
Vol.:(0123456789)1 3

CCF Transactions on High Performance Computing (2022) 4:165–181 
https://doi.org/10.1007/s42514-022-00096-x

REGULAR PAPER

Adaptive processing rate based container provisioning for meshed 
Micro‑services in Kubernetes Clouds

Hang Wu1 · Zhicheng Cai1 · Yamin Lei1 · Jian Xu1 · Rajkumar Buyya2

Received: 23 October 2021 / Accepted: 4 March 2022 / Published online: 6 April 2022 
© China Computer Federation (CCF) 2022

Abstract
More and more applications are organized in the form of meshed micro-services which can be deployed on the popular 
container orchestration platform Kubernetes. Designing appropriate container auto-scaling methods for such applications 
in Kubernetes is beneficial to reducing costs and guaranteeing Quality of Services (QoS). However, most existing resource 
provisioning methods focus on a service without considering interactions among meshed services. Meanwhile, synchronous 
calls among services have different impacts on the processing ability of containers as the proportion of different business 
type’s requests changes which is not considered in existing methods too. Therefore, in this article, an adaptive queuing model 
and queuing-length aware Jackson queuing network based method is proposed. It adjusts the processing rate of containers 
according to the ratio of synchronous calls and considers queuing tasks when calculating the impact of bottleneck tiers to 
others. Experiments are performed on a real Kubernetes cluster, which illustrate that the proposal obtains the lowest per-
centage of Service Level Agreement (SLA)-violations (decreasing about 6.33%-12.29%) with about 0.9% additional costs 
compared with existing methods of Kubernetes and other latest methods.

Keywords Kubernetes · Container · Micro-services · Provisioning · Jackson queuing network

1 Introduction

There is a trend of providing complex intelligent functions 
in Web systems which usually contain multiple collaborative 
micro-services. The structure of micro-services’ invoking 
topology is meshed as shown in Fig. 1. Since containers 
are more lightweight and portable than Virtual Machines 
(VMs), deploying micro-services in containers elastically 
rented from public Cloud vendors (Amazon Lightsail Con-
tainers Stormacq 2020) is able to provide elastic processing 
capacity by renting and releasing containers dynamically. 
Kubernetes (abbreviated as K8s) is a popular container 
application orchestration and management system. Many 

public Cloud vendors provide container-application devel-
oping and running platforms based on K8s such as Amazon 
Elastic Kubernetes Service (Amazon EKS) (Amazon 2021) 
and Alibaba Cloud Kubernetes (ACK) (AlibabaCloud 2021). 
The main goal of this article is to design container auto-scal-
ing methods for meshed micro-services deployed on such 
K8s-based platforms to reduce resource costs while guar-
anteeing Quality of Services (QoS). The main challenges of 
developing container provisioning algorithms are complex 
interactions among meshed micro-services and degenera-
tion processing ability caused by synchronous calls. Most 
of existing container scheduling algorithms (Abdullah et al. 
2020; Zhong and Buyya 2020; Delnat et al. 2018; Kuber-
netes 2021; Toka et al. 2020; Cai and Buyya 2021) for K8s 
based platforms are designed for batch jobs or single micro-
services. Separate batch jobs or hybrid of batch jobs and 
Web systems are scheduled to appropriate number of Pods 
(containers) to decrease resource costs (Abdullah et al. 2020; 
Zhong and Buyya 2020). In these works, it is assumed that 
batch jobs and Web systems consume the fixed amount of 
resources. However, resource consumed by Web systems 
usually changes as workload changes. For single micro-ser-
vices, there are some K8s-embedded resource auto-scaling 
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methods such as Horizontal and Vertical Pod Autoscaler 
(HPA and VPA) (Kubernetes 2021) or their extensions (Del-
nat et al. 2018; Toka et al. 2020) which dynamically scale 
resources based on threshold of Memory, CPU utilization 
or other metrics. However, pure threshold-based methods 
always lead to control delays. The hybrid of queuing and 
control theory is nearly able to make the average response 
time follow a given reference time by adjusting the number 
of allocated containers dynamically (Cai and Buyya 2021). 
These methods are all designed for single-tier systems with-
out considering the impact among meshed multi-tiers. Allo-
cating more containers to some bottleneck tiers will increase 
the speed of generating calls to other tiers leading to new 
bottlenecks. Bottlenecks must be eliminated by allocating 
more containers to multiple affected tiers for avoiding bot-
tleneck shifting.

Synchronous invocations make the measuring of contain-
er’s processing ability and identifying of bottleneck com-
plex. Measuring processing rates appropriately is crucial to 
queuing models which have been widely used to determining 
the number of required containers for each micro-services 
(Melikov et al. 2018; Huang et al. 2016; Jiang et al. 2013; 
Lei et al. 2020). The processing rate of a micro-service’s 
container without synchronous calls can be estimated by 
stress testing. However, micro-services in meshed systems 
need to call others to work collaboratively and synchronous 
invocations consume additional resources which decrease 
the processing ability. The request processing rate of a con-
tainer usually degrades as the ratio of synchronous invoca-
tion to other micro-services increases. Therefore, it is not 
suitable to use a fixed estimated processing rate. Meanwhile, 

a meshed Web system usually supports multiple types of 
businesses with different invocation paths. From the per-
spective of a micro-service, it takes different time to wait for 
the returning of synchronous calls for requests from different 
business types, which has a great impact on the observed 
average response time of a micro-service’s container. Con-
sequently, it is easy to misjudge the bottleneck by comparing 
the average response time of the micro-service with a fixed 
Response Time Upper Limit (RTUL) specified by Service 
Level Agreement (SLA).

In this article, a hybrid of proactive and reactive method 
based on Jackson queuing network with adaptive processing 
rates and RTUL is proposed to elastically provision contain-
ers to meshed micro-services. The main contributions of our 
work are as follows. 

