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Abstract. Elastic scaling in/out of operator parallelism degree is needed for 

processing real time dynamic data streams under low latency and high stability 

requirements. Usually the operator parallelism degree is set when a streaming 

application is submitted to a stream computing system and kept intact during 

runtime. This may substantially affect the performance of the system due to the 

fluctuation of input streams and availability of system resources. To address the 

problems brought by the static parallelism setting, we propose and implement a 

machine learning based elastic strategy for operator parallelism (named Me-

Stream) in big data stream computing systems. The architecture of Me-Stream 

and its key models are introduced, including parallel bottleneck identification, 

parameter plan generation, parameter migration and conversion, and instances 

scheduling. Metrics of execution latency and process latency of the proposed 

scheduling strategy are evaluated on the widely used big data stream computing 

system Apache Storm. The experimental results demonstrate the efficiency and 

effectiveness of the proposed strategy. 

Keywords:  Operator Parallelism, Runtime Awareness, Resource Allocation, 

Machine Learning, Stream Computing, and Distributed System. 

1 Introduction 

In recent years, big data has driven the rapid advances in distributed systems. There are 

generally two processing methods for big data: batch processing and stream processing 

[1]. Compared with batch processing, stream processing is more suitable for real-time 

applications. Distributed stream processing platforms enable big data applications to 

process continuous stream data and obtain near real-time feedback [2]. At present, the 

mainstream distributed stream processing platforms include Apache Storm [3], Apache 

Flink [4], Apache Spark (Spark Streaming) [5], Apache Samza [6], Apache Apex [7], 

and Google Cloud Dataflow [8]. Through an elastic execution engine, Flink can support 
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batch processing tasks and stream processing tasks at the same time, as well as state 

management. It suits projects that require high throughput, low latency and demand 

state management or window statistics. Storm requires to design a topology first and 

then assign the topology to Execution nodes in a cluster, making it more suitable for 

small independent projects with low latency. Spark Streaming divides the input data 

stream into multiple batches through micro-batch processing, which is more suitable 

for projects in the Spark ecosystem. The work in this paper is optimized based on the 

widely used Storm platform, but the entire design, its strategy and model are not only 

limited to the Apache Storm platform. It can be applied to a variety of related streaming 

computing environments. 

With the Storm default scheduling, if there are idle resources, uneven load and over-

load problems may occur [9][10]. If no idle resources, there might be poor resource 

distribution caused by computing and communication bottlenecks in heterogeneous 

clusters [11]. The fundamental problem is that once the relevant parameter configura-

tion is determined, the system cannot optimize parameter configuration during runtime. 

To support elastic adjustment, we face the following challenges: first, our solution must 

be compatible with the mainstream streaming computing platforms, such as Apache 

Flink, Apache Storm, and Apache Spark Streaming; the second is that the entire process 

must be monitored in real time to achieve true self-regulation; finally, the problem that 

needs to be solved is when using high-overhead pluggable scheduling, it is likely to 

introduce a new bottleneck affecting the whole performance [12].  

1.1 Contributions 

Motivated by the above discussion, we propose an elastic scaling strategy for operator 

parallelism (Me-Stream). It supports self-adjustment during runtime, can effectively 

optimize resource allocation and ensure the smooth operation of the system. In this 

paper, all the three aspects of Me-Stream are discussed, summarized as follows: 

(1) We provide a formal definition of the elastic scaling strategy for operator 

parallelism , and realize the complete process of self-adjustment in operation. 

(2) We design the architecture of the parallelism strategy for elastic scaling 

operations to solve new bottlenecks caused by pluggable scheduling.  

(3) We evaluate the optimization performance of the strategy by metrics of execution 

latency and process latency on Storm to demonstrate the effectiveness of the proposal. 

1.2 Paper Organization 

The rest of the paper is organized as follows.  In section 2, Me-Stream, together with a 

model for intelligent tuning solution are introduced. Section 3 focuses on the detailed 

discussion of Me-Stream and the algorithm design, where a machine learning model is 

adopted to find the better parallel migration path and resource allocation without man-

ual intervention. Section 4 introduces the experimental environment, parameter settings 

and performance evaluation of Me-Stream. Section 5 reviews related work on runtime 

elastic optimization of parallelism in distributed systems. Finally, conclusions and fu-

ture work are presented in Section 6. 
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2 Me-Stream Architecture  

This section mainly focuses on the parallelism optimization of streaming application 

topology for dynamic data streams. An intelligent optimization solution to the parallel-

ism of running instances without manual intervention is provided. The proposal is to 

solve the inability of self-adjustment during operation after the relevant parameter con-

figuration is determined. 

