
Vol.:(0123456789)1 3

CCF Transactions on High Performance Computing (2022) 4:165–181
https://doi.org/10.1007/s42514-022-00096-x

REGULAR PAPER

Adaptive processing rate based container provisioning for meshed
Micro‑services in Kubernetes Clouds

Hang Wu1 · Zhicheng Cai1 · Yamin Lei1 · Jian Xu1 · Rajkumar Buyya2

Received: 23 October 2021 / Accepted: 4 March 2022 / Published online: 6 April 2022
© China Computer Federation (CCF) 2022

Abstract
More and more applications are organized in the form of meshed micro-services which can be deployed on the popular
container orchestration platform Kubernetes. Designing appropriate container auto-scaling methods for such applications
in Kubernetes is beneficial to reducing costs and guaranteeing Quality of Services (QoS). However, most existing resource
provisioning methods focus on a service without considering interactions among meshed services. Meanwhile, synchronous
calls among services have different impacts on the processing ability of containers as the proportion of different business
type’s requests changes which is not considered in existing methods too. Therefore, in this article, an adaptive queuing model
and queuing-length aware Jackson queuing network based method is proposed. It adjusts the processing rate of containers
according to the ratio of synchronous calls and considers queuing tasks when calculating the impact of bottleneck tiers to
others. Experiments are performed on a real Kubernetes cluster, which illustrate that the proposal obtains the lowest per-
centage of Service Level Agreement (SLA)-violations (decreasing about 6.33%-12.29%) with about 0.9% additional costs
compared with existing methods of Kubernetes and other latest methods.

Keywords Kubernetes · Container · Micro-services · Provisioning · Jackson queuing network

1 Introduction

There is a trend of providing complex intelligent functions
in Web systems which usually contain multiple collaborative
micro-services. The structure of micro-services’ invoking
topology is meshed as shown in Fig. 1. Since containers
are more lightweight and portable than Virtual Machines
(VMs), deploying micro-services in containers elastically
rented from public Cloud vendors (Amazon Lightsail Con-
tainers Stormacq 2020) is able to provide elastic processing
capacity by renting and releasing containers dynamically.
Kubernetes (abbreviated as K8s) is a popular container
application orchestration and management system. Many

public Cloud vendors provide container-application devel-
oping and running platforms based on K8s such as Amazon
Elastic Kubernetes Service (Amazon EKS) (Amazon 2021)
and Alibaba Cloud Kubernetes (ACK) (AlibabaCloud 2021).
The main goal of this article is to design container auto-scal-
ing methods for meshed micro-services deployed on such
K8s-based platforms to reduce resource costs while guar-
anteeing Quality of Services (QoS). The main challenges of
developing container provisioning algorithms are complex
interactions among meshed micro-services and degenera-
tion processing ability caused by synchronous calls. Most
of existing container scheduling algorithms (Abdullah et al.
2020; Zhong and Buyya 2020; Delnat et al. 2018; Kuber-
netes 2021; Toka et al. 2020; Cai and Buyya 2021) for K8s
based platforms are designed for batch jobs or single micro-
services. Separate batch jobs or hybrid of batch jobs and
Web systems are scheduled to appropriate number of Pods
(containers) to decrease resource costs (Abdullah et al. 2020;
Zhong and Buyya 2020). In these works, it is assumed that
batch jobs and Web systems consume the fixed amount of
resources. However, resource consumed by Web systems
usually changes as workload changes. For single micro-ser-
vices, there are some K8s-embedded resource auto-scaling

 * Zhicheng Cai
 caizhicheng@njust.edu.cn

 Hang Wu
 hangwu@njust.edu.cn

1 School of Computer Science and Engineering, Nanjing
University of Science and Technology, Nanjing, China

2 Cloud Computing and Distributed Systems (CLOUDS)
Laboratory, School of Computing and Information Systems,
The University of Melbourne, Melbourne, Australia

http://crossmark.crossref.org/dialog/?doi=10.1007/s42514-022-00096-x&domain=pdf

166 H. Wu et al.

1 3

methods such as Horizontal and Vertical Pod Autoscaler
(HPA and VPA) (Kubernetes 2021) or their extensions (Del-
nat et al. 2018; Toka et al. 2020) which dynamically scale
resources based on threshold of Memory, CPU utilization
or other metrics. However, pure threshold-based methods
always lead to control delays. The hybrid of queuing and
control theory is nearly able to make the average response
time follow a given reference time by adjusting the number
of allocated containers dynamically (Cai and Buyya 2021).
These methods are all designed for single-tier systems with-
out considering the impact among meshed multi-tiers. Allo-
cating more containers to some bottleneck tiers will increase
the speed of generating calls to other tiers leading to new
bottlenecks. Bottlenecks must be eliminated by allocating
more containers to multiple affected tiers for avoiding bot-
tleneck shifting.

Synchronous invocations make the measuring of contain-
er’s processing ability and identifying of bottleneck com-
plex. Measuring processing rates appropriately is crucial to
queuing models which have been widely used to determining
the number of required containers for each micro-services
(Melikov et al. 2018; Huang et al. 2016; Jiang et al. 2013;
Lei et al. 2020). The processing rate of a micro-service’s
container without synchronous calls can be estimated by
stress testing. However, micro-services in meshed systems
need to call others to work collaboratively and synchronous
invocations consume additional resources which decrease
the processing ability. The request processing rate of a con-
tainer usually degrades as the ratio of synchronous invoca-
tion to other micro-services increases. Therefore, it is not
suitable to use a fixed estimated processing rate. Meanwhile,

a meshed Web system usually supports multiple types of
businesses with different invocation paths. From the per-
spective of a micro-service, it takes different time to wait for
the returning of synchronous calls for requests from different
business types, which has a great impact on the observed
average response time of a micro-service’s container. Con-
sequently, it is easy to misjudge the bottleneck by comparing
the average response time of the micro-service with a fixed
Response Time Upper Limit (RTUL) specified by Service
Level Agreement (SLA).

In this article, a hybrid of proactive and reactive method
based on Jackson queuing network with adaptive processing
rates and RTUL is proposed to elastically provision contain-
ers to meshed micro-services. The main contributions of our
work are as follows.

1. An adaptive processing rate calculating method, which
considers performance degeneration and proportion
changes of different business types’ requests, is devel-
oped to estimate the required number of containers accu-
rately based on queuing models.

2. The RTUL of each micro-service is updated dynami-
cally based on the proportion of different business types’
requests to improve the accuracy of identifying bottle-
necks.

3. The queuing length of each micro-service is considered
to calculate impact on other services accurately.

The rest of this paper is organized as follows. Section 2 is the
related work and Sect. 3 describes the problems of meshed
Web systems in Kubernetes. The impact of synchronous

Fig. 1 An example of meshed
micro-services

Users

Text
Searching

Server

 Database
Server

167Adaptive processing rate based container provisioning for meshed Micro‑services in Kubernetes…

1 3

calls on processing rate is analyzed in Sect. 4. The proposed
method is introduced in Sect. 5. Sections 6 and 7 are perfor-
mance evaluation on a real Kubernetes cluster, conclusion
and future work.

2 Related work

The architecture of Web systems is becoming more and more
complex which changes from single-tier (Cai and Buyya
2021; Toka et al. 2020) to linear multi-tier (Bi et al. 2015;
Wang et al. 2019; Adam et al. 2017; Zhang et al. 2016) and
then to meshed multi-tier (Lei et al. 2020; Xu and Buyya
2019) gradually. Resources allocated to Web systems might
be VMs (Qu et al 2018; Lorido-Botran et al. 2014; Al-
Dhuraibi et al. 2018) or containers (Adam et al. 2017; Xu
and Buyya 2019; Cai and Buyya 2021; Zhong and Buyya
2020; Kho et al 2018; Toka et al. 2020; Delnat et al. 2018).
For multi-tier systems, interactions among tiers can be cate-
gorized into synchronous and asynchronous calls (Chen et al
2017; Wang et al. 2019; Zhang et al. 2016; Lei et al. 2020).

