
Microservices-based IoT Application Placement within
Heterogeneous and Resource Constrained Fog Computing Environments

Samodha Pallewatta,Vassilis Kostakos and Rajkumar Buyya
Cloud Computing and Distributed Systems (CLOUDS) Laboratory

School of Computing and Information Systems
The University of Melbourne, Australia

Email: ppallewatta@student.unimelb.edu.au, {vassilis.kostakos,rbuyya}@unimelb.edu.au

Abstract—Fog computing paradigm has created innovation
opportunities within Internet of Things (IoT) domain by extending
cloud services to the edge of the network. Due to the distributed,
heterogeneous and resource constrained nature of the Fog com-
puting nodes, Fog applications need to be developed as a collection
of interdependent, lightweight modules. Since this concept aligns
with the goals of microservices architecture, efficient placement
of microservices-based IoT applications within Fog environments
has the potential to fully leverage capabilities of Fog devices.
In this paper, we propose a decentralized microservices-based
IoT application placement policy for heterogeneous and resource
constrained Fog environments. The proposed policy utilizes the
independently deployable and scalable nature of microservices to
place them as close as possible to the data source to minimize
latency and network usage. Moreover, it aims to handle service
discovery and load balancing related challenges of the microser-
vices architecture. We implement and evaluate our policy using
iFogSim simulated Fog environment. Results of the simulations
show around 85% improvement in latency and network usage for
the proposed microservice placement policy when compared with
Cloud-only placement approach and around 40% improvement
over an alternative Fog application placement method known
as Edge-ward placement policy. Moreover, the decentralized
placement approach proposed in this paper demonstrates signif-
icant reduction in microservice placement delay over centralized
placement.

Keywords-fog computing; internet of things (IoT); application
placement; microservices architecture; application deployment

I. INTRODUCTION

The emerging Internet of Things (IoT) paradigm enables cre-
ation of smart environments by interweaving sensors, actuators
and data analytics platforms. CISCO forecasts the number of
IoT devices and connections to rise to 14.6 billion by 2022,
which would constitute half of the expected number of devices
globally, and more than 6 percent of total ip traffic [1]. Sending
such data from geo-distributed IoT devices towards the central-
ized Cloud would be inefficient due to network congestion and
high latency. Since majority of the IoT applications are latency-
sensitive and bandwidth-intensive, computation support closer
to data source is vital to meet IoT application requirements
(QoS, cost, etc.). To offer this facility, the computing paradigm
called Fog computing is introduced [2].

Fog computing extends cloud-based services to the edge of
the network by using devices that reside between IoT devices
and Cloud [3]. Any device that has computational, networking
and storage capabilities and lies in the path between IoT
devices and Cloud can be considered as a Fog node. Unlike

Cloud data centers, these devices are distributed, heterogeneous
and resource constrained. Hence, IoT applications need to be
modeled as collections of interdependent, lightweight modules
that can be easily deployed onto these Fog nodes.

With the rapid evolution of IoT, developing applications as
monoliths lead to poor scalability, extensibility and maintain-
ability [4]. Thus, microservices approach has become increas-
ingly popular in the development of cloud-centric IoT appli-
cations. According to M. Fowler and J. Lewis, microservice
architectural style is defined as, “an approach to developing a
single application as a suite of small services, each running in
its own process and communicating with lightweight mecha-
nisms, often an HTTP resource API” [5]. IoT applications in
Fog environments can also benefit from this approach due to
the following characteristics of microservices:

• Independently deployable - Microservices are easily con-
tainerizable by design due to them being loosely cou-
pled, independent and self-sustained instances. In turn
containers are suitable for Fog computing environments
due to lower startup time, lower virtualization overhead
and support for scalability [4].

• Independently scalable - Microservices support both ver-
tical and horizontal scalability. Vertical scalability rep-
resents change of resource allocation as per the load
whereas horizontal scalability indicates having multiple
replicas of a single microservice to support the load. As
Fog environments consist of resource constrained nodes
that are heterogeneous in resource availability, horizontal
scalability of microservices can have a great impact on
increasing performance of applications deployed within
Fog environments.

• Lack of centralized management - This matches with
highly distributed nature of the Fog computing environ-
ments.

Thus, applications developed using microservices have the
potential to be efficiently adapted to Fog environments. But,
the introduction of microservices-based applications creates
challenges in terms of service discovery, load balancing and
decentralized management.

In literature, there are notable number of works that focus
on developing placement algorithms for distributed applications
within Fog-Cloud environments [6], [7], [8]. However, the
placement of microservices-based Fog applications has not

been investigated extensively. Existing works lack a decentral-
ized approach for placing microservices within heterogeneous
and resource-constrained Fog environments, focusing on hori-
zontal scalability and challenges such as service discovery and
load balancing. In our work, we present a microservices-based
IoT application placement policy addressing above mentioned
aspects.

Thus, key contributions of our work can be summarized as
follows:

1) A decentralized placement algorithm for microservices-
based IoT applications, highlighting horizontal scalability
of microservices within resource constrained and hetero-
geneous Fog nodes.

2) A Fog node architecture to support decentralized place-
ment along with service discovery and load balancing.

3) An implementation of our proposed policy on the
iFogSim simulation environment and comparison against
different placement approaches in terms of latency, net-
work usage and efficiency of decentralization.

The rest of the paper is organized as follows. In section 2,
we highlight related research. Section 3 presents microservices-
based application model, Fog architecture and Fog node ar-
chitecture along with the problem description. Our proposed
solution is provided in section 4 along with relevant algorithms.
In section 5 we present steps related to the implementation of
the solution using iFogSim simulator whereas section 6 reflects
simulation setup and performance evaluation. Finally, section 7
concludes the paper with future work and research directions.

