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Abstract Traditional resource management techniques (resource allocation, admission con-
trol and scheduling) have been found to be inadequate for many shared Grid and distributed
systems, that consist of autonomous and dynamic distributed resources contributed by mul-
tiple organisations. They provide no incentive for users to request resources judiciously and
appropriately, and do not accurately capture the true value, importance and deadline (the
utility) of a user’s job. Furthermore, they provide no compensation for resource providers to
contribute their computing resources to shared Grids, as traditional approaches have a user-
centric focus on maximising throughput and minimising waiting time rather than maximis-
ing a providers own benefit. Consequently, researchers and practitioners have been exam-
ining the appropriateness of ‘market-inspired’ resource management techniques to address
these limitations. Such techniques aim to smooth out access patterns and reduce the chance
of transient overload, by providing a framework for users to be truthful about their resource
requirements and job deadlines, and offering incentives for service providers to prioritise
urgent, high utility jobs over low utility jobs. We examine the recent innovations in these
systems (from 2000-2007), looking at the state-of-the-art in price setting and negotiation,
grid economy management and utility-driven scheduling and resource allocation, and iden-
tify the advantages and limitations of these systems. We then look to the future of these
systems, examining the emerging ‘Catallaxy’ market paradigm. Finally we consider the fu-
ture directions that need to be pursued to address the limitations of the current generation of
market oriented Grids and Utility Computing systems.

1 Introduction

The rise of Grid computing [15] has led to knowledge breakthroughs in fields as diverse
as climate modelling, drug design and protein analysis, through the harnessing of com-
puting, network, sensor and storage resources owned and administered by many different
organisations. These fields (and other so-called Grand Challenges) have benefited from the
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economies of scale brought about by Grid computing, tackling difficult problems that would
be impossible to feasibly solve using the computing resources of a single organisation.

Despite the obvious benefits of Grid computing, there are still many issues to be re-
solved. With increasing popularity and usage, large Grid installations are facing new prob-
lems, such as excessive spikes in demand for resources coupled with strategic and adver-
sarial behaviour by users. Such conditions have been observed on PlanetLab [30,8], which
while not specifically considered a Grid, is one of the largest open-access distributed systems
of its kind, and Mirage [12], a shared sensornet testbed, among other examples.

In both systems, bursts of high contention - when demand for available resources ex-
ceeds their supply - have been observed frequently. Spikes in PlanetLab load often corre-
spond closely to deadlines for major computing and networking conferences, when disparate
research teams are competing for resources to run their experiments [30]. Mirage is one of
very few real sensor network testbeds available, and is of prime interest to commercial and
academic researchers across the globe wishing to explore the behaviour of their algorithms
on a real system [27]. As a result, it can be difficult to get access to this system at peak times.

In such situations, traditional resource management techniques (resource allocation, ad-
mission control and scheduling) have been found by many researchers to be lacking in en-
suring fair and equitable access to resources [40,9,22,36]. Traditional resource management
techniques for clusters focus on metrics such as maximising throughput, and minimising
mean waiting time and slowdown. These metrics fail to capture the more subtle require-
ments of users, such as quality of service constraints. Consequently, researchers have been
examining the appropriateness of ‘market-inspired’ resource management techniques for
ensuring that users are treated fairly. To achieve this, there needs to be incentives for users
to be flexible about their resource requirements and job deadlines, and to utilise these sys-
tems outside of peak time. Similarly, where possible, there also needs to be provisions to
accommodate users with urgent work. These aims are achieved by users assigning a utility
value to their jobs - effectively a fixed or time-varying valuation that captures various qual-
ity of service constraints (deadline, importance, and satisfaction) associated with a user’s
job. This typically represents the amount they are willing to compensate a service provider
to satisfy their job demands. Shared Grid systems are then viewed as a marketplace, where
users compete for resources based on the perceived utility or value of their jobs.

The notion of utility is not restricted to end-users alone, especially in commercial grid
and cluster systems. As is the case in free markets, all participants (described in Section 2.1)
are self-interested entities that attempt to maximise their own gain. Service providers in
commercial systems will attempt to maximise their own utility. In this instance, the utility
they receive may directly correlate with the profit they make from the difference between
the cost of offering the service and the compensation received, giving them incentive to
participate in grid markets. A provider can choose to prioritise high yield (i.e. profit per unit
of resource) jobs from users, so that its own utility is maximised.

Furthermore, one or many brokers can operate in Grid systems, acting as middlemen be-
tween end-users and service providers. They can perform a number of important functions,
such as aggregating resources from many providers, negotiating and enforcing quality of
service targets, and reducing the complexity of access for end-users. As compensation for
performing these value-added functions, brokers generate utility for themselves by selling
access to resources at a higher cost than what they pay a service provider, thereby generating
a profit for themselves.

In this paper we examine many recent advances in the field of utility-oriented grid com-
puting markets. There have been prior surveys of market-based resource management [44],
utility computing [45] and Grid economics [11]. This survey is intended to complement
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these, by covering the most recent research in Grid computing markets. The remainder of
the paper is organised as follows: We provide an overview of market-based approaches for
utility-driven distributed systems in Section 2, describing the benefits of utility-driven com-
puting and explaining the role of the markets in Grid computing. The state-of-the-art in
market-based utility computing is presented in Section 3, highlighting the benefits of utility-
driven pricing, resource allocation, scheduling and admission control. Section 4 describes
the so-called ‘Catallaxy’ paradigm, which has moved the research focus from stand-alone
grid marketplaces to multiple, linked, decentralised and autonomic ‘free markets’. In Sec-
tion 5, we consider the future directions that need to be pursued to address the limitations
of current generation of market oriented Grids and Utility Computing systems. Finally, we
summarise the contribution of this paper in Section 6.

2 Overview of market-based approaches for utility-driven distributed systems

As networked resources such as grids, clusters, storage and sensors are being aggregated
and shared among multiple stake-holders with often competing goals, there has been a ris-
ing consensus that traditional scheduling techniques are insufficient. Indeed, simply aiming
to maximise utilisation for service providers, and minimise waiting time and throughput for
end-users does not always capture the diverse valuations that participants in these systems
place on the successful execution of jobs and services. Therefore, the notion of maximising
the utility of each participant in these system is fast gaining more importance. The behaviour,
roles and responsibilities of each of these participants as well as how they each measure
utility are explored in Section 2.1. An overview of the motivation behind market-drive util-
ity computing and the obstacles that need to be overcome is presented in Section 2.2. In
Section 2.3, we look at some of the emerging technology trends that are allowing service
providers unprecedented flexibility in partitioning and allocating their resources for com-
puting marketplaces.

2.1 Participants

Participants, or ‘actors’ in a utility-oriented Grid Computing markets can be generally clas-
sified as belonging to one of three categories: users, brokers or service providers. In some
instances, participants may actually perform the functions from more than one category -
a users may also offer some of its own resources to other participants (acting as a service
provider), or a service provider may aggregate other resources along with its own (acting as
a broker). Each actor in the system is a self-interested, utility maximising entity. How each
actor measures and maximises its utility depends on the system it operates in - the behaviour
exhibited in a shared system where market-driven techniques are used simply to regulate ac-
cess differs greatly from a profit-driven commercial system. Many of these differences are
highlighted from our study of existing systems in Section 3.

A user requires access to more resources than it has available, for requirements that can
range from jobs to be processed as interdependent tasks (e.g. scientific work-flows [46])
to web services that need to be run on networked computers. These users are willing to
compensate a provider to satisfy their requirements depending on the utility they receive.
The sophistication of this compensation depends on the system being used, as outlined in
Section 3.1.
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Rather than dealing with multiple heterogeneous service providers directly, users obtain
access to resources via one or many brokers. These brokers act as ‘middlemen’ by virtu-
alising and making available resources of multiple service providers thereby shielding the
user from the complexity of multiple architectures, operating systems and middleware. This
aggregation allows greater economies of scale, improving throughput and reducing cost.
Brokers can have more specific responsibilities, such as reserving resource slots, scheduling
jobs and services on resources held by service providers, performing admission control to
avoid overload and ensuring that a user’s quality of service requirements can be met.

