
A Machine Learning-based Elastic Strategy for Operator

Parallelism in a Big Data Stream Computing System

Wei Li1, Dawei Sun1, *, Shang Gao2, and Rajkumar Buyya3

1 School of Information Engineering, China University of Geosciences, Beijing, 100083, P.R.

China

leeway@cugb.edu.cn, sundaweicn@cugb.edu.cn
2 School of Information Technology, Deakin University, Victoria 3216, Australia

shang.gao@deakin.edu.au
3 Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and

Information Systems, The University of Melbourne, Australia

rbuyya@unimelb.edu.au

Abstract. Elastic scaling in/out of operator parallelism degree is needed for

processing real time dynamic data streams under low latency and high stability

requirements. Usually the operator parallelism degree is set when a streaming

application is submitted to a stream computing system and kept intact during

runtime. This may substantially affect the performance of the system due to the

fluctuation of input streams and availability of system resources. To address the

problems brought by the static parallelism setting, we propose and implement a

machine learning based elastic strategy for operator parallelism (named Me-

Stream) in big data stream computing systems. The architecture of Me-Stream

and its key models are introduced, including parallel bottleneck identification,

parameter plan generation, parameter migration and conversion, and instances

scheduling. Metrics of execution latency and process latency of the proposed

scheduling strategy are evaluated on the widely used big data stream computing

system Apache Storm. The experimental results demonstrate the efficiency and

effectiveness of the proposed strategy.

Keywords: Operator Parallelism, Runtime Awareness, Resource Allocation,

Machine Learning, Stream Computing, and Distributed System.

1 Introduction

In recent years, big data has driven the rapid advances in distributed systems. There are

generally two processing methods for big data: batch processing and stream processing

[1]. Compared with batch processing, stream processing is more suitable for real-time

applications. Distributed stream processing platforms enable big data applications to

process continuous stream data and obtain near real-time feedback [2]. At present, the

mainstream distributed stream processing platforms include Apache Storm [3], Apache

Flink [4], Apache Spark (Spark Streaming) [5], Apache Samza [6], Apache Apex [7],

and Google Cloud Dataflow [8]. Through an elastic execution engine, Flink can support

mailto:2204190029@cugb.edu.cn
mailto:sundaweicn@cugb.edu.cn
mailto:shang.gao@deakin.edu.au
mailto:rbuyya@unimelb.edu.au

2

batch processing tasks and stream processing tasks at the same time, as well as state

management. It suits projects that require high throughput, low latency and demand

state management or window statistics. Storm requires to design a topology first and

then assign the topology to Execution nodes in a cluster, making it more suitable for

small independent projects with low latency. Spark Streaming divides the input data

stream into multiple batches through micro-batch processing, which is more suitable

for projects in the Spark ecosystem. The work in this paper is optimized based on the

widely used Storm platform, but the entire design, its strategy and model are not only

limited to the Apache Storm platform. It can be applied to a variety of related streaming

computing environments.

With the Storm default scheduling, if there are idle resources, uneven load and over-

load problems may occur [9][10]. If no idle resources, there might be poor resource

distribution caused by computing and communication bottlenecks in heterogeneous

clusters [11]. The fundamental problem is that once the relevant parameter configura-

tion is determined, the system cannot optimize parameter configuration during runtime.

To support elastic adjustment, we face the following challenges: first, our solution must

be compatible with the mainstream streaming computing platforms, such as Apache

Flink, Apache Storm, and Apache Spark Streaming; the second is that the entire process

must be monitored in real time to achieve true self-regulation; finally, the problem that

needs to be solved is when using high-overhead pluggable scheduling, it is likely to

introduce a new bottleneck affecting the whole performance [12].

1.1 Contributions

Motivated by the above discussion, we propose an elastic scaling strategy for operator

parallelism (Me-Stream). It supports self-adjustment during runtime, can effectively

optimize resource allocation and ensure the smooth operation of the system. In this

paper, all the three aspects of Me-Stream are discussed, summarized as follows:

(1) We provide a formal definition of the elastic scaling strategy for operator

parallelism , and realize the complete process of self-adjustment in operation.

