA-ACO achieved better perfor-
mance using the optimization solution of GA as the initial state of
ACO [54]. Yang et al. [55] proposed a hybrid meta-heuristic called
DAAGA combining GA and improved ACO by taking the solution
of ACO as the seed of GA to address Cloud service composition

G. Zhou, W. Tian and R. Buyya Future Generation Computer Systems 141 (2023) 414–432

a
I
o
b
f
u

2

i

g
p
t
a
l
s
n
e
t
s
a
p
p
w
i
f
c
l
e
i
i
t

t
i
g
A
t
t
o
s
t

t
r
T
d
a
t
u
a
o
f
p
o
t
t
t
o
b
t
m

nd the optimization problem. NN-DNSGA-II combining NSGA-
I with neural networks [56], PSO-ACS applying PSO to find the
ptimal solution of task scheduling and applying ACO to find the
est migration path of VMs on PMs [57], and FACO exploiting
uzzy module dedicated to pheromone evaluation [58], are also
sed in Cloud.

.2. Review of system model

In Cloud Computing, the scheduling scenarios can be divided
nto dynamic scheduling and static scheduling [1,22].

Dynamic scheduling, usually applied in online scheduling, is
enerally regarded as more consistent with realistic Cloud com-
uting where tasks usually vary with time and are unknown at
he initial scheduling time. In the dynamic scheduling, the tasks
re usually predicted with the random process [16,25] or machine
earning [31] based on historical data to support the subsequent
cheduling using an optimization algorithm, which makes dy-
amic scheduling rely on two aspects that the prediction mod-
ls and optimization algorithms. Yuanjun et al. [20] focused on
he hybrid tasks in Cloud and proposed multi-phase integrated
cheduling with six representative multi-objective evolutionary
lgorithms. In [20], the orders of tasks are independent without
rocessing constraints among different orders, each task whose
rocessing process is non-preemptive is conducted continuously
ithout interruption, and the resource is free for another step

mmediately once a processing step is finished. Ding et al. [25]
ocused on dynamic task scheduling on VMs for energy-efficient
loud computing and proposed a framework QEEC based on Q-
earning and M/M/S queueing system. In [25], the energy is mod-
led as related to tasks’ running times, each task is treated as
ntegral which cannot be further split into smaller tasks, a task
s conducted by only one VM, and each VM can only execute one
ask at any time.

Due to the uncertainty of prediction, it is difficult to obtain
he theoretical performance of the solution in dynamic schedul-
ng, whose frequently used algorithms are meta-heuristic al-
orithms [12,39] and machine learning algorithms [16,25,31].
dditionally, after getting the prediction of tasks or the real-
ime status of resources, dynamic scheduling can be converted
o static scheduling by using a static scheduling algorithm as the
ptimization algorithm of dynamic scheduling. Therefore, there is
till a lot of research focusing on static scheduling to explore the
heory of scheduling algorithms.

In static scheduling that is usually leveraged in reservation,
asks and resources as known before scheduling and the algo-
ithms aim at finding a scheme to allocate tasks to resources.
ian et al. [59] focused on the load balance of VMs reservations in
ata centers and proposed ‘‘Prepartition’’ to prepare migration in
dvance and set process time bound for each VM on a PM. In [59],
he system model was modeled as all data are deterministic
nless otherwise specified, time is formatted in slotted windows
nd there is no priority between VMs, which means the orders
f VMs do not change their processing times. Zhang et al. [46]
ocused on the static load balancing in Cloud computing and
roposed a novel adaptive Pbest discrete PSO (APDPSO). In [46],
nly the computation and bandwidth resources are considered,
he network topology of hosts is deterministic, the unit data
ransmitting cost between each host pair is fairly unchanged,
he constraints of resources and the required resources of tasks
r VMs are known, and the amount of data to be transferred
etween federates is unchanged. Ghalami et al. [11] focused on
he scheduling jobs on parallel identical machines to minimize
akespan (P||Cmax) and developed sequential approximation al-

gorithms with various approximation guarantees. In modeling
of [11], the processing times of jobs were available for processing
417
Table 1
Notations and descriptions.
Notation Description Nature

i Index of task

Object
j Index of resource
Ti The task with index i
Rj The resource with index j
card(S) The cardinal of set S

N Number of tasks

Given
M Number of resources
Eij General element of task Ti when executed in Rj
ETij The processing time of Ti when executed in Rj
MaxAj General Upper limit of resource Rj

TSj Set of tasks in resources Rj

Scheme-related

Aj General aspect of resource Rj
ω General aspect of problem
RTj The total processing time of resource Rj
Pi The parameter set of task Ti
KS The set of TSj where KS = {TS1, . . . , TSM }

at time zero, a job cannot be preempted once assigned to a
processor for execution, and each machine cannot process more
than one job at a time.

In this paper, we continue some assumptions about Cloud
computing system modeling referring to reviewed literature to
formulate the static scheduling of minimizing makespan in ho-
mogeneous and heterogeneous resources, which makes the im-
provement of the theoretical performance of our proposed al-
gorithm in the minimizing makespan problem to be useful for
resource scheduling of Cloud computing. According to the review
of types of scheduling algorithms, it can be seen that our pro-
posed multi-routes search algorithms using heuristic algorithms
as search routes are distinct from the previous algorithms. For
multi-routes search algorithms with a similar principle to hybrid
algorithms, different search routes can jump out the inherent
local optimum of a single search route resulting in optimization
of the solution. Application of heuristic algorithm as search route
enables the theoretical proof of approximate ratio of the search
algorithm, which has not been carried out for search algorithms
in the previous studies.

3. Problems formulation and general local search

In this section, we model the universal scheduling problem of
Cloud computing and present objectives for minimizing makespan
both for homogeneous and heterogeneous resources. And then,
we establish the framework of a general local search algorithm
based on the adjustment of tasks between two resources. The
notations used in this paper are presented in Table 1, where the
given parameters are known without the influence of scheme and
scheme-related variables are the opposite.

3.1. Models of minimizing makespan in cloud computing

The resource in the problems of this paper refers to a physical
machine or virtual machine that can process tasks with some
specific component such as CPU, RAM, DS, etc, where task refers
to a request from the user. In this paper, we mainly focus on the
static scheduling and leverage the processing time to express a
task that Ti =

{⟨
ETij
⟩}

= ⟨ETi1, ETi2, . . . , ETiM⟩. For minimizing
makespan, the features of resources and tasks are as follows
referring to existing research.

(1) The set of tasks {T1, T2, . . . , TN} is deterministic [59];
(2) All tasks are independent and preemptive without prece-

dence constraints for the order of tasks [59];
(3) Each task is treated as an integral task and cannot be

further split into smaller tasks [25];

G. Zhou, W. Tian and R. Buyya Future Generation Computer Systems 141 (2023) 414–432
(4) Each task can be fully fulfilled by one and only one resource
(usually virtual machine) [25];

(5) When Aj ≤ MaxAj, the processing capacity of the resource
remains unchanged, which means the parameter Pi of each
task is fixed and unaffected by the status of the resource.

(6) The total processing time of all resources starts from 0;
(7) Each resource (i.e. VM or PM) is either idle or processing

only one task [11,25];
(8) Once a task is finished, the occupied resource is free for

another task immediately ignoring switching time [20];
(9) The processing time ETij is fixed without affection of the

resource’s status or the execution order of tasks;
(10) And the number of available resources is invariant.

Assuming the mapping between general element of task and
general aspect of resources as function h : E → A, the mapping
between general aspect of resources and optimization objective
as function f : A → ω, and taking Pi = ⟨Ei1, Ei2, . . . , EiM⟩, the
universal resource scheduling problem of Cloud computing can
be written as

minω = f (A1, A2, A3, . . . , AM) (1)

where Aj = hj
(
Eij|Ti∈TSj

)
subject to Aj ≤ MaxAj. In Cloud comput-

ing, the general element of task can be taken as processing time,
volume, energy consumption, bandwidth, storage request and
other elements of tasks, in addition the general aspect of resource
can be taken as degree of load balance [20,43], makespan [32,43],
energy consumption [13,30], cost [45,53], delay ratio [20], utiliza-
tion of resource [25,43], throughput [24,44], SLA Violation [28,45],
etc.

If ∀l ̸= k s.t. hl(x) = hk(x), MaxAl = MaxAk and Eil = Eik, the
resources are homogeneous, otherwise the resources are hetero-
geneous. In this paper, we consider homogeneous resources when
studying the theoretical approximation ratio of the algorithms,
while we also study the scheduling problems of heterogeneous
resources to approach to real Cloud scenarios.

Solution of minimizing makespan is a way to reduce the
working time of resources, where less working time may bring
multifaceted benefits such as reduction of energy consumption,
increase of resource utilization, prolong of devices’ lifespan, im-
provement of processing capacity, etc. For problem of minimiz-
ing makespan, the decisive factors are time-related parameters
including ETij and RTj assuming time is slotted in the unit of
time. Thus, we need to use ETij and RTj to replace Eij and Aj
in problem then substitute the parameter set of tasks as Pi =

⟨ETi1, ETi2, . . . , ETiM⟩ where ETij ∈ R+ means the processing time
of task Ti when it on the resource Rj.

According to the features of tasks and resources, the total
processing time of Rj equals to the sum of processing time of all
tasks executed on Rj that

RTj =

∑
Ti∈TSj

ETij. (2)

Along with minimizing makespan, the sum of the running time
of all resources is considerable simultaneously. Therefore, two
objectives that are minimizing the total running time and min-
imizing the makespan require considerations shown as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

minωtotal−time = min

⎛⎝ M∑
j=1

N∑
i=1

xijETij

⎞⎠
minωmakespan = min

(
maxj=1,2,...,M

(
N∑
i=1

xijETij

)) . (3)

For heterogeneous resources, Eq. (3) is a bi-objective problem,
and for homogeneous resources, total running time is a constant
418
Table 2
Problems executed in experiments.
Sign Description of problem

P1 Minimizing makespan for homogenous resources
P2 Minimizing makespan and total running time for

heterogenous resources

where Eq. (3) can degenerate into a single objective optimization
problem. The constraints of Eq. (3) are subject to
M∑
j=1

xij = 1, ∀i ∈ {1, . . . ,N}, (4a)

xij ∈ {0, 1}, ∀i ∈ {1, . . . ,N}, ∀j ∈ {1, . . . ,M}, (4b)

Aj ≤ MaxAj, ∀j ∈ {1, . . . ,M}, (4c)

where Eqs. (4a) and (4b) are the common constraints of zero–
one integer programming, as well as Eq. (4c) is corresponding to
the fifth features of system to ensure the parameters of tasks and
resources unchanged.

In Eq. (3), the optimization solution of {xij} necessarily and
sufficiently occupies a unique set of KS, hence KS can express
the solution corresponding to {xij}. When KS is determined, other
scheme-related parameters in Table 1 can be calculated according
to given parameters. Other scheduling problems can be formu-
lated similar to these problems based on the universal mode of
Eq. (1). Then, the formulated problems considered in this paper
are in Table 2.

3.2. General local search algorithm

Although the main problem studied in this paper is mini-
mizing makespan, our proposed algorithms have generality for
other optimization problems, such as load balancing, minimiz-
ing energy consumption, etc. Therefore, we still use the general
parameters Eij and Aj to present subsequent methodologies and
theoretical proofs. When solving the makespan-related problems,
they only need to be replaced by ETij and RTj.

For scheduling problems, the local search algorithm is a con-
siderable method, whose strategy is to search the optimal state
by local neighborhoods [33,34]. In this paper, neighbors of dual
resources is described as only two resources have different sets of
tasks in two scheduling solutions, which can be defined by math-
ematical formulas as: assuming two solutions KS1 = {TS1, TS2,
. . . , TSM} and KS2 =

{
TS ′

1, TS
′

2, . . . , TS
′

M

}
, if ∃j1 ̸= j2 ∈ {1, 2,

. . . ,M} s.t. TSj1 ̸= TS ′

j1
, TSj2 ̸= TS ′

j2
and TSk = TS ′

k for ∀k ∈

{1, 2, . . . ,M} − {j1, j2}, then KS1 and KS2 are neighbors of dual
resources.