1. An adaptive processing rate calculating method, which 
considers performance degeneration and proportion 
changes of different business types’ requests, is devel-
oped to estimate the required number of containers accu-
rately based on queuing models.

2. The RTUL of each micro-service is updated dynami-
cally based on the proportion of different business types’ 
requests to improve the accuracy of identifying bottle-
necks.

3. The queuing length of each micro-service is considered 
to calculate impact on other services accurately.

The rest of this paper is organized as follows. Section 2 is the 
related work and Sect. 3 describes the problems of meshed 
Web systems in Kubernetes. The impact of synchronous 

Fig. 1  An example of meshed 
micro-services
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calls on processing rate is analyzed in Sect. 4. The proposed 
method is introduced in Sect. 5. Sections 6 and 7 are perfor-
mance evaluation on a real Kubernetes cluster, conclusion 
and future work.

2  Related work

The architecture of Web systems is becoming more and more 
complex which changes from single-tier (Cai and Buyya 
2021; Toka et al. 2020) to linear multi-tier (Bi et al. 2015; 
Wang et al. 2019; Adam et al. 2017; Zhang et al. 2016) and 
then to meshed multi-tier (Lei et al. 2020; Xu and Buyya 
2019) gradually. Resources allocated to Web systems might 
be VMs (Qu et al 2018; Lorido-Botran et al. 2014; Al-
Dhuraibi et al. 2018) or containers (Adam et al. 2017; Xu 
and Buyya 2019; Cai and Buyya 2021; Zhong and Buyya 
2020; Kho et al 2018; Toka et al. 2020; Delnat et al. 2018). 
For multi-tier systems, interactions among tiers can be cate-
gorized into synchronous and asynchronous calls (Chen et al 
2017; Wang et al. 2019; Zhang et al. 2016; Lei et al. 2020).

Most of existing works are tailored for single-tier and lin-
ear multi-tier systems. For such simple structured systems, 
threshold (Kubernetes 2021; Toka et al. 2020), queuing theory 
(Melikov et al. 2018; Huang et al. 2016; Jiang et al. 2013), 
control theory (Cai and Buyya 2021; Pan et al. 2008; Cai et al. 
2020; Baresi et al. 2016), and reinforcement learning (Barrett 
et al. 2013; Li and Venugopal 2011) have been used to allocate 
resources elastically. Kubernetes’s embedded HPA (Kubernetes 
2021) adjusts the number of Pods based on CPU or Memory 
utilization, which is slow in reacting to performance changes. 
HPA+ (Toka et al. 2020) is an extension of HPA which uses 
LSTM (Long Short-Term Memory) to predict the number of 
requests to amend the delay of reacting to performance changes. 
The M/M/N queuing model is used to predict minimum4 
amount of resources required to obtain a mean response time 
smaller than a given upper limit (Huang et al. 2016). Thresh-
old and queuing model based methods usually lack the ability 
of reacting to real-time deviations in terms of performance, 
therefore, control theory and reinforcement learning have been 
used to increase the reactive ability to real-time performance. 
For Web systems based on hourly charged VMs, UCM was 
proposed by Cai et al. (2020) which takes advantages of queu-
ing model and feedback control to avoid over-control and react 
quickly to workload changes. For container based Web systems 
in Kubernetes, an inverse-queuing model based feedback con-
trol was developed by Cai and Buyya (2021) to provision con-
tainers to single-tiers separately. However, they are not designed 
for meshed multi-tier systems.

Only a few of existing works consider meshed multi-tier 
systems while most of them are not for systems with syn-
chronous calls. Jackson queuing network (JQN) is widely 

used to model the impact among meshed multiple queues. 
For example, JPRM proposed by Lei et al. (2020) applied 
JQN to predict the arrival rate of each tier and impact of 
bottleneck tiers on others. However, the queuing length of 
each tier is not considered when calculating the impact of 
bottleneck tiers on others. Synchronous calls to other ser-
vices consume some server threads and connections even 
if when they are waiting for the return of calls which has a 
great impact on the processing ability of underline Contain-
ers or VMs, and the ratio of Synchronous calls may lead 
to different degrees of performance degradation (Chen et al 
2017; Wang et al. 2019). However, impact of synchronous 
calls among meshed multi-tier services is not considered in 
existing works.

Many algorithms are only evaluated on simulation plat-
forms and there are deviations between real and simulation 
platforms. For example, JPRM (Lei et al. 2020) is only eval-
uated on a simulation environment established on Cloud-
Sim (Calheiros et al. 2011). UCM (Cai et al. 2020) is tested 
on both CloudSim and a real Kubernetes cluster. But it is 
for single-tier systems. ContainerCloudSim (Piraghaj et al. 
2017) is a CloudSim extension which provides support for 
modeling and simulation of containerized Cloud Comput-
ing environments. These methods cannot simulate exactly 
the same as the actual production platforms. Therefore, 
it is necessary to design and evaluate resource provision-
ing algorithms for real production systems such as Docker 
Swarm (Xu and Buyya 2019; Magableh and Almiani 2020) 
and Kubernetes (Cai and Buyya 2021; Zhong and Buyya 
2020; Kho et al 2018; Toka et al. 2020; Delnat et al. 2018).

A comparison between our approach and existing meth-
ods is shown in Table  1. As a whole, most of existing 
resource auto-scaling methods are designed for single or 
linear multi-tier Web systems without synchronous calls. 
In this article, our approach considers the queuing length 
of each tier when calculating impacts among meshed tiers 
using Jackson network, and performance degradation caused 
by synchronous calls. Meanwhile, our approach is evaluated 
on a real Kubernetes Cluster.