(2) We design the architecture of the parallelism strategy for elastic scaling

operations to solve new bottlenecks caused by pluggable scheduling.

(3) We evaluate the optimization performance of the strategy by metrics of execution

latency and process latency on Storm to demonstrate the effectiveness of the proposal.

1.2 Paper Organization

The rest of the paper is organized as follows. In section 2, Me-Stream, together with a

model for intelligent tuning solution are introduced. Section 3 focuses on the detailed

discussion of Me-Stream and the algorithm design, where a machine learning model is

adopted to find the better parallel migration path and resource allocation without man-

ual intervention. Section 4 introduces the experimental environment, parameter settings

and performance evaluation of Me-Stream. Section 5 reviews related work on runtime

elastic optimization of parallelism in distributed systems. Finally, conclusions and fu-

ture work are presented in Section 6.

3

2 Me-Stream Architecture

This section mainly focuses on the parallelism optimization of streaming application

topology for dynamic data streams. An intelligent optimization solution to the parallel-

ism of running instances without manual intervention is provided. The proposal is to

solve the inability of self-adjustment during operation after the relevant parameter con-

figuration is determined.

As shown in Figure 1, first of all, at the runtime, a monitoring process needs to obtain

bolts related data in real time [13]. The data set can be obtained through IO or crawlers.

Then, based on the flow perception, the data set is cleaned in real time and output to

the parallel degree bottleneck identification to obtain the bottleneck level. When the

preset conditions are met, the monitoring process executes rebalance to redistribute

slots. The whole process does not require manual intervention. Storm’s default sched-

uling does not consider inter-process optimization or inter-node optimization, which

will result in poor configuration of instance parameters with the same computing re-

source consumption [14] [15]. Through the parallelism bottleneck identification, the

topology bottleneck level can be identified, then it is passed into the parameter plan

generation together with all-slots. A topology parameter plan is created, and the re-

sources are reallocated according to the default schedule.

At this time, if a scheduling with a large overhead is produced, it is likely to become

a new bottleneck. Therefore, it is necessary to design a matching instance scheduling

that has better performance than the default scheduling of Storm on the basis of gener-

alization. Through the parameter migration conversion, the topology parameter plan is

converted into a migration plan and stored in the routing table. By now, the resource

reallocation is completed according to the migration plan.

An intelligent tuning solution model is designed to solve the problem of the parallel-

ism of running instances without manual intervention. The whole process is as follows:

(1) Obtain relevant data of bolts;

(2) Identify parallel degree bottleneck;

(3) Generate parameter plan;

(4) Conduct parameter migration and transformation;

(5) Schedule instances;

(6) Execute the rebalance command;

(7) Complete resource redistribution.

4

Fig. 1. Elastic scaling process of operator parallelism strategy (Me-Stream).

3 Me-Stream Framework

This section introduces in detail the processes of parallelism bottleneck identification,

parameter plan generation, parameter migration, instances scheduling and how to com-

plete the parallelism optimization for running instances using the elastic scaling strat-

egy (Me-Stream).

3.1 Parallel Bottleneck Identification

First, the strategy traverses the nodes and the executed tasks in each topology in turn,

quantifies the bottlenecks existing in the current topology through the execution la-

tency, and calculates the maximum execution latency as the bottleneck. After all the

topology traversal is completed, the bottleneck levels are sorted according to the exe-

cution latency, from the highest to the lowest. Among them,
calcT represents the calcu-

lation time for task
jc on node

in , m function represents the required processing power

under the complexity of current task, x function represents the complexity of the cal-

culation task, and p function represents the ability of the assigned executor to process

in . The preliminary deduction formula is defined by (1).