As shown in Figure 1, first of all, at the runtime, a monitoring process needs to obtain 

bolts related data in real time [13]. The data set can be obtained through IO or crawlers. 

Then, based on the flow perception, the data set is cleaned in real time and output to 

the parallel degree bottleneck identification to obtain the bottleneck level. When the 

preset conditions are met, the monitoring process executes rebalance to redistribute 

slots. The whole process does not require manual intervention. Storm’s default sched-

uling does not consider inter-process optimization or inter-node optimization, which 

will result in poor configuration of instance parameters with the same computing re-

source consumption [14] [15]. Through the parallelism bottleneck identification, the 

topology bottleneck level can be identified, then it is passed into the parameter plan 

generation together with all-slots. A topology parameter plan is created, and the re-

sources are reallocated according to the default schedule. 

At this time, if a scheduling with a large overhead is produced, it is likely to become 

a new bottleneck. Therefore, it is necessary to design a matching instance scheduling 

that has better performance than the default scheduling of Storm on the basis of gener-

alization. Through the parameter migration conversion, the topology parameter plan is 

converted into a migration plan and stored in the routing table. By now, the resource 

reallocation is completed according to the migration plan. 

An intelligent tuning solution model is designed to solve the problem of the parallel-

ism of running instances without manual intervention. The whole process is as follows: 

(1) Obtain relevant data of bolts; 

(2) Identify parallel degree bottleneck; 

(3) Generate parameter plan; 

(4) Conduct parameter migration and transformation; 

(5) Schedule instances; 

(6) Execute the rebalance command; 

(7) Complete resource redistribution. 
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Fig. 1. Elastic scaling process of operator parallelism strategy (Me-Stream). 

3 Me-Stream Framework 

This section introduces in detail the processes of parallelism bottleneck identification, 

parameter plan generation, parameter migration, instances scheduling and how to com-

plete the parallelism optimization for running instances using the elastic scaling strat-

egy (Me-Stream). 

3.1 Parallel Bottleneck Identification 

First, the strategy traverses the nodes and the executed tasks in each topology in turn, 

quantifies the bottlenecks existing in the current topology through the execution la-

tency, and calculates the maximum execution latency as the bottleneck. After all the 

topology traversal is completed, the bottleneck levels are sorted according to the exe-

cution latency, from the highest to the lowest. Among them, 
calcT  represents the calcu-

lation time for task 
jc on node 

in , m function represents the required processing power 

under the complexity of current task, x  function represents the complexity of the cal-

culation task, and p function represents the ability of the assigned executor to process 

in  . The preliminary deduction formula is defined by (1). 
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Secondly, considering the communication bottleneck factors between nodes in dif-

ferent network environments, the strategy sequentially traverses the nodes and the ex-

ecuted tasks in each topology in different network environments, quantifies the bottle-

necks in the current topology through the process latency, and calculates the maximum 

process latency as the bottleneck. After all the topology traversal is completed, the bot-

tleneck levels are sorted according to the process latency. Among them, 
commT  repre-

sents the communication time from 
-1in  to 

in  and 
in  to 

1in 
, m  function represents 

the required processing capacity under the complexity of the calculation task, and l  

represents transmission link bandwidth. The preliminary deduction formula can be de-

scribed by (2).  
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In summary, the formula for calculating the sum of the parallel bottleneck time of 

tasks on all nodes is described by (3) (the maximum of calculation time and the com-

munication time is the bottleneck time). 
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The above explains how to identify the main bottlenecks from communication bot-

tlenecks and calculation bottlenecks in a cluster environment. 

Next, we need to know when to perform the reallocation. In order to know this 

threshold accurately, we design a threshold identification function based on the linear 

regression. The specific steps are as follows: 

(1) First, according to the above parallel bottleneck identification method, a first-

order binomial linear regression equation is created. The data set ( , )t  is obtained by 

collecting, classifying, and labeling the original data (original data is obtained through 

crawlers and hooks), where t  represents the original data timestamp, and   represents 

the average delay at timestamp t  .  

 2

1

1
( ( ) ) ( , ).

m

ii
f t e f

m
 


   (4) 

Where ( )f t  is the threshold identification function, i  is the actual value, ( , )e f   

is the mean value distribution, defined as the mean error. The smaller the mean error, 
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the more accurate ( )f t  is. It is the linear regression function produced on the training 

set.  