II. RELATED WORK

Microservices architecture is a recent concept that has cre-
ated a phenomenal impact on development of IoT applications
within Cloud computing environments. Butzin et al. [9] inves-
tigate the state of the art of IoT and microservices architecture
to show how their architectural goals are quite similar. Several
research studies have been conducted on developing Cloud-
centric IoT frameworks based on microservices architecture
[10], [11], [12], [13]. However, research on adapting this
concept to Fog environments is still in its early stages.

Filip et al. [14] present a centralized placement approach
for Edge-Cloud scheduling of microservices using Bag of
Tasks (BoT) model where each task consists of one or more
microservices. In the proposed architecture, nano data centers
are used as Edge resources. Scheduling engine receives jobs
and assigns them to VMs in the nano data centers or Cloud.
Their scheduling policy places all microservices of a certain
job within the same processing element or move it towards the
Cloud, based on resource availability.

Santoro et al. [15] implement a framework and a software
platform for orchestration of microservices-based IoT appli-
cation workloads. In the proposed architecture, applications
are modeled as a collection of microservices distributed via
container images. The proposed architecture consists of IoT
device layer, Edge gateways, Edge cloudlets and Cloud. Mi-
croservice deployment requests are sent towards a negotiator

that accepts or rejects the requests. Orchestrator calculates the
most suitable device to deploy microservices of the accepted
requests, based on requirements (CPU, RAM, bandwidth, etc.)
defined in deployment requests.

A centralized throughput aware placement algorithm for
microservices-based Fog applications is presented in [16]. The
proposed system consists of Edge servers that are grouped
together based on their geographical regions. In this work,
application microservices are placed within the region that con-
tains respective IoT device or within the neighboring region. A
greedy algorithm is presented for mapping these microservices
onto Edge servers with sufficient computational resources while
ensuring that bandwidth of the involved links can satisfy the
throughput requirements of the application microservices.

Moreover, there are numerous works in literature that try to
solve application placement problem in Fog environments by
depicting applications in a distributed manner as a collection
of interdependent modules. But, the concept of microservices
architecture along with its unique characteristics and challenges
are not observed in these works.

Taneja et al. [6] present a resource aware module mapping
algorithm for placement of distributed applications within Fog
environments. This work tries to optimize resource utilization
by sorting application modules and nodes based on required re-
sources and available capacity respectively and mapping sorted
modules to resources. The proposed algorithm is compared
with Cloud-only placement to depict the reduction of end-
to-end latency in the Fog placement approach. This work
defines a hierarchical Fog architecture where each Fog node
is connected with a node in immediate upper layer of the
hierarchy. Horizontal connections among Fog nodes of the
same level are not defined. Moreover, placement is managed
through a centralized approach.

Gupta et al. [7] propose a centralized edge-ward mod-
ule placement algorithm for placing distributed applications
modeled as Directed Acyclic Graphs (DAG). Their algorithm
commences the placement of application modules starting from
lower level Fog nodes and move upwards the hierarchy until
a node with enough resources is met. But, their proposed
algorithm supports only the vertical scaling of modules and
does not consider horizontal connections among Fog nodes
within the same Fog level.

Latency aware placement of application modules within Fog
environments is presented in R. Mahmud et al [8]. This work,
proposes a decentralized module placement method that con-
siders service access delay, service delivery time and internodal
communication delay when placing application modules within
Fog environments. In this approach, distributed applications
consisting of interdependent modules are placed and forwarded
vertically and horizontally to satisfy the latency requirements
of the application while optimizing resource usage.

A summary of the reviewed related works is presented in
Table I, comparing them in terms of architecture of the Fog
layer, application model and application placement approach.
Architecture of the Fog layer used in each work is identified
as hierarchical, if the Fog tier consists of multiple Fog levels

Table. I: Summary of Literature Study

Work Fog Layer Architecture Application Model Decentralized Placement Microservices-based Application
Hierarchical Clustering DAG BoT

Taneja et al.(2017) X X
Gupta et al. (2017) X X
R. Mahmud et al. (2018) X X X X
Filip et al. (2018) X X
Faticanti et al. (2018) X X
Santoro et al (2017) X X
Microservice Placement (this work) X X X X X

where each device is connected with a node in immediate
upper layer and the latency from the IoT devices and resource
availability of the nodes increase when moving towards upper
levels. Clustering denotes existence of horizontal connections
among Fog nodes of the same hierarchical level of the Fog
architecture.

In our work, we present a placement algorithm for
microservices-based IoT applications, where horizontal scal-
ability of microservices is used within Fog node clusters that
exist on the same hierarchical level of the Fog architecture.
Moreover, the proposed policy also handles the challenges that
come with horizontal scaling of microservices such as service
discovery and load balancing. Our placement approach uses
decentralized management of placement where each Fog node
is responsible for placement decision making instead of having
a centralized entity.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We propose a multi level, hierarchical Fog architecture
where each Fog computing node is responsible for processing
application placement requests. We model IoT applications
as collections of containerized microservices and place them
within the Fog environment using a decentralized placement
approach. Our Fog architecture, application model, Fog node
architecture and application placement problem are discussed
in detail in the following subsections.

A. Fog Architecture

Fog computing makes use of computation, networking and
storage capabilities of geographically distributed, heteroge-
neous and resource constrained devices such as mobile phones,
access points, routers, proxy servers, nano data centers that
span the continuum from IoT devices to Cloud. This, in turn
provides localized services to end users, thus resulting in
efficient bandwidth usage and low latency.

In this work, the three-tier hierarchical Fog architecture is
used, where Fog layer is placed between IoT devices and Cloud
data centers [17]. In our architecture, nodes within the Fog layer
are also organized hierarchically as depicted in Fig. 1.