5

(())

(,) .
()

j

calc i j

i

m x c
T n c

p n
 (1)

Secondly, considering the communication bottleneck factors between nodes in dif-

ferent network environments, the strategy sequentially traverses the nodes and the ex-

ecuted tasks in each topology in different network environments, quantifies the bottle-

necks in the current topology through the process latency, and calculates the maximum

process latency as the bottleneck. After all the topology traversal is completed, the bot-

tleneck levels are sorted according to the process latency. Among them,
commT repre-

sents the communication time from
-1in to

in and
in to

1in 
, m function represents

the required processing capacity under the complexity of the calculation task, and l

represents transmission link bandwidth. The preliminary deduction formula can be de-

scribed by (2).

1, , 1

1, , 1 1, , 1

() () ()()
(,) .

j j j i i i i

comm i j

i i i i i i i i

m c m c m c l l
T n c

l l l l

 

   


   (2)

In summary, the formula for calculating the sum of the parallel bottleneck time of

tasks on all nodes is described by (3) (the maximum of calculation time and the com-

munication time is the bottleneck time).

1, , 1

1, , 1

(())
(),((,)),

()
max max((,))

(()()).
.2

2

j

calc i j

i

comm i j
j i i i i

i i i i

m x c
SumSum T n c

p n
T Sum T n c

Sum m c l l

l l

 

 


 
 

  
 

 


 (3)

The above explains how to identify the main bottlenecks from communication bot-

tlenecks and calculation bottlenecks in a cluster environment.

Next, we need to know when to perform the reallocation. In order to know this

threshold accurately, we design a threshold identification function based on the linear

regression. The specific steps are as follows:

(1) First, according to the above parallel bottleneck identification method, a first-

order binomial linear regression equation is created. The data set (,)t  is obtained by

collecting, classifying, and labeling the original data (original data is obtained through

crawlers and hooks), where t represents the original data timestamp, and  represents

the average delay at timestamp t .

 2

1

1
(()) (,).

m

ii
f t e f

m
 


  (4)

Where ()f t is the threshold identification function, i is the actual value, (,)e f 

is the mean value distribution, defined as the mean error. The smaller the mean error,

6

the more accurate ()f t is. It is the linear regression function produced on the training

set.

(2) Then, according to the principle of linear regression:

 2

1

1
() (,).

m

i ii
wt b e f

m
 


   (5)

(3) Next, the partial derivatives of w and b can be obtained by the linear regression

function of the first-order binomial linear equation:

 1

1
2 2

0 1

1
, ().

1
()

m

mi ii

i iim m

i ii i

t t
w b wt

m
t t

m






 

  






 

（ - ）
 (6)

(4) Finally, using the least squares method to calculate the w and b . when the sum

of the Euclidean distance between the training set and the fitted linear labeling function

is the smallest, the labeling function is the threshold identification function.When the

fitting function becomes stable, the non-monitoring period can be entered, which can

effectively reduce training overhead and release resources. The threshold identification

function is associated with topologies and can be cached. Therefore, each threshold

identification function does not depend on the selection of the training set, and can be

used in parallel with the operator of another system in the current cluster. However,

each threshold identification result is generated in the current topology instance and

destroyed at the end of the topology’s life cycle.

(5) After obtaining threshold identification function, Me-Stream records the

reference bottleneck by comparing the value of the threshold identification function f

and the actual value  in real time. If the mean error (,)e f 

between the value of the

function and the actual value is positive under the accuracy requirement, record the

value as an effective bottleneck value. We take the maximum effective bottleneck value

in the bottleneck interval as the reference bottleneck (the bottleneck time interval

depends on the data set interval and automatic redistribution time setting. The default

is 1 minute).

(6) When the reference bottleneck occurs multiple times in an interval and the

bottleneck time obtained by the threshold identification function is in the same order of

magnitude, reallocation is performed.

Algorithm 1 Bottleneck Identification Algorithm

Input:

ni, cj: Node i,task j.

w, b: partial derivative w,b.

T: the maximum bottleneck time between ni−1.and ni.
l: Transmission link bandwidth.