3  Problem description

Micro-service based architecture is beneficial to construct 
flexible software systems. Each micro-service provides a 
single function and is usually encapsulated as a RESTful 
or SOAP-based Web service (Cai and Buyya 2021). A Web 
system usually provides multiple types of businesses and 
each of which needs the collaboration of different combina-
tions of micro-services. Requests of different business types 
have different accessing paths on the graph of meshed micro-
services. Each micro-service usually has multiple contain-
ers to increase concurrent processing ability. Kubernetes is 
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a container-based application management platform which 
provides the function of creating a certain number of con-
tainers for each micro-service and deleting containers from 
the micro-service.

Figure 2 shows the architecture of meshed micro-services 
deployed in Kubernetes. The Master node is responsible 
for managing Kubernetes cluster. Each container is usu-
ally embedded in a Pod which is the minimum scheduling 
unit of K8s. Pods are deployed on Worker nodes which are 
VMs rented from public Clouds. Containers on the same 
Worker node have the same color and each micro-service 
have multiple containers from different Workers. TraefikLab 
(2021) is a front-end load balancer in charge of distributing 
requests to back-end containers. The Resource Auto-scaler 
scales resources through RESTful APIs. Logs of Traefik 
are collected and analyzed by the Logs Manager to obtain 
the mean response time, queuing length and so on for each 
micro-service.

Different business types usually have different mean 
response times because different combinations of micro-
services are invoked. Figure 3 is an example of a group 
of business types with various accessing paths. Let 
� = {Si|i ∈ {1, 2, 3… , n}} be the set of micro-services in 
the Web system. bl ∈ B is the l − th business type provided 
by the system, and bl = (Sl,1,… , Sl,k,…) where Sl,k ∈ � is 
the k − th accessed micro-service of bl . For example, (S1) , 

(S1, S3, S5) and (S1, S4, S5) are three business types in Fig. 3. 
S3 in b1 = (S1, S3, S5) means that S3 is the second accessed 
micro-service in b1 . In SLA, the mean response time of each 
business type should be smaller than an upper limit. The 
objective of this article is to design container elastic provi-
sioning algorithms for the Resources Auto-scaler to mini-
mize resource costs while guaranteeing SLA.

4  Impact of synchronous calls

Asynchronous calls return immediately after being called so 
that other consequent operations can be performed while the 
asynchronous calls are performing simultaneously. On the 
contrary, consequent operations can not be executed before 
synchronous calls return. Connections of synchronous calls 
should be maintained before the return which consume addi-
tional resources and decrease the processing ability of each 
container.

In this article, the Jmeter (2021) is used to evaluate the 
impact of synchronous calls. Three same micro-services Si , 
Sj and Sk which calculate the n − th Fibonacci number in a 
recursive way, is selected as the test-bed. Three business 
types b1 = (Si ), b2 = (Si , Sj ) and b3 = (Si , Sj , Sk ) are tested 
which all need to access Si . The objective is to obtain the 
Throughput Per Second (TPS) of one container of Si under 

Table 1  Comparison of our approach with existing resource provisioning algorithms for Web Systems

Works Resource type Objectives Architecture Resources provi-
sioning strategy

Workload predic-
tion

Platforms

JPRM (Lei et al. 
2020)

VMs VM rental costs and 
response time

Meshed multi-tier M/M/N queuing-
model

Holt-Winter’s 
model

CloudSim

DCM (Chen et al 
2017)

VMs CPU-utilization and 
response time

Linear multi-tier CPU utilization 
threshold

× Private Datacenter

EcoWare (Baresi 
et al. 2016)

VMs containers CPU-core rental 
time and response 
time

Single-tier Control theory × EcoWare

BrownoutCon (Xu 
and Buyya 2019)

VMs containers Power consumption Meshed
multi-tier

CPU utilization
threshold

Sliding windows Docker Swarm

HPA (Kubernetes 
2021)

Containers Response time Single-tier Threshold of dif-
frent kinds of 
metrics

× Kubernetes

HPA+ (Toka et al. 
2020)

Containers Response time Single-tier Requests and CPU 
utilization thresh-
old r

LSTM Kubernetes

FeedBack_
InverseQM (Cai 
and Buyya 2021)

Containers Response time Single-tier M/M/N queuing 
model with con-
trol theory

× Kubernetes

Proposed method VMs containers VM rental costs and 
response time

Meshed multi-tier M/M/N queuing 
model with adap-
tive processing 
rate

Holt Winter’s 
model

Kubernetes
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different business types. In other words, Si is only allocated 
one container with one CPU core and 500 Mi Memory, while 
Sj and Sk have sufficient number of containers. The speed of 
generating requests of each business type is increased gradu-
ally until the CPU utilization of Si ’s container reaches 60% . 
Then, the TPS of one Si ’s container of each business type is 
obtained. In order to evaluate the impact of the complexity 
of micro-services on processing ability, n of the Fibonacci 
micro-service takes different values from {23, 24,… , 30}.

Figure 4 shows the TPS of Si ’s container with differ-
ent parameter n and business types which illustrates that 

TPS decreases when the length of tasks increases and the 
micro-service accesses other micro-services. The TPS of 
one Si ’s container in different business types b2 and b3 is 
the same which proves that synchronous calls decreases 
the processing ability (decreased TPS) of containers, but 
the depth of micro-services in the synchronous calls has a 
very little impact on the processing ability. The degradation 
degree of processing ability decreases as the task-length of 
micro-services increases. The reason is that fewer synchro-
nous calls are generated to others because the TPS of Si 
decreased when task lengths of Si become longer. Therefore, 
the degradation ratio of processing ability is mainly affected 
by the computation requirements of the service generating 
calls rather than those of calls.

