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Abstract—With the enormous growth of wireless technology, and location acquisition techniques, a huge amount of spatio-temporal

traces are being accumulated. This dataset facilitates varied location-aware services and helps to take real-life decisions. Efficiently

handling and processing spatio-temporal queries are necessary to respond in real-time. Processing the vast spatio-temporal data

requires scalable computing infrastructure. In this regard, an efficient query resolution system can be deployed if we predict the

infrastructure requirement of the user query apriori along with the identification of the geospatial service chain. In this work, we propose

a framework, namely LYRIC (deadLine and budget aware spatio-temporal querYpRocessing In Cloud), where the spatio-temporal

queries are resolved efficiently considering user-defined deadline and budget constraint. Our framework shows high deadline

completion accuracy in the range of 1.0 - 0.937, which is more accurate than SparkGIS, GeoSpark, GeoMesa and JUST. This also

reduces the resource prediction error by 11 percent, considering the geospatial service chain than without it. The cost of the spatio-

temporal query is reduced by �23% in LYRIC, further, the simulation study (using CloudSim) illustrates the efficacy and scalability of

LYRIC in terms of optimal budget usage and execution time compared to four baseline approaches.

Index Terms—Spatio-temporal query, geospatial service chain, cloud computing, query budget constraint, user deadline

Ç

1 INTRODUCTION

THE huge volume of spatio-temporal data instances has
motivated the data science community to analyze and uti-

lize the underneath knowledge. Spatio-temporal data-set con-
sists of objects and events in spatial (location) and temporal
(timestamp) context. These spatio-temporal data sources
open up unprecedented opportunities to extract and leverage
the usable knowledge and utilize it for smart living such as
route planning, trip recommendation, weather prediction,
etc. However, managing this huge volume of spatio-temporal
data and obtaining optimized query performance is inevita-
bly challenging tasks. There are several challenges in
spatio-temporal query processing. First, unlike conventional
database, the attributes of spatio-temporal database have dif-
ferent structure (geometry), such as polygon, polyline [1] etc. The
processing cost of accessing a record in the spatio-temporal
database depends on the spatial and temporal extent of the
query itself. Therefore, an effective query processing frame-
work is necessary to retrieve information from these huge
spatio-temporal datasets. Moreover, Cloud paradigm is

suitable to leverage the pay-as-you-go model based on the
resources used in query processing.

In this regard, the primary objective of this work is to pro-
pose an effective spatio-temporal query processing frame-
work,which is capable of providing query responsewithin the
user’s deadline and budget. When an organization or a user
submits a task containing bulk queries, the processing needs
to be resolved within the user-deadline and budget. This user-
deadline is the time frame provided by the user to get the query
result from the time of the submission, and budget is the total
price (example: Price of Google Cloud Platform services1)
incurred for utilizing the compute, storage, and/or software
services of the cloud servers. The query processing techniques
must be optimized to store, search, and query the records
defined in geographical space and time intervals. The tradi-
tional query processing tools do not work well with spatio-
temporal databases due to the complex geometric structures
and computations. On the other side, spatio-temporal query
processing requires varied OGC2 compliant geospatial serv-
ices (Feature, Processing, Map services) to respond. Each of
those geospatial services has a separate processing cost and
execution time. For instance, say a user submits bulk-query
with 10mins deadline, and $20 budget threshold. The task
requires 3 feature services and map services. The price of each
of the services (deployed in the cloud) is $2 for 10mins time-
span. However, it is observed that the task can not be com-
pleted within the deadline utilizing the present configurations
of the services. In such a scenario, a proper query processing
plan, such as adding more compute resources for the feature
service to reduce the time, needs to be adapted. However,
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selecting an appropriate query execution plan considering
both deadline and budget is difficult when several geospatial
services are required to resolve the query. To address the issue,
LYRIC implements cooperative game theory where the objective
is to complete the task within the deadline and reducing the
overall user budget. In otherwords, using theminimal resour-
ces [2] for the query processing in cloud servers within the
user-defined deadline.

1.1 Motivating Example

Fig. 1 illustrates a motivating scenario. In the time of exigency
(say, super-cyclone Amphan3), the normal lives are disrupted
due to power cut, shortage of water supply, road blockage or
even residential place collapse. In such a situation, several
departments of state/ central govt. (such as electricity, com-
munication, railway, highway, transportation, water resour-
ces, etc.) help seamlessly to National Disaster Response
Force (NDRF) to continuously monitor the situation and
taking appropriate steps to get back the normalcy. Extracting
spatio-temporal information seamlessly from various data
sources need proper spatio-temporal query execution and

orchestration of geospatial services. For instance, national
agencies of the Indian government, such as GSI4 (Geological
Survey of India), India-WRIS5 (Water Resources Information
System), SOI6 (Survey of India), IMD7 (Indian Meteorological
Department), or ISRO8 (Indian Space Research Organization)
provide varied real-time feature services, data services, and
map services to retrieve the present situation of the affected
region. LYRIC provides a query execution plan considering
the user’s deadline and budget. This resolves the query seam-
lessly utilizing geospatial services in the cloud. Here, we pro-
vide an example scenario of an exigency situation in the
Indian context. Our proposed framework is also suitable for
any spatio-temporal query processing task with user budget
and deadline constraints [3].

1.2 Contributions

The key contributions of this paper are as follows:

1) We propose an end-to-end framework, named LYRIC,
to resolve the spatio-temporal query within the dead-
line and budget provided by the user. The framework
analyzes the query and orchestrates several geospatial
services required to resolve the query.

2) The framework is conducive to decompose the query
into several components automatically. It generates
the query parse tree and identifies the geospatial serv-
ices, and builds geospatial service chains for the process-
ing. Further, it predicts the resource requirements for
resolving the spatio-temporal query efficiently.

3) LYRIC proposes a novel method of choosing an
appropriate query execution plan using cooperative
game theory. The query execution plan provides the
configuration of the VMs in the cloud to run the geo-
spatial services and generates the query result con-
sidering the deadline and the user’s budget.

4) The framework has been implemented and tested
using spatio-temporal traces in the laboratory test-
bed. The experimental observations yield encourag-
ing results in terms of accuracy of task (bulk query
processing) completion within the deadline, reduced
delay in the query response, and reduced memory
and CPU usages.

The rest of this paper is organized as follows. Section 2
discusses the related existing works. Section 3 presents the
system model of our work, where we discussed spatio-tem-
poral query types, geospatial service chaining, and its util-
ity. We also define the cost model of spatio-temporal
queries. Section 4 elaborates on the performance evaluation
with experimental setup and results. Section 5 concludes
the paper with future direction.

2 RELATED WORK

This section discusses the existing works about query proc-
essing, geospatial web services, and resource management
in the cloud. Marcus et al. [4] use supervised learning

Fig. 1. Motivating scenario.

