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Abstract    

Disaster management demands a near real-time information dissemina-

tion so that the emergency services can be provided to the right people at 

the right time. Recent advances in information and communication tech-

nologies enable collection of real-time information from various sources. 

For example, sensors deployed in the fields collect data about the envi-

ronment. Similarly, social networks like Twitter and Facebook can help to 

collect data from people in the disaster zone. On one hand, inadequate 

situation awareness in disasters has been identified as one of the primary 

factors in human errors with grave consequences such as loss of lives and 

destruction of critical infrastructure. On the other hand, the growing 

ubiquity of social media and mobile devices, and pervasive nature of the 

Internet-of-Things means that there are more sources of outbound traffic, 

which ultimately results in the creation of a data deluge, beginning shortly 

after the onset of disaster events, leading to the problem of information 

tsunami. In addition, security and privacy has crucial role to overcome the 
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misuse of the system for either intrusions into data or overcome the mis-

use of the information that was meant for a specified purpose. These 

problems can be addressed by processing the collected data in real-time 

and extracting meaningful and actionable information for emergency pro-

viders while taking care of security and privacy aspects.  Such situation-

awareness applications demand a large amount of computing resources. 

The cloud, which provides elastic and scalable infrastructure, becomes 

the natural choice for such applications. In this chapter, we provide such a 

situation aware application to support disaster management data lifecy-

cle, i.e. from data ingestion and processing to alert dissemination. We uti-

lize cloud computing, Internet of Things and social computing technolo-

gies to achieve a scalable, efficient, and usable situation-aware 

application called Cloud4BigData.  

Introduction 

A disaster can come in many forms including but not limited to earth-

quakes, hurricanes, foods, fire and outbreak of diseases. It causes loss of 

lives and severely affects the economy [1]. In the 2009, Victorian bush-

fires in Australia costed $4.3 billion and caused 173 human fatalities with 

over 1800 homes destroyed. The Hazelwood coalmine fire in 2014 [2], 

which costed over $100 million, had severe impact on the long term 

health of the affected people. The Emergency Events Database (EM-DAT) 

figures [3] indicate that there were 346 natural disaster events occurred 

globally in 2015 alone. Due to these events, a total of 98.6 million people 

were affected and 22,773 people died. The earthquake in Nepal cause 

8,831 deaths, the most death from a single event in that year. The eco-

nomic cost of these events was a massive US$66.5 billion.  

According to United Nations International Strategy for Disaster Reduction 

(UN/ISDR) [4], a disaster is a serious disruption of the functioning of a 

community or a society, at any scale, frequency or onset, due to hazard-

ous events leading to impacting human, material, economic and environ-

mental losses. The source of disaster can be natural, anthropogenic or 

both. Natural disasters are associated with natural processes and phe-

nomena such as hurricane, tsunami and earthquake, while anthropogenic 
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disasters are predominantly induced by human activities, e.g. civil war. 

Since the occurrences of disasters cannot be completely eliminated, the 

effort is focused on the better management of disasters across different 

phases of disaster management life cycle [1], i.e. mitigation, prepared-

ness, response and recovery. The main goal of a disaster risk manage-

ment (DRM) strategy is to reduce the impact of disaster on human lives 

and economy. Information and communication technologies (ICTs) have 

already been used to support the DRM activities [5]. For example, com-

puter modelling are used to forecast natural disaster warning such as the 

probability of flood and fire, and the path of a hurricane. Similarly, various 

communication technologies are used to disseminate information before, 

during and after the occurrence of a disaster event.  

Inadequate situation awareness in disasters has been identified as one of 

the primary factors in human errors, with grave consequences such as 

deaths and loss of critical infrastructure. Timely acquisition and pro-

cessing of data from different sources and extraction of accurate infor-

mation plays an important role in coordinating disaster prevention and 

management. For instance, during the 2010 Queensland flooding in Aus-

tralia, Queensland Police (QP) [6] analysed messages posted on social me-

dia by people in the affected regions to understand the situation on the 

ground and appropriately coordinate search and rescue operations. How-

ever, there is a pitfall. The growing ubiquity of social media and mobile 

devices, and pervasive nature of the Internet-of-Things means that there 

are more sources of data generation. Shortly after the onset of a disaster 

event, the volume of data dramatically increases which ultimately results 

in the creation of a tsunami of data. For example, during the 2010 Haiti 

earthquake [7], text messaging via mobile phones and Twitter made 

headlines as being crucial for disaster response, but only some 100,000 

messages were actually processed by government agencies due to lack of 

automated and scalable ICT infrastructure. The number of messages has 

been continuously growing with over 20 million tweets posted during the 

Hurricane Sandy in 2012. This data tsunami phenomenon, also known as 

the BigData problem, is a new grand challenge in computing [8, 9]. 