Service providers satisfy the needs of end-users by providing the resources (i.e. disk,
memory, CPU, access to sensors, etc.) requested by end users. These may be provided di-
rectly or may be arbitrated by brokers. A service provider may offer its services through
multiple brokers, and even offer more resources than it has available, in an effort to improve
utilisation via statistical multiplexing. A service provider is ultimately responsible for en-
suring that all its commitments are met. It must enforce appropriate performance isolation
for jobs and services running on its resources, to ensure that users’ quality of service targets
are satisfied.This can be achieved by appropriate partitioning or scheduling of its resources.

2.2 Utility computing and the role of market-based techniques

Lai [22] attempts to motivate the use of market-based techniques for resource assignment,
whilst exploring the pitfalls of such approaches. Lai notes that, over a long time frame,
assigning resource shares in proportion to user demands is not sufficient to reach economic
efficiency, as there is no incentive for users to shift their usage from high demand periods
to low demand periods. Also, with variable demand, simple fixed price schemes are not as
efficient as variable prices in addressing transient peak loads. Indeed, the more variable the
demand the greater the efficiency loss of a fixed price scheme. When these conditions are
combined with a controlled pool of funds, users have an incentive to truthfully reveal their
valuation of tasks. Finer grained bidding for resources can occur, where users can choose
between reserved resources or best effort scheduling, depending on necessity.

Shneidman, et al. [36] have noted important emerging properties of these systems, where
users are self-interested parties that both consume and supply resources, demand often ex-
ceeds resource supply, and centralised (global) approaches cannot be used due to the sheer
scale of these systems. The authors claim the goal is no longer maximising utilisation, espe-
cially when demand exceeds supply, and more intelligent allocation techniques are needed
than just best effort or randomised allocation. They propose that a efficient allocation mech-
anism (i.e. social policy) that can allocate resources is needed that allocates resources to
users who have the highest utility for them, favouring small experiments (a common prac-
tice in scheduling) and underrepresented stake-holders (e.g. those that have been denied or
refrained from receiving service in the past), and maximises revenue.

The authors note that many recent developments make market-based techniques appro-
priate and timely as they could be immediately deployed in many commercial scenarios,
such as test-beds and shared grids, to solve real world problems. Developments in Vir-
tual Machine technology (Xen [6], VMWARE, etc.) and other resource isolation techniques
(Linux Class-based Kernel Resource Management, BSD Jails [33]) can be used to parti-
tion, isolate and share resources. Combinatorial bidding languages are emerging that are
sufficiently expressive, and such bids can be often solved as mixed integer optimisation
problems in modern solver packages like CPLEX [28].
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Shneidman, et al. state that there are a number of problems that need to be solved to
make effective market-based, utility-driven approaches a reality. Resource allocation poli-
cies must be explicitly defined, particularly, the social policy goals that need to be met.
However, we note that it is unclear at this point as to who among the users, the adminis-
trators, and the service providers should mandate these goals. Sellers of resources must be
able to efficiently divide resources into both explicit and implicit resource bundles. How-
ever, whilst tools to achieve this (e.g. Xen, CKRM) are maturing, they still have some way
to go. Buyers’ needs also must be predicted so that the amount of required resources are not
misestimated, leading to excess resources that have been reserved and not used, or wasted
due to unfinished experiments that may be invalid.

Shneidman, et al. also note that forecasting resource requirements is challenging and
new for users. It is unclear whether the market can resolve this, or whether ‘practice’ runs
in a best effort staging grounds are needed so that users can gain experience predicting their
needs. However, such staging grounds may be impractical in reality, and is in opposition to
the free market approach of ‘letting the market work it out’ by allowing users to suffer the
consequences of poor choices. Users need to find the true value of resources they wish to
reserve. The currency system needs to be well defined, and receive ongoing care so that it
functions correctly to maximise the utility of the system, avoiding the typical problems of
starvation (users run out of money), depletion (users hoard currency or leave the system)
and inflation (currency is injected into the system without limit). The use of real money
is favoured by many researchers to encourage more honest valuations of resources in the
system. An effective means to calculate and express valuation of resources is needed for
efficient operation of these systems. Bidding languages are well suited to this task and are
becoming more sophisticated. However, intuitive interfaces are needed to construct these
bids, allowing users to easily and accurately express their preferences.

Linked market-based mechanisms have been proposed by Shneidman, et al. as an in-
teresting possibility, quantifying the value of cluster time at one network versus another
(in a similar fashion to currency exchanges). This is complementary with the move from
centralised approaches to Catallaxy-inspired [14,3] distributed and autonomic systems, de-
scribed in Section 4.

2.3 Emerging technologies for computing marketplaces

The recent growth in popularity of broadly accessible virtualisation solutions and services
provides an interesting framework where, instead of a ‘task’ or process, a lightweight vir-
tual machine (VM) image can be the unit of execution and migration [26]. Whilst virtual
machines and containers have existed for decades, they have only recently become ubiqui-
tous due to new capabilities (such as paravirtualisation) in recent Intel and AMD processors,
that extend virtualisation on commodity computers and operating systems from expensive
‘big-iron’ Unix machines. These recent developments have allowed migration of unmodified
applications encapsulated in virtual machines. This can be achieved in a work-conserving
fashion without the running application nor any dependant clients or external resources be-
ing aware that it has occurred. Virtualisation solutions such as VMWARE make this possible
by encapsulating the state of the VM, such as CPU, networking, memory, and I/O while the
virtual machine is still running. Open network connections can be transferred as well, due
to the layer of indirection provided by the VMWARE Virtual Machine layer. In terms of
state, physical memory is often the largest overhead to be migrated. Stopping a VM to save
and transfer this state can cause a lengthy downtime, making the migration process far from
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transparent. As such, this is handled in situ by a virtual memory layer [38], allowing mem-
ory state to be transferred whilst a VM is still running by iteratively pre-copying memory to
the destination node, and marking it as temporarily inaccessible on the source.

3 The state-of-the-art in market-based utility computing

Utility-driven distributed computing marketplaces are typically made up of several key com-
ponents and processes. Users can have jobs that need to be processed, for which they are
willing to compensate an entity. The level of compensation depends on a number of factors,
including the currency available to the client, the contention for resources and the urgency
of the job. These factors are considered in the price setting and negotiation phase, described
in Section 3.1.

As described earlier, one or many brokers can exist in a Grid marketplace, acting as
‘middlemen’ by aggregating and virtualising access to disparate Grid resources offered by
service providers. In the face of competition from many clients for Grid resources, brokers
and service providers must manage these resources effectively, meeting demand where pos-
sible but ultimately maximising the utility (i.e. revenue) gained. This is achieved via utility-
driven resource allocation, scheduling and admission control, described in Section 3.2.

For a Grid marketplace to be sustainable, the Grid economy must be managed effec-
tively. If users have an unlimited supply of currency, there is no rewards or disincentives
for users to manage their currency and use it prudently and truthfully, revealing their true
valuation for jobs. As such, the currency, whether real or virtual, must be carefully managed
to ensure equity for all participants. This is discussed in further detail in Section 3.3.

Some systems address many or all of the above aspects of market-based, utility-driven
distributed systems. Therefore, we will first introduce these systems below:

Buyya, et al. proposed an economy driven resource management architecture for global
computational grids [10,1,11]. This consists of a generic framework, called GRACE (Grid
Architecture for Computational Economy) for trading resources dynamically, in conjunction
with existing grid components such as local and grid or meta-schedulers. The function of
GRACE is to enable supply and demand-driven pricing of resources to regulate and control
access to computational resources in a grid.