Fog nodes are placed in such a way that compute, storage and
networking capabilities of Fog devices vary not only among the
nodes in different levels but also within the same hierarchical
level of the Fog layer. Compute, storage and network capability
of Fog nodes increase when moving from lower levels to higher
levels inside the Fog layer. Moreover, each Fog node has a
direct connection with a node in immediate upper level and also

Fog Cluster

End Devices (IoT
sensors and
Actuators)

Fog Layer

Cloud Layer

 Fog Level 1

 Fog Level 2

 Fog Level 3

 Fog Level n

Fig. 1: Fog Architecture

can have links with nodes in the same level forming clusters
among themselves. In this work, it is assumed that a certain
Fog node belongs to only one cluster at a particular time.
Nodes within the same Fog cluster communicates with each
other using Constrained Application Protocol (CoAP) which
is a simple web transfer protocol based on REST model [8],
[18]. Therefore, the communication delay among cluster nodes
is extremely low.

B. Application Model

In our work, we have modeled IoT applications as a set of
microservices that can be deployed, upgraded and scaled in-
dependently. Each microservice is deployed as an independent
container and the resource requirement for each microservice
is defined in terms of CPU, bandwidth, RAM and storage. Fig.
2 depicts our microservices-based Fog application architecture.
Each application consists of a Client module that is deployed
onto end user devices such as mobiles, tablets etc. that reside
in the lowest level of the Fog layer. This module is responsible
for sending data received from IoT sensors, towards relevant
microservices for processing and also displaying results or
sending resulting signals to the actuators. The rest of the
microservices are deployed on either Fog or Cloud layer based
on the placement policy. Since microservices that make up

IoT Sensor

Actuator

µservice_1
Instance1

µservice_1
Instance2

µservice_2
Instance1

µservice_3
Instance1

Client Module

REST
API

REST
API

REST
API

REST
API

Fig. 2: Microservices-based IoT Application

an application have data dependencies amongst them, an IoT
application is depicted as a Directed Acyclic Graph (DAG)
[6]. In this model, each microservice is represented by vertices
of the DAG, whereas edges between vertices represent data
dependencies among microservices.

In microservices-based applications, microservices call each
other through REST APIs to perform tasks. As microservices
are horizontally scalable, a certain microservice can have
multiple replicas to support the load balancing. When direct-
ing requests to microservices, two approaches are available:
through server-side load balancing or client-side load balancing.
In the server-side load balancing approach, a dedicated load
balancer component lies between client microservices and
server side microservices. This component is responsible for
service discovery and directing the requests according to a load
balancing policy. However, in a highly distributed environment
such as Fog, using such centralized load balancing approach
is not efficient. Thus, within this model, service discovery and
load balancing is handled through a decentralized method by
using client-side load balancing. So, in the proposed model,
device that hosts the client microservice has to be aware of
all microservice instances of the required services and route
requests according to the load balancing logic.

C. Fog Nodes

In this paper, we define the Fog node architecture as an
extension of [8] where each Fog node consists of three
components: communication component, computational com-
ponent and controller component. We extend this concept to
support microservices architecture and propose an algorithm
for microservices-based IoT application placement within Fog
environments.

According to our model, Placement of Microservices, Ser-
vice Discovery and Load Balancing are handled by controller
component in the node. When a placement request is received
by a Fog node, it is queued in Placement Request Queue (PRQ)
in the controller component. Placement requests in the queue
are processed one after the other using Application Placement
Logic. Service Discovery Info (SDI) data block is a service
registry that contains network locations of service instances
that can be used by client microservices placed within the Fog

Communication Component

Computational Component

Containerized
µservice

Containerized
µservice

Application Placement
Logic

Load Balancing
Logic

Resource
Availability

Info

Placement
Request Queue

Controller Component

Service
Discovery

Info

µservice
Placement

Info

Application
Info

Fig. 3: Fog Node Architecture

node. Each time a client microservice makes a request, it is
routed to a service instance according to the Load Balancer
Logic using data in SDI.

Each node keeps track of available resources (Resource
Availability Info) such as CPU, RAM, bandwidth and storage.
This information is used when placing microservices and also
when making decisions on scaling microservices across clusters
of nodes that are in the same Fog level. µservice Placement
Info (µPI) keeps track of all microservices that are placed
within the Fog node along with resources allocated for each
microservice. Application Info stores DAG representations of
each IoT application available for placement within the Fog
environment.

Computation component of the Fog node consists of de-
ployed microservices. Each Fog node deploys microservices
using container images that are available in a centralized
container image registry.

D. Placement Problem

Placing latency critical and bandwidth hungry microservices
belonging to IoT applications within lower levels of Fog layer
results in reduction of latency and network usage. But Fog
nodes that reside in the lower levels of the hierarchy are more
resource constrained when compared with upper level Fog
devices and Cloud data centers. Even within the same level,
resource availability in Fog nodes varies. Since IoT end devices
are highly distributed and dynamic, load on each of these Fog
nodes also varies.

Under these circumstances, lower level Fog nodes may
not be able to support the service demand which results in
microservices being placed at higher levels in Fog hierarchy.
Moreover, due to resource heterogeneity of nodes and varying
loads on each Fog node, some nodes within same Fog level
can have under-utilized resources while others fail to support
the service demand. This can be overcome by creating clusters
among Fog nodes of the same hierarchical level and scaling
application modules among the clustered devices to support
the load. This has several associated challenges noted below.

1) An efficient application microservice placement algo-
rithm is needed that can identify what application mi-
croservices to be scaled and in which device in the cluster
to place them.