Most of existing works are tailored for single-tier and lin-
ear multi-tier systems. For such simple structured systems,
threshold (Kubernetes 2021; Toka et al. 2020), queuing theory
(Melikov et al. 2018; Huang et al. 2016; Jiang et al. 2013),
control theory (Cai and Buyya 2021; Pan et al. 2008; Cai et al.
2020; Baresi et al. 2016), and reinforcement learning (Barrett
et al. 2013; Li and Venugopal 2011) have been used to allocate
resources elastically. Kubernetes’s embedded HPA (Kubernetes
2021) adjusts the number of Pods based on CPU or Memory
utilization, which is slow in reacting to performance changes.
HPA+ (Toka et al. 2020) is an extension of HPA which uses
LSTM (Long Short-Term Memory) to predict the number of
requests to amend the delay of reacting to performance changes.
The M/M/N queuing model is used to predict minimum4
amount of resources required to obtain a mean response time
smaller than a given upper limit (Huang et al. 2016). Thresh-
old and queuing model based methods usually lack the ability
of reacting to real-time deviations in terms of performance,
therefore, control theory and reinforcement learning have been
used to increase the reactive ability to real-time performance.
For Web systems based on hourly charged VMs, UCM was
proposed by Cai et al. (2020) which takes advantages of queu-
ing model and feedback control to avoid over-control and react
quickly to workload changes. For container based Web systems
in Kubernetes, an inverse-queuing model based feedback con-
trol was developed by Cai and Buyya (2021) to provision con-
tainers to single-tiers separately. However, they are not designed
for meshed multi-tier systems.

Only a few of existing works consider meshed multi-tier
systems while most of them are not for systems with syn-
chronous calls. Jackson queuing network (JQN) is widely

used to model the impact among meshed multiple queues.
For example, JPRM proposed by Lei et al. (2020) applied
JQN to predict the arrival rate of each tier and impact of
bottleneck tiers on others. However, the queuing length of
each tier is not considered when calculating the impact of
bottleneck tiers on others. Synchronous calls to other ser-
vices consume some server threads and connections even
if when they are waiting for the return of calls which has a
great impact on the processing ability of underline Contain-
ers or VMs, and the ratio of Synchronous calls may lead
to different degrees of performance degradation (Chen et al
2017; Wang et al. 2019). However, impact of synchronous
calls among meshed multi-tier services is not considered in
existing works.

Many algorithms are only evaluated on simulation plat-
forms and there are deviations between real and simulation
platforms. For example, JPRM (Lei et al. 2020) is only eval-
uated on a simulation environment established on Cloud-
Sim (Calheiros et al. 2011). UCM (Cai et al. 2020) is tested
on both CloudSim and a real Kubernetes cluster. But it is
for single-tier systems. ContainerCloudSim (Piraghaj et al.
2017) is a CloudSim extension which provides support for
modeling and simulation of containerized Cloud Comput-
ing environments. These methods cannot simulate exactly
the same as the actual production platforms. Therefore,
it is necessary to design and evaluate resource provision-
ing algorithms for real production systems such as Docker
Swarm (Xu and Buyya 2019; Magableh and Almiani 2020)
and Kubernetes (Cai and Buyya 2021; Zhong and Buyya
2020; Kho et al 2018; Toka et al. 2020; Delnat et al. 2018).

A comparison between our approach and existing meth-
ods is shown in Table 1. As a whole, most of existing
resource auto-scaling methods are designed for single or
linear multi-tier Web systems without synchronous calls.
In this article, our approach considers the queuing length
of each tier when calculating impacts among meshed tiers
using Jackson network, and performance degradation caused
by synchronous calls. Meanwhile, our approach is evaluated
on a real Kubernetes Cluster.

3 Problem description

Micro-service based architecture is beneficial to construct
flexible software systems. Each micro-service provides a
single function and is usually encapsulated as a RESTful
or SOAP-based Web service (Cai and Buyya 2021). A Web
system usually provides multiple types of businesses and
each of which needs the collaboration of different combina-
tions of micro-services. Requests of different business types
have different accessing paths on the graph of meshed micro-
services. Each micro-service usually has multiple contain-
ers to increase concurrent processing ability. Kubernetes is

168 H. Wu et al.

1 3

a container-based application management platform which
provides the function of creating a certain number of con-
tainers for each micro-service and deleting containers from
the micro-service.

Figure 2 shows the architecture of meshed micro-services
deployed in Kubernetes. The Master node is responsible
for managing Kubernetes cluster. Each container is usu-
ally embedded in a Pod which is the minimum scheduling
unit of K8s. Pods are deployed on Worker nodes which are
VMs rented from public Clouds. Containers on the same
Worker node have the same color and each micro-service
have multiple containers from different Workers. TraefikLab
(2021) is a front-end load balancer in charge of distributing
requests to back-end containers. The Resource Auto-scaler
scales resources through RESTful APIs. Logs of Traefik
are collected and analyzed by the Logs Manager to obtain
the mean response time, queuing length and so on for each
micro-service.

Different business types usually have different mean
response times because different combinations of micro-
services are invoked. Figure 3 is an example of a group
of business types with various accessing paths. Let
� = {Si|i ∈ {1, 2, 3… , n}} be the set of micro-services in
the Web system. bl ∈ B is the l − th business type provided
by the system, and bl = (Sl,1,… , Sl,k,…) where Sl,k ∈ � is
the k − th accessed micro-service of bl . For example, (S1) ,

(S1, S3, S5) and (S1, S4, S5) are three business types in Fig. 3.
S3 in b1 = (S1, S3, S5) means that S3 is the second accessed
micro-service in b1 . In SLA, the mean response time of each
business type should be smaller than an upper limit. The
objective of this article is to design container elastic provi-
sioning algorithms for the Resources Auto-scaler to mini-
mize resource costs while guaranteeing SLA.

4 Impact of synchronous calls

Asynchronous calls return immediately after being called so
that other consequent operations can be performed while the
asynchronous calls are performing simultaneously. On the
contrary, consequent operations can not be executed before
synchronous calls return. Connections of synchronous calls
should be maintained before the return which consume addi-
tional resources and decrease the processing ability of each
container.

In this article, the Jmeter (2021) is used to evaluate the
impact of synchronous calls. Three same micro-services Si ,
Sj and Sk which calculate the n − th Fibonacci number in a
recursive way, is selected as the test-bed. Three business
types b1 = (Si), b2 = (Si , Sj) and b3 = (Si , Sj , Sk) are tested
which all need to access Si . The objective is to obtain the
Throughput Per Second (TPS) of one container of Si under

Table 1 Comparison of our approach with existing resource provisioning algorithms for Web Systems

Works Resource type Objectives Architecture Resources provi-
sioning strategy

Workload predic-
tion

Platforms

JPRM (Lei et al.
2020)

VMs VM rental costs and
response time

Meshed multi-tier M/M/N queuing-
model

Holt-Winter’s
model

CloudSim

DCM (Chen et al
2017)

VMs CPU-utilization and
response time

Linear multi-tier CPU utilization
threshold

× Private Datacenter

EcoWare (Baresi
et al. 2016)

VMs containers CPU-core rental
time and response
time

Single-tier Control theory × EcoWare

BrownoutCon (Xu
and Buyya 2019)

VMs containers Power consumption Meshed
multi-tier

CPU utilization
threshold

Sliding windows Docker Swarm

HPA (Kubernetes
2021)

Containers Response time Single-tier Threshold of dif-
frent kinds of
metrics

× Kubernetes

HPA+ (Toka et al.
2020)

Containers Response time Single-tier Requests and CPU
utilization thresh-
old r

LSTM Kubernetes

FeedBack_
InverseQM (Cai
and Buyya 2021)

Containers Response time Single-tier M/M/N queuing
model with con-
trol theory

× Kubernetes

Proposed method VMs containers VM rental costs and
response time

Meshed multi-tier M/M/N queuing
model with adap-
tive processing
rate

Holt Winter’s
model

Kubernetes

169Adaptive processing rate based container provisioning for meshed Micro‑services in Kubernetes…

1 3

different business types. In other words, Si is only allocated
one container with one CPU core and 500 Mi Memory, while
Sj and Sk have sufficient number of containers. The speed of
generating requests of each business type is increased gradu-
ally until the CPU utilization of Si ’s container reaches 60% .
Then, the TPS of one Si ’s container of each business type is
obtained. In order to evaluate the impact of the complexity
of micro-services on processing ability, n of the Fibonacci
micro-service takes different values from {23, 24,… , 30}.