TC(ni, cj): the average computing time for task j on node i.

7

Tt(ni, cj): the sum of the average transmission time from the preceding node to the

succeeding node.

x(cj)：the complexity of computing task j.

m(x(cj))：the function that calculates the amount of processing power required

under the complexity of the task.

Tr,e(f, y): Reference bottleneck linear regression function.

Tbottleneck: Bottleneck time list.

Output: lbottleneck:Bottleneck level list.

1: procedure Bottleneck Identification Algorithm

 //Training function

2: Calculate
1

m
∑ (f(x) − yi)

2 = e(f, y)m
i=1

3: from
1

m
∑ (wxi + b − yi)2 = e(f, y)m
i=1

4： Calculate w =
∑ yi(xi−x̅)
m
i=1

∑ xi
2m

i=0 −
1

m
(∑ xi

m
i=1)2

，b =
1

m
∑ (yi − wxi)
m
i=1

 //Cycle comparison

5: while(START FLAG)

6: Calculate TC(ni, cj) =
m(x(cj))

p(ni)

7: Calculate Tt(ni, cj) =
m(cj)

li−1,i
+

m(cj)

li,i+1
=

m(cj)(li−1,i+li,i+1)

li−1,ili,i+1

8: T = max(TC,Tt)
9: Tr = e(f, y)
 //Compare T AND Tr

10: if T/Tr < 10 then

 //Judge the magnitude of the same number

11: Tbottleneck[i] = T

12: i++

13: end if

14: end while

 //After sorting,

 //the sequence number is regarded as the bottleneck level in turn

15: SORT(Tbottleneck) GET lbottleneck

16: return lbottleneck

3.2 Parameter Plan Generation

Bottleneck level priority: The task with the highest bottleneck level gets slots allocated

first, then the remaining slots are allocated in turn to tasks with lower bottleneck levels.

This allocation strategy considers the weight of bottleneck level more, and is suitable

for situations where the difference of bottleneck time between topologies is large. The

bottleneck time is calculated for different topologies. Each topology calculates the bot-

tleneck time and then sorts them globally.

8

 .Executer Bottleneck
Task Task

Executer

N N
N N

N



 (7)

Parameter planning priority: According to the bottleneck levels from high to low,

the previous executor number is added to the bottleneck level multiplied by the coeffi-

cient (default 1). At the same time, the number of tasks is increased by the correspond-

ing multiple times. This allocation strategy controls the weight of the bottleneck level

by a coefficient


, and is suitable for situations where the bottleneck time between

topologies has little difference. The bottleneck level and parameter schedule on the ex-

ample WordCount instance are as follows:

Table 1. Bottleneck level and parameter schedule on the WordCount instance

Topology Worker Number Executor Number Task Number Bottleneck Level

T1 3 8 16 4

T2 5 10 10 2

T3 3 5 10 1

T4 6 10 20 3

Algorithm 2 Parameter Plan Algorithm

Input:

NTask: Number of resources allocated to previous tasks.

N̅Task: Number of resources allocated to current tasks.

lbottleneck: Bottleneck level list.

φ: Allocation coefficient

Output: N̅Task: Transmission link bandwidth.

1: procedure Parameter Plan Algorithm

 //Add the previous number of executors to the number of bottleneck levels mul-

tiplied by a factor (default 1)

2: Calculate N̅Task = φ
NExecuter+lBottleneck

NExecuter
NTask

3: return N̅Task

3.3 Parameter Migration and Conversion

Parameter migration conversion is conducted based on parameter planning. Its process

is as follows:

(1) When Me-Stream program is started, the table columns N(k,v) and P(k,v) will

be created automatically;

(2) At runtime, the current node and port are saved into the corresponding keys;

(3) Before redistribution, a new operator allocation is generated based on the

parameter schedule;

9

(4) After completing the allocation, the node and port from the new allocation result

are assigned to replace the corresponding value in the routing table;

(5) After N (k, v) and P (k, v) are updated, they are provided as a migration path on

the example WordCount instance to the new scheduling.