General Local Search Algorithm based on the neighbors of
dual resources for the universal scheduling problem, utilizes a
specified route to search for a better state in the neighbors of
the current state until non-existent neighbors are better than
the current state as Algorithm 1. General Local Search Algorithm
based on the Neighbors of Dual Resources has four essential
fundamentals as follows which vary with scenarios:

(1) The specified local search route which be substituted by
various route strategies;

(2) The neighbor selection criteria consistent with f : A → ω;
(3) The initial state with initialization policy that determines

which local optimal cluster to search in;
(4) The specific order strategies.

In these four essential fundamentals, the specified local search
route directly influences the performance of the solution and is
also a widely studied topic. This paper focuses on this to propose
multi-search-routes-based algorithms.

G. Zhou, W. Tian and R. Buyya Future Generation Computer Systems 141 (2023) 414–432

1

a
s
s
o
a
o
t
s
s
i
v

4

K
o(

1

1

1

1

T

f

Algorithm 1: General Local Search Algorithm based on the
Neighbors of Dual Resources

Input : {T1, T2, . . . , TN} and {R1, R2, . . . , RM}

Output: solution KS = {TS1, TS2, . . . , TSM}

1 Initially Allocate tasks to resources with confirmed or
random initialization policy and gain the general aspect
of resources by Aj = hj

(
Eij|Ti∈TSj

)
2 while Exist_adjustment do
3 Exist_adjustment = False
4 Sort resources by their value Aj
5 for j1 in resources of a specific order strategies do
6 or_j = j1, β = f (A1, A2, . . . , AM)
7 for j2 in [0, j1) do
8 Use specified local search route (one or more

of LPTS, BFDS, K-Step etc.) to adjust tasks
belonging to TSj1 and TSj2 then gain TS ′

j1
and

TS ′

j2
subject to Aj ≤ MaxAj for ∀j ∈ {1, 2, . . . ,M}

9 if β > f
(
A1, . . . , A′

j2
, . . . , A′

j1
, . . . , AM

)
then

10 pre_j = j2 and Exist_adjustment = True

11 β = f
(
A1, . . . , A′

j2
, . . . , A′

j1
, . . . , AM

)
2 if Exist_adjustment then

13 Update resources of or_j and pre_j based on the
specified local search route as TSor_j = TS ′

or_j,
TSpre_j = TS ′

pre_j
14 Break (for repeat of j1)

4. Multi search routes-based algorithm

4.1. Specified basic local search route

It can be seen from the flow of Algorithm 1 that any algorithm
ble to readjust the tasks of two resources can be applied as its
pecified local search route and the property of its convergence
olution is affected by this route. This property of Algorithm 1 not
nly allows a heuristic algorithm to be a search route but also
llows multiple search routes to be used simultaneously to jump
ut of the convergence points of a single search route. Based on
he definition of different neighborhoods, we will present several
pecified local search routes as basic routes including K -Step
earch, LPT search and BFD search. Substituting these algorithms
nto Algorithm 1 as specified local search route, we can get
arious local search algorithms.

.1.1. K-Step search route
On the basis of neighborhood of dual resources, neighbors of

-Step can be defined as: assuming KS and KS ′ of two states
f solutions satisfy the neighborhood of dual resources, if card
TSj1 − TSj1 ∩ TS ′

j1

)
≤ K and card

(
TSj2 − TSj2 ∩ TS ′

j2

)
≤ K , then

KS and KS ′ are mutually neighbors of K -Step. The K -Step search
route based on neighbors of K -Step is Algorithm 2.

With the adaptability of objectives, K -Step search can improve
the current state of the solution. When K = 1, we can obtain
One-Step search, which will be applied in our multi-route search
subsequently as a special case of K -Step search. Generally, the
computational complexity of finding the tasks sets Bj1 and Bj2 in
One-Step search is

(
card(TSj1) + card(TSj2) + card(TSj1)card(TSj2)

)
.

In our proposed One-Step search, we use a sort-based algo-
rithm to optimize the process of finding task sets, which can

reduce the computational complexity of finding the tasks sets to

419
Algorithm 2: K -step search route
Input : tasks set TSj1 and TSj2 of Rj1 and Rj2
Output: TS ′

j1
and TS ′

j2
1 Find tasks set Bj1 ⊂ TSj1 and tasks set Bj2 ⊂ TSj2 s.t.

f
(
A′

j1
, A′

j2

)
< f

(
Aj1 , Aj2

)
where A′

j = hj

(
Eij|Ti∈TS′

j

)
,

0 < max
(
card(Bj1), card(Bj2)

)
≤ K , TS ′

j1
= TSj1 − Bj1 + Bj2

and TS ′

j2
= TSj2 + Bj1 − Bj2

((
card(TSj1) + card(TSj2)

)
log
(
card(TSj1) + card(TSj2)

))
. And then,

we obtain the algorithm of One-Step search route based on sort
algorithm as Algorithm 3.
Algorithm 3: One-step search route

Input : tasks set TS = TSj1 ∪ TSj2 of Rj1 and Rj2 where it
can be set as Aj1 ≥ Aj2

Output: TS ′

j1
and TS ′

j2

1 Setγj1 =

∑
Ti∈TS

Eij1
M , Cj1 = Aj1 − γj1

2 B1 = argmin
{Ti}

(⏐⏐Eij1 − Cj1

⏐⏐
Ti∈TSj1

,
⏐⏐Eij2 + Cj1

⏐⏐
Ti∈TSj2

)
3 vl1 = min

(⏐⏐Eij1 − Cj1

⏐⏐
Ti∈TSj1

,
⏐⏐Eij2 + Cj1

⏐⏐
Ti∈TSj2

)
4 Sort

{
Eij1 |Ti∈TSj1 , Eij2 + Cj1 |Ti∈TSj2

}
→ {Gη1 ,Gη2 , . . . }

5 B2 = argmin
{Tηi ,Tηi+1}

⏐⏐Gηi − Gηi+1

⏐⏐, vl2 = min
⏐⏐Gηi − Gηi+1

⏐⏐ where

{Tηi , Tηi+1} ̸⊂ TSj1 and {Tηi , Tηi+1} ∩ TSj1 ̸= ∅

6 if B1 = ∅ and B2 = ∅ then
7 Return Exist_adjustment = False
8 else
9 if vl1 ≤ vl2 then
0 Update by TS ′

j1
= TSj1 − B1, TS ′

j2
= TSj2 − B1

1 else
2 Update by TS ′

j1
= TSj1 ∪ B2 − TSj1 ∩ B2,

TS ′

j2
= TSj2 ∪ B2 − TSj2 ∩ B2

3 Return TS ′

j1
, TS ′

j2
and Exist_adjustment = True

Substitution of K -Step search route to the specified local
search route of Algorithm 1 (i.e. General Local Search Algorithm)
can obtain K -Step Search Algorithm. This paper mainly applies
One-Step to improve other search routes such as LPTS and BFDS
presented subsequently.

For the sake of subsequently demonstrating proofs of approx-
imate ratio, we can present the property of K -Step in Prop-
erty 1 according to the definition of K -Step neighbors, which also
applies to One-Step when K = 1.

Property 1 (K-Step). Assume KS = {TS1, . . . , TSM} is the conver-
gence solution of K-Step Search Algorithm. For ∀j1 ̸= j2, ∀Bα ⊂

j1 , ∀Bβ ⊂ Tj2 , if 0 < max
(
card(Bα), card(Bβ)

)
≤ K , then:(

A′

j1
, A′

j2

)
≥ f

(
Aj1 , Aj2

)
where A′

j = hj

(
Eij|Ti∈TS′

j

)
, TS ′

j1
= TSj1 −

Bα + Bβ and TS ′

j2
= TSj2 + Bα − Bβ .

4.1.2. LPT search route and modified LPT search route
LPT (Longest Processing Time) algorithm is proposed to solve

minimizing makespan of parallel machines (P||Cmax) [11]. Cur-
rently, LPT algorithm has approximation ratio ArLPT ≤

4
3 −

1
3M

where M ≥ 2 and LPT-REV has approximate ratio ArLPT−REV ≤
4
3 −

1
3(M−1) where M ≥ 3 in P||Cmax [18,19]. Considering the

merit of LPT, this paper applies LPT as the search route shown
as Algorithm 4 by adjusting the classic LPT algorithm so that it

G. Zhou, W. Tian and R. Buyya Future Generation Computer Systems 141 (2023) 414–432

c
c
b

k

r
c
i
L
t

p
n

P
o
w

a

r

1

r

2

an be applied to Algorithm 1 as the search route. Based on the
haracteristics of LPT algorithm, neighborhoods of LPT-route can
e defined as: assuming KS ′ and KS are the neighbors of dual

resources and TS ′

j1
∪ TS ′

j2
= TSj1 ∪ TSj2 =

{
Tα1 , Tα2 , . . .

}
where

Eαi≥Eαi+1 , if Tαi ∈ argminTS′

(∑
Tαk∈TS′

1
Eαk ,

∑
Tαk∈TS′

2
Eαk

)
where

< i for ∀Tαi ∈ TS ′

j1
∪TS ′

j2
then KS ′ is an LPT route-based neighbor

of KS, while by contraries KS may not be that of KS ′.
Algorithm 4: LPT search route (based on LPT)

Input : tasks set TS = TSj1 ∪ TSj2 of Rj1 and Rj2
Output: TS ′

j1
and TS ′

j2
1 Markj1 = 0, Markj2 = 0, TS ′

j1
= ∅ and TS ′

j2
= ∅

2 for Tα in TS from largest to smallest do
3 if Markj1 ≤ Markj2 then
4 Markj1+ = Eαj1 and TS ′

j1
+ = {Tα}

5 else
6 Markj2+ = Eαj2 and TS ′

j2
+ = {Tα}

Substitution of LPT search route to the specified local search
oute of Algorithm 1 can obtain LPT Search Algorithm (LPTS) that
an adapt to various objectives corresponding to balance. LPTS
nherits the approximation ratio ArLPTS ≤

4
3 −

1
3M for P||Cmax of

PT algorithm, and has better solutions in statistics, which means
he solution of LPTS is not inferior to that of LPT algorithm.

Similarly for the demonstration of subsequent proofs, we
resent a property of LPTS as Property 2 according to the defi-
ition of LPT route-based neighbor.

roperty 2 (LPTS). KS = {TS1, . . . , TSM} is the convergence solution
f LPTS. For ∀j1 ̸= j2, assuming TSj1 ∪ TSj2 =

{
Tα1 , Tα2 , . . .

}
here Eαij1 ≥ Eαi+1j1 , if TS ′

j1
∪ TS ′

j2
= TSj1 ∪ TSj2 and Tαi ∈

rgminTS′

(∑
Tαk∈TS′

j1
Eαkj1 ,

∑
Tαk∈TS′

j2
Eαkj2

)
k<i

for ∀Tαi ∈
{
Tα1 , Tα2 ,

. . . }, then: f
(
A′

j1
, A′

j2

)
≥ f

(
Aj1 , Aj2

)
.