3. Super cyclone Amphan caused huge damage in eastern India.
https://en.wikipedia.org/wiki/Cyclone_Amphan

4. https://www.gsi.gov.in
5. https://indiawris.gov.in/wris/
6. http://www.surveyofindia.gov.in/
7. https://mausam.imd.gov.in/
8. https://www.isro.gov.in/
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techniques for batch processing and reinforcement learning
techniques for online processing of user queries. This learn-
ing technique has achieved query scheduling with proper
cost and performance management, which satisfies the ser-
vice level agreement(SLA) of user and service provider.
Many researchers have also analyzed the performance and
latency of analytical queries through machine learning tech-
niques [5], [6], [7], [8].

A graph-based temporal relationship between entities like
edge, vertices, properties has been proposed in [9]. Their
approach is specifically beneficial for path queries over
dynamic temporal graphs. The authors have utilized Granite
distributed engine over Graphite ICM platform for experi-
ments. Another graph embedded query performance predic-
tion for concurrent queries has been proposed by [10]. This
research also used the graph update and compaction algo-
rithm to determine the query workload. Chu et al. [11] predict
the query execution time using LSTM architecture in graph
database. in this work, for encoding the query plan tree, they
have utilized a post-order traversal algorithm, while RF and
PCAhelp to perform feature engineering.

A resource modeling approach to measuring concurrent
query performance is proposed by Duggan et al. [12], and
prediction under concurrency is made in [13], [14], [15].
Concurrent Query Intensity (CQI) and Query Sensitivity
(QS) are two matrices that determine the latency of concur-
rent queries. CQI helps to know how the resources are
shared among concurrent queries, and QS defines how
the query functions are changed in case of resource short-
age. Popescu et al. [16] propose a framework to predict the
runtime performance for a set of queries with a different
dataset. They segment the queries and measure the perfor-
mance using the machine learning model. Further, they
attempt to predict the overall query runtime. The authors
have considered only the tuple size and cardinality of the
different datasets for estimating execution time.

Geospatial semantics and service-oriented architecture
(SOA) based automatic compositions of geospatial services
have been presented in [17]. DataType, serviceType, and asso-
ciation type ontologies have been used as a semantic schema
in SOA. The authors have used geospatial services for ontol-
ogy design, composition building, and semantic analysis.
Geospatial services are used for knowledge transformation
[18], [19], [20] using geospatial modeling, model instantiating,
and model execution. Geospatial service orchestration in the
cloud platform is described in [21], [22]. A cloud and agent-
based geospatial service chain is proposed by [23], where geo-
spatial tasks are executed with agents’ movement in a single
cloud environment. Agents act as part of the chain and inter-
act with individual geospatial services. It prevents huge vol-
umes of data transfer and service chain failure. A learning
technique has been opted for allocating the virtual machines
in the cloud platform in [24].Web service composition-related
literates have been carried out in [25].

Although there are several research works in this domain,
all of these existing literature have some limitations. First of
all, there is no clear indication of how performance character-
istics (execution time and resource usages) of spatio-temporal
queries can be predicted. As discussed earlier, the prediction
of the performance of spatio-temporal queries is not straight-
forward. Most of the works need execution-time statistics of

the queries and the count of the tuples processed. While this
method adds more overhead, the simple count of tuples does
not work in spatio-temporal queries. In brief, the contributions
of LYRIC are manifolds. First, it is capable of decomposing the
queries into different segments and identifies several spatial-services.
Our framework deploys a novel performance characteristics predic-
tion technique and provides a query-plan to complete the query at
minimal cost within the deadline.

3 SYSTEM MODEL

This paper has taken up the spatio-temporal query processing
in cloud considering the user given deadline and budget to
resolve the query. Spatio-temporal queries are generated by
the user in bulk and submitted to the framework through a
user interface. The query parser module breaks the query into
a query treewith spatial and temporal information. Next, geo-
spatial services are identified from the query tree, and a ser-
vice chain is generated for processing. On the other side,
decomposing the query helps to identify the resource (RAM,
CPU cores, storage) requirement for processing spatio-tempo-
ral queries and predicting the execution time. The proposed
framework, LYRIC, also considers the users’ priority in
resolving the query. The priority is determined by two param-
eters provided by the user: (i) deadline and (ii) budget to
resolve it. LYRIC analyzes all of these factors and offers a
query execution plan resolving the task within the deadline
incurringminimal budget. Spatio-temporal queries are placed
into CloudVM, and finally, the results of queries are sent back
to the user through the query interface. The overall activities
of our approach are illustrated in a block diagram (Fig. 2).

The query parser generates the query tree for the incom-
ing spatio-temporal query. The nodes of the query tree
determine the types and number of required geospatial
services. After identifying the geospatial services, LYRIC
generates the service chain. Here, we have provided differ-
ent queries based on whether it requires sequential process-
ing of the services or parallel service processing. After
generating the geospatial service chain for the particular
query, LYRIC provides the query execution plan based on
the users’ priority. This geospatial service chain formation
is one of the key modules that help to allocate the virtual
machine to resolve the query effectively.

We also determine the resources like RAM, CPU cores,
the storage requirement for a spatio-temporal query from
the query tree, and predict the query execution time. Next,
we use game theory to find a proper query processing plan
to resolve the spatio-temporal query within the user-
defined deadline and budget. We have shown the sequence
diagram of the overall activity in Fig. 3.

3.1 Spatio-Temporal Query Types

Spatio-temporal query type identification is essential to esti-
mate the resource (RAM, CPU cores, storage) requirement
for the spatio-temporal query or batch of queries efficiently.
We need to know the amount of spatio-temporal data that
has to be processed to resolve the spatio-temporal query.
The spatio-temporal data amount depends upon the num-
ber of tables selected for the spatio-temporal query. Accord-
ing to the number of table selections, we categorize the
spatio-temporal queries into the following two types.

DAS ETAL.: LYRIC: DEADLINE AND BUDGETAWARE SPATIO-TEMPORAL QUERY PROCESSING IN CLOUD 2871

Authorized licensed use limited to: University of Melbourne. Downloaded on October 07,2022 at 04:45:12 UTC from IEEE Xplore.  Restrictions apply. 



� Single Clause Query These types of spatio-temporal
queries consist of one clause. It considers only one
table for extracting the result from the database.

Example: Select <A> from Table <B> where

<C>;

Here, A ¼ fA1; A2; . . .Ang is name of features,
B ¼ fB1; B2; . . .Bng is the set of relations or tables,
and C ¼ fC1; C2; . . .Cng is set of clause.

� Nested Loop Query These types of queries are associ-
ated with multiple clauses, which require either join-
ing two or more relations or iteratively executing
them. In general, the Cartesian product of the multi-
ple tables are involved with these queries.