Algorithm 1 Process Placement Request
Input: placement request pr
Output: placement request status; Status.COMPLETED for request pro-
cessed, Status.HALTED for waiting for cluster placement

1: procedure PROCESSPLACEMENTREQUEST(pr)
2: node← this.node
3: a← pr.applicationId
4: mp ← pr.placedMicroservices
5: mf ← {} . Placement failed µservices
6: mtoP lace ← GetµservicesToP lace(a,mp,mf)
7: while mtoP lace is not empty do
8: if node is cloud then
9: place all remaining microservices here

10: send service discovery info
11: return Status.COMPLETED
12: else
13: m← mtoP lace.remove(0)
14: placementStatus = PlaceMicroservice(m)
15: if placementStatus = Status.PLACED then
16: nodesclient = GetClientNodes(m,mp)
17: for every node n of nodesclient do
18: n.SDI.add(m,node)

19: mp.add(m,node)
20: if mtoP lace is empty then
21: mtoP lace ← GetµservicesToP lace(a,mp,mf)

22: else if placementStatus = Status.CLUSTER then
23: return Status.HALTED
24: else if placementStatus = Status.FAILED then
25: mf .add(m)
26: if mtoP lace is empty then
27: mtoP lace ← GetµservicesToP lace(a,mp,mf)

28: if mp.size() < appµserviceCount(a) then
29: nodeparent ← node.parent
30: nodeparent.PRQ.add(pr)

31: return Status.COMPLETED

2) A microservice discovery method to be used by client
microservices to call server microservices.

3) A Load balancing mechanism to direct requests to scaled
microservice instances.

4) A decentralized approach to meet above challenges.
In this paper, we propose a Microservice Placement Algo-

rithm addressing aforementioned challenges.

IV. PROPOSED SOLUTION

To solve the placement problem, we propose a heuristic
placement algorithm, that scales microservices across Fog de-
vice clusters to accommodate load within resource constrained
and heterogeneous Fog environments. The algorithm facilitates
decentralized placement of microservices, service discovery
and load balancing.

A. Microservice Placement

When a sensor joins a lower level Fog node, placement
process is invoked by the corresponding Fog node. This Fog
node which acts as the gateway to the rest of the Fog network,
hosts the client module of the IoT application and rest of the
module placement is carried out according to the Application
Placement Logic starting from it. Gateway Fog node generates
a Placement Request (pr) which consists of Application id,
Placed microservices map, Gateway device id and Place-
ment request id. Application id identifies each IoT application

Algorithm 2 Place Microservice
Input: microservice to place m
Output: microservice placement status : Status.PLACED if placed on this
node, Status.CLUSTER if placement on cluster nodes and Status.FAIL if
no resources are available on this node and cluster nodes

1: procedure PLACEMICROSERVICE(m)
2: if instance of m already in node then
3: if req(m) ≤ availCap(node) then
4: increase resources allocated for instance of m
5: µPI.add(m)
6: return Status.PLACED
7: else if node is in a cluster then
8: send ClusterP lacementQuery to cluster nodes
9: return Status.CLUSTER

10: else
11: if req(m) ≤ availCap(node) then
12: place m on node
13: µPI.add(m)
14: return Status.PLACED
15: else if node is in a cluster then
16: send ClusterP lacementQuery to cluster nodes
17: return Status.CLUSTER
18: return Status.FAILED

Algorithm 3 Place Microservice On Cluster
Input: microservice to place m
Input: cluster nodes C

1: procedure PLACEONCLUSTER(m,C)
2: node← this.node
3: C′ ← C.requestQueueEmptyNodes
4: for every node n of C′.nodesWithInstanceOfm do
5: if req(m) ≤ availCap(n) then
6: n.PRQ.add(pr)
7: ProcessPlacementRequest(node.PRQ.dequeue())
8: return
9: for every node n of C′.activeNodesWithoutInstanceOfm do

10: if req(m) ≤ availCap(n) then
11: n.PRQ.add(pr)
12: ProcessPlacementRequest(node.PRQ.dequeue())
13: return
14: for every node n of C′.inactiveNodes do
15: if req(m) ≤ availCap(n) then
16: n.PRQ.add(pr)
17: ProcessPlacementRequest(node.PRQ.dequeue())
18: return
19: nodeparent ← node.parent
20: nodeparent.PRQ.add(pr)
21: ProcessPlacementRequest(node.PRQ.dequeue())

uniquely. Each Fog node has information on available IoT
applications including microservices that form the applications
and connections among those microservices in the form of
a DAG which can be accessed using Application id. Placed
microservices map consists of already placed microservices
with respect to the placement request and nodes they are placed
on. Placement request id is a unique id generated per request.
It can be used to uniquely identify each sensor that joins the
gateway node. Gateway Fog node sends this placement request
towards the parent node where it gets added to parent node’s
PRQ.

PRQ is a First in First Out (FIFO) data structure. Thus, if the
queue is not empty, requests are processed starting from the first
request in the queue. Each request gets processed according to
the Algorithm 1. For the selected placement request, algorithm
determines the microservices to be placed based on the DAG

representation of the application stored in Application Info (line
6). A microservice is selected for placement only if all the client
microservices in the application that uses its service are already
placed. GetµservicesToP lace method traverse the DAG of
the application and identifies such microservices, taking already
placed microservices and placement failed microservices into
consideration. Once the microservices are determined, place-
ment begins from the current node. If current node is Cloud,
all the remaining microservices are placed there (line 8-11),
otherwise algorithm tries to place the selected microservices
on the current node by calling PlaceMicroservice procedure
(line 14) for each microservice in selected set of microservices,
starting with the first in the set. If the placement succeeded,
then the next microservice to place is found and placement
process on the current node continues (line 15-21). If cluster
placement is invoked (Status.CLUSTER), then placement re-
quest processing is halted until cluster placement decision is
made (line 22-23). If placement failed, then Algorithm 1 tries
to place other possible microservices on the current node (line
24-27). After placing all possible microservices on the current
node, pr is sent towards the parent node to place rest of the
microservices of the application or pr processing is finished if
all microservices of the application are placed (line 28-31). If
Algorithm 1 returns Status.COMPLETED, next request in
PRQ is selected for processing.