Figure 4 shows the TPS of Si ’s container with differ-
ent parameter n and business types which illustrates that

TPS decreases when the length of tasks increases and the
micro-service accesses other micro-services. The TPS of
one Si ’s container in different business types b2 and b3 is
the same which proves that synchronous calls decreases
the processing ability (decreased TPS) of containers, but
the depth of micro-services in the synchronous calls has a
very little impact on the processing ability. The degradation
degree of processing ability decreases as the task-length of
micro-services increases. The reason is that fewer synchro-
nous calls are generated to others because the TPS of Si
decreased when task lengths of Si become longer. Therefore,
the degradation ratio of processing ability is mainly affected
by the computation requirements of the service generating
calls rather than those of calls.

5 Proposed methods

In this paper, a hybrid of proactive and reactive resource pro-
visioning architecture similar with JPRM (Lei et al. 2020)
is applied. In the proactive part, the request arrival rate of
each tier(micro-service) is predicted by time series analysis
methods and Jackson network. Then the minimum6 number
of containers required by each tier is obtained by queuing

Fig. 2 Architecture of resources
manager in Kubernetes

Container

Users
Pod

Scaling
RestfulApi

Tr
ae

fik

Tr
ae

fik

Logs
Manager

Resources
Auto-scaler

Kubernetes
Controller

collect logs

Meshed Micro-servicesMeshed Micro-servicesMeshed Micro-services

WorkerWorkerWorker WorkerWorkerWorkerWorkerWorkerWorkerMasterMasterMaster

Fig. 3 An example of users acessing different types of businesses

170 H. Wu et al.

1 3

models. In the reactive part, the impact of bottleneck tiers on
other tiers is considered to eliminate bottlenecks quickly. In
JPRM (Lei et al. 2020), queuing models with fixed process-
ing rates are used. However, synchronous calls degrade the
processing ability of containers. Therefore, in this article,
an adaptive processing rate based queuing model is applied
which adjust the processing rate of containers based on the
ratio of synchronous calls dynamically. When a micro-ser-
vice is a bottleneck, the resource is not sufficient, the number
of requests passing through the tier per second is limited by
the total processing rate (smaller than the arrival rate) and
many requests are blocked in the queue. When the bottleneck
is eliminated by providing more resources, it is assumed
that the increased speed of calling other tiers is equal to the
arrival rate minus the old processing rate. However, JPRM
ignored that there are many tasks in queues of bottleneck
tiers which generate calls to other tiers too. Therefore, in
this article, the impact of queuing tasks is considered. When
the increased speed of generating calls to other tiers are
obtained, Jackson network is applied to obtain the request
arrival rate of each tier.

5.1 Adaptive processing rate based Queuing Model

Queuing model has been used to model the relation among
the processing rate � , container number � , request arrival
rate � and mean response time of one micro-service (Jiang
et al. 2013; Lei et al. 2020). As mentioned above, the request
processing rate of one container is affected by the ratio of
synchronous calls. Using a fixed processing rate can not esti-
mate the required number of Pods accurately.

In this article, the processing rate of each service Si ’s
container is calculated dynamically based on the ratio of
requests from different business types. Let �i be the process-
ing rate of Si ’s container when there is no synchronous calls
and �i is the degradation ratio of processing ability when
there are synchronous calls. The processing rate of bl ’s
requests is �i,l = �i × �l, bl ∈ Bi where Bi is the set of busi-
ness types containing Si . �l = �i when bl generates synchro-
nous calls from Si , otherwise, �l = 1 . Therefore, the average
processing time (not including waiting time) of bl ’s requests
is 1

�i,l

 . Let �i,l be the arrival rate of bl ’s requests to Si and �i be
the total arrival rate of all requests, the expected processing
time of all requests is

Then the combined average processing rate �̂�i of Si for all
business types is

Based on M/M/N queuing model (Cai and Buyya 2021; Lei
et al. 2020; Jiang et al. 2013), the probability of no requests
in Si is

The expected of response time of requests is

(1)�i =
∑ �i,l

�i
×

1

�i,l

(bl ∈ Bi)

(2)�̂�i =
1

𝛤i

(3)ℙ0 =

⎡⎢⎢⎢⎣

Ni−1�
z=0

1

(z)!
(
𝜆

�̂�i

)z +
𝜆N
i

Ni!
�
i −

𝜆

Ni×�̂�i

�
�̂�
Ni

i

⎤⎥⎥⎥⎦

−1

Fig. 4 The Pod TPS in param-
eter 23-30 under three types
of business and the Pod TPS
reduction ratio from business
type (Si) to business type (Si, Sj)

171Adaptive processing rate based container provisioning for meshed Micro‑services in Kubernetes…

1 3

The minimum number of containers required by Si to make
the mean response time smaller than a given upper limit
ŴSi

 is

5.2 Prediction based proactive method

In order to deal with workload changes in advance, predict-
ing workloads is very important. Multiplicative Holt-Win-
ter’s model (Lei et al. 2020; Balaji et al. 2014), which can
predict quickly and precisely for time series data, has been
applied. In case of the blockage of system , the prediction is
mainly used to forecast workload increase.

The formal description of the proactive method is shown
in Algorithm 1. As described in Sect. 4, For each micro-
service Si , the total arrival rate �i and the arrival rate �i,l of
each business type are first collected from Logs Manager.
Then, the arrival rate �p

i
 of next time interval is predicted by

the Multiplicative Holt-Winter, and the real-time processing
rate �̂�i of Si ’s container based on the current combination
of different business types is calculated by Equation (2).
Next, the required number of containers Ni for Si is obtained
by Equation (5) based on the predicted arrival rate �p

i
 and

�̂�i . However, if the predicted arrival rate is smaller than
the current arrival rate, the current arrival rate is used to
calculate the required number of containers. Finally, the
number of containers allocated to Si is adjusted to be Ni by
allocating or releasing containers.

(4)
WSi

(Ni, 𝜆i, �̂�i) = ℙ0

(𝜆i∕�̂�i)
Ni

Ni!(Ni�̂�i)

(
1 −

(
𝜆i

Ni�̂�i

)2
) +

1

�̂�i

(5)Ni = min
Ni∈Z

+
{Ni|WSi

(Ni, 𝜆i, �̂�i) ≤ ŴSi
}

5.3 Queuing‑length‑aware reactive method

Since workload changes dynamically, there might be devia-
tions between the real-time request arrival rate and the pre-
dicted arrival rate during the proactive scheduling interval.
Therefore, a reactive method is called more frequently than
the proactive method to cope with the changes of workload.
When the resource is not sufficient for some micro-services,
these micro-services are called bottlenecks, and bottlenecks
should be eliminated by considering the impact to other
micro-services. JQN has been widely used to model the
interactions among networked queuing systems which can
be used to estimate the arrival rate of each micro-service
after eliminating bottlenecks considering increased speeds
of generating calls from bottleneck services. However, the
queuing lengths of bottleneck services are not considered
and the criteria of judging bottlenecks did not considered
the impact of business types in existing method.