Example: Select <A> from Table <B> where

<C> <conditions> (Select <A1> from Table

<B1> where <C1>);

Fig. 2. Block diagram of LYRIC framework.

Fig. 3. Sequence diagram of overall architecture.
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Next, the spatio-temporal query parse tree has been gen-
erated from the spatio-temporal query. It may be noted that
spatio-temporal query processing is both CPU and I/O
intensive, and we need to minimize the number of disk
accesses to reduce the I/O cost. We have adapted spatio-tem-
poral indexing which helps to cluster the temporal informa-
tion and store the spatial objects efficiently such that the
number of disk accesses is minimized. Typically, LYRIC sol-
ves a spatio-temporal query in three steps (see Fig. 4): (i)
temporal filtering, (ii) spatial filtering, and (iii) refinement
step. In the temporal filtering, given any of the two types of
the query (time-interval and time-instance), we search the
temporal index (buckets) and find the appropriate buckets
satisfying the temporal clause. The selected candidates/
tuples are returned. Next, the spatial objects (returned
tuples) are represented by simple approximation. Here, we
have used MBR (minimum bounding region), and in this
step, the spatial operations are carried out. In the final step
(refinement), the exact geometry information of the approxi-
mate candidate set is examined. It may be noted, we esti-
mate the cardinality of each of these stages and combine
them to get the exact resource requirement. For instance,
the “scan” procedure is I/O intensive (requires disk
accesses), and “verify” (or, refinement) is CPU-intensive.
For query parse tree generation, we follow the same steps.
As depicted in the Fig. 5, for the following query : “Find all
movement history having length greater than 1 km and
within 50 m of Commercial building and within time-inter-
val 09:00-0.9:15”, the parse tree has been generated. For opti-
mization purpose, it may be noted that “refinement” step
needs to be pushed down. The selection of building type
can be done earlier to reduce the cardinality (see the arrow
sign in Fig. 5).

From the nodes of the tree, we can get the required geo-
spatial services. We also get the geospatial service chain if
we follow the tree’s path from leaf nodes to the root node.
The query parse tree generation has two major phases: (i) in
the initial phase, the framework processes the SQL-text, and
identifies the set of A, B, and C. It also identifies whether
the query processing needs a nested loop for resolving it.
Based on the conventional query parsing technique, it gen-
erates the parse tree. (ii) In the next phase, it analyzes the

temporal extension of the query. Based on the temporal
extension, new levels are generated at the leaf node. For
each level, a specific amount of spatial data is processed.
This hierarchical segmentation of spatio-temporal data in
the query parse tree’s leaf node helps to understand the
amount of data that needs to be processed at each level of
the execution effectively

select Sfchr from Sdata where Sc:

� Let Sfchr be a collection of feature services available
in the cloud in form of Web Feature Service(WFS),
denoted as Sfchr =< Sfchr1 ; Sfchr2 ; . . . ; Sfchrn >.

� Let Sdata be a collection of data services available,
denoted as Sdata = < Sdata1 ; Sdata2 ; . . . ; Sdatan >.

� Sc is the query predicate which depends on the busi-
ness logic of orchestration engine and based on the
logic different Web Processing Services(WPS) are
called and let Sproc be a collection of processing serv-
ices available in the cloud in the form of WPS,
denoted as Sproc = < Sproc1 ; Sproc2 ; . . . ; Sprocn >.

To estimate the resource requirement, we have generated
a time-based hierarchical parse-tree, where in each level a
specific amount of computation is carried out. To estimate
the temporal extension, we check the time-interval informa-
tion in the clause provided in the query-statement. Based on
the time-interval information, the whole execution is seg-
mented into several time-buckets. Each of these time-buck-
ets is assigned to each leaf node of the query-parse tree. The
above-mentioned example illustrates the applicability of
feature service and why it is important to segment a given
spatio-temporal query as proposed. It helps to map the exe-
cution of a spatio-temporal query into web feature service
(WFS), web processing service (WPS), and associate tables
of a spatio-temporal database. While it is a generic form of
any query-statement, however, this helps to correlate with
the later section of the paper where a spatio-temporal query
is segmented and different services such as WPS, WFS pro-
cesses the query segments to reduce the execution time.

3.2 Geospatial Service Chaining

Several OGC compliant geospatial services, i.e., Web Fea-
ture Service (WFS), Web Processing Service (WPS), Web
Map Service (WMS), are available. The brief descriptions of
the geospatial services are given below:

Fig. 4. Spatio-temporal query processing stages.

Fig. 5. Spatio-temporal query parse tree generation.

DAS ETAL.: LYRIC: DEADLINE AND BUDGETAWARE SPATIO-TEMPORAL QUERY PROCESSING IN CLOUD 2873

Authorized licensed use limited to: University of Melbourne. Downloaded on October 07,2022 at 04:45:12 UTC from IEEE Xplore.  Restrictions apply. 



� Web Feature Service9: This service allows us to retrieve
featured data from stored datasets. The user specifies
these features. There are different operations, i.e., Get-
Feature, GetCapabilities, GetPropertyValue available
onWFS.

� Web Processing Service10: This geospatial service
allows us to perform different types of spatial opera-
tions like buffering, intersection, overlaying on a
point, polyline, or polygon. These operations are
dependent upon the user’s spatio-temporal query.

� Web Map Service11: This service allows us to integrate
multiple map layers from one or more distributed
spatio-temporal databases and displays one merged
map according to the spatio-temporal query. The
map images are in JPEG, PNG, TIFF format, which is
displayed in a browser application.

These geospatial services are being executed as a sequen-
tial operation to generate the final result. Though multiple
services are present in this chain, it still appears to be an
aggregated one from the query-user’s perspective. We cate-
gorise the geospatial service chain according to the number
of geospatial services, i.e., WFS, WPS, WMS invocation. We
represent six types of geospatial service chains in Fig. 6.

� Type 1: Only View This type of geospatial query is
only for visualizing a map. There is no such filtration
or specification present here. Only web map service
is responsible for this kind of geospatial query. The
existing maps are displayed here.
Considering our motivating example, Land Use
Land Cover (LULC), Transportation (Road, Rail),
Drainage map of super-cyclone affected areas (here,
Area_X) relations are used.
SELECT LULC FROM Area_X;

SELECT Road Network FROM Area_X;

The above geospatial queries retrieve data of the indi-
vidual layers (LULC/ Road Networks) of Area_X and
a getMap WMS displays these layers individually or
combines in any one of the png, jpeg, and tiff format.