Table 2. Parameter plan and migration path on the WordCount instance

Topology
Executor

Number

Task

Number

Operator

Number

Slots
Migration

Path

Node Port N(k,v) P(k,v)

T1
1 1

{ [1][2]... }
S1 6700 (1,3) (1,3)

1 2 S1 6700 (1,3) (1,3)

...

T2 2 3 { ...[3]... } S2 6701 (2,2) (2,1)

...

T3
3 9

{ ...[9][10]... }
S3 6702 (3,1) (3,2)

3 10 S3 6702 (3,1) (3,2)

Algorithm 3 Migration Algorithm

Input:

k, v: Key,value.

ni, pj: Node i,port j.

n̅i, p̅j: Node i,port j.

Output: N(k,v): Node migration path.

P(k,v): Port migration path.

1: procedure Migration Algorithm

 //During operation, the current node and port are stored in the corresponding

keys.

2: while(!EMPTY)

3: N(k, v).put(ni, ni̅)
4: P(k, v).put(pj, p̅j)

5: i++

6: j++

7: end while

8: return N(k,v),P(k,v)

3.4 Instances Scheduling

Bottlenecks may be created during the optimization process because of the computing

and communication bottlenecks on heterogeneous cluster nodes, the stateful and state-

less instances at the instance layer [16] [17], and some complex pluggable scheduling.

As such, an instance scheduling that can directly identify the migration table is de-

signed, and the corresponding configuration is provided as the default setting. The spe-

cific instance scheduling steps are executed as follows:

10

(1) Call the cluster's needsSchedualerTopologies method to obtain the topology that

needs to be assigned with tasks, and store all the topologies in the keys of N (k, v) and

P (k, v) according to the bottleneck level.

(2) Call the cluster's getAvailableSlots method to obtain the resources available in

the current cluster, return them in the form of a collection of <node, port>, and allocate

them to available slots.

(3) Call the cluster's compute-executors method to convert the topological executor

information into a collection of <start-t ask-id, end-task-id> and store it in all executors.

(4) Call the getAliveAssignedNodeAndPort method of eventScheduler to obtain the

resources acquired by the current topology, and return the <node + port, executor>

collection and store it in alive-assigned.

(5) Call the overriding slot-can-ressign method in Me-Stream to determine whether

the Slots information is active, then select the slot that can be reassigned and store it in

the can-ressigned variable.

(6) Call the overriding bad-slot method in Me-Stream to calculate the number of

slots that can be released in the current topology. If it is greater than the number of slots

currently allocated, call the cluster's freeSlots method to release them.

(7) Call the migration-path method in Me-Stream and allocate all execution

programs based on the N (k, v) and P (k, v) records calculated by all topologies before

scheduling.

4 Performance Evaluation

In this section, the experimental environment and parameter settings are first discussed,

followed by the analysis of performance evaluation results.

4.1 Experimental Environment and Parameter Settings

The proposed Me-Stream system is implemented on Storm 2.1.0, and installed on top

of Ubuntu 20.04.1. Real-life data experiments are conducted on the computing cluster

at Alibaba Cloud Computing. The cluster consists of 28 machines, with 1 designated

machine serving as the master node, running Storm Nimbus, 2 designated as Zookeeper

nodes, and the rest 25 machines working as Supervisor nodes. The software configura-

tion of Me-Stream platform is shown in Table 3.

Table 3. Software configuration of Me-Stream.