In this article, a JQN based queuing-length-aware reactive
method has been proposed. Before JQN can be used to esti-
mate the final arrival rate of each micro-service, increased
speed of generating calls to other services (called additional
passing rate) from bottleneck services should be calculated.
The basic of obtain additional passing rates is to determine
which micro-services are bottlenecks. The intuitive way of
finding bottlenecks is to compare the average response time
with an RTUL, and a fixed RTUL of each micro-service is
usually set based on the complexity of itself without consid-
ering impact of synchronous calls. However, synchronous
calls of different business types have different waiting times

172 H. Wu et al.

1 3

making the total processing time diverse. A larger response
time does not mean the service is a bottleneck because it
may be the result of synchronous calls to other services. The
proportion of different types of business changes dynami-
cally leading to different response time as well.

In this article, the RTUL of each micro-service is adjusted
dynamically based on the proportion of different business
types. Let pl,i be the partial accessing path starting from Si
to the last service of the business type bl ∈ Bi . When there
is no synchronous calls, ti denotes the basic processing time
of Si . Then the total processing time of the partial path pl,i is

Different partial paths have different processing time, and
the expected processing time of all partial paths starting
from Si is adopted as the RTUL (called RTUL-b) of Si as
follows

RTUL-b is the theoretical response time of Si under the
current workload type with sufficient resource. Therefore,
comparing the average response time with RTUL-b is able
to identifying bottlenecks more accurately.

Queuing-length of each bottleneck tier also has a great
impact on other tiers. When the average response time of
Si is larger than RTULi , Si is a bottleneck. �̂�i × Ni is the total
processing ability of all Si ’s containers. If 𝜆i > �̂�i × Ni , Si
is unstable and the queuing length will increase gradually
until the timeout or maximum number of connection limit
is reached. Otherwise, Si is stable, but the number of con-
tainers is not sufficient and the queuing length qi increases.
When the bottleneck tiers are allocated more resources,
the increased speed of generating calls to other services is
affected not only by 𝜆i − �̂�i × Ni (current speed), but by qi too
(accumulated requests). Therefore, the additional speed of
generating calls to others from Si (increased passing rate) is

which is determined based on the stability of Si separately.
After the increased passing rate is calculated for all bot-

tleneck tiers, JQN is applied to calculate the final arrival
rate of each tier. In JQN, the invoking probability among
different micro-services is described a matrix �

(6)Tl,i =
∑
Sk∈pl,i

tk

(7)RTULi =
∑
bl∈Bi

�i,l

�i
× Tl,i

(8)𝛥𝜆i =

{
𝜆i − �̂�i × Ni + qi �̂�i × Ni < 𝜆i
qi otherwise

(9)� =

⎛⎜⎜⎝

�11 ⋯ �1n

⋮ �ij ⋮

�n1 ⋯ �nn

⎞⎟⎟⎠

which can be obtained from logs. �ij(i, j ≠ 0) is the ratio
of Si calling Sj . � changes when the proportion of differ-
ent business types changes. Therefore, � is updated every
proactive interval. Based on � and �i , the final arrival rate
�i of Si can be obtained by solving the following system of
linear equations

Finally, container numbers Ni for each service Si can be
obtained by Equation (5). Only when Ni is larger than the
current number of containers Nc

i
 allocated Si , additional

containers are allocated to Si , i.e., reactive method does
not release resources because these resources allocated by
the proactive method might be used in the left time of the
interval.

5.4 Integer linear programming based VM
provisioning

Previous methods are all about the allocating and releasing
of containers. However, these containers are deployed in
VMs which are rented from public Clouds. It is assumed
that configurations of different micro-service’s Pods are the
same, all types of VMs can hold integer number of Pods.
Let Hk, k ∈ {1, 2,… ,M} be the number of Pods (containers)
can be hold by the k − th type of VMs, Cpod =

∑
i∈{1,2,…,n} Ni

be the total number of Pods required by all services, and
C
pod
p be the current number of Pods of all services. When

Cpod > C
pod
p , gap = Cpod − C

pod
p number of Pods should be

rented. The following integer linear programming (ILP)
model is build and solved by or-tools to get the optimal
number of VMs.

where Cvm
k

 is the number of newly rented VMs of type k.
When Cpod < C

pod
p , gap = C

pod
p − Cpod number of Pods

should be released. Another ILP model is used as follows

where Cvm
k

 is the number of released VMs of type k. When-
ever a VM is determined to be released, the action takes
effect only at the next pricing interval of it.

(10)��
i
= �i + qi +

n∑
j=1

��j × �ji, i ∈ {1, 2,… , n}

(11)

min 𝛥Cpod

s.t. 𝛥Cpod > gap

𝛥Cpod =
∑

Hk × Cvm
k

k ∈ {1, 2,… ,M}

(12)

max 𝛥Cpod

s.t. 𝛥Cpod < gap

𝛥Cpod =
∑

Hk × Cvm
k

k ∈ {1, 2,… ,M}

173Adaptive processing rate based container provisioning for meshed Micro‑services in Kubernetes…

1 3

6 Performance evaluation

The proposed method has been compared with existing
algorithms on a Kubernetes cluster using Wikipedia traces
(Urdaneta et al. 2009) and NASA-HTTP traces (Arlitt and
Williamson 1996). Each worker node deployed on VMs has
8 virtual CPU cores and 4 GB Memory. One Pod is allocated
1 CPU core and 500Mi Memory. The meshed Web system
consisting of multiple micro-services that all calculate Fibo-
nacci numbers with n = 28 is applied. The Weighted Round
Robin (WRR) is used as the workload balancing algorithm
of TraefikLab (2021). Connection time-out of Traefik is
6s and request rate limit for each micro-service is 1000/s.
User access traces of Wikipedia and NASA-HTTP shown
in Fig. 5 are used to generate requests through Jmeter. The
arrival rate of each business is proportional to the real load
data.

Our approach has been compared with JPRM, JPRM
with adaptive processing rate based queuing models (AQ_
JPRM) and queue-length-aware JPRM (Q_JPRM) to verify
the effectiveness of adaptive processing rate based queu-
ing model and queue-length-aware reactive method using
workload (called Workload1 and Workload2) based on
Wikipedia traces. Because our approach QAQ-JPRM and
AQ-JPRM have the capacity of calculating processing rate
based on the ratio of synchronous calls. The initial process-
ing rate of them is set to be the original processing rate
without synchronous calls. On the contrary, the processing
rates of micro-services under other algorithms without adap-
tive calculating ability need to be measured using Jmeter in
advance like Fig. 4. And then QAQ_JPRM has been com-
pared with JPRM under workloads (called Workload3 and
Workload4) with more micro-services and longer accessing
paths generated based on Wikipedia traces. For showing

the generalization ability, QAQ_JPRM is also compared
with JPRM under workloads (called Workload5 and Work-
load6) based on NASA-HTTP traces. The length of proac-
tive scheduling intervals is 720 seconds and the length of
reactive scheduling intervals is 180 seconds. The price per
interval of VMs is 1. Our approach is also compared with the
embedded algorithm HPA of Kubernetes. HPA-CPU is the
HPA which uses the average CPU utilization of each Pod as
the threshold. HPA-Request is another HPA algorithm which
uses the request rate of each Pod as threshold.

6.1 Comparison between JPRM, AQ_JPRM, Q_JPRM
and QAQ_JPRM

The proportions of different types of business of Work-
load1 and Workload2 are shown in Table 2. The average
processing time of each micro-service without synchronous
calls is about 30ms, and the reference response time Ws of
micro-services used by the queuing model is set to be 50ms.
Because the maximum length of accessing paths is 3, the
upper limit of mean response time of each micro-service is
defined to be 90ms in SLA. Using adaptive queuing model,
AQ_JPRM and QAQ_JPRM only need the basic pod pro-
cessing rate that there is no synchronous calls in each pod.