Bellagio [4] is a system that seeks to allocate resources for distributed computing in-
frastructures in an economically efficient fashion to maximise aggregate end-user utility. In
this system, users identify resources of interest via a resource discovery mechanism, such as
SWORD [29], and register their preference (via a constrained supply of virtual currency) for
said resources over time and space using combinatorial auction bids [28]. Unlike existing
work that focuses on contention for a single resource (CPU cycles), they are motivated by
scenarios where users express interest in ‘slices’ of heterogeneous goods (e.g. disk space,
memory, bandwidth).

Chun et al. [12] propose a so-called microeconomic resource allocation scheme using
combinatorial auctions within a closed virtual currency environment, for sensornet testbed
resource management, called Mirage. The operation of Mirage is very similar to that of
Bellagio however, as it is a real-world deployed system, observations of this system have
revealed many users behaving strategically to exploit the system.

Tycoon [21,23] is a market-based resource allocation system that utilises an Auction
Share scheduling algorithm where users trade off their preferences for low latency (e.g. for
a web server), high utilisation (e.g. batch computing) and risk.
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Table 1 Summary of price setting and negotiation

System Name Price Setting Acceptance Criteria Penalty
Nimrod-G [1] Fixed Posted Price No
G-commerce [39] Fixed Current price > mean price N/A
Bellagio [4] Fixed ‘Threshold’-based N/A
Mirage [12] Fixed ‘Winner Determination Problem’ N/A
Tycoon [21,23] Fixed First/Second Price No
Libra [35] Fixed Minimum Cost No
Libra+$ [41] Fixed Deadline/Budget feasible Yes (LibraSLA [42])
Li [24] Fixed nth Price No
FirstPrice [13] Variable None No
FirstReward [20] Variable Risk versus reward Yes
FirstProfit [32] Variable Risk versus per-job reward Yes
FirstOpportunity [32] Variable Affect on profit Yes
Aggregate Utility [5] Variable Contract feasibility / profitability Yes

Libra [35] is a computational economy-based scheduling system for clusters that fo-
cuses on improving the utility, and consequently the quality of service, delivered to users.
Libra is intended to be implemented in the resource management and scheduling (RMS)
logic of cluster computing systems, such as PBS [17]. Libra+$ [41] is an extension that
dynamically prices cluster resources by considering the current workload to regulate sup-
ply and demand, aiming for market equilibrium. In addition, LibraSLA [42] incorporates
Service Level Agreements (SLA) by considering the penalty of not meeting a SLA into the
admission control and scheduling decisions in a cluster.

FirstPrice and FirstReward are two utility-driven scheduling heuristics that balance
the risk of future costs against the potential gains (reward) for accepting tasks [20]. The
importance of using admission control in such schemes is also illustrated. Tasks in such
systems are batch jobs that utilise resources that are predicted accurately by the client, but
provide no value until completion. Each job is characterised by a utility function that gives
the task a value as a function of its completion time. This value reduces over time, and if
unbounded it can be a negative value (i.e. penalty) placed on the service provider. These
systems do not model the currency economy or injection (unlike Bellagio and Mirage).
Sealed bids are used and no price signals to buyers are assumed.

Popovici and Wilkes [32] examine profit-based scheduling and admission control al-
gorithms called FirstProfit and FirstOpportunity that consider a scenario where service
providers rent resources from resource providers who than run and administering them.
Clients have jobs that need processing with price values (specifically, a utility function) as-
sociated with them. The service provider rents resources from the resource provider at a cost,
and the price differential is the job’s profit that goes to the service provider. Complicating
matters is the fact that resource uncertainty exists, as resources may be over-provisioned. If
the service provider promises resources they cannot deliver, the clients’ QoS targets will not
be met and the price they will pay will decline, as defined by the client utility function. It
is assumed that service providers have some domain expertise and can reasonably predict
running times of jobs in advance.
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3.1 Price setting and negotiation

In a market-driven distributed system, users express the value or ‘utility’ they place on suc-
cessful and timely processing of their jobs through the process of price setting and negoti-
ation. Users can attempt to have their job prioritised and allocated a greater proportion of
resources by increasing the price they are willing to pay to a service provider for the priv-
ilege. Conversely, users can endeavour to save their currency when processing low priority
tasks by specifying flexible deadlines. Such preferences are captured by the price setting and
negotiation mechanisms of a given grid computing market. These price setting and negotia-
tion approaches are presented below, and summarised in Table 1.

3.1.1 Fixed price models

The GRACE [10,11] negotiation system does not specifically prescribe a particular price
model, claiming it should be left up to each participant to define their own utility-maximising
strategies when negotiating for access to resources. However, the interactions described in
preliminary work on GRACE closely resemble a double auction [10], where ‘asks’ and
‘bids’ are traded that can incorporate costs and flexible deadlines (to trade-off against cost)
until a fixed agreement is struck, or the negotiation is abandoned. Such double auctions
were subsequently been found to be highly efficient by Placek and Buyya [31], and were
integrated into Storage Exchange, a platform that allows organisations to treat storage as a
tradeable resource. GRACE resource trading protocols were also utilised in the Nimrod-G
Resource Broker [1] to define the access prices for globally distributed resources. These
prices are utilised by Nimrod-G to schedule complex computations, were results can be
optimised for time (within a budget) or to minimise costs (whilst meeting a deadline).

The G-commerce system [39] examines a simulated computational grid economy in
order to compare the efficacy of two market strategies - commodities markets and auctions -
in terms of price stability, market equilibrium, consumer efficiency and producer efficiency.
Wolski et al. examined workload conditions for both under-demand (supply > demand)
and over-demand (demand > supply) for both market strategies, finding that commodities
markets led to significantly more stable pricing than auctions. The commodities markets
also exhibited higher throughput and utilisation than auctions under conditions of under and
over demand, leading the authors to conclude that commodity markets are preferable over
auctions for grid economies.

As well as submitting typical parameters required by batch computing job submission
systems such as estimated runtime E, location of data sets and expected output, the Li-
bra [35] system allows users to express more descriptive requirements by using parameters
such as deadline D and budget B. A deadline denotes when the user needs the results of the
job by, and the budget denotes how much they are willing to pay to have the job completed
by the deadline. The Libra RMS makes a simple minimum cost computation for a submitted
job, to see if a user’s budget B is sufficient to cover the cost, C = α∗E +β ∗E/D, where α

and β are the coefficients. The α parameter captures the raw cost of the resources required
and the duration they are needed for, while β denotes the incentive offered to the user for
specifying an actual deadline. This ensures that a user is charged a fixed price for the clus-
ter hours it uses, regardless of deadline, while considering the user’s flexibility regarding
the processing deadline and compensating or penalising them accordingly. This provides a
good mix of user and provider satisfaction.

The Libra+$ [41] extends the existing Libra system to consider a system where the
prices of cluster resources vary dynamically based on the current workload to regulate sup-
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ply and demand. Whilst the prices for resources may vary over time, a user that has an
accepted job will pay a fixed price based on the current price in the marketplace for the
particular resources they request.

Market-inspired systems such as Bellagio [4] and Mirage [12] utilise second-price and
first-price auctions respectively to schedule and allocate resources. In each case, users spec-
ify a fixed value bid for a set of resources over time and space. Auctions are held at fixed
intervals (e.g. every hour for Bellagio), and users are either notified if they are successful
and are allocated the requested resources, or are denied access if unsuccessful. Users are
encouraged to bid their true value in this approach, as they must wait until the next auction
to try again, potentially with a modified bid to improve their chances of success. Users only
have limited means to express the utility of their job, via the fixed price they are willing to
pay, the duration of time they need the resources for, and the deadline it must be completed
by.

The Tycoon [21,23] system similarly uses auctions, but removes the onus on the user
to adjust their bids based on their success at auction. For each application a user wants
to run, a so-called ‘parent-agent’ is created which manages the budget and the associated
child-agents. A user specifies high-level parameters such as the number of credits available
to that parent, the deadline and the number of hosts needed. A child agent initiates the bid-
ding process, potentially liaising with multiple providers. It monitors the progress of these
negotiations and reports it up the chain. An auctioneer computes efficient first or second
price bids for CPU slices based on the funds and information presented by the child nodes
interacting with it. Funds can be received upon entry into the system, and also at regular
intervals, but this element or its effect is not explored further.