� Type 2: Process and View These types of geospatial
queries are the combination of process and view.
Processing is done over already existing maps. One
WPS and WMS are responsible for resolving this
kind of geospatial query.
The following example helps to identify the locations
of rail and road crossing bridges of Area_X. NDRF
monitors these bridges, which are affected by super-
cyclone or not, and proceeds accordingly.
Example: Select crossing points of rail and road of an
Area_X
SELECT point.geom

FROM X.rail ra, X.road ro

WHERE Cross(ra.Shape, ro.Shape)=1;

In this example, first, it will take the rail network
layer and road network layer of area X. LineIntersec-
tionService WPS is used to obtain the intersection

points with lat/lon and getMap WMS displays the
crossing points.

� Type 3: Filter and View A particular area or parameter
is considered for this type of query. A specific feature
of a map is visualized here. One WFS and WMS will
resolve this kind of geospatial query.
The geospatial query identifies the high roads of
Area_X from the road network. It helps NDRF to clear
the blockage on the high road due to super-cyclone.
Example: High roads fromRoadNetwork
SELECT *

FROM X.Road_Network

WHERE road_type = ‘High_Road’;

This query filters the high roads from Area_X road
network. getFeature WFS identifies the high roads and
getMapWMSdisplays the roads.

� Type 4: Filter over the Processed area and View A WFS,
WPS, and WMS together resolve this type of geospa-
tial query. Filtration can be done after the processing
of an existing map.
NDRF team wants to check the conditions of the nar-
row bridges over rivers after super-cyclone. The fol-
lowing geospatial query helps to identify the same.
Example: Identify the narrow bridges from all the

Fig. 6. Different geospatial service chains in a state diagram form.

9. https://www.ogc.org/standards/wfs
10. https://www.ogc.org/standards/wps
11. https://www.ogc.org/standards/wms
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intersections of road and water networks.
SELECT *

FROM Bridge B

WHERE B.type = ‘narrow’

AND B.geom =(

SELECT point.geom

FROM Water_Network W, Road_Network R

WHERE Cross(W.shape, R.shape)= 1));

This geospatial query obtains two layers, i.e., a water
network and road network, to process it to deter-
mine the junction points with lat/lon. It will use
LineIntersectionService WPS for that. Now, in the
bridge layers, it filters the narrow-type bridges with
the same lat/lon as junction points by using getFea-
ture WFS. Finally, getMap WMS displays the narrow
bridges in a map.

� Type 5: Process over Filtered area and View Here proc-
essing is done after the filtration from the existing
map. WFS comes before the invocation of WPS. At
last, WMS visualizes the resultant map.
Matla river is situated in the super-cyclone affected
area. NDRF team identifies the damage of both the
banks of Matla river that spread 1 kilometer of each
side.
Example: 1kmbuffer zones ofMatlaRiver
SELECT *

FROMWater_Network

WHERE W_Net_type = ‘River’ AND river_name =

‘Matla’

ANDBuffer(area.shape, 1);

The above geospatial query first, filters the river with
name ‘Matla’ using getFeature WFS, and then it creates
buffers of 1 km over the river with BufferFeatureCollec-
tion WPS. Buffer of Matla will display as the result by
using getMapWMS.

� Type 6: Multiple Filter, Processed area and ViewIn this
type of query, multiple filtration and processing can
be done one after another. There should not be a spe-
cific chain of WFS and WPS. The sequence can be
any combination of WFS andWPS.
Suppose NDRF team starts rescue operations
according to the population of the area. Densely pop-
ulated areas, which are near to the highway, gets the
highest priority and so on.
Example: Finding the fifty towns which have above
one thousand population nearest to the national high-
wayNH36.
SELECT t.name, t.population, sdo_nn_dis-

tance

FROM interstates i, town t

WHERE i.highway_name= ‘NH36’

AND sdo_nn(t.location, i.geom)=‘TRUE’

AND t.population > 1000

AND rownum < 51

ORDER BY sdo_nn_distance;

The above geospatial query has manyWFS like popu-
lation counts, specific highway names. WPS helps to
determine the nearest towns to the highway NH36 by
using theNearest Neighbour algorithm.

The process of determining the types of the geospatial
service chain has been mentioned in Algorithm 1. The

execution of the service-chain depends on the number and
variety of geospatial services.

Algorithm 1. Determine the Types of Geospatial Query
From Parse Tree

Input: Geospatial query parse tree
Output: Type of the geospatial query
1: start
2: the geospatial parse tree is generated from geospatial query
3: identify the leaf nodes of the tree, which are data nodes
4: the spatial operation is held on the parent node of the leaf

nodes
5: identify the spatial operations WFS, WPS, WMS
6: if only WMS required then
7: Geospatial Query Type 1
8: else
9: if first WFS and then WMS required then
10: Geospatial Query Type 2
11: else
12: if first WPS and then WMS required then
13: Geospatial Query Type 3
14: else
15: if first WPS, then WFS, lastly WMS required then
16: Geospatial Query Type 4
17: else
18: if first WFS, then WPS, lastly WMS required

then
19: Geospatial Query Type 5
20: else
21: multiple time WFS, WPS, and WMS required
22: Geospatial Query Type 6
23: end if
24: end if
25: end if
26: end if
27: end if
28: end

3.3 Cost Model of Spatio-Temporal Queries

Query Plan (QP ). Query plan consists of the segments
(Sa; Sb; . . . ; Sz) of the execution of the query along with a
probable time-deadline of each such segment.

QPq :¼ fSa½ta; fa�. . .Sz½tz; fz�g, where query plan (QP ) of
the query qðT Þ is given, where T is the user-deadline. ta and
fa is start and finish timestamp of segment Sa. tz and fz is
start and finish timestamp of segment Sz. For each execution
segment, ½ta; fa� is given, and fz-ta � T . After determining
the cost-effective execution strategy, a query plan is pro-
duced, and the execution is carried out based on this QP .

For instance, an user ui submits a spatio-temporal query
(Q) with a deadline ti at time-instance Ta. Further, the user
also provides a budget (Bt) for resolving the query. For effi-
ciently resolving the query considering the user-defined
timeline and budget, the framework needs to compute the
probable execution time. We have also predicted the execu-
tion time of bulk queries submitted by the users. A trade-off
is required to resolve the queries within the user-deadline
at minimum cost. It also helps in the capacity planning of
cloud VMs, i.e., whether the VMs should be upgraded or
downgraded based on the workloads. The main objective
here is to predict resource usages, i.e., memory, CPU usages, and
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disk accesses. Also, LYRIC analyzes the query’s probable run-time
and user-deadline. Based on the predicted resource usages,
LYRIC computes the cost and compares it with the user’s
budget. Based on these two factors, it produces an appropri-
ate query plan and configures the VMs.