Fig. 5 The Arrival Rate of
Wikipedia traces and NASA-
HTTP traces

Table 2 Characteristic of Workload1 and Workload2 based on Wiki-
pedia traces

Workload1 Workload2

Business type Proportion Business type Proportion

(S
1

) 0.44 (S
3

) 0.44
(S

1

, S
3

) 0.22 (S
3

, S
1

) 0.22
(S

2

) 0.20 (S
2

) 0.20
(S

2

, S
4

, S
5

) 0.13 (S
2

, S
4

, S
5

) 0.13
others 0.01 others 0.01

174 H. Wu et al.

1 3

But for JPRM and Q_JPRM, it is crucial to get the pod pro-
cessing rate before tests. The initial processing rate of each
service is shown in Table 3.

Table 4 shows percentages of SLA-violations under Work-
load1 and Workload2 and total VM rental costs of all JPRM
based algorithms. As a whole, our proposed approach (QAQ_
JPRM) gets the lowest percentages of SLA-Violations with
only 0.9% higher VM rental costs than existing JPRM.

Figures 6 and 7 show Pod numbers, response times and
VM numbers of JPRM and AQ_JPRM. Because of space
limitation, only results of the most representative micro-
services are displayed. When the workload changes from
Workload1 to Workload2, the proportion of business types
changes as Table 2 shows, the processing rate of Pods in
S3 has decreased but S1 has increased. Because the initial
processing rates of JPRM is tested by JMeter based on
Workload1, JPRM can not estimate the number of required
containers accurately when the workload changes from
Workload1 to Workload2. For example, the resource of
S3 is not sufficient while S1 has excessive number of Pods.
The degree of SLA-violations in Workload2 is serious than
that in Workload1. On the contrary, AQ_JPRM is able to
adjust the processing rate of each service when the work-
load changes. The Pod number of S3 is increased while the
Pod number of S1 is decrease by AQ_JPRM. The degrees of
SLA-Violations in Workload1 and Workload2 are nearly the
same and smaller than those of JPRM which are not affected
by the changes of workload types. However, the results also
show that AQ_JPRM reactive method is not able to restore

the system from congestion to normal whenever there is a
surge in workload.

Figure 8 shows Pod numbers, response times and VM
numbers of Q_JPRM. When there is a surge in workload,
many requests might be blocked in waiting queues. Pro-
viding resources only based on the current arrival rate (in
AQ_JPRM) is not sufficient to restore the system to normal
state because it does not consider blocked requests. On the

Table 3 The initial processing rate of each micro-service

Methods Micro-services

S
1

S
2

S
3

S
4

S
5

QAQ-JPRM 30.0 30.0 30.0 30.0 30.0
AQ-JPRM 30.0 30.0 30.0 30.0 30.0
Q-JPRM 27.7 26.6 30.0 25.0 30.0
JPRM 27.7 26.6 30.0 25.0 30.0

Table 4 Percentages of SLA-violations and VM rental costs in Workload1 and Workload2

Bold values indicate better results

Micro-services JPRM AQ_JPRM Q_JPRM QAQ_JPRM

Workload1 Workload2 Workload1 Workload2 Workload1 Workload2 Workload1 Workload2

S
1

18.4% 1.1% 13.1% 1.1% 6.2% 0.0% 3.4% 0.9%
S
2

11.1% 7.2% 4.2% 5.2% 3.5% 2.8% 1.4% 3.2%
S
3

6.4% 20.1% 1.5% 14.6% 0.6% 14.4% 0.3% 6.7%
S
4

8.1% 6.1% 1.5% 2.4% 1.6% 1.2% 0.6% 0.6%
S
5

1.0% 2.0% 0.5% 1.2% 0.7% 0.3% 0.2% 0.3%
VM costs 870 860 901 878

Fig. 6 Pod numbers, VM numbers and response time of JPRM

175Adaptive processing rate based container provisioning for meshed Micro‑services in Kubernetes…

1 3

contrary, Q_JPRM’s reactive method is able to allocate nec-
essary containers to all related services based on queuing
lengths. As shown in Figs. 6, 7 and 8 within 1200 min in
Workload1, the Q_JPRM provides more Pods in the inter-
vals when request arrival rates surge. And the more stable
system in Q_JPRM provides enough Pods to handle users’
requests. As for JPRM and AQ_JPRM, without considering
the queuing requests, systems are easy to break down when
facing workload surge and VMs scaling. For the first two
peaks in Workload1, Q_JPRM can prevent the system from
all congestions but AQ_JPRM and JPRM cannot. Therefore,
Q_JPRM gets lower degree of SLA-violations than JPRM
and AQ_JPRM. However, when the workload changes from
Workload1 to Workload2, Q_JPRM’s performance in Work-
load2 becomes worse than that in Workload1. The reason is
that Q_JPRM can not adjust processing rate when the ratio
of synchronous calls changes which is similar with JPRM.

Figure 9 shows Pod numbers, response times and VM
numbers of QAQ_JPRM which illustrates that most of
response time in QAQ_JPRM are below SLA, especially
after the prediction method collected sufficient data to

forecast the arrival rate accurately. The reason is that col-
laboration of processing rate adjusting method and queuing-
length-aware JQN is able to increase the accuracy of queuing
models and restore from serious congestion simultaneously.
QAQ_JPRM performs well no matter how the proportion of
different business types changes. QAQ_JPRM has the simi-
lar performance with Q_JPRM in Workload1 and the best
performance in Workload2. There are still SLA-violations
in some periods inevitably, because the migration of Pods
from a released VM to another VM takes about 20s. In total,
the VM rental costs of all JPRM based methods are similar
which means that QAQ_JPRM obtains much lower degrees
of SLA-violation with a little bit additional cost.

6.2 Effectiveness under more micro‑services
and longer accessing paths

The characteristics of Workload3 and Workload4 are
shown in Table 5 which is based on Wikipedia traces. The
initial processing rate of each micro-service is shown in
Table 6. Because QAQ_JPRM is able to calculate adaptive

Fig. 7 Pod numbers, VM numbers and response time of AQ_JPRM Fig. 8 Pod numbers, VM numbers and response time of Q_JPRM

176 H. Wu et al.

1 3

processing rate based on the proportion of different business
types, the processing rate in QAQ_JPRM is the same. As
the maximum length of accessing paths is 5 in Workload3
and Workload4, the upper limit of mean response time of
each micro-service is changed to 150 ms. The percentages
of SLA-Violations of each micro-services on Workload3 and
Workload4 have been shown in Table 7. Because of longer
access paths, one micro-service blockage could influence the
performance of more other related micro-services. Although
both JPRM and QAQ_JPRM obtained worse performance
on Workload 3 and Workload4 than on Workload1 and
Workload2, QAQ_JPRM is still better than JPRM. JPRM’s

degrees of SLA-Violations increase greatly when workloads
changed from Workload3 to Workload4. On the contrary,
with the aid of the adaptive processing rate and the JQN
based queuing-length-aware reactive method, QAQ_JPRM’s
performance nearly kept unchanged. And during 200 pricing
intervals (2400 minutes), QAQ_JPRM only consumes 10
additional VM pricing intervals.

6.3 Comparison with JPRM using NASA‑HTTP traces

More experiments under Workload5 and Workload6 with the
same business characteristics of Table 2 based on NASA-
HTTP traces have been used to prove the effectiveness of
QAQ_JPRM further. Compared with Wikipedia traces, the
workload based on NASA-HTTP changes more frequently
as shown in Fig. 5.