Internet of things (IoT), cloud computing and big data are three disruptive 

technologies which have potential to make significant impact towards ad-
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dressing the above problem. These technologies are already creating im-

pact in our everyday lives. The IoT systems including sensors, sensor net-

works and mobile phones have been used to monitor local environmental 

conditions. Today, farmers can afford to install their own weather sta-

tions and use the localised data to precisely predict the conditions of their 

farms rather than relying on the weather information of their region. 

Businesses have already started to exploit the value within the large vol-

ume of data [10]. For example, a supermarket knows what a consumer is 

going to purchase in his/her next shopping even before the consumer 

makes the decision. Similar impacts have been delivered by cloud compu-

ting. Organisations are already outsourcing their IT infrastructures to 

cloud vendors because of not only cost saving but also its offering of high 

scalability and availability. Big data analytics requires a large computing IT 

infrastructure. Building such a large computing infrastructure is impossi-

ble for some businesses while it can be very costly for others.  Cloud com-

puting helps to lift this burden by offering a highly available and pay-as-

you-use IT infrastructure that can meet the demands in a foreseeable fu-

ture. Cloud computing has also become a natural choice of computing in-

frastructure for big data analytics. As these technologies progress, IoT and 

cloud computing enabled big data analytics will become inevitable in de-

velopment of novel disaster management applications [11, 12].  

In this section, we first conceptualise a scenario where IoT, cloud compu-

ting and big data technologies work together to mitigate a flood disaster 

event. We then analyse the gaps among these technologies to develop 

our situation-awareness application framework in the following sections. 

Motivating Scenario: Mitigating Flood Disaster 

In Australia, the Crisis Coordination Centre (CCC) is responsible for large-

scale disaster management. The CCC is a round-the-clock all-hazards man-

agement facility that provides security, counter terrorism, and the moni-

toring and reporting of natural disasters and other emergencies. The CCC 

has policies and procedures for the tasks to be undertaken during disaster 

events. Part of its remit is the analysis of data from multiple sources to 
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understand the scope and the impact of a disaster event. Figure 1 illus-

trates a flood disaster management scenario where CCC needs to manage 

the people living in the disaster area and reduce the impact on health and 

wellbeing of the individuals. Here we present an imaginary flood disaster 

scenario to illustrate how IoT and Cloud Computing enabled BigData tech-

nologies can help to mitigate the disaster event. 

 

Figure 1: A flood disaster management scenario 

Imagine that a weather forecast in a certain area indicates a heavy rainfall 

which can possibly cause flooding in the area. After receiving information 

from Bureau of Meteorology, the CCC creates a transient social network 

to provide targeted information to the people in the area. The telecom-

munication providers provide a list of landline phone numbers installed in 

the area, as well as a list of mobile phones that are roaming around in the 

area. This information is used to contact and encourage people in the 

area to use mobile app, register their apps to receive emergency situation 

information and enable ad-hoc networking when necessary. Besides the 

mobile app, hotlines and SMS services are provided for people to contact. 

Similarly the radio and television communication channels are used for 

mass dissemination of alerts. As expected, severe flooding has caused 

electricity outage in some areas. People in those areas are still able to col-

lect information through their mobile devices. People are in touch with 

their families and friends using the transient network and social media 
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such as Twitter and Facebook. Finally, sensors monitoring weather, water 

quality, air quality etc. are providing crucial information that can affect 

the health and wellbeing of people living in the area.  

From the technical perspective, collection and integration of large volume 

and variety of information had been daunting and time consuming in the 

past. Such complex and time-consuming operations of real-time analysis 

of streaming data from multiple digital channels such as social media, mo-

bile devices and SMS gateways have been offloaded to a software service 

provider. As illustrated in the figure, the SaaS platform has implemented 

the analysis algorithm and provision tools for calculating awareness of the 

situation on the ground. CCC coordinators are receiving this information 

on their computer screens. The information helps to make decisions 

based on the information at the instance.  