5  Proposed methods

In this paper, a hybrid of proactive and reactive resource pro-
visioning architecture similar with JPRM (Lei et al. 2020) 
is applied. In the proactive part, the request arrival rate of 
each tier(micro-service) is predicted by time series analysis 
methods and Jackson network. Then the minimum6 number 
of containers required by each tier is obtained by queuing 

Fig. 2  Architecture of resources 
manager in Kubernetes
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models. In the reactive part, the impact of bottleneck tiers on 
other tiers is considered to eliminate bottlenecks quickly. In 
JPRM (Lei et al. 2020), queuing models with fixed process-
ing rates are used. However, synchronous calls degrade the 
processing ability of containers. Therefore, in this article, 
an adaptive processing rate based queuing model is applied 
which adjust the processing rate of containers based on the 
ratio of synchronous calls dynamically. When a micro-ser-
vice is a bottleneck, the resource is not sufficient, the number 
of requests passing through the tier per second is limited by 
the total processing rate (smaller than the arrival rate) and 
many requests are blocked in the queue. When the bottleneck 
is eliminated by providing more resources, it is assumed 
that the increased speed of calling other tiers is equal to the 
arrival rate minus the old processing rate. However, JPRM 
ignored that there are many tasks in queues of bottleneck 
tiers which generate calls to other tiers too. Therefore, in 
this article, the impact of queuing tasks is considered. When 
the increased speed of generating calls to other tiers are 
obtained, Jackson network is applied to obtain the request 
arrival rate of each tier.

5.1  Adaptive processing rate based Queuing Model

Queuing model has been used to model the relation among 
the processing rate � , container number � , request arrival 
rate � and mean response time of one micro-service (Jiang 
et al. 2013; Lei et al. 2020). As mentioned above, the request 
processing rate of one container is affected by the ratio of 
synchronous calls. Using a fixed processing rate can not esti-
mate the required number of Pods accurately.

In this article, the processing rate of each service Si ’s 
container is calculated dynamically based on the ratio of 
requests from different business types. Let �i be the process-
ing rate of Si ’s container when there is no synchronous calls 
and �i is the degradation ratio of processing ability when 
there are synchronous calls. The processing rate of bl ’s 
requests is �i,l = �i × �l, bl ∈ Bi where Bi is the set of busi-
ness types containing Si . �l = �i when bl generates synchro-
nous calls from Si , otherwise, �l = 1 . Therefore, the average 
processing time (not including waiting time) of bl ’s requests 
is 1

�i,l

 . Let �i,l be the arrival rate of bl ’s requests to Si and �i be 
the total arrival rate of all requests, the expected processing 
time of all requests is

Then the combined average processing rate �̂�i of Si for all 
business types is

Based on M/M/N queuing model (Cai and Buyya 2021; Lei 
et al. 2020; Jiang et al. 2013), the probability of no requests 
in Si is

The expected of response time of requests is

(1)�i =
∑ �i,l

�i
×

1

�i,l

(bl ∈ Bi)

(2)�̂�i =
1

𝛤i

(3)ℙ0 =

⎡⎢⎢⎢⎣

Ni−1�
z=0

1

(z)!
(
𝜆

�̂�i

)z +
𝜆N
i

Ni!
�
i −

𝜆

Ni×�̂�i

�
�̂�
Ni

i

⎤⎥⎥⎥⎦

−1

Fig. 4  The Pod TPS in param-
eter 23-30 under three types 
of business and the Pod TPS 
reduction ratio from business 
type (Si) to business type (Si, Sj)
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The minimum number of containers required by Si to make 
the mean response time smaller than a given upper limit 
ŴSi

 is

5.2  Prediction based proactive method

In order to deal with workload changes in advance, predict-
ing workloads is very important. Multiplicative Holt-Win-
ter’s model (Lei et al. 2020; Balaji et al. 2014), which can 
predict quickly and precisely for time series data, has been 
applied. In case of the blockage of system , the prediction is 
mainly used to forecast workload increase.

The formal description of the proactive method is shown 
in Algorithm 1. As described in Sect. 4, For each micro-
service Si , the total arrival rate �i and the arrival rate �i,l of 
each business type are first collected from Logs Manager. 
Then, the arrival rate �p

i
 of next time interval is predicted by 

the Multiplicative Holt-Winter, and the real-time processing 
rate �̂�i of Si ’s container based on the current combination 
of different business types is calculated by Equation (2). 
Next, the required number of containers Ni for Si is obtained 
by Equation (5) based on the predicted arrival rate �p

i
 and 

�̂�i . However, if the predicted arrival rate is smaller than 
the current arrival rate, the current arrival rate is used to 
calculate the required number of containers. Finally, the 
number of containers allocated to Si is adjusted to be Ni by 
allocating or releasing containers.

(4)
WSi

(Ni, 𝜆i, �̂�i) = ℙ0

(𝜆i∕�̂�i)
Ni

Ni!(Ni�̂�i)

(
1 −

(
𝜆i

Ni�̂�i

)2
) +

1

�̂�i

(5)Ni = min
Ni∈Z

+
{Ni|WSi

(Ni, 𝜆i, �̂�i) ≤ ŴSi
}

5.3  Queuing‑length‑aware reactive method

Since workload changes dynamically, there might be devia-
tions between the real-time request arrival rate and the pre-
dicted arrival rate during the proactive scheduling interval. 
Therefore, a reactive method is called more frequently than 
the proactive method to cope with the changes of workload. 
When the resource is not sufficient for some micro-services, 
these micro-services are called bottlenecks, and bottlenecks 
should be eliminated by considering the impact to other 
micro-services. JQN has been widely used to model the 
interactions among networked queuing systems which can 
be used to estimate the arrival rate of each micro-service 
after eliminating bottlenecks considering increased speeds 
of generating calls from bottleneck services. However, the 
queuing lengths of bottleneck services are not considered 
and the criteria of judging bottlenecks did not considered 
the impact of business types in existing method.