Microservices placement on each Fog device is carried out
according to the Algorithm 2. If current node already contains
an instance of the microservice, placement policy tries to scale
the microservice. At this point microservice is either scaled
vertically or horizontally. If considered node has requested
amount of resources, allocated resources for the microservice
are increased (line 3-5) whereas if not, microservice is scaled
across the cluster to accommodate the load (line 7-8). If the
node does not already contain an instance of the microservice,
algorithm tries to place microservice on current node or on any
of the nodes within Fog node cluster (line 11-17). If horizontal
placement within a particular Fog level is not possible, proce-
dure returns Status.FAILED, so that the pr is sent to the next
level towards the parent node of the current Fog device.

When a Fog node does not have enough resources to support
placement of a microservice, our proposed placement policy
checks whether this node is in a cluster and if so tries to place
the microservice within cluster nodes. To achieve this, a Cluster
Placement Query is sent to all nodes in the cluster, to which
cluster nodes reply with information on available resources
(from Resource Availability Info), microservices already de-
ployed on the node (from µservice Placement Info) and current
PRQ size. Once replies from all the cluster nodes are received,
Algorithm 3 is used to determine the suitable Fog node to
place the microservice. For placement, cluster nodes with PRQ
size of zero is considered. Here priority is given to nodes that
already have required microservice placed on the device (line
4-8). If it failed, other active nodes in the cluster are considered
(line 9-13). Inactive nodes are considered if this failed (line 14-
18). Here inactive Fog nodes are the devices that does not have

any microservices deployed and has no placement requests in
PRQ. Once the cluster node selection is completed, current pr
is sent either towards a cluster node or the parent node and the
next placement request in the queue is taken for processing by
the current node.

The proposed placement policy propagates pr until all mi-
croservices in the application are placed or scaled to support
processing of the data generated by newly joined sensor. Once
all microservices are placed, placement completion is informed
to the gateway node along with placement request id of the
request. Afterwards, gateway node starts accepting data from
the associated sensor, identified based on the placement request
id.

B. Service Discovery

With the proposed placement approach, as more IoT devices
join the Fog environment, microservices get scaled across Fog
devices. Thus, a client Microservice can send API requests
to multiple service instances. As a result, service discovery is
required for client microservices to identify available services.
Handling this through a centralized method is not very efficient
due to highly distributed nature of the Fog nodes. In our work
we propose a decentralized approach as a solution to this
challenge.

Every time a microservice is placed or scaled, Placed
microservices map in the placement request can be used to
find nodes that hosts the client microservices. Afterwards, each
of these nodes are notified of the service placement. This
information is stored within the SDI data structure of the
recipient nodes.

In this approach, service discovery message is sent not only
when a microservice is deployed, but also when resources
allocated for a deployed microservice is increased to support
a placement request. Thus, client can receive multiple service
discovery messages with reference to a service deployed on
a certain node. The number of such messages received by a
Fog device acts as an indication of the amount of resources
allocated for a service instance deployed on a certain node to
handle the client requests. Hence, it is also stored within SDI
and used later as the weighting factor for load balancing.

C. Load balancing

Information stored in SDI of each Fog node is used for load
balancing. When making calls to services, this data is used,
and API call is directed based on Load Balancing Logic. In
this work, we’ve used a Weighted Round Robin method for
load balancing where weighting is done based on the amount
of resources allocated for each available service instance, which
is stored within SDI.

D. Time Complexity Analysis

Time complexity of our microservice placement algorithm
is analysed under two phases; time complexity of placement
request processing which is handled by Algorithm 1 and
Algorithm 2, time complexity of selecting a cluster node for
the placement of a microservice covered by Algorithm 3.

FogDeviceFogDevice

FogNodeControllerFogNodeController

LoadBalancerLoadBalancer
MicroservicesPlacementMicroservicesPlacement

ModulePlacementModulePlacement

ClusteredFogDeviceClusteredFogDevice

Fig. 4: Class diagram of extensions made to iFogSim Simulator
(Existing classes: FogDevice.java and ModulePlacement.java)

In Algorithm 1, GetµservicesToPlace procedure removes
placed microservices (mp) from the application DAG and
traverse the resultant DAG to find vertices without any incom-
ing edges, while taking placement failed microservices of the
current node (mf) into consideration. If the application consists
of M microservices that represent vertices of the DAG and
E connections among them that represent edges of the DAG,
above function has time complexity of O(|M |+ |E|). PlaceMi-
croservice function in Algorithm 2 is completed in constant
time with complexity of O(1). Hence, the time complexity of
processing a placement request is O(|M | ∗ (|M |+ |E|)).

For a Fog node cluster with C number of nodes, worst case
time complexity of Algorithm 3 is of linear time. Thus, the
time complexity of selecting a cluster node for the placement
of a microservice is O(|C|).

V. DESIGN AND IMPLEMENTATION

To evaluate the performance of the proposed policy, we
implemented and simulated a Fog computing environment
using iFogSim Simulator [7]. iFogSim is a simulation toolkit
developed for the simulation of Fog environments. It is built
based on CloudSim simulator [19] which is widely used for
evaluating resource-management and scheduling policies for
Cloud computing environments. iFogSim supports creation of
hierarchical Fog architectures, modeling of distributed appli-
cations and evaluation of scheduling policies based on per-
formance metrics such as latency, network usage and power
consumption. Since these features are significant in modeling
the proposed system, iFogSim was chosen for simulations.
Moreover, several features were added to iFogSim simulator
to support modeling of the proposed system. Fig. 4 represents
new classes implemented within iFogSim simulator to support
our placement policy.

iFogSim supports a centralized approach for application
module placement where module placement is handled by a
broker that has knowledge of overall Fog architecture and
resource availability of each Fog node. Since our placement
approach is decentralized, simulator was extended to support
this. Instead of using the existing broker class (FogBroker.java),
Fog nodes were implemented according to the Fog node
architecture introduced in Fig. 3. Thus, in our implementation,
each Fog node has a Fog node controller (FogNodeCon-

troller.java) that handles microservices placement (Microser-
vicesPlacement.java) and load balancing (LoadBalancer.java).

iFogSim provides capabilities to create hierarchical Fog
architectures with multiple Fog levels. But connections are
made only vertically. Horizontal connections within the same
Fog level are not available. Thus, clustering of Fog nodes within
the same level cannot be simulated using current iFogSim
version. So, the simulator was extended to support creation
of clusters by forming connections among nodes of the same
Fog level.