The cost model of our framework follows four steps: (i)
estimation of input and output cardinality; (ii) computing the
CPU cost based on the cardinality estimation; (iii) computing
the I/O cost based on the estimated number of accessed
pages; and finally (iv) combining CPU cost, I/O cost along
with WMS (map service cost for visualizing the results on
map). We discuss the cardinality estimation procedure
(including analyzing temporal extension) in the next section.
The query parse tree and sequential-sampling approach help
to get the estimation of cardinality, and the indexing and stor-
agemethod is utilized to estimate the I/O cost.

3.4 Cost Estimation and Prediction of Run-Time of
Spatio-Temporal Queries

In the context of the spatio-temporal query, we define our
problem space into two broad aspects: (i) static spatial
objects (these are “fixed location assets”, such as buildings,
road-segments, lakes, mountains, etc.) where location infor-
mation does not change with time; and (ii) moving objects
in the two-dimensional space (moving agents, say, trajec-
tory traces of people, vehicles, etc.). It may be noted, that
temporal information is crucial in the latter case, since the
location changes with time-instances, along with the data
size. For the spatial query, the cost is determined by the car-
dinality of the relational tables. And for the spatio-temporal
queries, we take the temporal extension and multiply it
with the time required to process one unit of spatio-tempo-
ral operations. Let us explain the cost incurred for resolving
spatio-temporal queries and how our framework, LYRIC,
predicts the queries’ execution time. Table 2 shows the nota-
tions used in the cost model. The cost of a query (Q) can be
written as

CostðQÞ ¼ cs� npþ cr� nrþ cc� ntþ ci� ntiþ co� nc:

(1)

We have used these five parameters of PostgreSQL’s
model in our cost model. It may be noted that an accurate
query time predictor requires an accurate estimation of
these variables. The CPU operations mean the spatial opera-
tions such as buffer, intersection etc. along with common SQL
operations (count, aggregate etc.). We consider the follow-
ing query as an example:

Qa:SELECT count(*) FROM Road_Network WHERE

road_type = ‘High Road’ AND road_id = ‘N’ AND

Buffer(area.shape, 1);

Here, the relation Road_Network is memory resident, and
two CPU operations, countð�Þ and BUFFER() are present.
Two conditions need to be satisfied. Suppose road_id has
clustered index, and road_type is an attribute with a non-
clustered index. Therefore, the query plan consists all five
parameters (npQa; nrQa ; ntQa ; ntiQa ; ncQa ). In general, we
generate such query plans where varied combinations of
cost variables are required and solve the following equation:

qt ¼ NC; (2)

where N is the cardinality of tuples or operations, and C is
the CPU or I/O cost. By solving the system of linear equa-
tions, we can find out the accurate value of C. It may be
noted that PostgreSQL uses the default values for I/O and
CPU cost, which does not capture the real-life computa-
tional cost.

In order to estimate the run-time, two important facts need
to be considered: (i) calibration of cost units and (ii) estimation
of input and output cardinality of the query. Calibration of
cost unitsmeans to get the exact value of cost (say, CPUopera-
tion time) to execute a single unit of task. It may be noted that
PostgreSQL uses default values for this purpose, however
those are not accurate and it definitely varies with the hard-
ware and software of the VMs where query will be executed.
Here, we come upwith the fundamental idea to design partic-
ular query template such that it isolates specific cost parame-
ters from others. As we presented six types of geospatial
service chain in Section 3.2, those types help to calibrate the
unit costs. For example: SELECT LULC FROMArea_X. In this
(type 1: Only View) query template, there is no I/O cost (we
assume, Area_X is memory resident), and only cpu tuple cost
and WMS cost (getMap) are involved. We execute the query
without the WMS service and take the execution time (say,
t1). Next, we call WMS service, and note the execution time
(say, t2). Therefore, theWMS cost is t2 � t1. In our framework,
we divide the study area (geographical extent) in uniform
grids and temporal extent in buckets of 15 minutes. Say, the
query processes ng grids, then

TABLE 2
Notations Used in Cost Model

Notation Meaning

cs I/O cost to access a page sequentially

cr I/O cost to access a page randomly

cc CPU processing cost of a tuple

ci CPU processing cost of a tuple (using index)

co CPU processing cost to carry out an operation

np Number of sequentially scanned pages

nr Number of randomly accessed pages

nt Number of tuples processed/ accessed

nti Number of tuples processed/ accessed (Indexing)

nc Number of CPU operations

qt Query execution time

TABLE 1
Comparisons With Existing Works and LYRIC
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t1 ¼ Tg � ng

t2 ¼ ng � ðTg þWMSgÞ;
(3)

where WMSg is the time taken to call getMap service and
visualize for one grid, and Tg is the time for CPU operation
for one grid. From these equations, we get the values for Tg

andWMSg. In the similar way, we utilize all six types of ser-
vice chains with different query sets to get the CPU cost and
geospatial service cost of different spatio-temporal service
chains. Also, to make the procedure more robust, we use
multiple queries for each of the service chain template, and
get the best-fitting of the costs. This is one-time phenome-
non for any computing platform or VMs, therefore, the
time taken to carry out this task does not effect the overall
time-complexity of LYRIC.

Next, we need to estimate the cardinality of the input and
output tuples of the query plan. Here, LYRIC utilizes a vari-
ant of sequential-sampling method[26]. We follow the similar
steps of [5] for each WPS and WFS of the query plan. It
makes the estimator more efficient and suitable for spatio-
temporal queries. After this cardinality estimation and
refinement stage, LYRIC effectively predicts the query exe-
cution time (qt).

For estimating the cost, we segregate into: start-cost: ini-
tial cost (c1) before operator produce the first output tuple;
and total-cost (c2) : the total cost when all output tuples are
generated. Thus, the execution cost can be represented as
ec ¼ c2 � c1. Let us illustrate with two broad categories of
queries as depicted in Section 3.1, i.e, single clause query and
nested loop query. For example, if single clause query aims to
select an object’s location in a particular time-instance, then

c1 ¼ 2� co � int � log int

ec ¼ ct � int;
(4)

where int is the number of input tuples for the operator.
Here, we have discretized the temporal information into
buckets, and those temporal buckets are in sorted order.
Hence, we can deploy any sorting algorithm for the data-
instances, therefore log factor is present in the equation.
Next, for the nested loop query

c1 ¼ c1 of inner clauseþ c1 of outer clause

ec ¼ ct � ininner
t � inouter

t þ inouter
t � ðec of inner clauseÞ;

(5)

where the number of input tuples from inner and outer
clauses are presented by ininner

t and inouter
t respectively.