Table 8 shows the SLA-violations on Workload5 and
Workload6 which illustrates that QAQ_JPRM is better than
JPRM with lower degrees of SLA-violations and consuming
only 5 additional VM pricing intervals. After the proportion
of business types changes from Workload5 to Workload6,
the percentage of SLA-Violations in S3 for JPRM is up to

Fig. 9 Pod numbers, VM numbers and response time of QAQ_JPRM

Table 5 Characteristic of Workload3 and Workload4

Workload3 Workload4

Business type Proportion Business type Proportion

(S
3

) 0.10 (S
3

) 0.10
(S

2

, S
5

, S
7

) 0.55 (S
2

, S
8

, S
4

) 0.55
(S

1

, S
4

, S
6

, S
7

, S
8

) 0.35 (S
1

, S
5

, S
6

, S
7

, S
8

) 0.35

Table 6 The initial processing rate of each micro-service in Work-
load3 and Workload4

Micro-services Methods

QAQ-JPRM JPRM

S
1

30.0 24.0
S
2

30.0 24.0
S
3

30.0 30.0
S
4

30.0 24.0
S
5

30.0 24.0
S
6

30.0 24.0
S
7

30.0 27.3
S
8

30.0 30.0

Table 7 Percentages of SLA-Violations in Workload3 and Workload4

Bold values indicate better results

Micro-services JPRM QAQ_JPRM

Workload3 Workload4 Workload3 Workload4

S
1

11.6% 16.5% 10.8% 11.4%
S
2

8.7% 14.1% 7.0% 7.2%
S
3

0.0% 0.0% 0.0% 0.0%
S
4

10.1% 3.8% 8.8% 1.4%
S
5

7.7% 14.4% 5.6% 7.5%
S
6

9.3% 13.3% 6.8% 5.6%
S
7

8.1% 12.6% 4.2% 2.6%
S
8

7.8% 11.8% 1.7% 2.0%
VM costs 1012 1022

177Adaptive processing rate based container provisioning for meshed Micro‑services in Kubernetes…

1 3

82.0% which means that the system has broken down. Fig-
ure 10 shows a comparison about Pod numbers, response
time and VM numbers between JPRM and QAQ_JPRM. In
Fig. 11a, JPRM’s response times of S3 become higher than
5 seconds after the workload changes from Workload5 to
Workload6. That is because the queuing-length continues
to worse the blockage of system. Using fixed Pod process-
ing capacity in JPRM, the Auto-scaler has supplied insuffi-
cient Pods for S3 in Workload6. And without considering the
queuing length, that smaller arrival rates have been meas-
ured by JPRM when there are serious blockages makes the
condition worse. As for QAQ_JPRM, the system remains
to work well and enough Pods have been scheduled to cope
with varying request arrival rates.

6.4 Comparison with embedded auto‑scalers of K8s

In this experiment, QAQ_JPRM, HPA-CPU and HPA-
Request are compared using Workload1 and Workload2.

(a) (b)

Fig. 10 Pod numbers, response time and VM numbers of JPRM and QAQ_JPRM in Workload5 and Workload6

Table 8 Percentages of SLA-Violations in Workload5 and Workload6
based on NASA-HTTP traces

Bold values indicate better results

Micro-services JPRM QAQ_JPRM

Workload5 Workload6 Workload5 Workload6

S
1

16.0% 0.2% 5.4% 0.6%
S
2

8.9% 0.2% 1.4% 4.0%
S
3

6.1% 82.0% 1.6% 5.1%
S
4

3.8% 0.1% 0.7% 2.3%
S
5

0.1% 0.0% 0.0% 0.1%
VM Costs 895 900

178 H. Wu et al.

1 3

Based on the test in Sect. 4, CPU utilization threshold is set
to be 60%. For HPA-Request, it is necessary to get the pod
processing rate before tests, and the initial processing rate of
each micro-service is shown in Table 9. For HPA-CPU and
HPA-Request, the minimal number of Pods is set to be 2-5.

Table 10 shows each micro-service’s SLA-Violations of
QAQ_JPRM, HPA-CPU and HPA-Request. It is because
HPA-CPU and HPA-Request are only designed for Pod

(a) (b)

Fig. 11 Pod numbers and response time of QAQ_JPRM , HPA-CPU and HPA-Request

Table 9 The initial processing rate of each micro-service

 Methods Micro-services

S
1

S
2

S
3

S
4

S
5

QAQ-JPRM 30.0 30.0 30.0 30.0 30.0
HPA-Request 25.8 25.6 28.0 24.0 28.0
HPA-CPU CPU utilization threshold : 60%

Table 10 Percentages of QAQ_JPRM SLA-Violations compared with HPA

Bold values indicate better results

Micro-ser-
vices

QAQ_JPRM HPA-CPU HPA-Request

Workload1 (%) Workload2 (%) Workload1 (%) Workload2 (%) Workload1 (%) Workload2 (%)

S
1

3.7 0.6 10.1. 1.2 22.6 0.8
S
2

2.7 6.3 4.5 6.7 16.8 3.2
S
3

0.0 6.1 0.9 10.1 12.7 71.4
S
4

0.2 0.0 2.0 4.0 12.2 3.0
S
5

0.2 0.0 0.7 1.2 0.0 0.0

179Adaptive processing rate based container provisioning for meshed Micro‑services in Kubernetes…

1 3

auto-scaling without considering the renting of VMs. For
fair comparison, our approach QAQ_JPRM is given a fixed
number of VMs similar with HPAs. Only Pods are auto-
scaled while VMs can not be released and newly rented. In
total, QAQ_JPRM gets the lowest degrees of SLA-violation
compared with HPA algorithms.

Figure 11a and b show the number of Pods and response
times of QAQ_JPRM, HPA-CPU and HPA-Request. For
HPA-Request, the request arrival rate is lower than the real
value when there is congestion. The reason lies at that some
requests can not be received by the Web container when
the port is blocked, and the arrival rate is underestimated.
Meanwhile, insufficient resource will make the congestion
serious which misleads the arrival rate in turn, and the sys-
tem is blocked completely as shown in right part of Fig. 11a.
HPA-CPU uses a linear model based on the CPU utilization
to determine the required number of Pods which can not
estimate the actual requirement accurately. And when there
is congestion, the CPU utilization is always 100% which
can not describe the degree of congestion and decreases the
performance of HPA-CPU’s linear model greatly. Therefore,
the scale of adjusting is not rational (too large or small)
leading to serious SLA-violations. The response times of
QAQ_JPRM are almost all below the SLA after the predic-
tion takes effect. QAQ_JPRM has allocated suitable number
of Pods for each micro-service by the aid of the adaptive
queuing model and queuing-length-aware JQN.

7 Conclusion

In this paper, a container auto-scaling algorithm is proposed
for meshed micro-services in Kubernetes which takes the
advantage of adaptive-processing-rate based queuing model
and queuing-length-aware Jackson queuing network. Algo-
rithms are compared on a real Kubernetes cluster using
the workload with changing proportions of business types.
Experimental results illustrate that adaptive processing rate
calculating method considering the changes of business
type’s proportion is helpful to increasing the accuracy of
queuing models. Meanwhile, queuing-length-aware JQN is
able to restore from serious congestion by considering the
impact of newly arrived and accumulated requests together.
Our approach obtains the lowest percentage (decreasing
about 6.33% - 12.29%) of SLA-violations compared with
both of existing JPRM and embedded HPA algorithms in
Kubernetes, and the VM rental cost of our approach is only
about 0.9% higher than that of JPRM. Designing resource
auto-scaling algorithms for meshed micro-services in Edge

Computing considering the collaboration of multiple edge
nodes is promising future work.

Acknowledgements This work is supported by the National
Natural Science Foundation of China (Grant No. 61972202,
61872186, 61973161, 61991404), the Fundamental Research Funds
for the Central Universities (No. 30919011235).