Li, et al. [24] propose an iterative gradient climbing price setting approach to balance
supply and demand in agent-driven grid marketplaces. In this approach, the participants
iteratively establish prices using a gradient climbing adaptation such that supply meets de-
mand, using an nth price auction scheme. While each bid uses a fixed price, future bids are
automatically modified based on current market conditions. If a price is rejected, an agent
subsequently increases its bid; if it is accepted it reduces its bid. In this manner, agents in
the market act independently to maximise their own individual profits.

3.1.2 Variable price models

In the FirstPrice/FirstReward [20] and FirstProfit/FirstOpportunity [32] job scheduling sys-
tems, each users job is characterised by a utility function that gives the task a value as a
function of its completion time. This value reduces over time, and if unbounded can be a
negative value (i.e. penalty) placed on the service provider. Jobs provide no value to the
user until they are completed. Each job’s deadline is equal to its minimum runtime, so any
delay incurs an immediate cost. After this point, the compensation that the provider receives
decays linearly as time progresses past the deadline.

AuYoung, et al. [5] propose using aggregate utility functions in conjunction with in-
dividual utility functions for sets of jobs, described as a ‘contract’. An aggregate utility
function is proposed in the form of aggregate utility = αxβ . For a contract, the overall
payment is the sum of the per-job prices multiplied by the value of the aggregate utility
function. The parameters can be changed to reflect the user’s preference in having a full set
of tasks processed. When α is 1 and β is 0, the user is indifferent as to whether a partial or
compete set is processed. When α is 1 and β is 1, there is a linear relationship between the
level of completeness in processing the set and the aggregate utility function. When α is 1
and β increases, the user places a higher dependency on the majority of the jobs completing
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Table 2 Summary of Utility-driven Resource Management Systems

System Name Allocation Scheduler Adm. Control
Bellagio [4] Combinatorial Auction-based Proportional Share N/A
Mirage [12] Auction-based Proportional Share N/A
Tycoon [21,23] Auction-based Auction Share No
Libra [35] N/A Proportional Share Yes (basic)
Libra+$ [41] N/A Proportional Share Yes
Li [24] Double Auction Proportional Share N/A
FirstPrice [13] N/A Highest Unit Value First No
FirstReward [20] N/A Highest Unit Value First1 Yes
FirstProfit [32] N/A Highest Per-job Profit First Yes
FirstOpportunity [32] N/A Highest Total Profit First Yes
Aggregate Utility [5] N/A Highest Contract Profit First Yes

in a set, penalising the provider if this is not the case. β controls the client’s sensitivity to the
aggregate metric - a high β and α value would result in high risk for the service provider, but
high reward if they can satisfy as much of a contract (i.e. set) as possible - getting a “bonus”.

3.2 Utility-driven Resource Management Systems (RMS)

Utility-driven resource management systems (RMS) actively consider the utility of partici-
pants when performing resource allocation, scheduling and admission control. Some well-
known utility-aware resource management systems are presented below, and summarised in
Table 2.

3.2.1 Auction-based resource allocation

Bellagio: A ‘second-price’ style auction is employed in Bellagio [4] to encourage users to
reveal the true value they place on these resources. Combinatorial auctions are then held
every hour to allocate resources. Given that clearing such combinatorial auctions is known
to be NP-Complete, approximation algorithms are used to determine the winner. The Bel-
lagio system assumes that an authentication entity exists that authenticates bids, resource
capabilities (reservations) and account balances, such as SHARP [16]. The virtual currency
economy is managed such that one user cannot dominate the available resources for lengthy
periods of time. This currency system is explained in further detail in Section 3.3.

Experimental results show that Bellagio scales well to clearing auctions involving thou-
sands of bids and resources. Bellagio generates more utility for its users than a standard pro-
portional share resource allocation under a variety of load conditions. Bellagio is especially
effective under higher system load, spreading out resource requests in order to maximise
overall utility. The fairness of the Bellagio policy (protecting light users against starvation
from heavy users) can be ensured by using an appropriate currency distribution policy.

Mirage: The resource allocation problem for sensornet testbeds (such as Mirage [12]) is
well suited to combinatorial auctions, as resources are both substitutable (i.e. specific ma-
chine allocation is often not important) and complimentary (partial request allocation is not

1 Risk-aware
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useful, but full allocations are complementary to each other). Mirage can locate and reserve
resources based on per-node attributes (e.g. a certain feature needed at each node) but not
inter-node attributes (e.g. node is 10 metres from other node). The bid format language used
by Mirage for users to express their preferences is based on XOR [28], allowing them to
request resources over both space and time, with the valuation and deadline flexibility of
their bid contributing to the probability of a successful bid.

While monitoring the system over a period of 4 months, the authors observed that
the values users placed on resources varied over four orders of magnitude, validating the
auction-based approach. Users also requested a range of resource allocations and durations,
highlighting the flexibility of the bidding language in allowing users to share access to the
system where appropriate, and therefore improving utilisation. However, as the authors ob-
served a live system, it was not compared against any baseline scheduler, so the increase in
overall utility was not quantified.

Tycoon: The Tycoon [21,23] system utilises an Auction Share scheduling algorithm where
users trade off their preferences for low latency, high utilisation and risk - depending on
their specific requirements. Many schedulers in similar systems utilise proportional share
weighted by the importance of that process. As the authors note this method can be abused,
as it depends on users truthfully valuing their process, and as the sum of weights increases
each processor’s share approaches zero. The Tycoon approach encourages users to devise
specialised strategies for each specific application they need to run, based on their needs.
Tycoon utilises an agent-driven approach, which removes much of the complexity (and, we
note, the control) in devising effective market-driven strategies for users’ processes.

When a market strategy is adapted to proportional scheduling, it performed well under
high utilisation - equivalent to a best case proportional scheduling scenario where users
value their jobs truthfully. When no market principles are used and users value their tasks
strategically, utility converges to zero as the load increases.

An auction strategy attempts to provide the best elements of many approaches - high
utilisation (proportional share), low latency (borrowed virtual time share) and low risk (re-
source reservation). Users specify their preference based on application-specific needs. In
contrast, a proportional share scheduler can only hope to achieve high utilisation or low la-
tency / fairness, but not both, and users are not encouraged to value their tasks truthfully.
The limited results demonstrate that an Auction share approach can be effective in ensuring
predictable latency and also be fair by yielding the CPU when not needed.

Combinatorial Exchange: Schnizler, et al. [34] propose to formulate the resource trading
and allocation problem as a multi-attribute combinatorial exchange model. Like many other
grid economy researchers, the authors claim that traditional (e.g. FCFS) allocation and
scheduling are not sufficient in market driven computational grids, as they fail to capture
the utility (i.e. true valuation) that users place on the successful processing of their jobs.
Flat rate pricing schemes for grid economies are also insufficient, as they do not capture the
variability in demand and user utility that exists. The authors list certain desirable properties
that any pricing and allocation scheme should have in an economy driven grid:

– Allocative efficiency: Pareto efficiency dictates that any allocation mechanism must en-
sure that one agent is made better off without making at least one agent worse off. If
user utility is equivalent and transferable, then a mechanism should maximise the sum
of individual utilities.
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– Incentive compatible: All participants must report their preferences (i.e. valuations)
truthfully.

– Individual Rationality: Requires that users participating in a mechanism have a higher
utility than before they joined - otherwise they have no incentive to participate.

– Budget balance: A mechanism is budget balanced if the amount of prices sum to zero
over all participating agents. This can be achieved by a closed loop currency system
where payments are redistributed among the agents, with no funds removed nor injected
from outside. Weak balanced budget occurs when participants make payments to the
mechanism, but not vice versa.