Let us illustrate, the cardinality estimator process here.
Prior to that, let us define two terms, namely, rank (m) and
selectivity (v)

m ¼ v� 1

per tuple cost of a spatial operation

vðqÞ ¼ cardinalityðoutputðqÞÞ
cardinalityðinputðqÞÞ :

(6)

Here, the per tuple cost of spatial operation is computed by the
calibration of cost units as described before. While creating
the query parse tree, we put the predicates or services based
on the ascending order of m. Thus, we optimize the query

processing in terms of operations. The calculation of cardi-
nality of input is straightforward which is the product of
the cardinalities of the spatio-temporal relations (tables)
that are input to the operator. We obtain this information
from the metadata or system catalogue.

Say, in the spatio-temporal database SD, there are M
relations or tables fST1; ST2; . . .; STMg. Each of the relations
(say, STi) are partitioned into pi blocks, and each block
stores g spatial grids and bu temporal buckets. Therefore,
jSTij ¼ pi � ðg; buÞ. Now, consider two operators: select (s)
and cross-product (�). The selectivity of the operations are as
follows:

vsðST Þ ¼
jsclauseðg; buÞj

jðg; buÞj
v�ðST Þ ¼ 1:

(7)

The pair (g, bu) is the spatial and temporal extents of the
input relation. Now, we can say, if a relation STi is seg-
mented into p grids, then vpi ¼

jsclauseðpiÞj
jpij ð1 � i � nÞ, then

E½vpi � ¼ vST , where, we have taken n random samples of
grids from ST relation. In this way, when we get the value
of selectivity, it is straightforward to get the output
cardinality.

Now, we present the estimation process of output cardi-
nality for different spatio-temporal queries. For spatial inter-
section query, let us assume PiðO1Þ is the probability that
object O1 intersects the grid Gi. Again, the probability of
intersecting exactly p grids is: P ðO1; pÞ. Then, the expected
number of spatial grids that O1 will intersect is given as (g
is the total number of grids present in a particular relation/
table)

EðO1Þ ¼
Xg

p¼0

p� P ðO1; pÞ

¼ PiðO1Þ:
(8)

Now, for point query, an object is likely to be present at any
point of the grid. Hence, we get

EðO1Þ ¼ area of the grids present in the relation

¼
Xg

i¼1

a1 � a2;
(9)

where a1 and a2 are the length of the sides of the grids. For
range-query O1ða1 � a2), we have

EðO1Þ ¼
Pheight�1

i¼1 gi �
Q2

j¼1ðn exti;j þ ajÞ; (10)

where height is the height of the spatial indexing tree (we
have used R* tree [27]), and the average node extent in j
dimension and i level is n exti;j. Thus, following these
approaches, we estimate the cost and predict the run-time
of the spatio-temporal queries.

3.5 Query Plan Generation Using Game Theory

At this stage, we have the predicted query execution time
(qt) and user-deadline (T ) along with the budget (Bt) of the
query. LYRIC’s objective is to provide a query execution
plan such that the total cost is minimized and qt � T . To
obtain such a query execution plan, we deployed a
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cooperative game theory, where joint actions taken by the
group of players provide collective payoffs. In general,
P ðp1; p2; . . . pnÞ number of players are present in cooperative
game theory, and for each subset of players, a vector of pay-
off (R) is defined. The tuple ðP; rÞ is defined as a characteris-
tic function. In our problem set-up, we define varied
services of the query plan, such as,WFS-controller,WPS-con-
troller, and WMS-controller as group of players. Each of the
players may choose a strategy s ¼ fs1; s2; . . .sjg to adapt
such that the aggregate payoff is maximized. In other
words, all the players cooperate in the game, taking varied
strategies such that the outcome of the game is the agree-
ment condition from all the players. When we consider two
influencing factors, budget (Bt) and user-deadline (T ) of the
queries, the bargainingmethod can resolve the problem.

As discussed, there are P players participating in the
game, where players are the spatial-services required for
the query. Each non-empty set of P is termed as a coalition.
For each coalition (say, A), we denote a set RðAÞ 2 RjAj -
which is the payoff vector and feasible for coalition A. The
collection (Co) of the coalition is denoted to be balanced if
the following statement is satisfied

X
A2Co; j	A

weðAÞ ¼ 1

when weðAÞ 2 ½0; 1� for each j 2 P;

(11)

where weðAÞ is the set of weights for each A 2 Co. We have
considered ðP;RÞ as a transferable utility case of game the-
ory in our approach. Since one of the services (or player)
can losslessly transfer its utility to another service (or
player). Typically, for each A 	 P , there exists a real num-
ber rðAÞ

RðAÞ ¼ fg 2 RjAj :
X
i2A

gi � rðAÞg; (12)

where g is the set of vectors. In our problem, each of the
strategy consists of ðresource; executiontimeÞ. The set of
payoffs define the set of allocations of games ðP; rÞ

GðP; rÞ ¼ fg 2 Rn :
X
i2P

gi ¼ gðP Þ � rðP Þg: (13)

Thus, the core of the game is deployed using the following
equations:

CoreðP; rÞ ¼ fg 2 GðP; rÞ : 8A 	 P; gðAÞ 
 rðAÞg: (14)

Furthermore, it is already well-known that if the game is
balanced, the core is non-empty. The bargaining solution is
the function of

fðUgÞ :
XjP j

! Ug; (15)

where
PjP j is the class of all bargaining problems. Based on

the cooperative game theory, there is a unique solution
sðUgÞ of bargaining problem. It can be achieved by

sðUgÞ ¼ argmax
y2Ug

ðy1 � d1Þ � ðy2 � d2Þ � . . .ðyp � dpÞ;

(16)

where d is the disagreement point. After each step, the pay-
off is the percentage of the completion of the task, and the
utility (Ug) of the game is defined as

Ug ¼
jT � qtj � jBt� acostj ifððT > qtÞ and
ðBt > acostÞÞ
ð�1Þ � jT � qtj � jBt� acostj otherwise

8<
: ;

(17)

where acost is the actual cost of the query execution. The
user-deadline, budget, and query execution time are repre-
sented by T , Bt, and qt respectively. It is obvious that maxi-
mizing the utility function both benefits in terms of budget
and reduces the response time.

After resolving the budget and deadline trade-off using the
game theory approach,we deploy a query schedulingmodule
to assign the query to appropriate VMs and the time-stamp.
The basic steps of the process are represented inAlgorithm 2.