Software Version

OS Ubuntu 20.04.1 64bit

Storm Apache-Storm-2.1.0

JDK Jdk1.8 64bit

Zookeeper Zookeeper-3.4.14

Kafka Kafka-2.3.0

Redis Redis-6.0.5

11

Moreover, one DAG with WordCount function is submitted to the computing clus-

ter. The logic graph of WordCount is shown in Figure 2.

sva vb vc

Spout Bolt Bolt

Fig. 2. Logical graph of WordCount in Me-Stream

In Storm, the WordCount instance is used to simulate random words input into Spout

through Kafka, and messages from different partitions are evenly distributed to differ-

ent executors for consumption. When Spout parallelism is set to 1, there is no need to

adjust the parameters. Therefore, our focus is to test the system performance when the

spout has multiple executors. Under normal circumstances, the Capacity value range is

between 0.0x and 0.2. When the value is close to 1, it indicates that the load is severe

and the degree of parallelism needs to be increased. At the same time, when the failure

value is not 0, it means that the load is serious and there are tuples that experience

failure or time out. At this time, the parallelism of Spout should be increased accord-

ingly. We simulate a normal situation where the Capacity value is small and Failure

value is 0. The following describes the experimental verification in detail, and the pa-

rameter table applied in the entire experimental process is shown in Table 4.

Table 4. Table of parameter settings in the experiments.

Parameter Explain

Emitted Number of tuples launched to date.

Transferred Number of tuples successfully transferred to the next bolt to date.

Complete latency

(ms)

The average time taken for each tuple to be fully processed in tuple

tree to date.

Acked Number of tuples successfully processed to date.

Failed Number of tuples failed or timed out to date.

4.2 Performance Results

We consider the average delay data set of topologies within 38min~50min under the

default Storm scheduling strategy and Me-Stream optimization strategy for compari-

son. The experimental settings contain two evaluation parameters: execute latency EL

and process latency PL.

(1) Execute latency.

Execute latency reflects the overall execution time for all running DAGs, and it is

evaluated by the timestamp from the execution of the function to the end of per DAG.

The smaller the execution latency, the stronger the data processing ability of the elastic

stream computing system.

12

Fig. 3. Comparison of execute latency between the default scheduler and Me-Stream on the

WordCount instance.

When the data input rate is stable, Me-Stream has a lower execution latency com-

paring to the DefaultScheduler on Storm platform. As shown in Figure 3, with the ca-

pacity remains unchanged during the whole process, the average execute latency by

Me-Stream and by the default scheduler at the stable stage are 2.3886 ms and 8.3267

ms, respectively. It demonstrates that the execution latency by Me-Stream is lower than

that of the default scheduler on the given instance when the input rate is stable.

(2) Process latency.

Process latency reflects the overall processing time for all running DAGs, and it is

evaluated by the timestamp of each DAG passed from the tuple arrival to the ack. The

smaller the processing latency, the stronger the data processing ability of the elastic

stream computing system.

Fig. 4. Comparison of process latency between the default scheduler and Me-Stream on the

WordCount instance.

When the data input rate is stable, Me-Stream has a lower process latency comparing

to the DefaultScheduler on Storm platform. As shown in Figure 4, with the capacity

remains unchanged during the whole process, the average process latency by Me-

13

Stream and by default Storm strategy at the stable stage are 14.6867 ms and 52.7333

ms, respectively. It demonstrates that the process latency by Me-Stream is lower than

that of the default Storm strategy on the given instance when the input rate is stable.

We also respectively collect statistics on execute delay, process delay and total delay

data sets of the DefaultScheduler and the Me-Stream optimization strategy, as shown

in Figure. 5 and 6.

Fig. 5. Statistics of execute delay, process delay and total delay data sets of the default scheduler

on the WordCount instance.

Fig. 6. Statistics of execute delay, process delay and total delay data sets of the Me-Stream opti-

mization strategy on the WordCount instance.

5 Related Work

The application of machine learning models can produce better parallel migration paths

and better resource allocation without manual intervention. However, the time-consum-

ing training process greatly limits the efficiency of machine learning methods, and the

inconsistency of state and data can also cause considerable overhead. Researchers have

been trying to address these issues.

14

In [18], a double exponential smoothing method was proposed to predict abnormal

events, which solves the shortcoming of the Markov model that requires a training pro-

cess. By designing a seven-phase protocol for traffic-aware active migration, it handles

the inconsistency of state and data in the load balancing partition.