(2) Then, according to the principle of linear regression:  

 2
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(3) Next, the partial derivatives of w and b can be obtained by the linear regression 

function of the first-order binomial linear equation: 
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(4) Finally, using the least squares method to calculate the w and b .  when the sum 

of the Euclidean distance between the training set and the fitted linear labeling function 

is the smallest, the labeling function is the threshold identification function.When the 

fitting function becomes stable, the non-monitoring period can be entered, which can 

effectively reduce training overhead and release resources. The threshold identification 

function is associated with topologies and can be cached. Therefore, each threshold 

identification function does not depend on the selection of the training set, and can be 

used in parallel with the operator of another system in the current cluster. However, 

each threshold identification result is generated in the current topology instance and 

destroyed at the end of the topology’s life cycle.  

(5) After obtaining threshold identification function, Me-Stream records the 

reference bottleneck by comparing the value of the threshold identification function f
 

and the actual value   in real time. If the mean error ( , )e f 
 
between the value of the 

function and the actual value is positive under the accuracy requirement, record the 

value as an effective bottleneck value. We take the maximum effective bottleneck value 

in the bottleneck interval as the reference bottleneck (the bottleneck time interval 

depends on the data set interval and automatic redistribution time setting. The default 

is 1 minute). 

(6) When the reference bottleneck occurs multiple times in an interval and the 

bottleneck time obtained by the threshold identification function is in the same order of 

magnitude, reallocation is performed.  

 

Algorithm 1  Bottleneck Identification Algorithm 

Input:  

ni, cj: Node i,task j. 

w, b: partial derivative w,b. 

T: the maximum bottleneck time between ni−1.and ni. 
l: Transmission link bandwidth.  

TC(ni, cj): the average computing time for task j on node i.  
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Tt(ni, cj): the sum of the average transmission time from the preceding node to the 

succeeding node.  

x(cj)：the complexity of computing task j. 

m(x(cj))：the function that calculates the amount of processing power required 

under the complexity of the task. 

Tr,e(f, y): Reference bottleneck linear regression function. 

Tbottleneck: Bottleneck time list. 

Output: lbottleneck:Bottleneck level list. 

 

1:  procedure Bottleneck Identification Algorithm  

     //Training function 

2:  Calculate 
1

m
∑ (f(x) − yi)

2 = e(f, y)m
i=1  

3:  from 
1

m
∑ (wxi + b − yi)2 = e(f, y)m
i=1  

4： Calculate w =
∑ yi(xi−x̅)
m
i=1

∑ xi
2m

i=0 −
1

m
(∑ xi

m
i=1 )2

，b =
1

m
∑ (yi − wxi)
m
i=1  

     //Cycle comparison 

5:  while(START FLAG) 

6:    Calculate TC(ni, cj) =
m(x(cj))

p(ni)
 

7:    Calculate Tt(ni, cj) =
m(cj)

li−1,i
+

m(cj)

li,i+1
=

m(cj)(li−1,i+li,i+1)

li−1,ili,i+1
 

8:   T = max(TC,Tt) 
9:   Tr = e(f, y) 
       //Compare T AND Tr 

10:   if T/Tr < 10 then 

         //Judge the magnitude of the same number 

11:     Tbottleneck[i] = T 

12:     i++ 

13:   end if 

14: end while 

      //After sorting, 

      //the sequence number is regarded as the bottleneck level in turn 

15: SORT(Tbottleneck) GET lbottleneck  

16: return lbottleneck 

 

3.2 Parameter Plan Generation 

Bottleneck level priority: The task with the highest bottleneck level gets slots allocated 

first, then the remaining slots are allocated in turn to tasks with lower bottleneck levels. 

This allocation strategy considers the weight of bottleneck level more, and is suitable 

for situations where the difference of bottleneck time between topologies is large. The 

bottleneck time is calculated for different topologies. Each topology calculates the bot-

tleneck time and then sorts them globally. 