Algorithm 2. Scheduling Algorithm of Spatio-Temporal
Query Placement to Virtual Machine

Input: Spatio-temporal query
Output: VM allocated to spatio-temporal query
1: start
2: Receive spatio-temporal query along with response dead-

line from user
3: Search and select available VM by the VM manager accord-

ing to the type of the spatio-temporal query
4: Calculate weights for each available VM
5: Sort VMs in increasing weights
6: Assign VM to a spatio-temporal query according to the

weights of the VM
7: If the requirement of the spatio-temporal query is not satis-

fied, go to step 6
8: If the requirement of the spatio-temporal query is not satis-

fied, and VMs are not available. Notification send to VM
manager

9: Receives the suspended VM list from the VM manager. If
there is no suspended VMs, the assignment is a failure. Go
to step 11

10: Add suspendedVMs to the available VM list. Go to the step 4
11: Send the assignment result to the VMmanager
12: end

3.6 Example Scenario

This section presents a sample query and corresponding
service chains and execution process. Geospatial Query:Deter-
mine the housing complex of Area A with more than 10 acres situ-
ated within 500 meters of state highway R

SELECT area_name FROM Area_A WHERE area 
 10

AND area_type=‘Housing_Complex’ AND road =

‘State_Highway’ AND road_name = ‘R’ AND Overlap

(road.shape, Buffer(area.shape, 0.5)) ORDER BY

area desc;

To resolve the above geospatial query, the following geo-
spatial services are required. (1) WFS getFeature service for
area 
 10WFS getFeature service for area_type = ‘Housing_
Complex’(2) WPS BufferFeatureCollection service for Buffer
(area.shape, 0.5)(3) WFS getFeature service for road = ‘State_
Highway’(4) WFS getFeature service for road name = ‘R’(5)
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WPS IntersectionFeatureCollection service for Overlap oper-
ation (6) WFS getFeature service for list preparation(7) WMS
getMap service for display final result. Hence, from the
above lists of geospatial services, we can get the following
geospatial service chain, which belongs to Geospatial
Chaining Type 6 (refer Section 3.2).

WFS ! WFS ! WPS ! WFS ! WFS ! WPS ! WFS !
WMS In the next step, we generate the query parser tree,
where the leaf nodes store the spatial and temporal extents of
the query.We also already know the cost units of several serv-
ices and CPU and I/O cost from calibration module. Then,
we compute the cardinality estimation and refinement from
the process described in Section 3.4. Now, given the user
deadline and budget, LYRIC forms the pay-off matrix with
players: five WFS, 2 WPS, and 1 WMS. All these players par-
ticipate in the cooperative game and find out the coalition,
where each of them gets a specific amount of time for execu-
tion and budget or resources to utilize. Finally, the game
objective is to minimize the difference between (deadline,
total execution time of all players) and (budget allocated, total
resource consumption of all players). Based on the game coali-
tion, the query plan is generated and executed.

4 PERFORMANCE EVALUATION

To illustrate the efficacy of the proposed architecture, we
have designed and executed a large set of experiments on
mobility datasets. The intuition behind taking the mobility
dataset is that the movement data is dynamic and accumu-
lates on a large scale. Furthermore, most of our real-life spa-
tio-temporal queries are associated with the movement,
traffic, and road datasets. Therefore, we consider the use
case of mobility-related queries. However, the framework is
generic to handle any types of spatio-temporal datasets and
resolve queries efficiently.

4.1 Experimental Test-Bed

We have used real-life mobility traces of three geographical
regions, Kharagpur (22.346010, 87.231972), Durgapur (23.5204,
87.3119), andWaranangle (17.9689, 79.5941) in India. The study
area of these regions are 12:6 km2, 5:23 km2, and 4:08 km2

respectively. The number of participants in this study is 204,
42, and 76 from three regions, respectively, for a timespan of
12 months. We developed a web interface to extract their
movement path and utilized the Google Map Timeline, Google
Map Services to extract the underlying road networks. It was
observed that the road networks of these three regions have
more than 50,000 edges, and the cardinality of the road net-
work makes the information extraction and resolving mobil-
ity queries more challenging factor. On the other side, the
reverse geocoding technique was used to extract the point-of-
interests (POIs) (such as commercial places like shopping
malls, banks, markets, or academic and residential areas, etc.)
from the map database. The mobility traces are collected in
60 secs to 180 secs time interval. The total size of the dataset is
64GB, 36GB, and 49GB, respectively.

The experiment is conducted in the VMs of Google Cloud
Platform, where we have used several computational and stor-
age features of Google Cloud. Our test-bed consists of several
types of compute engine instances. For instance, we have cre-
ated 5 general-purpose VM instances (Ubuntu-16.04 LTS)

ranging from 4 vCPU , and 15GBmemory to 32 vCPUs, and
120GBmemory. Each such instance’s approximate cost is
$0:134 per hour to $1:065 per hour. These VMs are used for
common workloads and having low cost and more flexibility.
Along with these general-purpose VMs, we have also created
2 memory-optimized and 3 compute-optimized instances,
which are used for memory and compute-intensive work-
loads. The initial configuration that we have selected is
40 vCPUs, 961GBmemory, and 30 vCPUs, 120GBmemory
respectively. The approximate cost is $1:253 per hour. Next,
we create an instance groupwith these compute engine instan-
ces for auto-scaling and load-balancing based on the user
requirement and predefined budget. We have also deployed
spatial tools and databases, namely, QGIS, and PostgreSQL
with PostGIS extension. To store and manage, spatio-temporal
data-instances, we need ‘geometry’ or ‘geom’ [1] property,
which illustrates the type (say, road: line geometry; building:
polygon geometry etc.) of the data instance. We have used
Postgresql 12:6 ðPostgis 3:0Þ database for storing and manag-
ing the dataset. To store and retrieve spatio-temporal data
effectively, we have utilized a novel spatio-temporal storage
structure [28] for indexing temporal information and R* tree
for storing andmanaging spatial objects. We have adapted the
K-level spatio-temporal hashing technique for storing the spa-
tio-temporal datasets. Here, the data instances are segmented
and stored in different temporal buckets, and the storage tech-
nique is implemented using a hashing scheme that considers
the spatial-proximity feature (nearby locations are stored in
nearby buckets). Therefore, in the initial level, the spatial fea-
tures of the data instances are stored, and from the next level,
the data is stored into different temporal buckets.

4.2 Performance Results

It is quite obvious that spatial query resolution requires ana-
lyzing a large number of spatial data[29]. Moreover, the per-
formance is dependent on I/O and computational efficacy.
To consider these, we have used both I/O and spatial query
metrics. The I/O performance is measured by sequential
and random reads along with bulk loading. The efficacy of
spatial query resolution is measured by r-query (range),
p-query (point) and t-query (trajectory). The range or r-query
(RangeQðS; T Þ) finds all trajectory segments which inter-
sects the given spatial (S) and temporal (T ) extent

RangeQðS; T Þ ! Traj;

where Traj is the set of trajectory segments within spatial(S)
and temporal(T ) extent. The t-Query or trajectory-based
query finds all trajectory segments of a moving agent (a)
within the time interval (T )

TrajectoryQða; T Þ ! Traj:

Here, Traj is the output trajectory of the query. We have
used both the r-query and t-query in our evaluation set-up.