However, the LPT algorithm is originally intended to resolve
the problems in homogenous resources. For heterogeneous re-
sources, a Modified LPT search (MLPT) algorithm seen in Algo-
rithm 5 can be applied to address the problem of minimizing
makespan. The Modified LPT search route considers the difference
in the processing time or volume of a task between different
resources and preferentially puts the task with the largest dif-
ference into a specific resource. In this way with adaptability for
heterogeneous resources, the local search algorithm using MLPT
route can obtain an optimized solution.
Algorithm 5: Modified LPT search route for heterogenous
esources (Modification of LPT route)
Input : tasks set TS = TSj1 ∪ TSj2 of Rj1 and Rj2
Output: TS ′

j1
and TS ′

j2
1 Markj1 = 0, Markj2 = 0, TS ′

j1
= ∅ and TS ′

j2
= ∅

2 while TS ̸= ∅ do
3 if Markj1 ≤ Markj2 then
4 c = j1, b = j2
5 else
6 c = j2, b = j1
7 Find Tαl ∈ TS s.t. Tαl = argminTi∈TS (Eic − Eib) to obtain

a set of {Tα1 , Tα2 , . . . , Tαs}

8 if s ≥ 2 then
9 Choose Tα s.t. Tα = argmax1≤l≤s Eαlc

0 Markc+ = Eαc , TS ′
c+ = {Tα} and TS− = {Tα}

Algorithm 5 is a version convenient for comprehension. In
ealistic program of algorithm, we can use array operations on
420
GPU to accelerate Algorithm 5. For the tasks set TS = TSj1 ∪ TSj2
of two resources Rj1 and Rj2 , we can assume the set sorted in
ascending order according to the value of Eij1 − Eij2 in TS as{
Tα1 , Tα2 , . . . , Tαn

}
. Then, the operation of Algorithm 5 equals to

finding an index ζ in {0, 1, 2, . . . , n} s.t.
∑ζ

i=0 Eαij1 and
∑n+1

i=ζ+1 Eαij
as close as possible assuming Eα0j = Eαn+1j = 0 where j ∈

{j1, j2}. And
∑ζ

i=0 Eαij1 ≈
∑n+1

i=ζ+1 Eαij2 is equivalent to
∑ζ

i=0 Eαij1 +∑ζ

i=0 Eαij2 ≈
∑n+1

i=ζ+1 Eαij2 +
∑ζ

i=0 Eαij2 →
∑ζ

i=0

(
Eαij1 + Eαij2

)
≈∑n+1

i=0 Eαij2 = Sumj2 . Setting Sj1 =
{
Eα0j1 , Eα1j1 , . . . , Eαnj1

}
and

Sj2 =
{
Eα0j2 , Eα1j2 , . . . , Eαnj2

}
, therefore, we can use the GPU-

based program to quickly calculate a new array as⏐⏐cusum (Sj1 + Sj2
)
− Sumj2

⏐⏐ where cusum(S) means the cumula-
tive sum of S, choose the index at its minimum as ζ , and update
TS ′

j1
=
{
Tα1 , Tα2 , . . . , Tαζ

}
and TS ′

j2
= TS−TS ′

j1
where if ζ = 0 then

TS ′

j1
= ∅. Using this idea, we can quickly adjust the tasks of two

resources with GPU operation-based program, and even quickly
adjust the tasks of multiple resources simultaneously. Similarly,
other search routes can also be accelerated by GPU operation.
As this is not the focus of this paper, we do not expand the
explanation.

4.1.3. BFD search route
BFD (Best Fit Decreasing) is usually used to solve the bin pack-

ing problem and also applies to problems related to minimizing
makespan. A search route based on BFD is Algorithm 6 and the
neighborhood using the BFD search route can be called BFD route-
based neighborhood similar to the definition of LPT route-based
neighborhood. Using BFD search route to replace the specified
local search route in Algorithm 1 obtains BFD search (BFDS) al-
gorithm. Similar to the relationship between LPTS and LPT, BFDS,
with a better statistical performance, inherits the approximation
ratio of BFD. A property of BFDS is Property 3 according to its
definition.
Algorithm 6: BFD search route (based on BFD)

Input : tasks set TS = TSj1 ∪ TSj2 of Rj1 and Rj2
Output: TS ′

j1
and TS ′

j2

1 set γj =

∑
Ti∈TS

Eij
M where j ∈ {j1, j2}

2 Markj1 = 0, Markj2 = 0, TS ′

j1
= ∅, TS ′

j2
= ∅

3 for Tα in TS from largest to smallest do
4 if

⏐⏐Markj1 + Eij1 − γj1

⏐⏐ <
⏐⏐Markj2 + Eij2 − γj2

⏐⏐ then
5 TS ′

j1
+ = Tα , Markj1+ = Eij1

6 else
7 TS ′

j2
+ = Tα , Markj2+ = Eij2

Property 3 (BFDS). KS = {TS1, . . . , TSM} is the convergence
solution of BFDS. For ∀j1 ̸= j2, assuming TSj1 ∪TSj2 =

{
Tα1 , Tα2 , . . .

}
where Eαij1 ≥ Eαi+1j1 , if TS ′

j1
∪ TS ′

j2
= TSj1 ∪ TSj2 and Tαi ∈

argminTS′

(⏐⏐Qij1 + Eαij1 − γj1

⏐⏐ , ⏐⏐Qij2 + Eαij2 − γj2

⏐⏐) for ∀Tαi ∈ TS ′

j1
∪

TS ′

j2
where Qij1 =

∑
Tαk∈TS′

j1
,k<i Eαkj1 and Qij2 =

∑
Tαk∈TS′

j2
,k<i Eαkj2 ,

then: f
(
A′

j1
, A′

j2

)
≥ f

(
Aj1 , Aj2

)
.

An improved strategy of the BFD search route, which is called
Best-BFD search route in Algorithm 7, is to record schemes and
select the best scheme as the final solution.

4.2. Combination of multi-routes and the flowchart

As mentioned above, the specified local search route of Algo-
rithm 1 can be replaced by multiple search routes simultaneously.
Therefore, the proposed search routes can be arbitrarily combined

as the search routes of Algorithm 1. This paper presents three

G. Zhou, W. Tian and R. Buyya Future Generation Computer Systems 141 (2023) 414–432

o
h
r
i
s
s
c

Fig. 2. Flowchart of local search algorithms based on the neighbors of dual resources with various search routes including LPT, BFD, K -Step and their combinations.
P
s
S
t

A

Algorithm 7: Best BFD search route
Input : tasks set TS = TSj1 ∪ TSj2 of Rj1 and Rj2
Output: TS ′

j1
and TS ′

j2

1 set γj1 =

∑
Ti∈TS

Eij1
M , k = 0, Markj1 = 0, TS(0)j1

= ∅

2 for Tα in TS from largest to smallest do
3 if Markj1 + Eij1 ≤ γj1 then
4 TS(0)j1

+ = Tα and Markj1+ = Eij1
5 else
6 k + +

7 Lk =
⏐⏐Markj1 + Eij1 − γj1

⏐⏐ and TS(k)j1
= TS(0)j1

8 L0 =
⏐⏐Markj1 − γj1

⏐⏐
9 TS ′

j1
= argminTS(α)j1

(L0, L1, . . . , Lk), TS ′

j2
= TS − TS ′

j1

combinations of them including LPT-One, BFD-One and LPT-BFD-
One regarding LPT route, One-Step route and BFD route as the
basic routes. These algorithms using various search routes can be
uniformly called multi-search-routes-based algorithms and their
operation processes corresponding to the specified search route
in Algorithm 1 are as follows:

(1) LPT-One :
(
TSj1 , TSj2

)
→

(
TS ′

j1
, TS ′

j2

)
by LPTS and

(
TS ′

j1
,

TS ′

j2

)
→

(
TS ′′

j1
, TS ′′

j2

)
by OneS; use (TS ′′

j1
, TS ′′

j2
) as the neigh-

bor of (TSj, TSk) in Algorithm 1.
(2) BFD-One:

(
TSj1 , TSj2

)
→

(
TS ′

j1
, TS ′

j2

)
by BFDS and

(
TS ′

j1
,

TS ′

j2

)
→

(
TS ′′

j1
, TS ′′

j2

)
by OneS; use (TS ′′

j1
, TS ′′

j2
) as the neigh-

bor of (TSj1 , TSj2) in Algorithm 1.
(3) LPT-BFD-One: Use LPTS, BFDS and OneS, then choose the

best solution as the neighbor of (TSj1 , TSj2).

Based on the above description, we can draw the flow charts
f our proposed algorithms as Fig. 2 to intuitively demonstrate
ow the LPT, BFD, One-Step and their combinations act as search
outes of Algorithm 1. From Fig. 2, we can see again the flex-
bility of Algorithm 1 that it allows various algorithms as its
earch routes. In the framework, we only need to change the
earch routes to obtain specific search algorithms with different
onvergence properties.
421
As LPT and BFD have increased performance and One-Step has
a descending performance with the increasing number of tasks,
therefore LPT-OneStep search (LPT-One) and BFD-OneStep search
(BFD-One) occupy better approximation ratios respectively than
LPTS and BFDS. Multi-routes search has various combination
patterns of search routes where one is the combination with
repeated iterations of search routes such as LPT_route+OneStep_
route, as well as the other is the combination with repeated
iterations of search algorithms such as LPT_algorithm+
OneStep_algorithm. Theoretically, the two patterns have the same
theoretical approximation ratio. In this paper, LPT-One and BFD-
One appertain to that of search routes.

4.3. Theoretical proofs of approximation ratios

In consideration of the complexity and difficulty to prove the
approximate ratio of heterogeneous resources, we only demon-
strate the proofs of approximation ratio for homogeneous re-
sources i.e. mainly focusing on P||Cmax. Since the given general
upper limits MaxAj of resources are the same in homogenous
resources, which means the constraint is only related to the
maximum aspects max {A1, A2, . . . , AM}, so we do not need to
consider the constraint of Eq. (3) in the proof.

As LPT-One and BFD-One are originated from the heuristic
algorithms which have theoretical approximation ratios, hence
their approximation ratios can be proved by referring to their
original heuristic algorithms. Considering Ei1 = Ei2 = · · · = EiM
for ∀i in homogeneous resources, we donate Gi = Ei1 = Ei2 =

· · · = EiM to represent the general elements of task Ti for the sake
of demonstration of proofs. Next, we present the approximation
ratios of several algorithms and their proofs.

Theorem 1. ArLPTO = ArLO ≤
5
4 −

1
4M for P||Cmax.

roof. According to the convergence condition, the convergence
olution of LPT-One simultaneously obeys Properties 1 and 2.
uppose the set of instances that do not satisfy Theorem 1 is H ,
he instance I = {T1, T2, . . . , Tn} ∈ H has minimum numbers of
tasks, and G1 ≥ G2 ≥ · · · ≥ Gn, which means ArLO (x|∀x ∈ H) >
5
4 −

1
4M and card(I) = min card (x|∀x ∈ H).

Then, Tn ∈ argmaxTSj
(
Aj
)
, otherwise ∃I ′ = I − {Tn} s.t.

rLO(I ′) > 5
4 −

1
4M hence I ′ ∈ H and card(I ′) < card(I), which

is contradicted to card(I) = min card x|∀x ∈ H .
()

G. Zhou, W. Tian and R. Buyya Future Generation Computer Systems 141 (2023) 414–432

∵
1
o

T
a

E

P

H

w

R
t

w

s
3

a
t
A
∅

O

t

F

Assuming Tn ∈ TSk, when LPTS converges, Ak − Gn ≤ Aj for
∀j ̸= k from Property 2. Thus, Ak ≤

1
M

∑n
i=1 Gi +

M−1
M Gn ≤

OPT (I) +
M−1
M Gn where OPT (I) is the theoretical optimization.

As ArLO(I) > 5
4 −

1
4M , so 5

4 −
1
4M < 1+

M−1
M

Gn
OPT (I) . ∴ OPT (I) < 4En.