– Computational / Communication tractability: The cost of computing the outcome of
allocating resources in an optimal or near optimal fashion must be considered, as well
as the communication effort that is needed to converge on these goals.

The underlying environment must also consider the following domain specific require-
ments:

– Simultaneous trading: Support of multiple buyers and multiple sellers.
– Trading dependant resources: Buyers demand combinations (‘bundles’) of resources,

and may bid on many such bundles at once though XOR bids.
– Support for multi-attribute resource: A single resource may have multiple resources that

are of interest to a buyer (e.g. a HDD has capacity and access time)

Existing market-based approaches do not account for time or quality constraints in the
bidding and auction process. As such, the authors introduce a bidding language to express
the auction process for a computation grid, capturing the pertinent elements of a users bid
- such as the makeup and quality requested for a specific resource bundle, and the valua-
tion they place on it. The problem is formulated as a generalisation of the combinatorial
allocation problem, which is known to be NP-complete. The objective function attempts to
maximise the surplus V ∗, which is the sum of the difference between the buyers’ valuations
and the sellers’ reservation prices. A Vickrey-Clarke-Groves pricing mechanism is then as-
sumed. The proposed approach is simulated, and its computational tractability is shown (by
solving the auctions using the well-known CPLEX solver), clearly demonstrating that the
optimisation problem does not scale. The simulation shows an exponential relationship be-
tween the number of orders and the CPU time needed to compute the results of the auction.
A scenario with 140 bundles comprising 303 bids took nearly a minute to compute, high-
lighting the critical need for a faster approximate solution to clear auctions.

3.2.2 Scheduling

Libra: Libra’s proportional share approach allowed more jobs to be completed by their
deadline (and consequently less jobs rejected) for a variety of cluster and workload com-
binations. However, such proportion share scheduling is not appropriate for all workloads
- specifically, memory intensive jobs would suffer due to excessive context switching. Fur-
thermore, Libra’s approach critically depends on the quality of the runtime estimation to
schedule jobs and resources effectively. However, accurate runtime estimates cannot be
guaranteed for many batch or cluster workloads [25,37]. Furthermore, the operation of Libra
depends on several limiting assumptions; that only one centralised gateway is used to submit
jobs to the cluster, that there must be no background jobs (the cluster nodes are dedicated),
that CPU time is divisible and reservable, and that the estimated runtime E is accurate.



13

FirstPrice and FirstReward: FirstPrice [20] sorts and greedily schedules jobs based on a
schedule that will maximise per unit return. FirstReward [20] considers both the per unit
return for accepting a task and the risk of losing gains in the future. It utilises a Present
Value (PV) approach that considers the yield countered by a discount rate on future gains
that could be made. A high discount rate causes the system to discount (avoid) future
gains and focus on short term jobs to obtain quick profit which is a risk adverse strategy.
Experiments have demonstrated that a high discount rate is appropriate when there is a
large skew between valuations of jobs in a schedule. The integration of opportunity costs for
the value of the potential loss incurred by taking one job over another. Ideally, jobs should
only be deferred (to chase extra profit) if they have a low decay rate, even if they have a
high unit gain. The reward metric is a tuneable metric that considers potential gain with
opportunity costs, that can be weighted to control the degree of which the system considers
expected gain. When penalties are bounded, it is beneficial to take some risk in order to gain
more profit - the heuristic biases against low value jobs, and the penalty is capped. When
the penalty is uncapped, taking considerable risks on future gain starts to become a poor
strategy.

FirstOpportunity and FirstOpportunityRate: Popovici and Wilkes propose two profit-based
scheduling algorithms [32]. The first of these is FirstOpportunity, which examines the effect
of running a job on others in the queue. FirstOpportunity builds a new schedule for pending
workloads by selecting each job in turn (using only the most profitable shape for that job)
and uses FirstProfit to generate a schedule for the remaining jobs. Finally, the job is chosen
that generates the schedule with the highest total profit. The second algorithm is FirstOp-
portunityRate, which is similar to FirstOpportunity but considers the job that produces the
highest aggregate profit in proportion to the total schedule length.

When accurate resource information is available, FirstReward and FirstPrice have a
higher acceptance rate and utilisation under low load, as they do not consider resource cost,
only profit. FirstOpportunity and FirstOpportunityRate have the most accurate profit estima-
tion (at admission control stage) under all shown load conditions as they consider existing
jobs as well as the newly arriving job. Under more severe decay rates, FirstOpportunityRate
has consistently better performance and accuracy, as it prioritises smaller, higher profit jobs.
Under variable resource availability and price, FirstOpportunity and FirstOpportunityRate
are the best policies as they consider resource costs as well as price, whereas other policies
schedule on client utility or job size alone.

When uncertain resource information is available, FirstProfit was extended to consider
profit reward versus probability of achieving that profit, whilst the other policies are uncert-
ainty-oblivious. FirstProfit admitted fewer jobs when uncertainty increased, reducing its risk
exposure (i.e. accepting jobs then not meeting client targets). However, profit rate was in-
creased when FirstProfit took slightly more risk (20%).

Aggregate Utility: The use of aggregate utility functions in conjunction with traditional,
single job utility functions is explored by AuYoung et. al. [5]. These aggregate functions are
used to reflect an end-user’s preference for a “set” of jobs to be completed in or close to its
entirety, and the resulting utility they place on such needs. These job sets or contracts are
assumed to describe the individual jobs (number of jobs, size, arrival rates) and their utility
accurately, and are well behaved. A job’s value is equal to its utility function at the moment
it completes, or its maximum penalty if cancelled.
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3.2.3 Admission control

FirstPrice and FirstReward: The use of admission control combined with FirstPrice and
FirstReward [20] is valuable especially under conditions of high system load. A decision can
be made regarding whether it is beneficial to accept a task before the system accepts it by
looking at how it integrates into the existing task mix. A slack metric is utilised that considers
the amount of additional delay it can impose on a job before it becomes unprofitable to
accept it. High slack jobs are desirable as they can be potentially rescheduled if a more
profitable job comes along.

PositiveOpportunity: PositiveOpportunity [32] is the admission control component of First-
Opportunity and FirstOpportunityRate. PositiveOpportunity computes a job schedule based
on matching scheduling policy, for all tasks including the new job (with all possible allo-
cations for the new job enumerated), then all tasks not including new job. The admission
control algorithm then chooses most rewarding scheduling. If job is in said schedule, it is
admitted.

Aggregate Utility: Admission control can also be done for both contracts (sets of jobs)
and individual jobs [5]. When new contracts arrive, feasibility and profitability tests are
performed to ensure that it is worth a providers while. Admission control is also done at
the per-job level with each job’s individual utility function. However, the utility function
includes a bias that reflects the intrinsic value of the job when processed as part of the set it
belongs to.

Libra: The Libra RMS has some rudimentary admission control functionality [35]. The
provider will check whether the budget is sufficient and if there is a cluster node that can
feasibly meet the prescribed deadline. If no node can meet the deadline, the job is rejected.
In this case, a user should try again later or try a more relaxed deadline. By doing this, Libra
can guarantee an accepted job will be processed before its deadline, provided the runtime
estimate E is accurate. LibraRisk [43] addresses one of the key weaknesses of Libra by
enhancing admission control, considering delays caused by inaccurate runtime estimates.
Each newly arriving job is examined to gauge the risk of that job causing a deadline to be
exceeded and the resultant delay to the other jobs queuing in the cluster. Specifically, the
risk of delay is computed for each node in the cluster, and a job is only accepted if it can be
accommodated on a node such that there is zero risk of delay. Experimental results showed
that in the face of inaccurate user runtime estimates, LibraRisk accepted and completed
more jobs than Libra, while maintaining better slowdown across a variety of workload con-
ditions. Libra+$ [41] has enhanced admission control capabilities over Libra, considering
three criteria when admitting jobs; that the resources required are available, that the deadline
set is feasible and that the budget to finish the job within the deadline is sufficient to cover
the costs of the resources. However, unlike LibraRisk, Libra+$ does not consider the risk of
inaccurate runtime estimations. LibraSLA [42] takes this further by considering the effect
of accepting a new job on the Service Level Agreements (SLAs) of existing jobs, weighing
up the additional value that a new job earns versus the penalty of breaching an existing jobs
SLA and being liable to pay a penalty.
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3.3 Managing the grid economy

Managing the grid economy effectively is crucial to the success of any market-driven grid
computing system. Indeed, without some form of constraint and scarcity in the economy,
there is little incentive for users to value and bid on their jobs truthfully. With unbounded
currency, users would simply bid the largest amount possible with unrealistic deadlines
regardless of the relative importance of their jobs, with no thought of rationing out their
currency for later use. If all users bid in this fashion, the market-based approach becomes
redundant and offers no benefit over traditional ‘fair’ scheduling.