The Problem 

In order to achieve the above scenario in reality, Cloud4BigData needs to 

function as a reliable repository and aggregator of data from various 

channels including sensors, social media and mobile applications at a 

higher level of granularity. It is also clear that there is an immediate need 

to leverage efficient and dynamically scalable ICT infrastructure to analyse 

BigData streams from various digital channels in a timely and scalable 

manner to establish accurate situation awareness [13] during disaster 

events. We need a complete ICT paradigm shift in order to support the 

development and delivery of big data applications. On one hand, we need 

to make use of IoT devices, delay tolerant networks (DTNs) [14] and tran-

sient social networks (TSNs) [15] to gather more data during a disaster. 

On the other hand, we need to deploy ICT infrastructure especially for 

disaster management, in a way that the downstream applications do not 

get overwhelmed by incoming data volume, data rate, data sources, and 

data types. In addition, such system should not compromise the security 

and privacy of the users. We propose to achieve this by, firstly, extending 

DTNs and TSNs for disaster management applications, secondly, leverag-

ing cloud computing systems to engineer and host next-generation big 

data applications, and finally, deploying various security mechanisms.  
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Background 

This section will provide a brief introduction to the relevant technologies 

and their limitations in the context of a disaster management application. 

Internet of Things (IoT) 

As defined by Minerva, Biru [16], an Internet of Things (IoT) is a network 

that connects uniquely identifiable Things to the Internet. The Things 

have sensing/actuation and potential programmability capabilities. 

Through the exploitation of unique identification and sensing, information 

about the Things can be collected and the state of the Things can be 

changed from anywhere and anytime. Here, we emphasis sensors, mobile 

phones and their networks as the key components of an IoT. 

Sensors and Mobile Phones 

Different terminologies have been used to describe sensors and sensor 

networks. The W3C semantic sensor network working group analysed 

these terminologies to develop SSN ontology [17] which states: 

“Sensors are physical objects that perform observations, i.e., they transform an incoming 

stimulus into another, often digital, representation. Sensors are not restricted to tech-

nical devices but also include humans as observers” 

The low cost of electronic sensors has made them the technology of 

choice for collecting observation data. For example, in the context of dis-

aster management, sensors have been used to measure weather condi-

tions such as temperature, relative humidity and wind direction/velocity. 

Among various usages, these measurements have been used to forecast 

the fire danger ratings of bushfires in Australia [18], as well as, to assess 

and plan for the fire-fighting activities during bushfires. Similarly, with the 

ubiquity of smartphones, people are now at the forefront of generating 

observation data. Again in the context of the disaster management, peo-

ple have been using social media to publish disaster related observations. 

These observations can be used for early detection of a disaster [19], as 

well as, for the situation awareness during the disaster event [20].  
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Traditional IoT and smartphone based applications often assume that a 

communication network exists between an IoT device and the internet. 

This assumption does not always hold, particularly in the following three 

situations. First, the cellular network often does not exist in unpopulated 

remote areas. Moreover in some developing countries, the cellular net-

work may not exist at all even in well populated areas. Second, physical 

infrastructures including the telecommunication infrastructures can be 

severely damaged during catastrophic disasters. Moreover, the electricity 

outage making the telecommunication network inaccessible can also be 

widespread [21]. Third, the communication system can be severely dis-

rupted due to dramatic increase in the demand of services during a disas-

ter situation making the system temporarily unavailable. In order to pre-

pare for these situations, alternative approaches need to be developed.  

Delay Tolerant Networks 

Delay Tolerant Networks (DTNs) provide alternatives to traditional net-

works. A DTN addresses three distinct problems related to communica-

tion in challenged networks: delay, disruption and disconnection. The 

class of networks that belong to DTN are: inter planetary networks (IPN), 

mobile ad hoc networks (MANET), vehicular ad hoc networks (VANET), 

mule networks and wireless sensor networks (WSN). A DTN facilitates 

connectivity of systems and network regions with sporadic or unstable 

communication links. The connections among DTN based systems exist 

between two extremities, from strong intermittent connections to full 

disconnection. From a user’s perspective, a DTN is an opportunistic net-

work which provides a possibility of reliable communication in situations 

when the networks are severely disrupted and characteristically unrelia-

ble. In a severe disaster situation, the communication may be challenged 

and should be channelized opportunistically over these networks.  

When creating this type of opportunistic network, the three dimensions, 

namely, technological, protocol and mobility need to be considered: 

Technological dimension: An opportunistic network is primarily based on 

wireless links. The characteristics of these links may vary significantly 

among devices. For example, some links could be established using Wi-Fi 
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technology while others may use Bluetooth or even proprietary technolo-

gies. The differences in these technologies influence encoding, modula-

tion, error correction code and latency among other physical features re-

lated to communication.  