8 

 .Executer Bottleneck
Task Task

Executer

N N
N N

N



  (7) 

Parameter planning priority: According to the bottleneck levels from high to low, 

the previous executor number is added to the bottleneck level multiplied by the coeffi-

cient (default 1). At the same time, the number of tasks is increased by the correspond-

ing multiple times. This allocation strategy controls the weight of the bottleneck level 

by a coefficient 


, and is suitable for situations where the bottleneck time between 

topologies has little difference. The bottleneck level and parameter schedule on the ex-

ample WordCount instance are as follows: 

Table 1. Bottleneck level and parameter schedule on the WordCount instance 

Topology Worker Number Executor Number Task Number Bottleneck Level 

T1 3 8 16 4 

T2 5 10 10 2 

T3 3 5 10 1 

T4 6 10 20 3 

 

Algorithm 2  Parameter Plan Algorithm 

Input:  

NTask: Number of resources allocated to previous tasks.  

N̅Task: Number of resources allocated to current tasks.  

lbottleneck: Bottleneck level list. 

φ: Allocation coefficient 

Output: N̅Task: Transmission link bandwidth.  

 

1:  procedure Parameter Plan Algorithm  

    //Add the previous number of executors to the number of bottleneck levels mul-

tiplied by a factor (default 1) 

2:  Calculate N̅Task = φ
NExecuter+lBottleneck

NExecuter
NTask 

3:  return N̅Task 

 

3.3 Parameter Migration and Conversion 

Parameter migration conversion is conducted based on parameter planning. Its process 

is as follows: 

(1) When Me-Stream program is started, the table columns N(k,v) and P(k,v) will 

be created automatically; 

(2) At runtime, the current node and port are saved into the corresponding keys; 

(3) Before redistribution, a new operator allocation is generated based on the 

parameter schedule; 
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(4) After completing the allocation, the node and port from the new allocation result 

are assigned to replace the corresponding value in the routing table; 

(5) After N (k, v) and P (k, v) are updated, they are provided as a migration path on 

the example WordCount instance to the new scheduling. 

Table 2. Parameter plan and migration path on the WordCount instance 

Topology 
Executor 

Number 

Task 

Number 

Operator 

Number 

Slots 
Migration 

Path 

Node Port N(k,v) P(k,v) 

T1 
1 1 

{ [1][2]... } 
S1 6700 (1,3) (1,3) 

1 2 S1 6700 (1,3) (1,3) 

... 

T2 2 3 { ...[3]... } S2 6701 (2,2) (2,1) 

... 

T3 
3 9 

{ ...[9][10]... } 
S3 6702 (3,1) (3,2) 

3 10 S3 6702 (3,1) (3,2) 

 

Algorithm 3  Migration Algorithm 

Input:  

k, v: Key,value. 

ni, pj: Node i,port j. 

n̅i, p̅j: Node i,port j. 

Output: N(k,v): Node migration path. 

P(k,v): Port migration path.  

 

1:  procedure Migration Algorithm  

   //During operation, the current node and port are stored in the corresponding 

keys. 

2:  while(!EMPTY) 

3:    N(k, v).put(ni, ni̅)  
4:    P(k, v).put(pj, p̅j) 

5:    i++ 

6:    j++ 

7:  end while 

8:  return N(k,v),P(k,v) 

3.4 Instances Scheduling 

Bottlenecks may be created during the optimization process because of the computing 

and communication bottlenecks on heterogeneous cluster nodes, the stateful and state-

less instances at the instance layer [16] [17], and some complex pluggable scheduling. 

As such, an instance scheduling that can directly identify the migration table is de-

signed, and the corresponding configuration is provided as the default setting. The spe-

cific instance scheduling steps are executed as follows: 
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(1) Call the cluster's needsSchedualerTopologies method to obtain the topology that 

needs to be assigned with tasks, and store all the topologies in the keys of N (k, v) and 

P (k, v) according to the bottleneck level. 

(2) Call the cluster's getAvailableSlots method to obtain the resources available in 

the current cluster, return them in the form of a collection of <node, port>, and allocate 

them to available slots. 

(3) Call the cluster's compute-executors method to convert the topological executor 

information into a collection of <start-t ask-id, end-task-id> and store it in all executors. 

(4) Call the getAliveAssignedNodeAndPort method of eventScheduler to obtain the 

resources acquired by the current topology, and return the <node + port, executor> 

collection and store it in alive-assigned. 

(5) Call the overriding slot-can-ressign method in Me-Stream to determine whether 

the Slots information is active, then select the slot that can be reassigned and store it in 

the can-ressigned variable. 

(6) Call the overriding bad-slot method in Me-Stream to calculate the number of 

slots that can be released in the current topology. If it is greater than the number of slots 

currently allocated, call the cluster's  freeSlots method to release them. 