There are two major considerations for managing the grid economy. The first is the na-
ture of the currency accepted in the economy. Currencies can be virtual, where the currency
system is valid only within a particular grid economy, or they can be real, where the money
supply is obtained from or linked to currency markets accepted in the world economy. The
advantages and disadvantages of both approaches are discussed in Section 3.3.1. The second
consideration is how the currency in question is managed - that is, how it is injected, taxed,
controlled and dispersed. This is described in Section 3.3.2.

3.3.1 Virtual vs. Real Currency

A well-defined currency system is essential to ensure that resources are efficiently shared
and allocated in a grid computing marketplace. The use of virtual or real currencies has
respective advantages and disadvantages. Shneidman, et al. [36] found that most deployed
computational markets use virtual currency, due to its low risk and low stakes in case of
mismanagement or abuse. However, they note that virtual currency has its drawbacks, due
to requiring careful initial and ongoing management of the virtual currency economy, which
is often ignored due to the low stakes involved. There is also a critical lack of liquidity and
flexibility in virtual currencies, with users unable to ‘cash-out’ or transfer their credits to
other systems easily, if at all.

These approaches tend to be most appropriate for single marketplaces, such as re-
searchers from one organisation sharing a HPC cluster. In this instance, it is simply a means
to regulate access, especially under high contention, and encourage socially responsible be-
haviour from users. Whilst they represent fairly simplistic marketplaces, currencies still need
to be managed appropriately for any benefit to be realised over traditional scheduling and
resource allocation techniques.

The use of real currency is appealing for a number of reasons. In some computational
marketplaces, users must contribute their own resources (e.g. CPU, disk, etc.) in order to be
granted credits to access the wider shared resources. This can be prohibitive for some, who
may want shorter term access and do not wish to be permanent participants in a grid. Al-
lowing these users to buy access using real currency can lower the bar of entry, and increase
overall utilisation and revenue for the system. Real currency formats (e.g. USD, Euro, etc.)
are universally recognised, easily transferable and exchanged, and are managed outside the
scope of a grid marketplace, by linked free markets and respective government policy. How-
ever, many of the same problems that exist in real-world economies apply to computational
marketplaces. It is entirely possible for one user to be denied access to a system (effectively
priced out of the market) by another user with more money. The distribution of wealth held
by users will have a critical effect on the a computational grid’s accessibility, affordability
and utilisation. As such, careful consideration must be given when choosing between virtual
and real currency systems. For a shared system, where the aim is equality of access, a real



16

currency system may be inappropriate. For a profit-driven commercial grid marketplace, an
economy based on real currency would likely be the most appealing option.

3.3.2 Currency management and dispersal

A ‘GridBank’ [7] has been proposed by Barmouta and Buyya for providing accounting ser-
vices for computing resources, thereby enabling them to be shared and bartered between
multiple administrative domains. After a client’s Grid Resource Broker (GRB) negotiates
with a Grid Service Provider (GSP) to set the price and amount of resources needed, they is-
sue a GridCheque through the GridBank (subject to sufficient funds) to the charging module
of the GSP. The client then submits their job to the GSP for execution. Upon completion, the
charging module on the GSP contacts the GridBank server to redeem the cheque based on
the original price negotiated. It is noted that the GridBank service is mostly focused toward
a co-operative model, where participants are both producers and consumers, and are allo-
cated a certain number of credits upon joining the system. The aim in this scenario is price
equilibrium but no specific measures, such as currency management to encourage certain
behaviours, are implemented to ensure that this occurs.

The Bellagio [4] system offers some rudimentary controls on the distribution of wealth
in the virtual economy - such as when to inject currency into the system and how much.
This subsequently controls the share of resources received by participating users. The total
amount of currency that can be accumulated by a given user is bounded to reduce chance of
abuse. This avoids situations such as a user hoarding currency for lengthy periods of time,
then dominating the available resources causing starvation.

The Mirage [12] system offers more sophisticated currency management features. Some
of its novel features (over Bellagio) include proportional share profit sharing, where pro-
ceeds from cleared auctions are distributed proportionally to idle users to accumulate ad-hoc
credit, and a savings tax to address unbalanced usage patterns and avoid excessive accumu-
lation of credit. Indeed, over time a user’s credit regresses back to a baseline amount. The
central bank and economy is more sophisticated than Bellagio as users have standard cur-
rency as well as currency ‘shares’, which affect the proportion of currency distributed back
to idle users after an auction clears. Mirage also features a proportional savings tax imposed
on the currency held by users, known as the ‘use it or lose it’ policy.

Irwin, Chase et al. propose a self-recharging virtual currency system for shared com-
puting infrastructure such as test-beds like PlanetLab [8] and Intel SensorWeb [18]. They
aim to address the so-called ‘tragedy of the commons’ where individual interests compete
against the common good of all participants. They are primarily motivated by its use in a
Cereus-based system for service-oriented computing. The authors propose recycling cur-
rency through the economy, while artificially capping the rate of spending by users, seeking
to avoid currency hoarding and starvation that can occur in other market-based systems. The
economy critically depends on an accountable, third party verifiable ‘claim’ system such as
SHARP [16] to manage currency and resources.

In this system, credits recharge after a fixed recharge time from the time they are spent
(or committed to a bid). This is in an effort to avoid hoarding and starvation, but as the
authors note if the recharge time is too short, this system resembles a simple random lottery.
If the recharge time is too long, it resembles a typical money economy with all the endemic
problems typically associated. Credit for a user is capped at a fixed budget of c - users cannot
hold nor bid more than c credits at any given time.

The fundamental issue in this proposal is when to recharge credits spent on winning bids,
as this will significantly affect user behaviour. Existing work recharges credits when the
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purchased contract has expired, encouraging users to bid for short-term gratification rather
than biding their time and bidding into the future. A Cereus system enforces a fixed interval
recharge that occurs after a fixed time r after the user commits credit to a bid, encouraging
early bidding for auctions in the future. Once committed, these credits are unavailable to
users - they cannot bid on concurrent auctions with money they dont have.

However, without results it is unclear if this approach actually maximises end-user util-
ity. Consider a group of users, each with c credits bidding on a single auction. All users bid
c credits, and bid early. In a Cereus system, the broker accepts all bids, and returns a pro-
portional amount of resources to each end-user, effectively negating the useful features of
market-based scheduling. We propose that a bounded, randomly distributed recharge time
could potentially diffuse this group behaviour. It is also unclear how the recharging currency
system interacts with multiple concurrent auctions, or with the length of contracts awarded
to end-users.

3.3.3 Trust models and accounting

SHARP is a framework for secure resource management (resource discovery and allocation)
for wide-area, decentralised networked computing platforms [16]. SHARP provides partic-
ipants with ‘claims’ on shared computing resources, which are probabilistic (i.e. not guar-
anteed) promises over resources for a specified time period. These claims can be utilised,
subdivided or on-sold at the whim of the claim holder. These claims form the basis of a
decentralised resource peering, trading, and bartering system, with each claim being autho-
rised by a chain of self-signed delegations anchored in the site authority of the resource
provider of that claim.