Protocol dimension: Similar to technology, protocols also vary significantly 

with variations in communication technologies. MAC protocols, network 

protocols, and transport protocols are dependent on the network stand-

ards followed by physical links. For example, the format of MAC frames 

for Bluetooth based on IEEE 802.16 is very different from that of Wi-Fi 

which is based on IEEE 802.11. Due to self-organising nature of a DTN, the 

routing protocols are required to be self-adaptable.    

Mobility dimension: Considering most of the end devices during severe 

disasters are portable and mobile devices, the mobility dimension is criti-

cal to connectivity, routing and coverage. Since the devices are carried by 

people, data can be carried forward physically, albeit slowly, closer to the 

destination. Furthermore, the connection may be intermittent due to the 

coverage problem. The user of the device may also opt for a voluntary 

disconnection to save battery power. 

Some of the challenges in dealing with DTNs are [14]:  

Intermittent connectivity: The end-to-end connection between communi-

cating systems may not exist.  

Low data rate and long latency: In DTNs, transmission rates are compara-

tively low and latency may be large. 

Long queuing delay: The queuing delay is the time taken to flush the ear-

lier messages out of the queue. This could be long in DTNs. 

Resource scarcity: The energy resources of nodes in DTNs are often lim-

ited. This could be because of their mobility or destruction of infrastruc-

ture in that area. 

Limited longevity: The links could be intermittent and may not last long. 

Security: Because intermediate nodes can be used to relay messages, 

there are possibilities of security attacks that can compromise infor-

mation integrity, authenticity, user privacy and system performance. 
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The fundamental problem in DTN is routing of messages when the re-

ceiver and the sender are not connected by a network at the time of dis-

patch. Storing and forwarding transmission is the only way of communica-

tion in a challenged network which must also be able to sustain delays, 

disruption and disconnection.  

Transient Social Network  

 

Figure 2: Creating and joining a centre of activity with a defined radius of activity in TSN 

Transient social network (TSN) has been evolved as a mobile, peer-to-peer 

on-demand community inspired network. For example, a TSN can be cre-

ated by using applications through which a person, in distress, can send 

messages to others who have also deployed the TSN application in order 

to seek support [15]. More formally, a TSN is a spatio-temporal network of 

people having common interests. A TSN application can be developed over 

the existing social networks such as Facebook and Twitter, as well as by 

creating new dedicated applications for smartphones. In case of an emer-

gency situation, a TSN can be created over DTN using mobile phones to 

communicate between the nodes when the telecommunication network is 

unavailable during the time of the disaster [15].  The use case scenario of a 

TSN most closely resembles the type of publish-subscribe system proposed 

called Kyra [22]. The Kyra approach combines both filter-based and event-

based routings to create a brokered network architecture that captures 
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spatio-temporal importance in publishing information. However, Kyra has 

three important limitations: (I) spatial locality is based only on network 

proximity, (ii) participating nodes are static and homogeneous, and (iii) it 

does not admit priority on message dissemination. A TSN not only provides 

flexibilities in all the three limitations of Kyra but also exists opportunisti-

cally for fulfilment of certain community centred activities including disas-

ter management as illustrated in Figure 2. 

TSN over DTN 

In disaster situations where some network infrastructure is destroyed by 

calamities such as flood or earthquake, the active communication net-

work can be viewed as a collection of disconnected islands of network 

partitions.  As a part of the framework, we conceptualise TSN over DTNs 

through a mule transport layer which provides a workable and practical 

solution for communication over challenged networks. Specifically, a TSN 

application needs to be established along with DTN using a single-hop 

communications in an immediate neighbourhood that is devoid of any 

network infrastructure. The messages created at source devices are trans-

ported to other network partitions through the mobile mules which use 

DTN features like bundling. As such, our TSN network contains nodes 

which act as message generators, message collector, message distributor 

and mule. These roles are described as below. 

Message Generator: These are nodes which want to send messages 

across. The message destination could be inside the same island or in an-

other disconnected island. A distress node can be termed as a message 

generator. 