References

Abdullah, M., Iqbal, W., Bukhari, F., Erradi, A.: Diminishing returns
and deep learning for adaptive CPU resource allocation of con-
tainers. IEEE Trans. Netw. Serv. Manag. 17(4), 2052–2063
(2020). https:// doi. org/ 10. 1109/ TNSM. 2020. 30330 25

Adam, O., Lee, Y.C., Zomaya, A.Y.: Stochastic resource provisioning
for containerized multi-tier web services in clouds. IEEE Trans.
Parallel Distrib. Syst. 28(7), 2060–2073 (2017). https:// doi. org/
10. 1109/ TPDS. 2016. 26390 09

Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., Merle, P.: Elasticity in cloud
computing: state of the art and research challenges. IEEE Trans.
Serv. Comput. 11(2), 430–447 (2018). https:// doi. org/ 10. 1109/
TSC. 2017. 27110 09

AlibabaCloud.: Container service for kubernetes. https:// www. aliba
baclo ud. com/ produ ct/ kuber netes. Accessed 22 Oct 2021

Amazon.: Amazon elastic kubernetes service. https:// aws. amazon. com/
eks/. Accessed 22 Oct 2021

Arlitt, M.F., Williamson, C.L.: Web server workload characterization:
the search for invariants. In: Proceedings of the 1996 ACM SIG-
METRICS international conference on measurement and mod-
eling of computer systems, association for computing machinery,
New York, NY, USA, SIGMETRICS ’96, pp. 126–137, (1996).
https:// doi. org/ 10. 1145/ 233013. 233034

Balaji, M., Rao, G.S.V., Kumar, C.A.: A comparitive study of predic-
tive models for cloud infrastructure management. In: 2014 14th
IEEE/ACM international symposium on cluster, cloud and grid
computing, pp. 923–926, (2014). https:// doi. org/ 10. 1109/ CCGrid.
2014. 32

Baresi, L., Guinea, S., Leva, A., Quattrocchi. G.: A discrete-time feed-
back controller for containerized cloud applications. In: Proceed-
ings of the 2016 24th ACM SIGSOFT international symposium
on foundations of software engineering, association for computing
machinery, New York, NY, USA, FSE 2016, pp. 217–228, (2016).
https:// doi. org/ 10. 1145/ 29502 90. 29503 28

Barrett, E., Howley, E., Duggan, J.: Applying reinforcement learning
towards automating resource allocation and application scalability
in the cloud. Concurr. Comput. Pract. Exp. 25(12), 1656–1674
(2013). https:// doi. org/ 10. 1002/ cpe. 2864

Bi, J., Yuan, H., Tie, M., Tan, W.: Sla-based optimisation of virtual-
ised resource for multi-tier web applications in cloud data centres.
Enterp. Inf. Syst. 9(7), 743–767 (2015). https:// doi. org/ 10. 1080/
17517 575. 2013. 830342

Cai, Z., Buyya, R.: Inverse queuing model based feedback control for
elastic container provisioning of web systems in Kubernetes. IEEE
Trans. Comput. (2021). https:// doi. org/ 10. 1109/ TC. 2021. 30495 98

Cai, Z., Liu, D., Lu, Y., Buyya, R.: Unequal-interval based loosely
coupled control method for auto-scaling heterogeneous cloud

https://doi.org/10.1109/TNSM.2020.3033025
https://doi.org/10.1109/TPDS.2016.2639009
https://doi.org/10.1109/TPDS.2016.2639009
https://doi.org/10.1109/TSC.2017.2711009
https://doi.org/10.1109/TSC.2017.2711009
https://www.alibabacloud.com/product/kubernetes
https://www.alibabacloud.com/product/kubernetes
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://doi.org/10.1145/233013.233034
https://doi.org/10.1109/CCGrid.2014.32
https://doi.org/10.1109/CCGrid.2014.32
https://doi.org/10.1145/2950290.2950328
https://doi.org/10.1002/cpe.2864
https://doi.org/10.1080/17517575.2013.830342
https://doi.org/10.1080/17517575.2013.830342
https://doi.org/10.1109/TC.2021.3049598

180 H. Wu et al.

1 3

resources for web applications. Concurr. Comput. Pract. Exp.
32(23), e5926 (2020). https:// doi. org/ 10. 1002/ cpe. 5926

Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya,
R.: Cloudsim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning
algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011). https:// doi.
org/ 10. 1002/ spe. 995

Chen, H., Wang, Q., Palanisamy, B., Xiong, P.: DCM: dynamic con-
currency management for scaling n-tier applications in cloud. In:
Lee, K., Liu, L. (eds.) 2017 IEEE 37th international conference
on distributed computing systems (ICDCS 2017), pp. 2097–2104,
(2017). https:// doi. org/ 10. 1109/ ICDCS. 2017. 22

Delnat. W., Truyen, E., Rafique, A., Van Landuyt, D., Joosen, W.:
K8-scalar: a workbench to compare autoscalers for container-
orchestrated database clusters. In: Proceedings of the 13th inter-
national conference on software engineering for adaptive and self-
managing systems, association for computing machinery, New
York, NY, USA, SEAMS ’18, pp. 33–39, (2018). https:// doi. org/
10. 1145/ 31941 33. 31941 62

Huang, G., Wang, S., Zhang, M., Li, Y., Qian, Z., Chen, Y., Zhang, S.:
Auto scaling virtual machines for web applications with queue-
ing theory. In: 2016 3rd International conference on systems and
informatics (ICSAI), pp. 433–438, (2016). https:// doi. org/ 10.
1109/ ICSAI. 2016. 78109 94

Jiang, J., Lu, J., Zhang, G., Long, G.: Optimal cloud resource auto-
scaling for web applications. In: Proceedings of the 13th IEEE/
ACM international symposium on cluster, cloud, and grid com-
puting, IEEE Press, CCGRID ’13, pp. 58–65, (2013). https:// doi.
org/ 10. 1109/ CCGrid. 2013. 73

Jmeter, A.: Apache jmeter: workload generator. https:// jmeter. apache.
org/. Accessed 22 Oct 2021

Kho Lin, S., Altaf, U., Jayaputera, G., Li, J., Marques, D., Meggyesy,
D., Sarwar, S., Sharma, S., Voorsluys, W., Sinnott, R., Novak,
A., Nguyen, V., Pash, K.: Auto-scaling a defence application
across the cloud using docker and Kubernetes. In: 2018 IEEE/
ACM international conference on utility and cloud computing
companion (UCC companion), pp. 327–334, (2018). https:// doi.
org/ 10. 1109/ UCC- Compa nion. 2018. 00076

Kubernetes.: Horizontal pod autoscaler. https:// kuber netes. io/ docs/
tasks/ run- appli cation/ horiz ontal- pod- autos cale/. Accessed 22
Oct 2021

Lei, Y., Cai, Z., Wu, H., Buyya, R.: Cloud resource provisioning and
bottleneck eliminating for meshed web systems. In: 2020 IEEE
13th international conference on cloud computing (CLOUD), pp.
512–516, (2020). https:// doi. org/ 10. 1109/ CLOUD 49709. 2020.
00076

Li, H., Venugopal, S.: Using reinforcement learning for controlling an
elastic web application hosting platform. In: Proceedings of the
8th ACM international conference on autonomic computing, asso-
ciation for computing machinery, New York, NY, USA, ICAC ’11,
pp. 205–208, (2011). https:// doi. org/ 10. 1145/ 19985 82. 19986 30

Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A review of auto-
scaling techniques for elastic applications in cloud environments.
J. Grid Comput. 12(4), 559–592 (2014). https:// doi. org/ 10. 1007/
s10723- 014- 9314-7

Magableh, B., Almiani, M.: A self healing microservices architecture:
a case study in docker swarm cluster. In: Barolli, L., Takizawa, M.,
Xhafa, F., Enokido, T. (eds.) Advanced Information Networking
and Applications, pp. 846–858. Springer, Cham (2020)

Melikov, A.Z., Rustamov, A.M., Sztrik, J.: Queuing management with
feedback in cloud computing centers with large numbers of web
servers. In: Vishnevskiy, V.M., Kozyrev, D.V. (eds.) Distributed

Computer and Communication Networks, pp. 106–119. Springer,
Cham (2018)

Pan, W., Mu, D., Wu, H., Yao, L.: Feedback control-based qos guaran-
tees in web application servers. In: 2008 10th IEEE international
conference on high performance computing and communications,
pp. 328–334, (2008). https:// doi. org/ 10. 1109/ HPCC. 2008. 106