Gn ≤ Gi for ∀i = 1, 2, . . . , n, ∴ card(TS ′

j) ≤ 3 for ∀j =

, 2, . . . ,M where KS ′
= {TS ′

1, TS
′

2, . . . , TS
′

M} is the theoretical
ptimization scheme corresponding to OPT (I).
It can be assumed that n = 3M .
Assuming card(TSj) = 3 for ∀j = 1, 2, . . . ,M of instance I ,

Sk ∪ TSj can be set as {Tα1 , Tα2 , Tα3 , Tα4 , Tα5 , Tn} where ∀j ̸= k
nd Gα1 ≥ Gα2 ≥ · · · ≥ Gα5 ≥ Gn. Then, there are two situations

for TSk and TSj considering Tn ∈ TSk that as:{
Tα1 ∈ TSk
Tα2 , Tα3 ∈ TSj

or
{

Tα1 ∈ TSj
Tα2 , Tα3 ∈ TSk

(5)

If Tα1 ∈ TSk, there are two states that Tα4 ∈ TSk or Tα5 ∈ TSk.
When Tα4 ∈ TSk, the relationships of {Tα1 , Tα2 , Tα3 , Tα4 , Tα5 , Tn}
based on Property 2 are:{ Gα1 + Gα4 ≤ Gα2 + Gα3 + Gα5

Gα1 + Gα4 + Gn ≥ Gα2 + Gα3 + Gα5
Gα1 + Gn ≤ Gα2 + Gα3

(6)

∵ I ∈ H , ∴ ∃j ̸= k s.t.:⎧⎨⎩
Gα1+Gα4+Gn

Gα1+Gα2
> 9

8

Gα1 + Gα2 ≥

∑5
i=1 Gαi+Gn

2 ≥ OPT (I)
(7)

derived from Property 1. Substitution Eq. (7) into Eq. (6) obtains:

53
24

Gα1 +
45
24

Gα2 <

∑5
i=1 Gαi + Gn

2
≤ OPT (I) (8)

q. (8) contradicts 53
24Gα1 +

45
24Gα2 > Gα1 + Gα2 ≥ OPT (I).

When Tα5 ∈ TSk, the relationships are as follows based on
roperties 1 and 2.⎧⎨⎩

Gα1 + Gα5 ≥ Gα2 + Gα3 + Gα4

Gα5 + Gα6 > 1
8Gα1 +

9
8Gα2

Gα1 + Gα2 ≥

∑5
i=1 Gαi+Gn

2 ≥ OPT (I)
(9)

Simplification of Eq. (9) can obtain 4OPT (I) > 35
8 Gα1 +

27
8 Gα2 .

owever, ∵ 1
8Gα1 +

9
8Gα2 < Gα5 +Gα6 ≤ 2Gα3 and Gα1 ≥ Gα2 +Gα3 ,

∴ 3Gα1 > 5Gα2 . ∴
35
8 Gα1 +

27
8 Gα2 > 4

(
Gα1 + Gα2

)
≥ 4OPT (I),

hich is constricted to 4OPT (I) > 35
8 Gα1 +

27
8 Gα2 .

If Tα1 ∈ TSj, {Tα1 , Tα2 , Tα3 , Tα4 , Tα5 , Tn} satisfies that:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Gα1 + Gα4 ≤ Gα2 + Gα3
Gα1 + Gα4 + Gα5 ≥ Gα2 + Gα3
Gα2+Gα3+Gn

Gα1+Gα2
> 9

8

Gα1 + Gα2 ≥

∑5
i=1 Gαi+Gn

2 ≥ OPT (I)

(10)

eduction of Eq. (10) can also obtain Eq. (8), which is constricted
o 53

24Gα1 +
45
24Gα2 > OPT (I).

Assuming ∃card(TSj) ̸= 3, then ∃card(TSj) = 2 and ∃card(TSl)
≥ 4. Thus, it can be suppose card(TSl) = 4 and TSl ∩ TSj =

{Tα1 , Tα2 , . . . , Tα6} where Gα1 ≥ Gα2 ≥ · · · ≥ Gα6 . Four probable
cases are TSj =

{
Tα1 , Tα4

}
, TSj =

{
Tα1 , Tα5

}
, TSj =

{
Tα1 , Tα6

}
or

TSj =
{
Tα2 , Tα3

}
, where One-Step search can reach the optimum

in either case.
Using the same derivation method combining with mathemat-

ical induction, it can be proved that ̸ ∃I s.t. ArLO(I) > 5
4 −

1
4M ,

hich means H = ∅. Therefore, Theorem 1 is true.

From proof of Theorem 1, it can be observed that One-Step
earch can improve and optimize the solution when card(TS ′

j) ≤

, ∀j = 1, 2, . . . ,M . If the processing time of tasks are as Eq. (11)
422
with 3M tasks and M resources, then the allocation result of LPT
algorithm is as Eq. (12) where ε ∈ [0, M

2) and the first row
TS1 = {3M − 1,M,M − ε} means the resource R1 has three tasks
with processing time as 3M − 1, M and M − ε.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

G1 = 3M − 1;
G2 = 2M − 1;
Gi = 2M −

⌈ i
2

⌉
, i = 2j + 1, 1 ≤ j ≤ M − 1;

G2M+1 = M;

Gi = 2M −
⌈ i

2

⌉
+ ε, i = 2j, 2 ≤ j ≤ M;

Gi = M − ε, 2M + 2 ≤ i ≤ 3M

(11)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

TS1 = {3M − 1,M,M − ε} ;

TS2 = {2M − 1,M + 0 + ε,M − ε} ;

TS3 = {2M − 2,M + 1 + ε,M − ε} ;

TS4 = {2M − 3,M + 2 + ε,M − ε} ;

...

TSM = {2M − (M − 1),M + (M − 2) + ε,M}

(12)

If using the allocation result of LPT as initial allocation or coin-
cidentally using Eq. (12) as the initial allocation, Eq. (12) will be
the local optimum of LPT-One, where the approximate ratio is
ArLO(I∗) =

5M−1−ε
4M and limε→0ArLO (I∗) =

5M−1
4M . Thus, the instance

of Eq. (11) with initial allocation as Eq. (12) is a worst-case of
LPT-One when the number of resources is M .

Theorem 2. ArBFDO = ArBO ≤
5
4 −

1
4M for P||Cmax.

Proof. For BFD-One, assuming ArBO (x|∀x ∈ H) > 5
4 −

1
4M , I ∈ H

nd card(I) = min card (x|∀x ∈ H). Then, the same conclusion as
hat in LPT-One is OPT (I) < 4Gn for BFDS based on Property 3.
nalogous to LPT-One algorithm, it can be proved that H =

based on Properties 1 and 3 beneficial from combination of
neStep and BFDS.

From the similarities in proofs of Theorems 1 and 2, a novel
heorem to improve the approximation ratio based on K -Step
search can be gained as:

Theorem 3. ArLPTK , ArBFDK ≤ 1 +
M−1

(3+K)M in P||Cmax.

Proof. For LPT-K , similar to the proof of Theorem 1, assuming
ArLPT−K (x|∀x ∈ H) > 1 +

1
3+K −

1
(3+K)M , I ∈ H and card(I) =

min card (x|∀x ∈ H). Then, a conclusion of I analogous to that
in LPT-One search algorithm is OPT (I) < (3 + K)Gn according
to Property 2. Therefore, card(TS ′

j) ≤ 2 + K , ∀j = 1, 2, . . . ,M
where KS ′

= {TS ′

1, TS
′

2, . . . , TS
′

M} is the theoretical optimization
scheme corresponding to OPT (I). Based on the same principle
of Property 1, K -Step search can optimize the solution when
card(TS ′

j) ≤ 2+K . Therefore, H = ∅ frommathematical induction.
The proof process also works for BFD-K algorithm.

Theorem 3 reveals an avenue of to optimize the approximate
ratio to infinitely approach to 1 by increasing K of K -Step search.
For K -Step Search algorithm, the limit of the approximate ratio is
2 in theory which cannot be promoted with increasing K because
of the existence of a counterexample as Eq. (13), where Mε = δ.

{ε, ε, . . . , ε}  
M+K

, {ε, ε, . . . , ε}  
M+K

, . . . , {ε, ε, . . . , ε}  
M+K  

M−1

, {δ, δ} (13)

or ∀K , ∃M ≫ K s.t. Eq. (13) is a local optimum where K -Step
search algorithm cannot adjust tasks of each resource. Presently
in Eq. (13), ArK−Step ≤

2Mδ
(M+1)δ+(M−1)Kε

→ 2. However, combination
of LPTS (or BFDS) and K -Step has a dominant performance to
surmount the limitation of counterexamples on each search route
according to Theorem 3.

G. Zhou, W. Tian and R. Buyya Future Generation Computer Systems 141 (2023) 414–432

t
a
i

p
s
t

Table 3
Summary of proposed algorithms and their corresponding problems evaluated in subsequent experiments.
Ascription Algorithm Category Description Problems

Single route

LPTS Local Search LPT-Search algorithm P1 + P2
MLPTS Local Search LPT-Search algorithm P2
BFDS Local Search BFD-Search algorithm P1
OneS Local Search OneStep-Search algorithm P1
BestBFDS Local Search BestBFD-Search algorithm P1

Dual routes
LPT-One Local Search LPT-OneStep Search algorithm P1 + P2
MLPT-One Local Search MLPT-OneStep Search algorithm P2
BFD-One Local Search BFD-OneStep Search algorithm P1

Triple routes LPT-BFD-One Local Search Using the LPT, BFD and OneStep as search routes P1
Table 4
Comparison algorithms evaluated in experiments.
Algorithm Category Description Problems

Random Randomization Randomly allocating tasks to resources P1
Greedy Greedy Scheduling with greed priory P1
RR Heuristic Round Robin algorithm P1
LPT Heuristic Longest Processing Time algorithm P1
BFD Heuristic Best Fit Decreasing algorithm P1
GA-Random Meta-Heuristic Genetic algorithm using random initialized state P1
PSO Meta-Heuristic Particle Swarm Optimization algorithm P1 + P2
ACO Meta-Heuristic Ant Colony Optimization algorithm P2
GA-MinMin Hybrid Genetic algorithm using MinMin initialized state P1 + P2
PSO-GA Hybrid Using the output of PSO as the input of GA P1 + P2
ACO-GA Hybrid Using the output of ACO as the input of GA P2
The computational complexity of LPT-One (CcLO) consists of
wo parts. One is the number of iterations which can be deduced
s O(M) and the other is the complexity of each iteration which
s about O (MN) for P||Cmax. Therefore, the computational com-
plexity of LPT-One is CcLO = O

(
M2N

)
. BFD-One also satisfies this

roperty. We will also verify CcLO through experiments in the next
ection. As the approximation ratios of existing algorithms are as
hat ArLPT ≤

4
3 −

1
3M , ArLPT−REV ≤

4
3 −

1
3(M−1) [18,19] and ArMultifit ≤

72
61+2−k [11], the improvement and proof of approximate ratios of
LPT-One and BFD-One still occupy theoretical significance, as well
as the LPT-K and BFD-K , which provides a method to approach
the upper bound 1.

4.4. Summary of proposed algorithms

Summary of proposed algorithms and corresponding problems
in subsequent experiments are in Table 3. LPT-K and BFD-K are
not listed in Table 3 as we have given the proof of their theoret-
ical approximation ratio and will not verify them in subsequent
experiments.

5. Experiment evaluation

5.1. Problems and simulated environment

Conduction of multi groups of experiments to the comprehen-
sive evaluation of our proposed algorithms is essential. Therefore,
we carried out experiments of problems shown in Table 2 for
minimizing makespan under static scheduling for homogeneous
and heterogeneous resources respectively.

For the problem of minimizing makespan in experiments, we
simulate the Cloud environment as that each resource (especially
VMs) can process only one task simultaneously, tasks are inde-
pendent mutually and each task only has one working procedure,
where the total processing time of a resource equals to the sum
of the processing time of the tasks on this resource.
423
In consideration of that verification of algorithms’ perfor-
mance especially statistical performance requires abundant in-
stances, we establish the simulation environment through ran-
domly generating tasks, which is conducive to producing ad-
equate instances and observing the performance of different
algorithms under the same instance. The parameters of tasks are
generated by a given uniform distribution and their specified pa-
rameters of the generation will be described in each instance. As
the variation in the number of tasks or resources has an impact on
the performance of the algorithm, we fix the number of resources
or tasks and observe the trend of algorithms’ performance with
the number of the other.