In [19], a pipeline data processing model based on streaming applications was men-

tioned. When the ratio of input data to output data of upstream neighbor operations is

known, the input data of downstream neighbor operations can be obtained in advance.

The linear relationship is obtained through learning and analysis, and the average value

of the probability distribution during the monitoring period is taken. The concept of the

average value of the probability distribution during the monitoring period is also added

to the original algorithm, which can effectively reduce the error of the data set and the

function value, and improve the efficiency and accuracy of training. When the fitting

function becomes stable, the non-monitoring period can be entered, which can effec-

tively reduce training overhead and release resources.

In [20], the ideas of learning rate and discount factor were introduced on the basis of

fitting. Data sets that have a greater impact on the data stream are stored in the evalua-

tion table. When data with a large influence offset continuously appears, its weight can

be added to influence according to the evaluation result, so as to achieve the purpose of

better training the result function.

In [21], a cost-effective resource allocation model was proposed. Its purpose is to

allow users to automatically and efficiently deploy applications in local or cloud clus-

ters, and developed a profiler for Spark, which can analyze applications in actual clus-

ters according to different resource allocation schemes and input workloads. Based on

the application profile received from the profiler, dSpark uses the proposed resource

allocation model to select a cost-effective resource allocation plan based on the deadline

in order to deploy the application to the cluster.

The above prior works provide valuable insights into the potential solutions to the

static parallelization setting problems using elastic strategies of machine learning.

However, for big data stream applications, innovative methods need to be developed,

and the characteristics specific to the big data flow computing environments need to be

considered when exploring elastic non-manual intervention. A summary of the com-

parison between our work and other closely related works is given in Table 1.

Table 5. Comparison of Me-Stream and related work

Parameter
Related Work

Me-Stream
[18] [19] [20] [21]

Versatility ✗ ✓ ✓ ✗ ✓

Parallelism ✓ ✓ ✓ ✓ ✓
Machine Learning ✗ ✓ ✓ ✗ ✓

Cost Saving ✗ ✓ ✗ ✓ ✓
Resource Saving ✗ ✗ ✓ ✓ ✓

15

6 Conclusions and Future Work

In this paper, an elastic scaling strategy for operator parallelism Me-Stream is proposed.

It can intelligently perform instance parallelism without manual intervention at runtime.

Starting from the Storm Instance parameter level, we first initiate a monitoring process

to obtain the bolts-related data in real time through traffic sensing, then analyze and use

them, followed by self-optimizing the resource allocation from time to time. This paper

mainly solves the following problems:

(1) It is not transparent for Storm users to use API to set parallelism for operators in

a topology at runtime, that is, users need to run the API frequently to change the

configuration of their applications.

(2) Storm users may not know how to optimally adjust the parallelism. We use a

machine learning model to achieve a better parallel migration path. The model can

achieve a better effect in terms of resource allocation without manual intervention, and

has a certain learning ability.

(3) Storm distributes instances to work programs and work program nodes in a

round-robin manner by default. The number of configured work programs is still evenly

distributed. The instance scheduling we designed can achieve better compatibility with

the intelligent tuning scheme under the premise of ensuring good generalization.

Future work will focus on the following aspects:

(1) Adapt Me-Stream to other big data stream computing environments.

(2) Deploy Me-Stream in a real big data stream computing environment.

Acknowledgements. This work is supported by the National Natural Science Founda-

tion of China under Grant No. 61972364, the Fundamental Research Funds for the Cen-

tral Universities under Grant No. 2652021001, and Melbourne-Chindia Cloud Compu-

ting (MC3) Research Network.

References

1. H. Cao, C.e Q.Wu, L. Bao, A. Hou, W. Shen, “Throughput optimization for Storm-based

processing of stream data on clouds,” Future Generation Computer Systems, (2020) 112:

567–579.

2. C. Paris, E. Stephan, F. Gyula, H. Seif, R. Stefan, T. Kostas, “State management in Apache

Flink: Consistent stateful distributed stream processing,” Proceedings of the VLDB Endow-

ment, vol. 10(12), Aug. 2017, pp. 1718-1729.