(7) Call the migration-path method in Me-Stream and allocate all execution 

programs based on the N (k, v) and P (k, v) records calculated by all topologies before 

scheduling. 

4 Performance Evaluation 

In this section, the experimental environment and parameter settings are first discussed, 

followed by the analysis of performance evaluation results. 

4.1 Experimental Environment and Parameter Settings 

The proposed Me-Stream system is implemented on Storm 2.1.0, and installed on top 

of Ubuntu 20.04.1. Real-life data experiments are conducted on the computing cluster 

at Alibaba Cloud Computing. The cluster consists of 28 machines, with 1 designated 

machine serving as the master node, running Storm Nimbus, 2 designated as Zookeeper 

nodes, and the rest 25 machines working as Supervisor nodes. The software configura-

tion of Me-Stream platform is shown in Table 3. 

Table 3. Software configuration of Me-Stream. 

Software Version 

OS Ubuntu 20.04.1 64bit 

Storm Apache-Storm-2.1.0 

JDK Jdk1.8 64bit 

Zookeeper Zookeeper-3.4.14 

Kafka Kafka-2.3.0 

Redis Redis-6.0.5 
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Moreover, one DAG with WordCount function is submitted to the computing clus-

ter. The logic graph of WordCount is shown in Figure 2. 

sva vb vc

Spout Bolt Bolt  

Fig. 2. Logical graph of WordCount in Me-Stream 

In Storm, the WordCount instance is used to simulate random words input into Spout 

through Kafka, and messages from different partitions are evenly distributed to differ-

ent executors for consumption. When Spout parallelism is set to 1, there is no need to 

adjust the parameters. Therefore, our focus is to test the system performance when the 

spout has multiple executors. Under normal circumstances, the Capacity value range is 

between 0.0x and 0.2. When the value is close to 1, it indicates that the load is severe 

and the degree of parallelism needs to be increased. At the same time, when the failure 

value is not 0, it means that the load is serious and there are tuples that experience 

failure or time out. At this time, the parallelism of Spout should be increased accord-

ingly. We simulate a normal situation where the Capacity value is small and Failure 

value is 0. The following describes the experimental verification in detail, and the pa-

rameter table applied in the entire experimental process is shown in Table 4. 

Table 4. Table of parameter settings in the experiments. 

Parameter Explain 

Emitted Number of tuples launched to date. 

Transferred Number of tuples successfully transferred to the next bolt to date. 

Complete latency 

(ms) 

The average time taken for each tuple to be fully processed in tuple 

tree to date. 

Acked Number of tuples successfully processed to date. 

Failed Number of tuples failed or timed out to date. 

 

4.2 Performance Results 

We consider the average delay data set of topologies within 38min~50min under the 

default Storm scheduling strategy and Me-Stream optimization strategy for compari-

son. The experimental settings contain two evaluation parameters: execute latency EL 

and process latency PL. 

(1) Execute latency. 

Execute latency reflects the overall execution time for all running DAGs, and it is 

evaluated by the timestamp from the execution of the function to the end of per DAG. 

The smaller the execution latency, the stronger the data processing ability of the elastic 

stream computing system. 
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Fig. 3. Comparison of execute latency between the default scheduler and Me-Stream on the 

WordCount instance.  

When the data input rate is stable, Me-Stream has a lower execution latency com-

paring to the DefaultScheduler on Storm platform. As shown in Figure 3, with the ca-

pacity remains unchanged during the whole process, the average execute latency by 

Me-Stream and by the default scheduler at the stable stage are 2.3886 ms and 8.3267 

ms, respectively. It demonstrates that the execution latency by Me-Stream is lower than 

that of the default scheduler on the given instance when the input rate is stable. 

(2) Process latency. 

Process latency reflects the overall processing time for all running DAGs, and it is 

evaluated by the timestamp of each DAG passed from the tuple arrival to the ack. The 

smaller the processing latency, the stronger the data processing ability of the elastic 

stream computing system. 

 

Fig. 4. Comparison of process latency between the default scheduler and Me-Stream on the 

WordCount instance. 

When the data input rate is stable, Me-Stream has a lower process latency comparing 

to the DefaultScheduler on Storm platform. As shown in Figure 4, with the capacity 

remains unchanged during the whole process, the average process latency by Me-
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Stream and by default Storm strategy at the stable stage are 14.6867 ms and 52.7333 

ms, respectively. It demonstrates that the process latency by Me-Stream is lower than 

that of the default Storm strategy on the given instance when the input rate is stable. 