In iFogSim, data streams are realized using an object that is
characterized by source and destination application modules.
As a result, when a workload is simulated, data streams are
always sent up the hierarchy till a Fog node that hosts the
destination module is met. This implementation is not compat-
ible with the proposed solution due to horizontal scaling and
load balancing features introduced in our policy. This requires
the simulator to direct data streams based on destination device
instead of destination module. Moreover, due to clustering, data
streams need to be routed to clustered nodes through horizontal
links as well. These features were also added to the simulator
to simulate the proposed placement policy.

In the proposed model, applications are developed as a
collection of microservices where each microservice is de-
ployed on a separate container using operating system level
virtualization. In iFogSim, distributed applications are modeled
as a collection of modules (AppModule.java), where resource
requirement of each module can be defined. Even though
AppModule class is implemented as an extension of VM class
in CloudSim, it can be realized as OS level virtualization of
containers by defining resource requirements accordingly and
changing startup delay to match that of containers.

VI. PERFORMANCE EVALUATION

We evaluated our Microservice placement policy through
simulation of a smart healthcare application and compared it
with two existing application placement algorithms.

A. Experimental Configurations

To evaluate the performance of the proposed placement algo-
rithm, we have used a synthetic workload generated by model-
ing a smart healthcare application on “ECG Monitoring” [20],
[21]. Application is modeled according to the Microservices-
based IoT application architecture mentioned earlier in Fig. 2.
This application uses a wearable ECG sensor that transmits
data towards Level 1 Fog nodes using Bluetooth technology.
Application consists of two microservices, ECG Feature Ex-
traction Microservice which extracts features from ECG to
detect and notify about any existing abnormal situations and
ECG Analyser Microservice which carries out further analysis
on ECG data collected and stored for a longer duration of
time. ECG Feature Extraction Microservice provides a latency
critical service and is placed on either Fog layer or Cloud
according to the placement policy. ECG Analyser Microservice
receives results from ECG Feature Extraction Microservice
where it further processes the extracted data, so that they can be

Table. II: Simulation Parameters

Parameter Value
Latency values:
IoT device to Fog Level 1 5ms
Fog Level 1 to Fog Level 2 20ms
Fog Level 2 to Fog Level 3 30ms
Fog Level 3 to Fog Level 4 50ms
Fog Level 4 to Cloud 150ms
Among cluster nodes 2ms
ECG sensor data transmission interval 5ms
Total number of ECG sensors connected 60
Container startup time 300ms
Placement Calculation time of a microservice 2ms
Simulation Time 120s

used by remote health monitoring purposes of hospitals. Thus,
this microservice is placed on Cloud.

Fog environment modeled for simulations consists of four
Fog layers with devices that are heterogeneous to each other
in terms of resource availability. Clusters are formed between
Fog devices in Fog Level 2 that are connected to the same
Fog Level 3 device. Table II contains the parameters used in
creating the simulated Fog environment.

B. Results and Analysis

Performance of the proposed placement policy is evaluated
based on three performance metrics: latency of the latency
critical path of the modeled application, network usage and
required time for application microservice placement. To eval-
uate performance based on latency and network usage, the
proposed Microservice placement policy is compared with two
other placement approaches.

1) Cloud-only placement - All microservices of the appli-
cation are placed within Cloud layer.

2) Edge-ward placement proposed in [7] - In this algorithm
horizontal placement of the microservices across Fog
node clusters is not considered. If a microservice placed
on a certain Fog device does not have enough resources
to handle the load, that microservice gets moved up the
Fog hierarchy until a device that can handle the load is
met.

The proposed Microservice placement policy targets to op-
timize placement within Fog environments that consist of
heterogeneous and resource constrained Fog nodes. Thus, three
scenarios that capture the above mentioned aspects, were used
for the evaluation of the proposed placement policy.

1) Scenario 1 - Nodes on Fog level 2 have same resource
capacities. But the number of Fog level 1 nodes per each
Fog Level 2 node differs.

2) Scenario 2 - Nodes on Fog level 2 have same number
of Fog Level 1 nodes connected. But resource capacities
among Fog Level 2 devices differ.

3) Scenario 3 - Both resource capacity and number of
connected Fog Level 1 nodes differ among Fog Level
2 nodes.

Scenario1 Scenario2 Scenario30

100

200

300

400

500

Av
er

ag
e

De
la

y
(in

 m
illi

se
co

nd
s)

Average Latency of the Latency Sensitive Path
 Sensor -> Client -> ECG Feature Extraction Microservice -> Client -> Display

Cloud-only placement Edge-ward placement Microservice placement

Fig. 5: Average Delay for Latency Sensitive Path

Scenario1 Scenario2 Scenario30

500

1000

1500

2000

2500

Ne
tw

or
k

Us
ag

e
(in

 k
ilo

by
te

s)

Average Network Usage

Cloud-only placement Edge-ward placement Microservice placement

Fig. 6: Average Network Usage

All three scenarios depict heterogeneous and resource con-
strained Fog environments where some of the nodes get over-
loaded whereas others are under-utilized.

For these three scenarios, average latency of the latency
sensitive loop (Fig. 5) and average network usage (Fig. 6) were
measured after simulations.

In all three scenarios, Cloud-only placement shows a sig-
nificant increase in both latency and network usage when
compared to Edge-ward placement and Microservice placement
approaches. Moreover, Microservice placement approach pro-
posed in this paper outperforms both Cloud-only placement and
Edge-ward placement approaches in terms of both latency and
network efficiency.