5.2. Compared baselines and evaluation indexes

To assist the evaluation of the proposed algorithms for prob-
lems in Table 2, a variety of commonly used algorithms are
regarded as baselines, including some random, greedy, heuristic,
meta-heuristic and hybrid algorithms. The details of the proposed
algorithms and the comparison algorithms in the experiments are
in Table 3 and Table 4 respectively.

Assuming the set of algorithms participating in evaluation
is
{
X1, X2, . . . , Xp

}
, we conduct random experiments with 100

instances for each group of (M,N) donated as
{
I (M,N)
1 , I (M,N)

2 , . . . ,

I (M,N)
100

}
. Then, we donate the makespan obtained by algorithm

Xk under the instance I (M,N)
l as Y

(
Xk, I

(M,N)
l

)
, the total running

time as Z
(
Xk, I

(M,N)
l

)
, and the theoretical optimal makespan of

I (M,N)
l as OPT

(
I (M,N)
l

)
. Then, we can obtain several statistical

indexes as Eq. (14) where λ1 is the average makespan, λ2 is
the ratio between the average makespan and the least makespan
(abbreviated as AM/LAM), λ3 is probabilities achieving the least
makespan (PALM), λ4 is probabilities achieving the theoretical
optimization (PATO), λ5 is maximum approximate ratio, λ6 is
average of total running time, λ7 is the ratio between the average
total running time and the least total running time (AT/LAT), and

G. Zhou, W. Tian and R. Buyya Future Generation Computer Systems 141 (2023) 414–432

λ

(⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5
o
s
p
O
w
c
t

a

Xk
1

⏐⏐
(M,N) means the index λ1 of algorithm Xk in the scenario of

M,N).

λ
Xk
1

⏐⏐
(M,N) =

∑100
l=1 Y

(
Xk, I

(M,N)
l

)
100

; λ
Xk
2

⏐⏐
(M,N) =

λ
Xk
1

⏐⏐
(M,N)

minp
q=1 λ

Xq
1

⏐⏐
(M,N)

;

λ
Xk
3

⏐⏐
(M,N) =

∑100
l=1

(
Y
(
Xk, I

(M,N)
l

)
== minp

q=1 Y
(
Xq, I

(M,N)
l

))
100

;

λ
Xk
4

⏐⏐
(M,N) =

∑100
l=1

(
Y
(
Xk, I

(M,N)
l

)
== OPT

(
I (M,N)
l

))
100

;

λ
Xk
5

⏐⏐
(M,N) =

100
max
l=1

⎛⎝Y
(
Xk, I

(M,N)
l

)
OPT

(
I (M,N)
l

)
⎞⎠ ;

λ
Xk
6

⏐⏐
(M,N) =

∑100
l=1 Z

(
Xk, I

(M,N)
l

)
100

; λ
Xk
7

⏐⏐
(M,N) =

λ
Xk
6

⏐⏐
(M,N)

minp
q=1 λ

Xq
6

⏐⏐
(M,N)

.

(14)

Except for the above indexes, we will also apply the itera-
tive process of makespan and Pareto scatter to comprehensively
evaluate the performance of our proposed algorithms.

Then, simulation experiments are launched in a desktop com-
puter with configurations as follows:

• CPU: Intel(R) Core(TM) i5-8400 CPU @ 2.8 GHZ;
• SSD: KINGSTON SA400S37 240 GB;
• GPU: NVIDIA GeForce GTX 1060 6 GB;
• Program version: Python 3.6;

5.3. Result and discussion

5.3.1. Minimizing makespan for homogeneous resources
Firstly for minimizing makespan of homogenous resources

(P||Cmax), we carry out extensive experiments to observe the iter-
ative processes. Since a large number of experiments can obtain
similar conclusions, we only plot the iterative process of the two
instances (M,N) = (50, 200) and (M,N) = (100, 10000) in
Fig. 3 for each algorithm with the property of searching solution
in Table 4. In Fig. 3, we choose the minimum makespan of all
iterations before the current iteration as the value of the current.
As iterations reaching convergence of the proposed algorithms
are far less than 100, we replenish them to 100 iterations by their
convergence values. Fig. 3 shows that the proposed algorithms
take about 25 iterations for instance of (M,N) = (50, 200) and
0 iterations for instance of (M,N) = (100, 10000) to reach an
ptimized state and their makespans of converging are evidently
maller than compared algorithms, which points out that the
roposed algorithms, including OneS, LPTS, BFDS, BestBFDS, LPT-
ne and BFD-One, can reach a better state close to convergence
ith iterations about the half number of resources, and reach
onverges by less than 100 iterations. In Fig. 3, LPT-One possesses
he fast convergence speed followed by LPTS and BFD-One.

To further investigate the statistical performance of proposed
lgorithms for P||Cmax, we fix the number of resources or tasks,

and randomly generate 100 instances for each combination (M,N)
respectively where ETij ∈ [1, 100] (unit of time). Similarly, we
plot the average makespans (λ1) of the 100 instances under
each (M,N) for homogeneous resources as Fig. 4. For the sake
of quantitative observation, we provide the numerical tables of
Fig. 4 in Tables 5 and 6. As shown in Fig. 4, our proposed OneS,
BFDS, BestBFDS, LPT-One, BFD-One and LPT-BFD-One achieve the
lowest and almost coincident makespans, followed by LPTS, LPT,
BFD. The makespans of other algorithms are significantly higher
424
than those of our proposed algorithms. The results of Fig. 4
roughly shows that our proposed algorithms in Table 3 are better
than the baselines in Table 4. Since the differences between our
proposed OneS, BFDS, BestBFDS, LPT-One, BFD-One and LPT-BFD-
One are far smaller than the whole ordinate span, it is difficult to
distinguish which is better than others using Fig. 4. Therefore, we
calculate the ratio between the average makespan and the least
average makespan (AM/LAM, λ2) and plot the box chart of OneS,
BFDS, BestBFDS, LPT-One, BFD-One and LPT-BFD-One in Fig. 5. As
Fig. 5, LPT-BFD-One has the lowest AM/LAM followed by LPT-
One, BestBFDS and BFD-One. This is because LPT-BFD-One uses
three search routes and needs to meet the convergence condi-
tions of them simultaneously, which makes the performance of
LPT-BFD-One better than the dual routes algorithms and single
routes algorithms. LPT-One and BFD-One outperform LPTS, BFDS
and OneS for similar reasons. Additionally, LPTS is better than
LPT and BFDS is better than BFD also demonstrate the search
algorithm with heuristic algorithm as the search route is better
than corresponding heuristic algorithm.

Figs. 4 and 5 verify the performance of our proposed algo-
rithms from the perspective of the average value of makespan.
In addition to considering the average performance in practi-
cal applications, we usually consider the probability of an al-
gorithm obtaining the best optimization solution. Therefore, we
plot the probabilities achieving the least makespan (PALM, λ3)
under each (M,N) in Fig. 6. Consistent with the conclusion form
Figs. 4 and 5, LPT-BFD-One has the highest probabilities to ob-
tain the least makespan in Fig. 6 also followed by LPT-One and
BestBFDS. On the whole, the probability of LPT-BFD-One achiev-
ing the least makespan remains above 70%, that of LPT-BFD-One
remains above 65%, and BestBFDS above 60%.

This group of experiments not only demonstrate our proposed
multi-search-routes-based algorithms outperform than baseline,
but also demonstrate increasing the types of search routes can
improve the optimization solution.

To further evaluate the performance of our proposed algo-
rithms, we compare the solution of the proposed algorithms
with the theoretical optimal solution obtained by the enumera-
tive algorithm. Considering the computation complexities of the
enumerative algorithm are too large for instances with more
resources, we only present the results of 3 resources and 4 re-
sources. Then, we plot the probabilities achieving the theoretical
optimal makespan (PATO, λ4) in Fig. 7, and plot the maximum
approximation ratio of makespan (λ5) in Fig. 8.

From Fig. 7, LPT-One, BFD-One and their combination LPT-
BFD-One occupy higher probabilities to achieve the theoretical
optimal makespan than other algorithms under all the combina-
tion of (M,N) in Fig. 7. Concurrently, they keep the approxima-
tion ratio closest to 1 better than other algorithms from Fig. 8.
The results of Figs. 7 and 8 verifies our proofs of Section 4.3 to
some extent. From Fig. 7(a), when the number of tasks is 4 times
the number of resources, LPT-One, BFD-One and LPT-BFD-One
obtain their lowest PATO about 40%, however the PATO of other
algorithms such as GA, LPTS, PSO-GA etc are less than 10%, which
shows that our proposed multi-routes algorithms have made sig-
nificant improvement in the probability to achieve the theoretical
optimum for NP-Hard problem. Fig. 8 shows that the approximate
ratios of our proposed LPT-One, BFD-One and LPT-BFD-One have
been lower than 1.1 in experiments, which verifies the stability of
these algorithms and can provides a reliable scheme for the task
allocation or resource scheduling in realistic.

With above evaluation from several aspects, we continue to
verify the calculational complexity. As our proposed multi-route
algorithms are based on the general local search algorithm of Al-
gorithm 1, which makes the complexity of these algorithms sim-
ilar, so we choose to analyze the calculation complexity of LPT-
One, whose complexity has been deduced as Cc = O

(
M2N

)
in
LO

G. Zhou, W. Tian and R. Buyya Future Generation Computer Systems 141 (2023) 414–432

Fig. 3. Iterative processes of makespan with 100 iterations for the problem of minimizing makespan for homogeneous resources.

Fig. 4. The average makespans (λ1) under each (M,N) with 100 instances respectively for problem of minimizing makespan for homogeneous resources.

Fig. 5. The box chart of ratio between average makespan and the least average makespan (AM/LAM, λ2) for our proposed algorithms corresponding to the experiments
of Fig. 4.

Fig. 6. The probabilities achieving the least makespan (PALM, λ3) corresponding to the experiments of Fig. 4.

425

G. Zhou, W. Tian and R. Buyya Future Generation Computer Systems 141 (2023) 414–432

m

S
l
e

Table 5
The average makespans (λ1) under (M = 20,N ∈ [30, 100]) for homogeneous resources corresponding to Fig. 4(a).
Algorithm (M = 20,N =?)