SHARP is particularly suited to shared networks that can partition their resources into
easily divisible units (slices), such as virtual machines. A local scheduler at each resource
has the ultimate responsibility for enforcing any successful resource allocation claim. The
resource claims themselves are split into two phases. In the first phase, a service manager
(acting on behalf of a user who needs resources) obtains a ‘ticket’, representing a soft claim,
that represents a probabilistic claim on a specific resource for a period of time. In the second
phase, the ticket must be converted into a concrete reservation by contacting the site author-
ity for the resources and requesting a ‘lease’. A ‘lease’ is a hard claim which is guaranteed
valid, except in the instance of a resource failure. The separation of the claims process into
two phases allows the site authority to consider current conditions (e.g. load) when deter-
mining when and how to redeem the claim, or even to reject the claim outright.

Claims in SHARP may be oversubscribed in that the agent acting on behalf of a resource
has issued more more tickets than it can support. This can improve resource utilisation by
statistical multiplexing, but it also means that the claims themselves are probabilistic, and
do not guarantee access. The probability of a claim being successfully converted into a lease
naturally depends on the level of over-subscription. In the event of a claim being rejected,
the victim can seek recourse by presenting the rejected claim to the issuing agent, so that the
responsible agent can compensate them. In the instance that a resource is undersubscribed,
the resource claims are effectively hard reservations.

Of course, SHARP does not function as an entire resource management system. Par-
ticularly, the onus is on resource providers to manage and enforce allocations created and
held by participants that were generated by SHARP in the form of tickets and leases. As
SHARP is intended for use with systems without global trust, where resources claims can
be arbitrarily divided and given or on-sold to anonymous third parties, security and abuse is
a large problem. The extent of this problem is largely dependent on the platform SHARP is
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deployed on, and its ability to isolate users from one another, and to track and prevent abuse.
SHARP mitigates some of this risk by only allowing access (but not control) to slices of re-
sources for fixed periods of time. If an abusive user is detected their access can be revoked.
The specifics of this revocation are again left to the local resource managers themselves.

Motivated by the SHARP leasing framework, Irwin et al. extend this further with SHI-
RAKO, a generic and extensible system for on-demand leasing of shared network res-
ources [19]. SHIRAKO brings dynamic logic to the leasing process, allowing users to lease
groups of resources from multiple providers over multiple physical sites, through the ser-
vices of resource brokers. SHIRAKO enhances the functionality of SHARP by adapting to
dynamic resource availability and changing load conditions through autonomous behaviour
of the ‘actors’ in the system. In particular, SHIRAKO allows ‘flexible’ resource allocation
through leases which can be re-negotiated and extended via mutual agreement, which was
not possible using SHARP alone. This removes the need to obtain a new lease for any resid-
ual demand that exists once an existing lease expires, reducing resource fragmentation and
continuity. Additional logic is provided for making resource leases more flexible for users.
A request can be defined as ‘elastic’ to specify a user will accept fewer resources if its full
allocation is not available. Requests can be ‘deferrable’ if a user will accept a later start time
than what is specified in the lease if that time is unavailable. Request groups are also defined,
allowing co-scheduling. A set of tickets can be assigned to a request group, ensuring (where
possible) that each request is satisfied within a common time window.

4 Catallaxy market architectures

In the last 3 years there has been an increased research focus on Austrian economist F.A. von
Hayek’s notion of a ‘Catallaxy’ and applying it to market-driven grid computing. The idea
of ‘Catallactics’ considers markets where prices evolve from the actions of economically
self-interested participants. Each participant tries to maximise their own gain whilst having
limited information available to them.

Eymann et al. have investigated the issues and requirements of implementing an elec-
tronic grid market based on the concept of ‘Catallaxy’, a ‘free market’ economic self-
organisation approach [14]. However, they found that solving this problem is a complex
multi-attribute allocation problem, found to be NP-complete in previous work by other re-
searchers in the field. The authors note that in interrelated markets, the allocation of re-
sources and services in one market invariably influences the outcomes in the other market.
These interactions should occur without relying on a traditional centralised broker. Partic-
ipants should be self-organising and follow their own interest, maximising their own util-
ity. A catallaxy approach works on the principle that there are autonomous decentralised
agents, which have constant negotiation and price signalling occurring between them. In-
deed, changing conditions (availability, competition) on the resource market will be reflected
by cascading price changes that reflect the respective scarcity and demand for a resource.
Participants must read these signals and react accordingly.

The principles of the catallaxy as applied to computation grids are stated by Eymann et
al. as follows:

1. Participants work for their own self-interest; each element is a utilisation maximising
entity.

2. Entities do not have global knowledge; they can only act on information as it is made
available to them. They must adapt to constantly changing signals from downstream and
upstream entities.
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3. The market is simply a communications bus; price changes (e.g. increases and de-
creases) will dictate whether an entity looks for alternative sources to procure a specific
resource, making the market dynamic.

A prototype model for the ‘Catallaxy’ was presented by the authors, consisting of an
application layer and a service layer. In the application layer, complex services are mapped
to basic services. The service layer maps service requests to actual resources provided by
local resource managers. The potential scenarios for existing grid marketplaces at the ser-
vice layer typically fall into three categories; Contracting resources in advance, contracting
resources after finalising the service contract with client and contracting resources during
negotiation.

When contracting resources in advance, future demand must be forecast. It is a cen-
tralised and static solution, and can lead to poor utilisation. Contracting resources after fi-
nalising the service contract with a client can be risky, as insufficient resources could be
available. Contracting resources during negotiation is highly desirable, as a user can choose
between multiple providers based on cost, and can also adapt to changing prices, reducing
risk and ensuring the market is balanced. The authors use the latter approach to form the
basis of a Catallaxy inspired grid market.

The design of the service discovery mechanism is also critical. Eymann et al. claim that
centralised registries are not appropriate due to the decentralised nature of buyers and sellers.
Distributed Hash Tables may be suitable but lack scalability in dynamic networks due to the
state constantly changing, leading to high communication and computational overhead.

Eymann et al. additionally note that the choice of auction strategy used is also important
in a ‘Catallaxy’ driven grid marketplace. These can include fixed prices, Dutch auctions,
English auctions and Double auctions. However, we note that any auction approach chosen
must be appropriate for the scale and dynamism of linked ‘Catallaxy’ inspired grid market-
place, completing rapidly with minimal computation and communication overhead.

Ardaiz, et al. [3] explore a decentralised, economic and utility-driven resource allocation
approach for resource allocation in a grid marketplace. In such environments, each partici-
pant (client, service providers and resource providers) independently tries to maximise their
own utility by following a self-interested strategy. A decentralised approach is evaluated
for grids of various densities and reliabilities, and is compared against a centralised, stati-
cally optimal approach. In effect there are two markets operating - one for resources, where
service providers procure resources from resource providers, and one for services, where
clients procure services from service providers. As such, the client is not aware of the par-
ticulars of the resource provider, and vice versa. However, the service provider participates
and tries to maximise utility in both markets.

An experimental framework is presented in order to simulate varying grid markets under
realistic settings with a topology following that of the Internet. There are highly connected,
high bandwidth and compute power centres (e.g. HPC facilities) and also smaller resources
available toward the regional centres and edges of the system. The various strategies and
tendencies for negotiation in the two markets are reflected probabilistically from a previous
study of the catallaxy. The range valuations and pricing limits that participants place on their
negations are very narrow, which is inconsistent with previous observations in deployed grid
marketplaces, where 4 orders of magnitude difference has been observed in valuation, with
little correlation to the service requirements needed [27]. Each request unit also requires an
equal amount of computation and bandwidth power, and does not reflect the mix of data and
compute intensive jobs that are found in grid computing workloads.