In this article, a JQN based queuing-length-aware reactive 
method has been proposed. Before JQN can be used to esti-
mate the final arrival rate of each micro-service, increased 
speed of generating calls to other services (called additional 
passing rate) from bottleneck services should be calculated. 
The basic of obtain additional passing rates is to determine 
which micro-services are bottlenecks. The intuitive way of 
finding bottlenecks is to compare the average response time 
with an RTUL, and a fixed RTUL of each micro-service is 
usually set based on the complexity of itself without consid-
ering impact of synchronous calls. However, synchronous 
calls of different business types have different waiting times 
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making the total processing time diverse. A larger response 
time does not mean the service is a bottleneck because it 
may be the result of synchronous calls to other services. The 
proportion of different types of business changes dynami-
cally leading to different response time as well.

In this article, the RTUL of each micro-service is adjusted 
dynamically based on the proportion of different business 
types. Let pl,i be the partial accessing path starting from Si 
to the last service of the business type bl ∈ Bi . When there 
is no synchronous calls, ti denotes the basic processing time 
of Si . Then the total processing time of the partial path pl,i is

Different partial paths have different processing time, and 
the expected processing time of all partial paths starting 
from Si is adopted as the RTUL (called RTUL-b) of Si as 
follows

RTUL-b is the theoretical response time of Si under the 
current workload type with sufficient resource. Therefore, 
comparing the average response time with RTUL-b is able 
to identifying bottlenecks more accurately.

Queuing-length of each bottleneck tier also has a great 
impact on other tiers. When the average response time of 
Si is larger than RTULi , Si is a bottleneck. �̂�i × Ni is the total 
processing ability of all Si ’s containers. If 𝜆i > �̂�i × Ni , Si 
is unstable and the queuing length will increase gradually 
until the timeout or maximum number of connection limit 
is reached. Otherwise, Si is stable, but the number of con-
tainers is not sufficient and the queuing length qi increases. 
When the bottleneck tiers are allocated more resources, 
the increased speed of generating calls to other services is 
affected not only by 𝜆i − �̂�i × Ni (current speed), but by qi too 
(accumulated requests). Therefore, the additional speed of 
generating calls to others from Si (increased passing rate) is

which is determined based on the stability of Si separately.
After the increased passing rate is calculated for all bot-

tleneck tiers, JQN is applied to calculate the final arrival 
rate of each tier. In JQN, the invoking probability among 
different micro-services is described a matrix �

(6)Tl,i =
∑
Sk∈pl,i

tk

(7)RTULi =
∑
bl∈Bi

�i,l

�i
× Tl,i

(8)𝛥𝜆i =

{
𝜆i − �̂�i × Ni + qi �̂�i × Ni < 𝜆i
qi otherwise

(9)� =

⎛⎜⎜⎝

�11 ⋯ �1n

⋮ �ij ⋮

�n1 ⋯ �nn

⎞⎟⎟⎠

which can be obtained from logs. �ij(i, j ≠ 0) is the ratio 
of Si calling Sj . �  changes when the proportion of differ-
ent business types changes. Therefore, �  is updated every 
proactive interval. Based on �  and �i , the final arrival rate 
�i of Si can be obtained by solving the following system of 
linear equations

Finally, container numbers Ni for each service Si can be 
obtained by Equation (5). Only when Ni is larger than the 
current number of containers Nc

i
 allocated Si , additional 

containers are allocated to Si , i.e., reactive method does 
not release resources because these resources allocated by 
the proactive method might be used in the left time of the 
interval.

5.4  Integer linear programming based VM 
provisioning

Previous methods are all about the allocating and releasing 
of containers. However, these containers are deployed in 
VMs which are rented from public Clouds. It is assumed 
that configurations of different micro-service’s Pods are the 
same, all types of VMs can hold integer number of Pods. 
Let Hk, k ∈ {1, 2,… ,M} be the number of Pods (containers) 
can be hold by the k − th type of VMs, Cpod =

∑
i∈{1,2,…,n} Ni 

be the total number of Pods required by all services, and 
C
pod
p  be the current number of Pods of all services. When 

Cpod > C
pod
p  , gap = Cpod − C

pod
p  number of Pods should be 

rented. The following integer linear programming (ILP) 
model is build and solved by or-tools to get the optimal 
number of VMs.

where Cvm
k

 is the number of newly rented VMs of type k.
When Cpod < C

pod
p  , gap = C

pod
p − Cpod number of Pods 

should be released. Another ILP model is used as follows

where Cvm
k

 is the number of released VMs of type k. When-
ever a VM is determined to be released, the action takes 
effect only at the next pricing interval of it.

(10)��
i
= �i + qi +

n∑
j=1

��j × �ji, i ∈ {1, 2,… , n}

(11)

min 𝛥Cpod

s.t. 𝛥Cpod > gap

𝛥Cpod =
∑

Hk × Cvm
k

k ∈ {1, 2,… ,M}

(12)

max 𝛥Cpod

s.t. 𝛥Cpod < gap

𝛥Cpod =
∑

Hk × Cvm
k

k ∈ {1, 2,… ,M}



173Adaptive processing rate based container provisioning for meshed Micro‑services in Kubernetes…

1 3

6  Performance evaluation

The proposed method has been compared with existing 
algorithms on a Kubernetes cluster using Wikipedia traces 
(Urdaneta et al. 2009) and NASA-HTTP traces (Arlitt and 
Williamson 1996). Each worker node deployed on VMs has 
8 virtual CPU cores and 4 GB Memory. One Pod is allocated 
1 CPU core and 500Mi Memory. The meshed Web system 
consisting of multiple micro-services that all calculate Fibo-
nacci numbers with n = 28 is applied. The Weighted Round 
Robin (WRR) is used as the workload balancing algorithm 
of TraefikLab (2021). Connection time-out of Traefik is 
6s and request rate limit for each micro-service is 1000/s. 
User access traces of Wikipedia and NASA-HTTP shown 
in Fig. 5 are used to generate requests through Jmeter. The 
arrival rate of each business is proportional to the real load 
data.