30 40 50 60 70 80 90 100

GA-MinMin 127.14 144.08 176.17 197.35 229.1 248.63 278.75 296.06
GA-Random 141.73 174.89 202.07 236.06 271.48 300.08 332.68 355.74
PSO 151.49 187.89 219.97 254.25 291.03 322.66 354.76 379.61
PSO-GA 127.99 143.88 176.71 197.97 229.34 248.57 279.1 296.34
LPT 97.74 110.09 133.35 160.41 185.84 208.98 233.51 254.17
BFD 97.74 109.73 130.24 154.49 182.57 206.17 231.43 250.88
Random 131.12 147.03 176.45 197.55 229.38 249.2 278.86 296.06
RR 241.35 288.8 326.64 371.4 422.43 451.16 498.04 517.94
Greedy 131.12 147.03 176.45 197.55 229.38 249.2 278.86 296.06

OneS 97.74 109.77 128.93 152.46 180.28 203.96 229.26 249.21
LPTS 97.74 110.09 133.35 160.41 185.84 208.98 233.51 254.17
BFDS 97.74 109.86 129.23 152.73 180.55 204.17 229.41 249.29
BESTBFDS 97.74 109.76 128.83 152.33 180.16 204.09 229.31 249.3
LPT-One 97.74 109.75 128.95 152.3 180.15 203.86 229.14 249.05
BFD-One 97.74 109.77 128.93 152.46 180.28 203.96 229.26 249.21
LPT-BFD-One 97.74 109.75 128.9 152.26 180.09 203.77 229.09 248.99
Table 6
The average makespans (λ1) under (M ∈ [10, 100],N = 100) for homogeneous resources corresponding to Fig. 4(b).
Algorithm (M =?,N = 100)

10 20 30 40 50 60 70 80 90 100

GA-MinMin 517.49 266.26 190.86 154.67 135.39 121.39 108.65 101.4 99.44 99.34
GA-Random 518.89 270.42 197.16 164.65 145.47 132.77 120.7 111.55 104.92 101.38
PSO 632.81 381.12 300.31 259.12 233.53 214.75 202.43 191.35 179.5 176.26
PSO-GA 517.51 265.61 190.86 154.26 134.14 121.16 108.18 101.29 99.44 99.34
LPT 514.55 255.78 174.94 134.49 106.84 99.75 99.53 99.21 99.42 99.34
BFD 513.36 253.2 170.57 129.39 106.41 99.75 99.53 99.21 99.42 99.34
Random 556.29 297.61 218.16 178.43 149.41 140.05 129.94 119.93 109.74 99.34
RR 814.32 522.41 416.89 362.53 324.51 304.46 291.22 289.45 266.72 257.43
Greedy 556.29 297.61 218.16 178.43 149.41 140.05 129.94 119.93 109.74 99.34

OneS 512.22 251.27 168.48 127.68 106.47 99.75 99.53 99.21 99.42 99.34
LPTS 514.55 255.78 174.94 134.49 106.84 99.75 99.53 99.21 99.42 99.34
BFDS 512.45 251.44 168.54 127.68 106.47 99.75 99.53 99.21 99.42 99.34
BESTBFDS 512.37 251.36 168.33 127.59 106.46 99.75 99.53 99.21 99.42 99.34
LPT-One 512.19 251.14 168.38 127.75 106.47 99.75 99.53 99.21 99.42 99.34
BFD-One 512.22 251.27 168.48 127.68 106.47 99.75 99.53 99.21 99.42 99.34
LPT-BFD-One 512.17 251.06 168.32 127.61 106.47 99.75 99.53 99.21 99.42 99.34
Table 7
The parameter ξ and evaluation index R2 to fit the average computational complexities CcLO ≈ ξN of LPT-One for P||Cmax .
M 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 30 40 50
ξ 15.0 28.7 42.5 56.9 72.2 88.3 105.1 122.6 141.1 161.3 181.9 203.7 226.2 248.6 274.9 300.9 327.4 353.9 381.5 730.4 1193 1760
R2 0.996 0.997 0.997 0.997 0.995 0.998 0.998 0.997 0.997 0.997 0.997 0.996 0.995 0.998 0.992 0.991 0.988 0.996 0.998 0.992 0.981 0.965
Fig. 7. The probabilities achieving the theoretical optimal makespan (PATO, λ4) under each (M,N) with 100 instances respectively for problem of minimizing
akespan for homogeneous resources.
ection 4.3. Similar to the indexes of λ1 to λ7, we record the calcu-
ational complexity of LPT-One in each I (M,N)

l and calculate its av-
rage complexities in 100 instances i.e.

{
I (M,N)
1 , I (M,N)

2 , . . . , I (M,N)
100

}
.

Then, we plot the average complexities of LPT-One in Fig. 9
426
under the scenarios of (M ∈ {2, 3, . . . , 7},N ∈ [M, 1000]). From
Fig. 9, the complexity is approximately proportional to the num-
ber of tasks for each group of experiment. Thus, we assume the
complexity CcLO ≈ ξN and utilize linear regression to fit the com-
plexities of more groups of experiments. The parameter ξ and the

G. Zhou, W. Tian and R. Buyya Future Generation Computer Systems 141 (2023) 414–432

e

c
i
S
a

Fig. 8. Maximum approximation ratios of makespan (λ5) corresponding to the experiments of Fig. 7.
t
s
o
t
b

p
c

5
n

t
i
c
L

Fig. 9. Average Complexities of LPTO for P||Cmax .

Fig. 10. The relationship between ξ and M .

valuating indexes R-Square are as Table 7. From Table 7, positive
scale function CcLO = ξN can fit the computational complexity
of LPTO well, whose evaluating indexes of R2 are almost about
0.99. Furthermore, as the coefficient ξ increases monotonically
with respect to the number of resources, we leverage quadratic
polynomial regression to fit the relation between ξ and M , and
then gain the expression as ξ ≈ 0.5303M2

+ 8.6339M with
evaluation index R2

= 0.999969 shown in Fig. 10. Fig. 10 means
it is reliable to use 0.5303M2

+ 8.6339M to fit ξ . Therefore, we
an obtain the complexity CcLO ≈ (0.5303M2

+8.6339M)N which
s identical to CcLO = O

(
M2N

)
+ φ(M,N) deduced in Section 4.3.

pecifically, the coefficient 0.5303 of M2 is consistent with the
ppearance in Fig. 3 that LPTO can achieve the convergence
427
hrough iterations with about half number of resources. Using
imilar experimental process can derive similar conclusion for
ther proposed algorithms. This group of experiments shows that
he average computational complexity of our proposed LPT-One
elongs to quadratic polynomial.
In summary, this section verifies our proposed algorithms

erform well in homogeneous resources from several aspects:
onvergence, optimality and computational complexity.

.3.2. Minimizing makespan and total running time for heteroge-
eous resources
The above experiments have demonstrated the advantages of

he proposed multi-search-routes-based algorithms for minimiz-
ng the makespan of homogenous resources. Following, we exe-
ute experiments to observe that in heterogeneous resources. As
PT is designed to resolve P||Cmax for homogeneous resources, the
LPT search cannot adapt to the problem of minimizing makespan
for heterogeneous resources. However, LPT search can be mod-
ified by policy seen in Algorithm 5. Combining with OneStep
Search, MLPT-One is also applied to solve problems of minimizing
makespan and total running time for heterogeneous resources.
In addition, the algorithms of Greedy, RR and Random do not
have advantages to solve the problem of minimizing makespan
according to the results of the above experiments. Thus, without
losing representativeness, we only choose several meta-heuristic
algorithms, i.e. GA, ACO, PSO and their combinations, as the
baselines of the experiments for heterogeneous resources.

Similarly, extensive experiments can gain the same conclu-
sion, so we only present two groups of experiments that
(M = 5,N ∈ [5, 100]) and (M = 10,N ∈ [10, 100]), where each
different combination of (M,N) also has 100 random instances
generated by simulation systems and the processing time of each
task on any resource is a random integer as ETij ∈ [75, 150] (unit
of time). Then, we plot the average of makespan (λ1) in Fig. 11
and the average of total running time (λ5) in Fig. 12 respectively.

Tables 8 and 9 provide the partial numerical values of Fig. 11.
As shown in Figs. 11 and 12, MLPT-One obtains the lower average
makespan and lower total running time than other algorithms
followed by LPT-One and MLPTS.

For the sake of more clear observation for the results, we
plot the AM/LAM (λ2) and AT/LAT (λ7) in Fig. 13 and Fig. 14
respectively. To clearly observe the performance of MLPT-One,
LPT-One and LPTS, we also plot their box charts in Figs. 15 and
16. It can be clearly seen from Figs. 13 and 14 that MLPT-One,
LPT-One, and MLPTS are obviously superior to other algorithms.
LPTS has the highest average makespan and average total running
time, which illustrates again that LPTS is not suitable for het-
erogeneous resources. However, combining LPTS with One-Step,
LPT-One greatly improves the performance, which is because

One-Step adds a convergence condition to ensure optimization.

G. Zhou, W. Tian and R. Buyya Future Generation Computer Systems 141 (2023) 414–432

Fig. 11. The average makespans (λ1) under each (M,N) with 100 instances respectively for the problem of minimizing makespan and total running time for
heterogenous resources.

Fig. 12. The average of total running time (λ6) under each (M,N) with 100 instances respectively corresponding to the experiments of Fig. 11.

Fig. 13. The ratio between average makespan and the least average makespan (AM/LAM, λ2) corresponding to the experiments of Fig. 11.

Fig. 14. The ratio between average total running time and the least average total running time (AT/LAT, λ7) corresponding to the experiments of Fig. 11.

428

G. Zhou, W. Tian and R. Buyya Future Generation Computer Systems 141 (2023) 414–432

Fig. 15. The box chart of ratio between average makespan and the least average makespan (AM/LAM, λ2) corresponding to the experiments of Fig. 11.

Fig. 16. The box chart of ratio between average total running time and the least average total running time (AT/LAT, λ7) corresponding to the experiments of Fig. 11.

Fig. 17. Pareto scatter of makespan and total running time for heterogeneous resources.

429

G. Zhou, W. Tian and R. Buyya Future Generation Computer Systems 141 (2023) 414–432

o
t
m
i
g
a

s
p

5

i
o
B
a
i
i
m
r

6

B
a
p
w
i
B

Table 8
The average makespans (λ1) under (M = 5,N ∈ [10, 100]) for heterogenous resources corresponding to Fig. 11(a).
Algorithm GA-MinMin ACO ACO-GA PSO PSO-GA LPTS MLPTS LPT-One MLPT-One

(M
=

5,
N

=
?)

10 219.31 255.22 239.33 233.47 211.6 250.54 201.79 197.25 196.78
20 400.75 471.78 438.52 469.28 401.04 507.89 380.8 373.68 373.05
30 579.63 708.25 641 704.85 589.47 763.06 560.65 548.81 548.37
40 761.01 937.54 809.71 931.28 778.08 1012.89 733.4 721.7 719.75
50 940.75 1170.94 1015.95 1164.48 968.62 1269.27 912.96 900.77 895.45
60 1110.59 1396.08 1199.26 1388.09 1162.41 1514.34 1087.58 1073.44 1068.9
70 1286.3 1635 1393.58 1623.01 1346.48 1776.3 1264.44 1248.65 1242.17
80 1522.28 1843.21 1567.81 1845.77 1538.95 2025.61 1438.53 1423.11 1414.35
90 1804.21 2079.12 1772.32 2084.7 1728.17 2262.41 1611.54 1599.37 1589.96

100 1981.98 2239.36 1961.87 2254.51 1914.42 2522.67 1785.03 1771.97 1760.73
Table 9
The average makespans (λ1) under (M = 10,N ∈ [20, 100]) for heterogenous resources corresponding to Fig. 11(b).
Algorithm GA-MinMin ACO ACO-GA PSO PSO-GA LPTS MLPTS LPT-One MLPT-One

(M
=

10
,
N

=
?)

20 215.24 291.32 242.09 291.66 238.4 243.97 190.19 185.77 185.69
30 299.84 418.38 335.25 421.97 329.04 371.35 272.11 265.83 266.39
40 386.74 545.67 430.93 551.18 423.88 502.63 356.09 349.92 349.12
50 465.11 668.23 515.39 673.83 520.06 628.53 437.01 431.03 431.03
60 551.09 785.96 604.27 796.62 620.45 757.35 523.62 513.19 515.03
70 630.84 906.64 686.45 922.34 714.86 886.76 608.05 597.84 597.56
80 800.08 1030.2 783.7 1037.46 808.76 1016.81 690.98 680.25 679.64
90 1039.54 1142.18 865.15 1161.15 904.97 1140.58 772.6 762.14 762.19

100 1155.25 1221.15 959.23 1260.96 993.74 1268.47 855.65 845.3 841.31
M
m
p
c
d
b
r

o
i
h
a
c
A
a
a
s
t
o
a
t
t
a

C

V
W
c
v
B

D

c
t

The comparison between LPTS and LPT-One also demonstrates
that multi-routes can make the algorithm adapt to its originally
unsuited scene. From Figs. 15 and 16, MLPT-One outperforms
LPT-One and MLPTS, which is because MLPT-One improves the
LPT neighborhood compared to LPT-One and adds a search route
One-Step compared to MLPTS. Additionally, the observation, that
LPT-One performs better than MLPTS in scenarios of hetero-
geneous resources, confirms the combination of multi-search-
routes like LPT-One is more effective than modification of the
single algorithm like MLPT.