Piraghaj, S.F., Dastjerdi, A.V., Calheiros, R.N., Buyya, R.: Container-
cloudsim: an environment for modeling and simulation of con-
tainers in cloud data centers. Softw. Pract. Exp. 47(4), 505–521
(2017). https:// doi. org/ 10. 1002/ spe. 2422

Qu, C., Calheiros, R.N., Buyya, R.: Auto-scaling web applications in
clouds: a taxonomy and survey. ACM Comput. Surv. 51, 4 (2018).
https:// doi. org/ 10. 1145/ 31481 49

Stormacq, S.: Lightsail containers: an easy way to run your containers
in the cloud. https:// aws. amazon. com/ cn/ blogs/ aws/ light sail- conta
iners- an- easy- way- to- run- your- conta iners- in- the- cloud/. Accessed
22 Oct 2021

Toka, L., Dobreff, G., Fodor, B., Sonkoly, B.: Adaptive ai-based auto-
scaling for Kubernetes. In: 2020 20th IEEE/ACM international
symposium on cluster, cloud and internet computing (CCGRID),
IEEE Computer Society, Los Alamitos, CA, USA, pp. 599–608,
(2020). https:// doi. org/ 10. 1109/ CCGri d49817. 2020. 00- 33

TraefikLab.: Traefik : Edge router. (2021). https:// doc. traefi k. io/ traefi k/
Urdaneta, G., Pierre, G., van Steen, M.: Wikipedia workload analy-

sis for decentralized hosting. Comput. Netw. 53(11), 1830–1845
(2009). https:// doi. org/ 10. 1016/j. comnet. 2009. 02. 019

Wang, Q., Chen, H., Zhang, S., Hu, L., Palanisamy, B.: Integrating con-
currency control in n-tier application scaling management in the
cloud. IEEE Trans. Parallel Distrib. Syst. 30(4), 855–869 (2019).
https:// doi. org/ 10. 1109/ TPDS. 2018. 28710 86

Xu, M., Buyya, R.: Brownoutcon: a software system based on brown-
out and containers for energy-efficient cloud computing. J. Syst.
Softw. 155, 91–103 (2019). https:// doi. org/ 10. 1016/j. jss. 2019. 05.
031

Zhang, W., Shi, Y., Liu, L., Zhang, S., Zheng, Y., Cui, L., Yu, H.: CTP:
a scheduling strategy to smooth response time fluctuations in
multi-tier website system. Microprocess. Microsyst. 47, 198–208
(2016). https:// doi. org/ 10. 1016/j. micpro. 2016. 05. 017

Zhong, Z., Buyya, R.: A cost-efficient container orchestration strategy
in kubernetes-based cloud computing infrastructures with hetero-
geneous resources. ACM Trans. Internet Technol. (2020). https://
doi. org/ 10. 1145/ 33784 47

Hang Wu is currently working
toward the M.Sc. degree in
School of Computer Science and
Engineering from Nanjing Uni-
versity of Science and Technol-
ogy, China. He is currently
working as a cloud native devel-
opment engineer. His main
research interests focus on
resource scheduling, Fog Com-
puting, Cloud Computing.

https://doi.org/10.1002/cpe.5926
https://doi.org/10.1002/spe.995
https://doi.org/10.1002/spe.995
https://doi.org/10.1109/ICDCS.2017.22
https://doi.org/10.1145/3194133.3194162
https://doi.org/10.1145/3194133.3194162
https://doi.org/10.1109/ICSAI.2016.7810994
https://doi.org/10.1109/ICSAI.2016.7810994
https://doi.org/10.1109/CCGrid.2013.73
https://doi.org/10.1109/CCGrid.2013.73
https://jmeter.apache.org/
https://jmeter.apache.org/
https://doi.org/10.1109/UCC-Companion.2018.00076
https://doi.org/10.1109/UCC-Companion.2018.00076
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://doi.org/10.1109/CLOUD49709.2020.00076
https://doi.org/10.1109/CLOUD49709.2020.00076
https://doi.org/10.1145/1998582.1998630
https://doi.org/10.1007/s10723-014-9314-7
https://doi.org/10.1007/s10723-014-9314-7
https://doi.org/10.1109/HPCC.2008.106
https://doi.org/10.1002/spe.2422
https://doi.org/10.1145/3148149
https://aws.amazon.com/cn/blogs/aws/lightsail-containers-an-easy-way-to-run-your-containers-in-the-cloud/
https://aws.amazon.com/cn/blogs/aws/lightsail-containers-an-easy-way-to-run-your-containers-in-the-cloud/
https://doi.org/10.1109/CCGrid49817.2020.00-33
https://doc.traefik.io/traefik/
https://doi.org/10.1016/j.comnet.2009.02.019
https://doi.org/10.1109/TPDS.2018.2871086
https://doi.org/10.1016/j.jss.2019.05.031
https://doi.org/10.1016/j.jss.2019.05.031
https://doi.org/10.1016/j.micpro.2016.05.017
https://doi.org/10.1145/3378447
https://doi.org/10.1145/3378447

181Adaptive processing rate based container provisioning for meshed Micro‑services in Kubernetes…

1 3

Zhicheng Cai (Member, IEEE)
received the Ph.D. degree in
Applied Computer Science from
Southeast University, Nanjing,
China, in 2015. He is an associ-
ate professor with the Nanjing
University of Science and Tech-
nology, China. His research
interests focus on resource
scheduling in Cloud, Fog and
Edge computing. He is the
author of more than 20 publica-
tions in journals such as IEEE
Transactions on Computers,
IEEE Transactions on Services
Computing, IEEE Transactions

on Cloud Computing, IEEE Transactions on Automation Science and
Engineering and Future Generation Computer Systems and at confer-
ences such as ICSOC, ICPADS, ISPA, ICA3PP, CLOUD, HPCC,
SMC, CBD, and CASE.

Yamin Lei received the M.Sc.
degree in School of Computer
Science and Engineering from
Nanjing University of Science
and Technology, China in 2021.
She is currently working toward
the Ph.D. degree in Southeast
University, Nanjing, China. Her
main research interests focus on
resource scheduling of meshed
Web sys t ems in C loud
Computing.

Jian Xu received a Ph.D. in Com-
puter Science in 2007 from Nan-
jing University of Science and
Technology, Nanjing, China.
Now he holds the position of a
professor at Nanjing University
of Science and Technology. His
research interests are event min-
ing, log mining and their appli-
cations to complex system man-
agement, and he has published
about 30 papers in journals and
refereed conference proceedings
in those areas.

Rajkumar Buyya (Fellow, IEEE)
is a Redmond Barry distin-
guished professor and director of
the Cloud Computing and Dis-
tributed Systems (CLOUDS)
Laboratory, University of Mel-
bourne, Australia. He has
authored more than 625 publica-
tions and seven text books. He is
one of the highly cited authors in
computer science and software
e n g i n e e r i n g w o r l d w i d e
(h-index=153, g-index=324,
more than 121,200 citations).
Microsoft Academic Search
Index ranked him as \#1 author

in the world (2005-2016) for both field rating and citations evaluations
in the area of distributed and parallel computing. He is recognized as
a “Web of Science Highly Cited researcher” during 2016-2021 by
Thomson Reuters.

	Adaptive processing rate based container provisioning for meshed Micro-services in Kubernetes Clouds
	Abstract
	1 Introduction
	2 Related work
	3 Problem description
	4 Impact of synchronous calls
	5 Proposed methods
	5.1 Adaptive processing rate based Queuing Model
	5.2 Prediction based proactive method
	5.3 Queuing-length-aware reactive method
	5.4 Integer linear programming based VM provisioning

	6 Performance evaluation
	6.1 Comparison between JPRM, AQ_JPRM, Q_JPRM and QAQ_JPRM
	6.2 Effectiveness under more micro-services and longer accessing paths
	6.3 Comparison with JPRM using NASA-HTTP traces
	6.4 Comparison with embedded auto-scalers of K8s

	7 Conclusion
	Acknowledgements
	References