Our approach has been compared with JPRM, JPRM 
with adaptive processing rate based queuing models (AQ_
JPRM) and queue-length-aware JPRM (Q_JPRM) to verify 
the effectiveness of adaptive processing rate based queu-
ing model and queue-length-aware reactive method using 
workload (called Workload1 and Workload2) based on 
Wikipedia traces. Because our approach QAQ-JPRM and 
AQ-JPRM have the capacity of calculating processing rate 
based on the ratio of synchronous calls. The initial process-
ing rate of them is set to be the original processing rate 
without synchronous calls. On the contrary, the processing 
rates of micro-services under other algorithms without adap-
tive calculating ability need to be measured using Jmeter in 
advance like Fig. 4. And then QAQ_JPRM has been com-
pared with JPRM under workloads (called Workload3 and 
Workload4) with more micro-services and longer accessing 
paths generated based on Wikipedia traces. For showing 

the generalization ability, QAQ_JPRM is also compared 
with JPRM under workloads (called Workload5 and Work-
load6) based on NASA-HTTP traces. The length of proac-
tive scheduling intervals is 720 seconds and the length of 
reactive scheduling intervals is 180 seconds. The price per 
interval of VMs is 1. Our approach is also compared with the 
embedded algorithm HPA of Kubernetes. HPA-CPU is the 
HPA which uses the average CPU utilization of each Pod as 
the threshold. HPA-Request is another HPA algorithm which 
uses the request rate of each Pod as threshold.

6.1  Comparison between JPRM, AQ_JPRM, Q_JPRM 
and QAQ_JPRM

The proportions of different types of business of Work-
load1 and Workload2 are shown in Table 2. The average 
processing time of each micro-service without synchronous 
calls is about 30ms, and the reference response time Ws of 
micro-services used by the queuing model is set to be 50ms. 
Because the maximum length of accessing paths is 3, the 
upper limit of mean response time of each micro-service is 
defined to be 90ms in SLA. Using adaptive queuing model, 
AQ_JPRM and QAQ_JPRM only need the basic pod pro-
cessing rate that there is no synchronous calls in each pod. 

Fig. 5  The Arrival Rate of 
Wikipedia traces and NASA-
HTTP traces

Table 2  Characteristic of Workload1 and Workload2 based on Wiki-
pedia traces

Workload1 Workload2

Business type Proportion Business type Proportion
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But for JPRM and Q_JPRM, it is crucial to get the pod pro-
cessing rate before tests. The initial processing rate of each 
service is shown in Table 3.

Table 4 shows percentages of SLA-violations under Work-
load1 and Workload2 and total VM rental costs of all JPRM 
based algorithms. As a whole, our proposed approach (QAQ_
JPRM) gets the lowest percentages of SLA-Violations with 
only 0.9% higher VM rental costs than existing JPRM.

Figures 6 and 7 show Pod numbers, response times and 
VM numbers of JPRM and AQ_JPRM. Because of space 
limitation, only results of the most representative micro-
services are displayed. When the workload changes from 
Workload1 to Workload2, the proportion of business types 
changes as Table  2 shows, the processing rate of Pods in 
S3 has decreased but S1 has increased. Because the initial 
processing rates of JPRM is tested by JMeter based on 
Workload1, JPRM can not estimate the number of required 
containers accurately when the workload changes from 
Workload1 to Workload2. For example, the resource of 
S3 is not sufficient while S1 has excessive number of Pods. 
The degree of SLA-violations in Workload2 is serious than 
that in Workload1. On the contrary, AQ_JPRM is able to 
adjust the processing rate of each service when the work-
load changes. The Pod number of S3 is increased while the 
Pod number of S1 is decrease by AQ_JPRM. The degrees of 
SLA-Violations in Workload1 and Workload2 are nearly the 
same and smaller than those of JPRM which are not affected 
by the changes of workload types. However, the results also 
show that AQ_JPRM reactive method is not able to restore 

the system from congestion to normal whenever there is a 
surge in workload.

Figure 8 shows Pod numbers, response times and VM 
numbers of Q_JPRM. When there is a surge in workload, 
many requests might be blocked in waiting queues. Pro-
viding resources only based on the current arrival rate (in 
AQ_JPRM) is not sufficient to restore the system to normal 
state because it does not consider blocked requests. On the 

Table 3  The initial processing rate of each micro-service

Methods Micro-services

S
1

S
2

S
3

S
4

S
5

QAQ-JPRM 30.0 30.0 30.0 30.0 30.0
AQ-JPRM 30.0 30.0 30.0 30.0 30.0
Q-JPRM 27.7 26.6 30.0 25.0 30.0
JPRM 27.7 26.6 30.0 25.0 30.0

Table 4  Percentages of SLA-violations and VM rental costs in Workload1 and Workload2