Pareto Scatter is usually used to evaluate the solution of multi-
bjective problems [32]. Furthermore, we execute four instances
o demonstrate the Pareto Scatter of total running time and
akespan as Fig. 17. From Fig. 17, the solution of MLPT-One sat-

sfies Pareto Optimality better than compared algorithms, which
ets benefits from the assistance of One-Step and shows again the
dvantages of multi-search-routes.
Overall, these experimental results validate the feasibility and

uperiority of using multi routes-based algorithms to address
roblems of heterogeneous resources.

.4. Summary

In multi groups of experiments with abundant simulation
nstances, the proposed algorithms based on multi-search routes
utperform the compared baselines. LPT-One, BFD-One and LPT-
FD-One achieve higher probabilities to obtain the best solutions
nd with lower approximation ratios of the worst cases for min-
mizing the makespan of homogenous resources. LPT-One and
ts modified algorithm MLPT-One achieve better solutions for
inimizing makespan and total running time of heterogeneous

esources than compared baselines.

. Conclusions and future work

In this paper, we propose local search algorithms, LPT-Search,
FD-Search, and OneStep-Search, using heuristic algorithms LPT
nd BFD as basic search routes to solve resource scheduling
roblems in Cloud computing. Based on the basic search routes,
e also propose multi-search-routes-based algorithms combin-

ng various search routes including LPT-One, BFD-One and LPT-
FD-One.
430
By theoretical deductions, we prove the approximation ratios
of LPT-One and BFD-One as 5

4 −
1
4M as well as that of LPT-K -

and BFD-K as 1 +
M−1

(3+K)M , which are better than approximation
ratios of LPT, LPT-REV and other existing algorithms for P||Cmax.
oreover, in extensive simulation experiments for minimizing
akespan for homogenous and heterogeneous resources, the pro-
osed algorithms based on multi-search-routes outperform the
ompared algorithms with observations of various indexes, which
emonstrates the fact that the proposed algorithms can achieve
etter solutions in fewer iterations also with better optimization
esults.

In addition to improving the theoretical approximation ratio
f the algorithm, the dominant meaning of proposed algorithms
s that they demonstrate the significant potential of applying
euristic algorithms as the search routes of search algorithms
nd combining different search routes to increase the theoreti-
al analyzability and comprehensive performance of algorithms.
long this research direction as part of future work, we plan to
pply the search route to other algorithms such as meta-heuristic
lgorithms and machine learning algorithms, to explore more
earch routes-based algorithms and combinations of multi-routes
o optimize the performance of scheduling algorithms for more
bjectives and complex scenarios in Cloud computing. We will
lso explore whether LPT-K can improve the existing PTAS. In
heory, it is also a meaningful work to explore and prove the
heoretical approximation ratio of MLPT-One and other search
lgorithms in heterogeneous resources.

RediT authorship contribution statement

Guangyao Zhou: Conceptualization, Methodology, Software,
alidation, Formal analysis, Investigation, Writing – original draft,
riting – review & editing, Visualization. Wenhong Tian: Con-

eptualization, Resources, Writing – review & editing, Super-
ision, Project administration, Funding acquisition. Rajkumar
uyya: Conceptualization, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

G. Zhou, W. Tian and R. Buyya Future Generation Computer Systems 141 (2023) 414–432

D

A

t

R

ata availability

Data will be made available on request.

cknowledgments

This work is funded by the National Natural Science Founda-
ion of China, with Grant ID 61672136 and 61828202.

eferences

[1] M. Adhikari, T. Amgoth, S.N. Srirama, A survey on scheduling strategies
for workflows in cloud environment and emerging trends, ACM Comput.
Surv. 52 (4) (2019) 68:1–68:36.

[2] M. Helft, Google confirms problems with reaching its services, in: The New
York Times, 2009.

[3] J. Markoff, Software via the internet: Microsoft in cloud computing, in:
New York Times, Vol. 3, 2007.

[4] J. Chase, D. Niyato, Joint optimization of resource provisioning in cloud
computing, IEEE Trans. Serv. Comput. 10 (3) (2017) 396–409.

[5] R. Yang, Y. Zhang, P. Garraghan, Y. Feng, J. Ouyang, J. Xu, Z. Zhang, C.
Li, Reliable computing service in massive-scale systems through rapid
low-cost failover, IEEE Trans. Serv. Comput. 10 (6) (2017) 969–983.

[6] Z. Zhan, X.F. Liu, Y. Gong, J. Zhang, H.S. Chung, Y. Li, Cloud computing
resource scheduling and a survey of its evolutionary approaches, ACM
Comput. Surv. 47 (4) (2015) 63:1–63:33.

[7] T. Welsh, E. Benkhelifa, On resilience in cloud computing: A survey of
techniques across the cloud domain, ACM Comput. Surv. 53 (3) (2020)
59:1–59:36.

[8] P. Cong, G. Xu, T. Wei, K. Li, A survey of profit optimization techniques
for cloud providers, ACM Comput. Surv. 53 (2) (2020) 26:1–26:35.

[9] A.R. Arunarani, D. Manjula, V. Sugumaran, Task scheduling techniques
in cloud computing: A literature survey, Future Gener. Comput. Syst. 91
(2019) 407–415.

[10] J. Mei, K. Li, Z. Tong, Q. Li, K. Li, Profit maximization for cloud brokers in
cloud computing, IEEE Trans. Parallel Distrib. Syst. 30 (1) (2019) 190–203.

[11] L. Ghalami, D. Grosu, Scheduling parallel identical machines to minimize
makespan: A parallel approximation algorithm, J. Parallel Distrib. Comput.
133 (2019) 221–231.

[12] Y. Laili, F. Tao, F. Wang, L. Zhang, T. Lin, An iterative budget algo-
rithm for dynamic virtual machine consolidation under cloud computing
environment, IEEE Trans. Serv. Comput. 14 (1) (2021) 30–43.

[13] S.C. A, C. Sudhakar, T. Ramesh, Energy efficient VM scheduling and routing
in multi-tenant cloud data center, Sustain. Comput. Inform. Syst. 22 (2019)
139–151.

[14] A.S. Sofia, P. Ganeshkumar, Multi-objective task scheduling to minimize
energy consumption and makespan of cloud computing using NSGA-II, J.
Netw. Syst. Manag. 26 (2) (2018) 463–485.

[15] M. Li, F.R. Yu, P. Si, W. Wu, Y. Zhang, Resource optimization for delay-
tolerant data in blockchain-enabled iot with edge computing: A deep
reinforcement learning approach, IEEE Internet Things J. 7 (10) (2020)
9399–9412.

[16] W. Guo, W. Tian, Y. Ye, L. Xu, K. Wu, Cloud resource scheduling with deep
reinforcement learning and imitation learning, IEEE Internet Things J. 8 (5)
(2021) 3576–3586.

[17] J. Mao, Q. Pan, Z. Miao, L. Gao, An effective multi-start iterated greedy
algorithm to minimize makespan for the distributed permutation flowshop
scheduling problem with preventive maintenance, Expert Syst. Appl. 169
(2021) 114495.

[18] Y.J. Kim, J.W. Jang, D.S. Kim, B.S. Kim, Batch loading and scheduling
problem with processing time deterioration and rate-modifying activities,
Int. J. Prod. Res. (2021) 1–21.

[19] F.D. Croce, R. Scatamacchia, The longest processing time rule for identical
parallel machines revisited, J. Sched. 23 (2) (2020) 163–176.

[20] Y. Laili, S. Lin, D. Tang, Multi-phase integrated scheduling of hybrid tasks
in cloud manufacturing environment, Robot. Comput.-Integr. Manuf. 61
(2020) 101850.

[21] S. Guo, J. Liu, Y. Yang, B. Xiao, Z. Li, Energy-efficient dynamic computation
offloading and cooperative task scheduling in mobile cloud computing,
IEEE Trans. Mob. Comput. 18 (2) (2019) 319–333.

[22] M. Kumar, S.C. Sharma, A. Goel, S.P. Singh, A comprehensive survey for
scheduling techniques in cloud computing, J. Netw. Comput. Appl. 143
(2019) 1–33.
431
[23] C. Bitsakos, I. Konstantinou, N. Koziris, DERP: A deep reinforcement
learning cloud system for elastic resource provisioning, in: 2018 IEEE
International Conference on Cloud Computing Technology and Science,
CloudCom 2018, Nicosia, Cyprus, December (2018) 10-13, IEEE Computer
Society, 2018, pp. 21–29.

[24] S.S. Haytamy, F.A. Omara, A deep learning based framework for optimizing
cloud consumer qos-based service composition, Computing 102 (5) (2020)
1117–1137.

[25] D. Ding, X. Fan, Y. Zhao, K. Kang, Q. Yin, J. Zeng, Q-learning based
dynamic task scheduling for energy-efficient cloud computing, Future
Gener. Comput. Syst. 108 (2020) 361–371.

[26] C. Xu, J. Rao, X. Bu, URL: A unified reinforcement learning approach for
autonomic cloud management, J. Parallel Distrib. Comput. 72 (2) (2012)
95–105.

[27] K. Lolos, I. Konstantinou, V. Kantere, N. Koziris, Elastic management of
cloud applications using adaptive reinforcement learning, in: 2017 IEEE
International Conference on Big Data, BigData 2017, Boston, MA, USA,
December (2017) 11-14, IEEE Computer Society, 2017, pp. 203–212.

[28] S.M.R. Nouri, H. Li, S. Venugopal, W. Guo, M. He, W. Tian, Autonomic
decentralized elasticity based on a reinforcement learning controller for
cloud applications, Future Gener. Comput. Syst. 94 (2019) 765–780.

[29] J. Feng, F.R. Yu, Q. Pei, X. Chu, J. Du, L. Zhu, Cooperative computation
offloading and resource allocation for blockchain-enabled mobile-edge
computing: A deep reinforcement learning approach, IEEE Internet Things
J. 7 (7) (2020) 6214–6228.

[30] K. Karthiban, J.S. Raj, An efficient green computing fair resource allocation
in cloud computing using modified deep reinforcement learning algorithm,
Soft Comput. 24 (19) (2020) 14933–14942.

[31] N. Liu, Z. Li, J. Xu, Z. Xu, S. Lin, Q. Qiu, J. Tang, Y. Wang, A hierarchical
framework of cloud resource allocation and power management using
deep reinforcement learning, in: 37th IEEE International Conference on
Distributed Computing Systems, ICDCS 2017, Atlanta, GA, USA, June (2017)
5-8, IEEE Computer Society, 2017, pp. 372–382.

[32] Z. Tong, H. Chen, X. Deng, K. Li, K. Li, A scheduling scheme in the cloud
computing environment using deep Q-learning, Inform. Sci. 512 (2020)
1170–1191.

[33] C. Li, Y. Zhang, Y. Luo, Neighborhood search-based job scheduling for
iot big data real-time processing in distributed edge-cloud computing
environment, J. Supercomput. 77 (2) (2021) 1853–1878.

[34] C. Luo, B. Qiao, W. Xing, X. Chen, P. Zhao, C. Du, R. Yao, H. Zhang, W.
Wu, S. Cai, B. He, S. Rajmohan, Q. Lin, Correlation-aware heuristic search
for intelligent virtual machine provisioning in cloud systems, in: Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third
Conference on Innovative Applications of Artificial Intelligence, IAAI 2021,
the Eleventh Symposium on Educational Advances in Artificial Intelligence,
EAAI 2021, Virtual Event, February (2021) 2-9, AAAI Press, 2021, pp.
12363–12372.

[35] M.R.G. Raman N. Somu and, A. Kaveri, A.R. K., K. Krithivasan, V.S.S. Sriram,
IBGSS: an improved binary gravitational search algorithm based search
strategy for qos and ranking prediction in cloud environments, Appl. Soft
Comput. 88 (2020) 105945.