From Fig. 7, the accuracy based on the specific deadline is
shown with a varied number of concurrent queries ranging
from 500 to 10000. We have compared the accuracy of the
result with four well-known baselines, SparkGIS, geoSpark,
GeoMesa12 and JUST [30]. The accuracy is computed based

12. http://www.geomesa.org/
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on the percentage of completion of the task in the user-
deadline. It is observed that with more numbers of concur-
rent queries, LYRIC, significantly outperforms than others.
It shows high deadline completion accuracy in the range
of 1:0� 0:937. Whereas, in the same set-up, SparkGIS,
GeoSpark, GeoMesa and JUST provide 0:85� 0:537, 0:752�
0:469, 0:928� 0:703, 0:921� 0:689 respectively. Fig. 8 illus-
trates the memory footprints for concurrent query process-
ing compared to the other four popular methods. The
memory footprints denote the amount of main memory seg-
ments accessed or referred for the query processing during
execution. It is observed that the savings of memory foot-
prints are significantly better than the existing methods.
The key reason behind this result is that LYRIC computes
the resource requirements apriori and assigns the required
resources effectively. It also reduces the percentage of
under-utilization of resources accordingly.

We evaluate the prediction accuracy of the execution
time of the spatio-temporal queries. To depict the efficacy,
we experiment in two set-ups: (i) prediction module with-
out geospatial service chain and (ii) considering the geospa-
tial service chain. The latter method shows better accuracy
in Fig. 9.

The reason is that the geospatial chain is one of the inte-
gral parts of providing the query result to the end-users. For
instance, a few segments of query processing can be carried
out in parallel. In contrast, few segments depend on the pre-
vious one, thus require sequential processing. Since LYRIC
explores and identifies such geospatial service chains auto-
matically and predicts the execution time, it achieves a
more accurate result. It is observed that the prediction
module without the geospatial service chain provides 14.50
percent error (differences in actual execution time and

prediction time), while LYRIC achieves only 2.68 percent
prediction error. Therefore, LYRIC can reduce the predic-
tion error by 11 percent incorporating the geospatial service
chaining method.

To demonstrate the effectiveness of LYRIC, we have eval-
uated our proposed framework using three cost metrics,
namely, Web-Feature Service Cost, CPU Cost and Web Map
Service Cost. The CPU cost is categorized in two classes,
namely, cost related to static or spatial query operations
and cost related to spatio-temporal query tasks. It is
observed from Fig. 10 that there are marginal differences
between Web-Feature Service Cost and Web Map Service Cost,
however, CPU cost is significantly less in LYRIC compared
to other methods. The major reason is that LYRIC efficiently
generates the query plan and subsequently executes it for
better execution time and less budget to complete the tasks.
In this work, we have not used any new method for WMS
or WFS cost reduction, except that we have augmented spa-
tio-temporal indexing method [28] for less feature extraction
delay. Therefore, the WFS cost and WMS cost are margin-
ally different from other baselines, however, LYRIC outper-
forms in a significant margin in CPU cost, thus, facilitating
better query execution time and budget requirements.

To evaluate the framework’s effectiveness, we have used
the CloudSim [31] toolkit, where we simulated the same
environment as in GCP. We simulate the query arrival sce-
nario. As discussed, we define a set of six types of spatio-
temporal queries in the list. For each such type, we initially
write 120 queries manually, each having a spatial and tem-
poral variable. From the list of such 120 queries, we generate
120� 105 queries in the list varying the spatial and temporal
domain. It may be noted that in the simulation process, we
provide a bounding box for the spatial variable. Otherwise,

Fig. 7. Task completion accuracy within deadline.

Fig. 8. Comparison ofmemory footprints for concurrent query processing.

Fig. 9. Prediction of query execution time.

Fig. 10. Cost comparisons with baselines.
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any random pick of spatial variables may lead to a region
outside our datasets’ study-region. For each query, there
are two other parameters, user-deadline (T) and budget (Bt).
The query arrival rate is determined by the well-known
Gaussian distribution. To evaluate LYRIC performance under
varied workloads, we experiment with different arrival
rates.

In the experimental set-up, we have considered sev-
eral samples of deadlines and budgets (which are set-up
based on real-life knowledge of a GIS domain expert).
Figs. 11 and 12 illustrate the specific values of the dead-
line, allocated budget, and actual execution time and
budget required to resolve the task. We have shown
results for six spatio-temporal query templates and
queries are randomly selected using CloudSim toolkit. In
Fig. 11, in the experimental set-up, strict budget alloca-
tion estimation and the deadline (query task completion
time) have been provided. It has been observed that for
most of the cases (baselines), query execution time has
exceeded the deadline provided. Again, in Fig. 12, we
have specified that the deadline should be strictly main-
tained, and it is observed that the allocated budget has
been overshoot in a significant margin for the baselines.
The key reason is that for all other distributed platforms
for spatial and spatio-temporal query processing, no
method/algorithm is present to optimize both deadline
and budget allocation. Moreover, the baseline methods
do not consider the service chain and provision concur-
rent processing based on service chain execution in the
query processing. However, in our case, LYRIC identifies
the service chains, generates the query plan, and concur-
rently processes the query using a game theory approach
to satisfy both deadline and budget optimally.

5 CONCLUSION AND FUTURE WORK

Accurate estimation of query execution time, and the
requirement of the computational resources, are challenging
tasks. It helps in query scheduling based on the user-dead-
line and budget of the query processing. Furthermore, we
can monitor the progress of the query processing. For bulk
query processing, a particular query taking an unreasonably
long time can be identified and eliminated apriori. It helps
in system sizing or obtaining the approximate estimation of
the total budget or resource utilization. The proposed
framework, LYRIC, has three main components. First, it
models the cost of an incoming spatio-temporal query based
on the known PostgreSQL’s cost model. However, instead
of the default parameters used by PostgreSQL, LYRIC
extracts the accurate CPU and disk-access cost and effec-
tively predicts the query execution time. Next, it identifies
several spatio-temporal services required to complete the
query processing task and further decomposes it into a
query tree. LYRIC is capable of considering the user-defined
timeline and given budget for each query. The framework
utilizes the concept of cooperative game theory to obtain
the trade-off between more resources and budget or cost.
LYRIC is deployed in GCP, and real-life experiments with
mobility datasets and simulations yield encouraging results.

As part of the future work, we will extend the framework
in a multi-cloud environment where several cloud service
providers take part in a game with their geospatial services.
The user can select geospatial services and cloud resources
based on their geospatial service requirements and budget.
We will also utilize advanced machine learning techniques
to append more features of spatio-temporal datasets to
enhance the accuracy of the prediction. We believe that
LYRIC will act as a foundation for the deadline and budget-
aware spatio-temporal query resolution framework.
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