Bold values indicate better results

Micro-services JPRM AQ_JPRM Q_JPRM QAQ_JPRM

Workload1 Workload2 Workload1 Workload2 Workload1 Workload2 Workload1 Workload2

S
1

18.4% 1.1% 13.1% 1.1% 6.2% 0.0% 3.4% 0.9%
S
2

11.1% 7.2% 4.2% 5.2% 3.5% 2.8% 1.4% 3.2%
S
3

6.4% 20.1% 1.5% 14.6% 0.6% 14.4% 0.3% 6.7%
S
4

8.1% 6.1% 1.5% 2.4% 1.6% 1.2% 0.6% 0.6%
S
5

1.0% 2.0% 0.5% 1.2% 0.7% 0.3% 0.2% 0.3%
VM costs 870 860 901 878

Fig. 6  Pod numbers, VM numbers and response time of JPRM
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contrary, Q_JPRM’s reactive method is able to allocate nec-
essary containers to all related services based on queuing 
lengths. As shown in Figs. 6, 7 and 8 within 1200 min in 
Workload1, the Q_JPRM provides more Pods in the inter-
vals when request arrival rates surge. And the more stable 
system in Q_JPRM provides enough Pods to handle users’ 
requests. As for JPRM and AQ_JPRM, without considering 
the queuing requests, systems are easy to break down when 
facing workload surge and VMs scaling. For the first two 
peaks in Workload1, Q_JPRM can prevent the system from 
all congestions but AQ_JPRM and JPRM cannot. Therefore, 
Q_JPRM gets lower degree of SLA-violations than JPRM 
and AQ_JPRM. However, when the workload changes from 
Workload1 to Workload2, Q_JPRM’s performance in Work-
load2 becomes worse than that in Workload1. The reason is 
that Q_JPRM can not adjust processing rate when the ratio 
of synchronous calls changes which is similar with JPRM.

Figure 9 shows Pod numbers, response times and VM 
numbers of QAQ_JPRM which illustrates that most of 
response time in QAQ_JPRM are below SLA, especially 
after the prediction method collected sufficient data to 

forecast the arrival rate accurately. The reason is that col-
laboration of processing rate adjusting method and queuing-
length-aware JQN is able to increase the accuracy of queuing 
models and restore from serious congestion simultaneously. 
QAQ_JPRM performs well no matter how the proportion of 
different business types changes. QAQ_JPRM has the simi-
lar performance with Q_JPRM in Workload1 and the best 
performance in Workload2. There are still SLA-violations 
in some periods inevitably, because the migration of Pods 
from a released VM to another VM takes about 20s. In total, 
the VM rental costs of all JPRM based methods are similar 
which means that QAQ_JPRM obtains much lower degrees 
of SLA-violation with a little bit additional cost.

6.2  Effectiveness under more micro‑services 
and longer accessing paths

The characteristics of Workload3 and Workload4 are 
shown in Table 5 which is based on Wikipedia traces. The 
initial processing rate of each micro-service is shown in 
Table 6. Because QAQ_JPRM is able to calculate adaptive 

Fig. 7  Pod numbers, VM numbers and response time of AQ_JPRM Fig. 8  Pod numbers, VM numbers and response time of Q_JPRM
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processing rate based on the proportion of different business 
types, the processing rate in QAQ_JPRM is the same. As 
the maximum length of accessing paths is 5 in Workload3 
and Workload4, the upper limit of mean response time of 
each micro-service is changed to 150 ms. The percentages 
of SLA-Violations of each micro-services on Workload3 and 
Workload4 have been shown in Table 7. Because of longer 
access paths, one micro-service blockage could influence the 
performance of more other related micro-services. Although 
both JPRM and QAQ_JPRM obtained worse performance 
on Workload 3 and Workload4 than on Workload1 and 
Workload2, QAQ_JPRM is still better than JPRM. JPRM’s 

degrees of SLA-Violations increase greatly when workloads 
changed from Workload3 to Workload4. On the contrary, 
with the aid of the adaptive processing rate and the JQN 
based queuing-length-aware reactive method, QAQ_JPRM’s 
performance nearly kept unchanged. And during 200 pricing 
intervals (2400 minutes), QAQ_JPRM only consumes 10 
additional VM pricing intervals.

6.3  Comparison with JPRM using NASA‑HTTP traces

More experiments under Workload5 and Workload6 with the 
same business characteristics of Table 2 based on NASA-
HTTP traces have been used to prove the effectiveness of 
QAQ_JPRM further. Compared with Wikipedia traces, the 
workload based on NASA-HTTP changes more frequently 
as shown in Fig. 5.

Table  8 shows the SLA-violations on Workload5 and 
Workload6 which illustrates that QAQ_JPRM is better than 
JPRM with lower degrees of SLA-violations and consuming 
only 5 additional VM pricing intervals. After the proportion 
of business types changes from Workload5 to Workload6, 
the percentage of SLA-Violations in S3 for JPRM is up to 

Fig. 9  Pod numbers, VM numbers and response time of QAQ_JPRM

Table 5  Characteristic of Workload3 and Workload4

Workload3 Workload4

Business type Proportion Business type Proportion
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Table 6  The initial processing rate of each micro-service in Work-
load3 and Workload4

Micro-services Methods

QAQ-JPRM JPRM

S
1

30.0 24.0
S
2

30.0 24.0
S
3

30.0 30.0
S
4

30.0 24.0
S
5

30.0 24.0
S
6

30.0 24.0
S
7

30.0 27.3
S
8

30.0 30.0

Table 7  Percentages of SLA-Violations in Workload3 and Workload4

Bold values indicate better results

Micro-services JPRM QAQ_JPRM

Workload3 Workload4 Workload3 Workload4

S
1

11.6% 16.5% 10.8% 11.4%
S
2

8.7% 14.1% 7.0% 7.2%
S
3

0.0% 0.0% 0.0% 0.0%
S
4

10.1% 3.8% 8.8% 1.4%
S
5

7.7% 14.4% 5.6% 7.5%
S
6

9.3% 13.3% 6.8% 5.6%
S
7

8.1% 12.6% 4.2% 2.6%
S
8

7.8% 11.8% 1.7% 2.0%
VM costs 1012 1022
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82.0% which means that the system has broken down. Fig-
ure 10 shows a comparison about Pod numbers, response 
time and VM numbers between JPRM and QAQ_JPRM. In 
Fig. 11a, JPRM’s response times of S3 become higher than 
5 seconds after the workload changes from Workload5 to 
Workload6. That is because the queuing-length continues 
to worse the blockage of system. Using fixed Pod process-
ing capacity in JPRM, the Auto-scaler has supplied insuffi-
cient Pods for S3 in Workload6. And without considering the 
queuing length, that smaller arrival rates have been meas-
ured by JPRM when there are serious blockages makes the 
condition worse. As for QAQ_JPRM, the system remains 
to work well and enough Pods have been scheduled to cope 
with varying request arrival rates.