[36] K.R.P. Kumar, K. Kousalya, Amelioration of task scheduling in cloud
computing using crow search algorithm, Neural Comput. Appl. 32 (10)
(2020) 5901–5907.

[37] C. Chen, L. Hung, S. Hsieh, R. Buyya, A.Y. Zomaya, Heterogeneous job allo-
cation scheduler for hadoop mapreduce using dynamic grouping integrated
neighboring search, IEEE Trans. Cloud Comput. 8 (1) (2020) 193–206.

[38] M. Diallo, A. Quintero, S. Pierre, A tabu search approach for a vir-
tual networks splitting strategy across multiple cloud providers, Int. J.
Metaheuristics 7 (3) (2020) 197–238.

[39] X.F. Liu, Z. Zhan, J.D. Deng, Y. Li, T. Gu, J. Zhang, An energy efficient ant
colony system for virtual machine placement in cloud computing, IEEE
Trans. Evol. Comput. 22 (1) (2018) 113–128.

[40] Q. Liu, W. Cai, J. Shen, Z. Fu, X. Liu, N. Linge, A speculative approach
to spatial–temporal efficiency with multi-objective optimization in a
heterogeneous cloud environment, Secur. Commun. Netw. 9 (17) (2016)
4002–4012.

[41] X. Xu, Q. Liu, Y. Luo, K. Peng, X. Zhang, S. Meng, L. Qi, A computation
offloading method over big data for iot-enabled cloud–edge computing,
Future Gener. Comput. Syst. 95 (2019) 522–533.

[42] H. Jiang, J. Yi, S. Chen, X. Zhu, A multi-objective algorithm for task
scheduling and resource allocation in cloud-based disassembly, J. Manuf.
Syst. 41 (2016) 239–255.

[43] M. Adhikari, T. Amgoth, S.N. Srirama, Multi-objective scheduling strategy
for scientific workflows in cloud environment: A firefly-based approach,

Appl. Soft Comput. 93 (2020) 106411.

http://refhub.elsevier.com/S0167-739X(22)00402-2/sb1
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb1
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb1
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb1
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb1
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb2
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb2
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb2
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb3
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb3
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb3
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb4
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb4
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb4
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb5
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb5
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb5
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb5
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb5
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb6
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb6
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb6
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb6
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb6
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb7
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb7
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb7
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb7
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb7
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb8
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb8
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb8
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb9
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb9
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb9
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb9
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb9
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb10
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb10
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb10
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb11
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb11
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb11
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb11
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb11
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb12
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb12
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb12
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb12
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb12
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb13
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb13
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb13
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb13
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb13
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb14
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb14
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb14
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb14
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb14
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb15
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb15
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb15
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb15
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb15
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb15
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb15
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb16
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb16
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb16
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb16
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb16
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb17
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb17
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb17
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb17
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb17
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb17
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb17
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb18
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb18
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb18
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb18
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb18
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb19
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb19
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb19
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb20
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb20
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb20
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb20
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb20
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb21
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb21
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb21
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb21
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb21
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb22
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb22
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb22
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb22
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb22
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb23
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb23
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb23
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb23
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb23
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb23
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb23
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb23
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb23
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb24
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb24
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb24
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb24
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb24
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb25
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb25
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb25
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb25
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb25
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb26
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb26
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb26
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb26
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb26
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb27
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb27
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb27
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb27
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb27
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb27
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb27
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb28
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb28
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb28
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb28
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb28
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb29
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb29
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb29
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb29
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb29
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb29
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb29
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb30
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb30
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb30
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb30
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb30
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb31
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb31
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb31
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb31
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb31
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb31
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb31
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb31
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb31
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb32
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb32
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb32
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb32
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb32
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb33
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb33
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb33
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb33
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb33
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb34
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb34
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb34
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb34
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb34
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb34
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb34
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb34
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb34
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb34
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb34
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb34
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb34
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb34
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb34
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb35
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb35
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb35
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb35
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb35
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb35
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb35
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb36
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb36
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb36
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb36
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb36
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb37
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb37
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb37
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb37
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb37
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb38
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb38
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb38
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb38
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb38
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb39
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb39
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb39
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb39
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb39
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb40
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb40
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb40
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb40
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb40
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb40
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb40
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb41
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb41
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb41
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb41
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb41
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb42
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb42
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb42
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb42
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb42
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb43
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb43
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb43
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb43
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb43

G. Zhou, W. Tian and R. Buyya Future Generation Computer Systems 141 (2023) 414–432
[44] A.F.S. Devaraj, M. Elhoseny, S. Dhanasekaran, E.L. Lydia, K. Shankar,
Hybridization of firefly and improved multi-objective particle swarm opti-
mization algorithm for energy efficient load balancing in cloud computing
environments, J. Parallel Distrib. Comput. 142 (2020) 36–45.

[45] H. Li, G. Zhu, Y. Zhao, Y. Dai, W. Tian, Energy-efficient and qos-aware
model based resource consolidation in cloud data centers, Clust. Comput.
20 (3) (2017) 2793–2803.

[46] M. Zhang, Y. Peng, M. Yang, Q. Yin, X. Xie, A discrete pso-based static load
balancing algorithm for distributed simulations in a cloud environment,
Future Gener. Comput. Syst. 115 (2021) 497–516.

[47] R. Jena, Multi objective task scheduling in cloud environment using nested
pso framework, Procedia Comput. Sci. 57 (2015) 1219–1227.

[48] V.V. Vazirani, Approximation Algorithms, Springer, 2001.
[49] W. Zhang, Y. Wen, Energy-efficient task execution for application as a

general topology in mobile cloud computing, IEEE Trans. Cloud Comput. 6
(3) (2018) 708–719.

[50] W. Tian, Q. Xiong, J. Cao, An online parallel scheduling method with
application to energy-efficiency in cloud computing, J. Supercomput. 66
(3) (2013) 1773–1790.

[51] Z. Hong, W. Chen, H. Huang, S. Guo, Z. Zheng, Multi-hop cooperative com-
putation offloading for industrial iot-edge-cloud computing environments,
IEEE Trans. Parallel Distrib. Syst. 30 (12) (2019) 2759–2774.

[52] W. Tian, M. He, W. Guo, W. Huang, X. Shi, M. Shang, A.N. Toosi, R. Buyya,
On minimizing total energy consumption in the scheduling of virtual
machine reservations, J. Netw. Comput. Appl. 113 (2018) 64–74.

[53] Z. Guan, T. Melodia, The value of cooperation: Minimizing user costs in
multi-broker mobile cloud computing networks, IEEE Trans. Cloud Comput.
5 (4) (2017) 780–791.

[54] A.M.S. Kumar, M. Venkatesan, Multi-objective task scheduling using hybrid
genetic-ant colony optimization algorithm in cloud environment, Wirel.
Pers. Commun. 107 (4) (2019) 1835–1848.

[55] Y. Yang, B. Yang, S. Wang, F. Liu, Y. Wang, X. Shu, A dynamic ant-colony
genetic algorithm for cloud service composition optimization, Int. J. Adv.
Manuf. Technol. 102 (1–4) (2019) 355–368.

[56] G. Ismayilov, H.R. Topcuoglu, Neural network based multi-objective evo-
lutionary algorithm for dynamic workflow scheduling in cloud computing,
Future Gener. Comput. Syst. 102 (2020) 307–322.

[57] M. M, J. T, Combined particle swarm optimization and ant colony system
for energy efficient cloud data centers, Concurr. Comput. Pract. Exp. 33
(10) (2021).

[58] A. Ragmani, A. Elomri, N. Abghour, K. Moussaid, M. Rida, FACO: a hybrid
fuzzy ant colony optimization algorithm for virtual machine scheduling in
high-performance cloud computing, J. Ambient Intell. Humaniz. Comput.
11 (10) (2020) 3975–3987.

[59] W. Tian, M. Xu, Y. Chen, Y. Zhao, Prepartition: A new paradigm for the
load balance of virtual machine reservations in data centers, in: IEEE
International Conference on Communications, ICC 2014, Sydney, Australia,
June (2014) 10-14, IEEE, 2014, pp. 4017–4022.
432
Guangyao Zhou received Bachelor’s degree and Mas-
ter’s degree from School of architectural engineering,
Tianjin University, China. He is now a Ph.D candidate
at School of information and software engineering, Uni-
versity of Electronic Science and Technology of China.
His research interests include scheduling algorithms
in Cloud Computing, facial expression recognition, al-
gorithmic theory of machine learning and BigData
processing.

Wenhong Tian received a Ph.D. degree from the De-
partment of Computer Science, North Carolina State
University, Raleigh, NC, USA. He is now a professor
at the University of Electronic Science and Technol-
ogy of China (UESTC). His research interests include
scheduling in Cloud computing and Bigdata platforms,
and image recognition by deep learning. He has more
than 110 journal/conference publications and 5 books
in related areas.

Rajkumar Buyya is a Redmond Barry Distinguished
Professor and Director of the Cloud Computing and
Distributed Systems (CLOUDS) Laboratory at the Uni-
versity of Melbourne, Australia. He is also serving as
the founding CEO of Manjrasoft, a spin-off company
of the University, commercializing its innovations in
Cloud Computing. He served as a Future Fellow of
the Australian Research Council during 2012–2016. He
received the Ph.D. degree in Computer Science and
Software Engineering from Monash University, Mel-
bourne, Australia, in 2002. He has authored over 750

publications and seven text books. He is one of the highly cited authors
in computer science and software engineering worldwide (h-index=152, gin-
dex=331, 120600+ citations). He is recognized as a ‘‘Web of Science Highly
Cited Researcher’’ for six consecutive years since 2016, and Scopus Researcher
of the Year 2017 with Excellence in Innovative Research Award by Elsevier
for his outstanding contributions to Cloud computing and distributed systems.
He has led the establishment and development of key community activities,
including serving as foundation Chair of the IEEE Technical Committee on
Scalable Computing and five IEEE/ACM conferences. These contributions and
international research leadership of him are recognized through the award of
‘‘2009 IEEE Medal for Excellence in Scalable Computing’’ from the IEEE Computer
Society TCSC.

http://refhub.elsevier.com/S0167-739X(22)00402-2/sb44
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb44
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb44
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb44
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb44
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb44
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb44
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb45
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb45
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb45
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb45
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb45
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb46
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb46
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb46
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb46
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb46
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb47
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb47
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb47
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb48
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb49
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb49
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb49
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb49
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb49
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb50
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb50
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb50
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb50
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb50
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb51
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb51
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb51
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb51
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb51
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb52
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb52
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb52
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb52
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb52
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb53
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb53
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb53
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb53
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb53
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb54
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb54
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb54
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb54
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb54
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb55
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb55
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb55
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb55
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb55
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb56
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb56
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb56
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb56
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb56
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb57
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb57
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb57
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb57
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb57
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb58
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb58
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb58
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb58
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb58
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb58
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb58
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb59
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb59
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb59
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb59
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb59
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb59
http://refhub.elsevier.com/S0167-739X(22)00402-2/sb59

	Multi-search-routes-based methods for minimizing makespan of homogeneous and heterogeneous resources in Cloud computing
	Introduction
	Related Work
	Reviews of Scheduling Algorithms
	Review of System Model

	Problems Formulation and General Local Search
	Models of Minimizing Makespan in Cloud Computing
	General Local Search Algorithm

	Multi Search Routes-based Algorithm
	Specified basic Local Search Route
	K-Step Search Route
	LPT Search Route and Modified LPT Search Route
	BFD Search Route

	Combination of Multi-routes and the Flowchart
	Theoretical Proofs of Approximation Ratios
	Summary of Proposed Algorithms

	Experiment Evaluation
	Problems and Simulated Environment
	Compared Baselines and Evaluation Indexes
	Result and Discussion
	Minimizing Makespan for Homogeneous Resources
	Minimizing Makespan and Total Running Time for Heterogeneous Resources

	Summary

	Conclusions and Future Work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