3. Apache, Storm. http://storm.apache.org.

4. Flink. https://flink.apache.org/.

5. Spark Streaming. https://spark.apache.org/streaming/.

6. Samza. http://samza.apache.org/.

7. Apex. https://apex.apache.org/.

8. Google Cloud Dataflow. https://cloud.google.com/dataflow/.

9. S. Deng, B. Wang, S. Huang, C. Yue, J. Zhou, G. Wang, “Self-Adaptive Framework for

Efficient Stream Data Classification on Storm,” IEEE Transactions on Systems, Man, and

Cybernetics: Systems, vol. 50, NO. 1, Jan. 2020.

16

10. C. Li, J. Zhang, Y. Luo, “Real-time scheduling based on optimized topology and communi-

cation traffic in distributed real-time computation platform of storm,” Journal of Network

and Computer Applications, vol. 87, Jun. 2017, pp. 100-115.

11. A. Muhammad, M. Aleem, M. ArshadIslam, “TOP-Storm: A topology-based resource-

aware scheduler for Stream Processing Engine,” Cluster Computing, (2021), 24:417–431.

12. R. Pathan, P. Voudouris, P. Stenstrom, “Scheduling parallel real-time recurrent tasks on

multicore platforms,” IEEE Transactions on Parallel and Distributed Systems, vol. 29(4),

Apr. 2018, pp. 915-928.

13. H. Li, J. Wu, Z. Jiang, X. Li, X. Wei, “Task allocation for stream processing with recovery

latency guarantee,” Proc. 2017 IEEE International Conference on Cluster Computing,

CLUSTER 2017, IEEE Press, Sep. 2017, pp. 379-383.

14. J. Zhang, C. Li, L. Zhu, Y. Liu, Yanpei 1, “The Real-Time Scheduling Strategy Based on

Traffic and Load Balancing in Storm,” Proc. the 18th IEEE International Conference on

High Performance Computing and Communications, HPCC 2016, IEEE Press, Jan. 2017,

pp. 372-379.

15. A. Muhammad, M. Aleem, “A3‑Storm: topology‑, traffic‑, and resource‑aware storm sched-

uler for heterogeneous clusters,” The Journal of Supercomputing (2021) 77:1059–1093.

16. Y. You, J. Demmel, “Runtime data layout scheduling for machine learning dataset,” Proc.

46th International Conference on Parallel Processing, ICPP 2017, IEEE Press, Sep. 2017,

pp. 452-461.

17. A. Al-Sinayyid, M. Zhu, “Job scheduler for streaming applications in heterogeneous distrib-

uted processing systems,” The Journal of Supercomputing (2020) 76:9609–9628.

18. D. Cheng, Y. Wang, “Adaptive Scheduling Parallel Jobs with Dynamic Batching in Spark

Streaming” IEEE Transactions on Parallel and Distributed Systems, vol. 29, No. 12, De-

cember 2018.

19. X. Wei, “Pec: Proactive Elastic Collaborative Resource Scheduling in Data Stream Pro-

cessing,” IEEE Transactions on Parallel and Distributed Systems, vol. 30, No. 7, July 2019.

20. W. Wang, C. Zhang, “An On-the-fly Scheduling Strategy for Distributed Stream Processing

Platform,” IEEE Intl Conf on Parallel & Distributed Processing with Applications, Ubiqui-

tous Computing & Communications, Big Data & Cloud Computing, Social Computing &

Networking, Sustainable Computing & Communications 2018.

21. M. TawfiqulIslam, S. Karunasekera, R. Buyya, “dSpark: Deadline-based Resource Alloca-

tion for Big Data Applicationsin Apache Spark,” IEEE 13th International Conference on e-

Science, 24-27 Oct. 2017.

https://ieeexplore.ieee.org/xpl/conhome/8108702/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8108702/proceeding