6.4  Comparison with embedded auto‑scalers of K8s

In this experiment, QAQ_JPRM, HPA-CPU and HPA-
Request are compared using Workload1 and Workload2. 

(a) (b)

Fig. 10  Pod numbers, response time and VM numbers of JPRM and QAQ_JPRM in Workload5 and Workload6

Table 8  Percentages of SLA-Violations in Workload5 and Workload6 
based on NASA-HTTP traces

Bold values indicate better results

Micro-services JPRM QAQ_JPRM

Workload5 Workload6 Workload5 Workload6

S
1

16.0% 0.2% 5.4% 0.6%
S
2

8.9% 0.2% 1.4% 4.0%
S
3

6.1% 82.0% 1.6% 5.1%
S
4

3.8% 0.1% 0.7% 2.3%
S
5

0.1% 0.0% 0.0% 0.1%
VM Costs 895 900
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Based on the test in Sect. 4, CPU utilization threshold is set 
to be 60%. For HPA-Request, it is necessary to get the pod 
processing rate before tests, and the initial processing rate of 
each micro-service is shown in Table 9. For HPA-CPU and 
HPA-Request, the minimal number of Pods is set to be 2-5.

Table 10 shows each micro-service’s SLA-Violations of 
QAQ_JPRM, HPA-CPU and HPA-Request. It is because 
HPA-CPU and HPA-Request are only designed for Pod 

(a) (b)

Fig. 11  Pod numbers and response time of QAQ_JPRM , HPA-CPU and HPA-Request

Table 9  The initial processing rate of each micro-service

 Methods Micro-services

S
1

S
2

S
3

S
4

S
5

QAQ-JPRM 30.0 30.0 30.0 30.0 30.0
HPA-Request 25.8 25.6 28.0 24.0 28.0
HPA-CPU CPU utilization threshold : 60%

Table 10  Percentages of QAQ_JPRM SLA-Violations compared with HPA

Bold values indicate better results

Micro-ser-
vices

QAQ_JPRM HPA-CPU HPA-Request

Workload1 (%) Workload2 (%) Workload1 (%) Workload2 (%) Workload1 (%) Workload2 (%)

S
1

3.7 0.6 10.1. 1.2 22.6 0.8
S
2

2.7 6.3 4.5 6.7 16.8 3.2
S
3

0.0 6.1 0.9 10.1 12.7 71.4
S
4

0.2 0.0 2.0 4.0 12.2 3.0
S
5

0.2 0.0 0.7 1.2 0.0 0.0
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auto-scaling without considering the renting of VMs. For 
fair comparison, our approach QAQ_JPRM is given a fixed 
number of VMs similar with HPAs. Only Pods are auto-
scaled while VMs can not be released and newly rented. In 
total, QAQ_JPRM gets the lowest degrees of SLA-violation 
compared with HPA algorithms.

Figure 11a and b show the number of Pods and response 
times of QAQ_JPRM, HPA-CPU and HPA-Request. For 
HPA-Request, the request arrival rate is lower than the real 
value when there is congestion. The reason lies at that some 
requests can not be received by the Web container when 
the port is blocked, and the arrival rate is underestimated. 
Meanwhile, insufficient resource will make the congestion 
serious which misleads the arrival rate in turn, and the sys-
tem is blocked completely as shown in right part of Fig. 11a. 
HPA-CPU uses a linear model based on the CPU utilization 
to determine the required number of Pods which can not 
estimate the actual requirement accurately. And when there 
is congestion, the CPU utilization is always 100% which 
can not describe the degree of congestion and decreases the 
performance of HPA-CPU’s linear model greatly. Therefore, 
the scale of adjusting is not rational (too large or small) 
leading to serious SLA-violations. The response times of 
QAQ_JPRM are almost all below the SLA after the predic-
tion takes effect. QAQ_JPRM has allocated suitable number 
of Pods for each micro-service by the aid of the adaptive 
queuing model and queuing-length-aware JQN.

7  Conclusion

In this paper, a container auto-scaling algorithm is proposed 
for meshed micro-services in Kubernetes which takes the 
advantage of adaptive-processing-rate based queuing model 
and queuing-length-aware Jackson queuing network. Algo-
rithms are compared on a real Kubernetes cluster using 
the workload with changing proportions of business types. 
Experimental results illustrate that adaptive processing rate 
calculating method considering the changes of business 
type’s proportion is helpful to increasing the accuracy of 
queuing models. Meanwhile, queuing-length-aware JQN is 
able to restore from serious congestion by considering the 
impact of newly arrived and accumulated requests together. 
Our approach obtains the lowest percentage (decreasing 
about 6.33% - 12.29% ) of SLA-violations compared with 
both of existing JPRM and embedded HPA algorithms in 
Kubernetes, and the VM rental cost of our approach is only 
about 0.9% higher than that of JPRM. Designing resource 
auto-scaling algorithms for meshed micro-services in Edge 

Computing considering the collaboration of multiple edge 
nodes is promising future work.
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