In Cloud-only placement, as all microservices are placed
within Cloud layer, data generated by geo-distributed sensors
have to be sent towards centralized Cloud which is multiple
hops away from the edge of the network. Since all the generated
data are sent towards Cloud, amount of data flowing through
the core network increases, resulting in network congestion.
Due to these two reasons, latency of the services deployed on
Cloud is significantly higher than other two scenarios where
latency critical microservice is placed within Fog layer closer
to the data source.

Raw data transmitted from IoT sensors requires a large
amount of bandwidth. In the modeled application ECG Feature
Extraction microservice, analyses raw ECG data and produce
results. As a result, large volumes of sensor data get reduced
into meaningful information and these information gets sent
towards the ECG Analyser Microservice and the display. Thus,

if the ECG Feature Extraction Microservice is placed at the
Fog layer, volume of data transmitted through the core network
reduces dramatically. This results in efficient utilization of
bandwidth in Fog placement approaches when compared with
Cloud-only placement.

In Edge-ward placement, horizontal scaling of microservices
is not considered. So, if a certain instance of a microservice
deployed on a fog node does not have enough resources avail-
able to handle received workload, that particular microservice
is moved up the Fog hierarchy to a node with higher re-
source capacity. In contrast to this, the Microservice placement
approach utilizes horizontal scaling and load balancing. If a
certain microservice instance does not have enough resources to
support the workload, microservice is horizontally scaled across
nodes within clusters. These nodes are in the same Fog level
and latency among nodes within the same cluster is extremely
low due to the use of light weight web transfer protocols such
as CoAP. Thus, our proposed approach utilizes microservices
architecture to place latency critical services within lower Fog
levels closer to the data source.

In all three scenarios, due to heterogeneity among resource
constrained Fog nodes and difference of load on nodes, some
Fog nodes gets over-utilized while others are under-utilized.
Under such circumstances, proposed approach ensures that
microservices are deployed in such a way so that available
resources within Fog node clusters are utilized before moving
towards higher level Fog nodes with higher resource avail-
ability. As a result, Microservice placement approach places
modules in lower Fog levels when compared to Edge-ward
placement. This results in further reduction of latency and
network usage when using the proposed placement policy.

Based on the generated results, our proposed Microservice
placement policy demonstrates around 85% improvement over
Cloud-only placement and around 40% improvement over
Edge-ward placement policy, in terms of both latency and
network usage.

To evaluate the efficiency of using a decentralized placement
approach, we evaluated the proposed method based on total
time taken to place ECG Feature Extraction microservice
within Fog layer. We implemented the same placement algo-
rithm using a centralized placement method and compared the
placement delay with the proposed decentralized approach.

In modeling the centralized placement method, a separate
Fog node on Fog Level 4 was chosen as the centralized
application scheduler. Once an ECG sensor joins the network,
a placement request is sent by Fog Level 1 node towards
this scheduler node. It maintains a complete view of the Fog
hierarchy below Fog Level 4 and calculates the nodes to place
the requested microservices. This decision is sent towards the
selected nodes in order to deploy an instance of a microservice
on respective Fog nodes.

Experiments were carried out changing the number of sen-
sors connected to the Fog environment. Number of sensors
were increased by increasing number of Fog Level 1 devices
connected to each Fog Level 2 device where each Fog Level 1
device has one ECG sensor connected to it.

40 60 80 100 120 140
Total Number of Sensors

200

400

600

800

1000

1200

Ti
m

e
ta

ke
n

fo
r m

icr
os

er
vi

ce
s p

la
ce

m
en

t
 (m

s)

Microservices Placement Delay
Decentralized Placement
Centralized Placement

Fig. 7: Total time taken for deployment of Microservices within
Fog layer

As per Fig. 7, placement delay of the centralized method
is significantly higher than the decentralized placement. In
centralized approach, all placement requests have to be sent
towards Fog Level 4 scheduler node which is multiple hops
away. After processing the request and selecting a Fog node
to place the microservice, scheduler node has to inform this
to the selected node placed within lower Fog levels. This
induces a communication delay on all placement requests. But,
in decentralized approach, placement process starts from Fog
Level 1 node and propagates up the hierarchy until a suitable
node is met. This results in significantly lower placement delay
in decentralized placement.

Moreover, in centralized management all requests are sent
towards a central scheduler node. Thus, as the number of
sensors increases, the number of placement requests that needs
to be processed by the centralized scheduler is higher than that
of each Fog node in decentralized case. As a result, there’s a
rapid increase in placement delay for centralized management
whereas increase of delay is quite small in decentralized
approach as the number of sensors increases.

As the number of placement request increases, placement of
microservices is moved towards upper level Fog nodes with
higher resource availability. Slight increase of placement delay
in decentralized placement is caused due to this. Our results
show that due to highly distributed nature of the Fog nodes it
is much efficient and scalable to use decentralized placement
and service discovery methods.

VII. CONCLUSIONS AND FUTURE WORK

Microservices-based IoT applications have the potential to
improve the efficiency of IoT application placement within Fog
environments. We propose a decentralized placement algorithm
for microservices-based IoT applications, highlighting hori-
zontal scalability of microservices within resource constrained
and heterogeneous Fog nodes. Moreover, we also propose a
Fog node architecture to support the proposed decentralized
placement along with service discovery and load balancing. We
conducted simulation-based experiments using iFogSim simu-
lated Fog environment to demonstrate the performance of the
proposed solution. Based on the results obtained through simu-
lations, the proposed placement policy demonstrated significant

reduction in latency and network usage within heterogeneous
and resource constrained Fog environments. We also compared
our approach with a centralized placement approach, which
highlighted the suitability of decentralized management within
Fog environments in terms of application placement delay and
scalability of placement.