20

Under high load, high density grids, Ardaiz, et al. found that the total utility and resource
efficiency decreased for the baseline and distributed approaches, due to difficulties in making
successful allocations caused by high contention for resources. Response time is worse for
the distributed approach due to the flooding discovery mechanism used to find resources.
As grid density increases, it takes longer for the distributed catallactic approach to find and
allocate resources, as the discovery time increases due to resources being situated on the
edges of the network. A small increase is seen in the baseline approach due to the need to
monitor a larger number of resources. As the network becomes more dynamic and prone to
failure, the catallactic approach shows better response time, as it is more resistant to poor
allocation choices and can re-negotiate with other resources in place of failed resources.

5 Discussion

Based on our study of existing utility-driven and market based distributed computing archi-
tectures, we consider the necessary salient features of a next generation, general purpose
and ad-hoc utility computing marketplace. We are motivated by the emerging ‘Catallaxy’
paradigm, where multiple linked computing marketplaces, each consisting of self-interested,
utility-maximising entities, interact and evolve depending on market conditions. Participants
in these decentralised systems are constantly adapting to current conditions depending on
the market signals. In this section we discuss how to potentially address many of the limi-
tations of existing utility computing systems, in a manner that complements the ‘Catallaxy’
view of the next generation of computing marketplaces.

Many existing systems (such as Bellagio [4], Mirage [12], etc.) have restrictive price
setting and negotiation policies. Auctions are held at fixed intervals, and only one type of
auction is allowed (e.g. First Price, Second Price). Like GRACE [10,11], we believe that
the choice of negotiation and pricing protocols should be left up to each participant in the
system. This is crucial as the choice of pricing (fixed, variable) and negotiation protocol
(auction, one-to-one, agent driven, etc.), with the permutations and combinations thereof,
can have an enormous effect on the utility gained by the participants depending on the
current market conditions. Issues such as resource scarcity (or glut), economic conditions,
time constraints, and the number of participants (i.e. competition) will result in very different
results for each combination of pricing and negotiation.

Management of the computational economy becomes considerably more complicated
when many disparate resource providers are linked together in the same “marketplace”.
Most of the systems studied in this paper are closed economies where money is distributed
and recycled through the system. The currency is typically virtual, not real, and as such
has the associated strengths and weaknesses described in Section 3.3.1. Most notably, vir-
tual currencies lack liquidity and flexibility, but offer low stakes and low risk for service
providers in the event of abuse. To utilise these systems, users must earn credit through ei-
ther in-kind contribution of resources, or via periods of inactivity and judicious use of the
available services. Unfortunately, this can raise the barrier of entry, making it unsuitable for
a user who needs to access the service immediately, despite the fact they could be willing to
financially compensate a service provider if the option was available.

Most commercial service providers offer their resources in exchange for real currency
(e.g USD, Euro, etc). In these system the currency market is open, well defined and liquid,
and addresses some of the access issues that plague virtual currency systems. Subject to
availability, users can simply ‘buy in’ to get access to a providers’ resources. Conversely,
systems utilising real currency can face many of the same issues that occur in real market-



21

places, where access to systems can be determined by who has the most money, and the
distribution of wealth held by users can be heavily skewed.

A next generation broker is needed to manage interaction and interoperability between
these two very different service paradigms. It is not appropriate to simply dictate that one
style of currency is used. For many distributed systems, grids and testbeds, the intent of the
system is to provide equitable access for as many people as possible. These systems may
have been created with government or grant funds for greater social benefit, and as such any
attempt to profit from these systems would be inappropriate, beyond basic cost recovery. In
this instance, the constrained virtual currency is simply a means to regulate access to the
system. For commercial providers, profit is the overriding motive, so virtual currency is not
an appropriate means of compensation for the services it offers.

A next generation broker in an ad-hoc marketplace should act as a ‘middleman’ between
the user and one or many service providers. These providers can be either commercial or
open access in nature. The broker is essentially a value-added service, aggregating access to
multiple providers that may not necessarily be accessible to an end-user. In the case of open
access systems that utilise virtual currency tied to a particular system, a broker could ‘earn’
access for later use, via in-kind contribution of resources, or simply accumulating credit by
joining the system and remaining idle. The broker can then utilise this credit when end-users
request access to these systems, removing the onus on the user to join or contribute to that
particular system and giving them immediate access. Such access could be procured from a
broker for real currency (where the cost is dictated by the broker), or by mutual agreement
a user could offer virtual credit at a different computing facility in exchange for access
to the service provider offered by the broker. For instance, we could envisage a scenario
where a user offers a broker X access credits from Mirage [12] for Y access credits at
Bellagio [4] (depending on the relative worth, negotiated by the user and the broker). Such
trading arrangements could also be made between different brokers in a marketplace.

Resource reservation, allocation and service guarantees largely depend on the service
provider. The service provider can choose whether it offers ‘hard’ or ‘soft’ guarantees, and
whether compensation is given for missed deadlines or lack of service. A broker must then
decide if it is satisfied with these guarantees when reselling the services of a provider. In
the event that a service provider continually fails to meet agreed quality of service targets,
a broker can seek compensation (if available) or simply terminate it’s arrangement with that
provider, and find another. The broker itself could potentially over-subscribe access to a
given service provider by selling more resources than it has acquired or reserved from a
provider. This can be risky as a provider (which has its own resource allocation and admis-
sion control policies) can simply refuse a request for access to resources, leaving the broker
liable for over-promising on resources it does not have. In this instance, a user could seek
compensation from a broker (if available), or simply find another, more reliable system.

A reputation system would also complement future ad-hoc utility computing systems,
where continual offenders could earn a poor reputation, allowing others to avoid them where
possible. Conversely, good service could be rewarding with a positive reputation, attracting
more customers for service providers and brokers alike. Participants (i.e. users, brokers and
service providers) could track this individually, based on their own experiences, or through
a co-ordinated, decentralised registry.

As discussed in Section 2.3, the emergence of widely available, commodity virtual
machine technology has simplified administration and allocation of resources for service
providers. Virtual machine infrastructure such as Xen [6] and VMWare [2] have allowed
these providers to partition resources such as memory, disk space and processor cores into
virtual machines with arbitrary capabilities, with minimal overhead. This can allow greater
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efficiencies for providers through improved statistical multiplexing when hosting multiple
virtual machines.

Despite this, brokers could still play an important role in VM-driven computing mar-
ketplaces. They can provide numerous value-added services, such as providing pre-made
virtual machine images for common tasks, or base images for users to trivially build upon
and add their own application logic. A user could utilise such base images to create their
own custom, self-contained container for execution, along with any data, libraries and ap-
plications that are needed for the duration of execution. This removes a significant amount
of complexity for users, removing the need for them to ensure the relevant data, libraries and
applications are available on the target execution environment hosted by a service provider.

6 Conclusion

In this work, we have evaluated the state-of-the-art in market-driven utility computing plat-
forms. We provided an overview of the key components of these platforms, identifying
the roles and responsibilities of the participants, the effect of market-based techniques and
the emerging technological advances that are propelling market-driven utility computing
platforms forward. We examined the state-of-the-art in utility-oriented computing markets,
identifying the strengths and weakness of current related systems and approaches to pric-
ing, negotiation, resource and economy management. The Catallaxy approach to computing
marketplaces was highlighted, showing the benefits of this new decentralised, utility max-
imising framework in addressing the utility computing problem. We discussed how we can
address the limitations of many existing utility computing systems, and identify areas that
need further attention for these approaches to flourish. As market-oriented utility comput-
ing concepts mature, and resource partitioning and isolation technology emerge that allow
nearly arbitrary division of resources, it is becoming clear that ‘market-inspired’ resource
management provides a compelling alternative to traditional resource management. Indeed,
the rapid emergence of service oriented computing facilities (such as Amazon’s Elastic
Compute Cloud) combined with expanding industrial uptake has increased the mindshare
of ‘on-demand’ computing marketplaces. However, it is clear that significant work needs to
be done to move from isolated grid markets toward fully linked, interoperable and ad-hoc
marketplaces. This is essential to reap the full benefits of grid computing, by improving the
economies of scale and allowing users to harness resources from numerous administrative
domains with ease.
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