We also respectively collect statistics on execute delay, process delay and total delay 

data sets of the DefaultScheduler and the Me-Stream optimization strategy, as shown 

in Figure. 5 and 6.  

 

Fig. 5. Statistics of execute delay, process delay and total delay data sets of the default scheduler 

on the WordCount instance. 

 

Fig. 6. Statistics of execute delay, process delay and total delay data sets of the Me-Stream opti-

mization strategy on the WordCount instance. 

5 Related Work 

The application of machine learning models can produce better parallel migration paths 

and better resource allocation without manual intervention. However, the time-consum-

ing training process greatly limits the efficiency of machine learning methods, and the 

inconsistency of state and data can also cause considerable overhead. Researchers have 

been trying to address these issues. 
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In [18], a double exponential smoothing method was proposed to predict abnormal 

events, which solves the shortcoming of the Markov model that requires a training pro-

cess. By designing a seven-phase protocol for traffic-aware active migration, it handles 

the inconsistency of state and data in the load balancing partition.   

In [19], a pipeline data processing model based on streaming applications was men-

tioned. When the ratio of input data to output data of upstream neighbor operations is 

known, the input data of downstream neighbor operations can be obtained in advance. 

The linear relationship is obtained through learning and analysis, and the average value 

of the probability distribution during the monitoring period is taken. The concept of the 

average value of the probability distribution during the monitoring period is also added 

to the original algorithm, which can effectively reduce the error of the data set and the 

function value, and improve the efficiency and accuracy of training. When the fitting 

function becomes stable, the non-monitoring period can be entered, which can effec-

tively reduce training overhead and release resources.  

In [20], the ideas of learning rate and discount factor were introduced on the basis of 

fitting. Data sets that have a greater impact on the data stream are stored in the evalua-

tion table. When data with a large influence offset continuously appears, its weight can 

be added to influence according to the evaluation result, so as to achieve the purpose of 

better training the result function.  

In [21], a cost-effective resource allocation model was proposed. Its purpose is to 

allow users to automatically and efficiently deploy applications in local or cloud clus-

ters, and developed a profiler for Spark, which can analyze applications in actual clus-

ters according to different resource allocation schemes and input workloads. Based on 

the application profile received from the profiler, dSpark uses the proposed resource 

allocation model to select a cost-effective resource allocation plan based on the deadline 

in order to deploy the application to the cluster.  

The above prior works provide valuable insights into the potential solutions to the 

static parallelization setting problems using elastic strategies of machine learning. 

However, for big data stream applications, innovative methods need to be developed, 

and the characteristics specific to the big data flow computing environments need to be 

considered when exploring elastic non-manual intervention. A summary of the com-

parison between our work and other closely related works is given in Table 1.  

Table 5. Comparison of Me-Stream and related work  

Parameter 
Related Work 

Me-Stream 
[18] [19] [20] [21] 

Versatility ✗ ✓ ✓ ✗ ✓ 

Parallelism ✓ ✓ ✓ ✓ ✓ 
Machine Learning ✗ ✓ ✓ ✗ ✓ 

Cost Saving ✗ ✓ ✗ ✓ ✓ 
Resource Saving ✗ ✗ ✓ ✓ ✓ 
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6 Conclusions and Future Work 

In this paper, an elastic scaling strategy for operator parallelism Me-Stream is proposed. 

It can intelligently perform instance parallelism without manual intervention at runtime. 

Starting from the Storm Instance parameter level, we first initiate a monitoring process 

to obtain the bolts-related data in real time through traffic sensing, then analyze and use 

them, followed by self-optimizing the resource allocation from time to time. This paper 

mainly solves the following problems: 

(1) It is not transparent for Storm users to use API to set parallelism for operators in 

a topology at runtime, that is, users need to run the API frequently to change the 

configuration of their applications. 

(2) Storm users may not know how to optimally adjust the parallelism. We use a 

machine learning model to achieve a better parallel migration path. The model can 

achieve a better effect in terms of resource allocation without manual intervention, and 

has a certain learning ability. 

(3) Storm distributes instances to work programs and work program nodes in a 

round-robin manner by default. The number of configured work programs is still evenly 

distributed. The instance scheduling we designed can achieve better compatibility with 

the intelligent tuning scheme under the premise of ensuring good generalization. 

Future work will focus on the following aspects: 

(1) Adapt Me-Stream to other big data stream computing environments. 

(2) Deploy Me-Stream in a real big data stream computing environment. 
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