In future work, we plan to explore following research di-
rections; implement the proposed policy in real world using
FogBus [22], which is a lightweight framework developed for
Fog computing; improve our microservice placement policy
to adapt to dynamic characteristics such as Fog node failures
and mobility of IoT devices and lower level Fog nodes; use
dynamic clustering techniques to support efficient microservice
placement; QoS aware prioritizing and placement of multiple
application placement requests; energy efficient placement of
microservices-based IoT applications within Fog environments
and cost optimization of microservice placement within Fog
environments.

ACKNOWLEDGMENTS

We thank Redowan Mahmud and Mohammad Goudarzi for
their valuable comments and suggestions on improving this
paper.

REFERENCES

[1] Cisco, “Cisco visual networking index: Forecast and trends,
2017–2022,” White Paper, vol. 1, 2018.

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing
and its role in the internet of things,” in Proceedings of the
first edition of the MCC workshop on Mobile cloud computing.
ACM, 2012, pp. 13–16.

[3] R. Mahmud, R. Kotagiri, and R. Buyya, “Fog computing: A tax-
onomy, survey and future directions,” in Internet of everything.
Springer, 2018, pp. 103–130.

[4] C. T. Joseph and K. Chandrasekaran, “Straddling the crevasse: A
review of microservice software architecture foundations and re-
cent advancements,” Software: Practice and Experience, vol. 49,
no. 10, pp. 1448–1484, 2019.

[5] M. Fowler and J. Lewis. (2014, March) Microservices a
definition of this new architectural term. [Online]. Available:
https://martinfowler.com/articles/microservices.html

[6] M. Taneja and A. Davy, “Resource aware placement of IoT
application modules in Fog-Cloud Computing Paradigm,” in
Proceedings of the 2017 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM). IEEE, 2017, pp. 1222–
1228.

[7] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya,
“iFogSim: A toolkit for modeling and simulation of resource
management techniques in the Internet of Things, Edge and Fog
computing environments,” Software: Practice and Experience,
vol. 47, no. 9, pp. 1275–1296, 2017.

[8] R. Mahmud, K. Ramamohanarao, and R. Buyya, “Latency-
aware application module management for fog computing en-
vironments,” ACM Transactions on Internet Technology (TOIT),
vol. 19, no. 1, p. 9, 2018.

[9] B. Butzin, F. Golatowski, and D. Timmermann, “Microservices
approach for the internet of things,” in Proceedings of the 2016
IEEE 21st International Conference on Emerging Technologies
and Factory Automation (ETFA). IEEE, 2016, pp. 1–6.

[10] T. Vresk and I. Čavrak, “Architecture of an interoperable IoT
platform based on microservices,” in Proceedings of the 39th
International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO). IEEE,
2016, pp. 1196–1201.

[11] A. Krylovskiy, M. Jahn, and E. Patti, “Designing a smart city
internet of things platform with microservice architecture,” in
Proceedings of the 3rd International Conference on Future
Internet of Things and Cloud. IEEE, 2015, pp. 25–30.

[12] S. Nastic, M. Vögler, C. Inzinger, H.-L. Truong, and S. Dustdar,
“rtgovops: A runtime framework for governance in large-scale
software-defined iot cloud systems,” in Proceedings of the 3rd
IEEE International Conference on Mobile Cloud Computing,
Services, and Engineering. IEEE, 2015, pp. 24–33.

[13] K. Vandikas and V. Tsiatsis, “Microservices in iot clouds,” in
Proceedings of the 2016 Cloudification of the Internet of Things
(CIoT). IEEE, 2016, pp. 1–6.

[14] I.-D. Filip, F. Pop, C. Serbanescu, and C. Choi, “Microservices
scheduling model over heterogeneous cloud-edge environments
as support for iot applications,” IEEE Internet of Things Journal,
vol. 5, no. 4, pp. 2672–2681, 2018.

[15] D. Santoro, D. Zozin, D. Pizzolli, F. De Pellegrini, and S. Cretti,
“Foggy: a platform for workload orchestration in a fog com-
puting environment,” in Proceedings of the 2017 IEEE Interna-
tional Conference on Cloud Computing Technology and Science
(CloudCom). IEEE, 2017, pp. 231–234.

[16] F. Faticanti, F. De Pellegrini, D. Siracusa, D. Santoro, and
S. Cretti, “Cutting Throughput on the Edge: App-Aware Place-
ment in Fog Computing,” arXiv preprint arXiv:1810.04442,
2018.

[17] P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog comput-
ing: architecture, key technologies, applications and open issues,”
Journal of network and computer applications, vol. 98, pp. 27–
42, 2017.

[18] M. Slabicki and K. Grochla, “Performance evaluation of CoAP,
SNMP and NETCONF protocols in fog computing architecture,”
in Proceedings of the NOMS 2016-2016 IEEE/IFIP Network
Operations and Management Symposium. IEEE, 2016, pp.
1315–1319.

[19] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and
R. Buyya, “Cloudsim: a toolkit for modeling and simulation
of cloud computing environments and evaluation of resource
provisioning algorithms,” Software: Practice and experience,
vol. 41, no. 1, pp. 23–50, 2011.

[20] T. N. Gia, M. Jiang, A.-M. Rahmani, T. Westerlund, P. Liljeberg,
and H. Tenhunen, “Fog computing in healthcare internet of
things: A case study on ecg feature extraction,” in Proceedings
of the 2015 IEEE International Conference on Computer and In-
formation Technology; Ubiquitous Computing and Communica-
tions; Dependable, Autonomic and Secure Computing; Pervasive
Intelligence and Computing. IEEE, 2015, pp. 356–363.

[21] Z. Yang, Q. Zhou, L. Lei, K. Zheng, and W. Xiang, “An
IoT-cloud based wearable ECG monitoring system for smart
healthcare,” Journal of Medical Systems, vol. 40, no. 12, p. 286,
2016.

[22] S. Tuli, R. Mahmud, S. Tuli, and R. Buyya, “Fogbus: A
blockchain-based lightweight framework for edge and fog com-
puting,” Journal of Systems and Software, vol. 154, pp. 22–36,
2019.