Message Collector: Since the Internet or cellular network is unavailable, 

we need a node that can collect the messages until the messages can get 

delivered to the other islands. This, here, is done by a local mule node 

which bundles the messages sent by the generators. The collector also re-

ceives messages from the distributor and then disseminates the message 

to their respective recipients. In case the cellular network or DTN is work-

ing, the collector will also send the message using that network. There 

can be an auxiliary collector which will be functional as message collector 

when an existing message collector goes offline. 
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Figure 3: A framework of Delay Tolerant Network in disaster management 

Message Distributor: This role is assumed by the super mules which move 

between the disconnected islands. A collector will transfer the message 

bundle to a distributor whenever a distributor comes in range of commu-

nication (wi-fi range). The distributor then receives all the messages of an 

island from the collector and then moves into the range of another collec-

tor of another island. This second collector will receive the messages from 

the distributor, unbundle the messages since it has received messages as 

a bundle. After unbundling, the collector disseminates the message to the 

respective target. 
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Mules: They collects messages from across the island and dumps them to 

the message collector. 

In a geographically connected island, TSNs can be viewed as micro-islands 

and connect the network partitions of the island through local mule ser-

vice. In such islands, smartphone based nodes establish DTN by enabling 

mobile app based Wi-Fi hotspot. The node acting as a hotspot also pro-

vides the services of a Message Collector handling the bundling functions 

for TSN. In addition, dedicated message collectors in an area may also be 

introduced as a part of the disaster risk management action. Thus, the 

nodes running TSN application may additionally provide local mule service 

as indicated in Figure 3. All the distress nodes can connect and transfer 

the messages to the mule. Some nodes can be mounted on drones or 

other autonomous agents travelling between the islands. Whenever 

these nodes, referred to as super mules, come into contact with a Mes-

sage Collector, an exchange of message bundles takes place. The local 

mule can also receive the message bundled from the super mule, then 

spread the message to the recipients.  

In general, the TSN is not bound by the range of the Wi-Fi. In fact, the TSN 

is defined by loosely connected nodes that can interact with each other 

using Wi-Fi or other communication protocols. Since the nodes can move 

around, the geographical range of TSN is not limited by the range of Wi-Fi 

hotspot span of the central node. Moreover, the same node can also 

carry on different roles of a TSN. Also, instead of a mobile super mule, it is 

possible to establish a server application which may leverage Internet fa-

cilities provisioned through High Altitude Aeronautical Platform Stations 

(HAAPS) for radio relay capabilities [23, 24].  Google’s net-beaming Bal-

loon or Facebook’s laser Drones based on the HAAPS concept are still be-

ing implemented. The proposed opportunistic network architecture can 

easily be adapted to HAAPS radio relay capabilities as and when they be-

come a reality. When a Message Collector (may be on move) comes into 

range of internet, it uploads the bundles to the server application. The 

bundles then can be distributed to respective destination island's Mes-

sage Collectors for final distribution to end hosts again by running TSN 

cloud application. 
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Cloud Computing 

Cloud computing is the fulfilment of the vision of Internet pioneer Leon-

ard Kleinrock [25] who said in 1969:  

“Computer networks are still in their infancy, but as they grow up and become sophisti-

cated, we will probably see the spread of ‘computer utilities’ which, like present electric 

and telephone utilities, will service individual homes and offices across the country.”  

Today, cloud computing [26, 27] assembles large networks of virtualised 

ICT services such as hardware resources (e.g. CPU, storage, and network), 

software resources (e.g. databases, application servers, and web servers) 

and applications. Cloud computing services are hosted in large data cen-

tres, often referred to as data farms, operated by companies such as Am-

azon, Apple, Google, and Microsoft. The term cloud computing has been 

used mainly as a marketing term in a variety of contexts to represent 

many different ideas [28]. This has resulted in a fair amount of scepticism 

and confusion. In this chapter, we use the definition of cloud computing 

provided by the National Institute of Standards and Technology (NIST) 

[29] as: 

“Cloud computing is a model for enabling convenient, on-demand network access to a 

shared pool of configurable computing resources (e.g., networks, servers, storage, appli-

cations, and services) that can be rapidly provisioned and released with minimal man-

agement effort or service provider interaction”. 

Essential Characteristics 

Cloud computing provides unique characteristics that are different from 

traditional approaches. These characteristics arise from the objectives of 

using clouds seamlessly and transparently. The five key characteristics of 

cloud computing defined by NIST [29] include: 

On-demand self-service: users can request and manage resources such as 

storage or processing power automatically without human intervention.  

Ubiquitous network access: computing resources can be delivered over 

the Internet and used by a variety of applications. 

Resource pooling: users can draw computing resources from a resource 

pool. As a result, the physical resources become 'invisible' to consumers.  
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Rapid elasticity: consumers can scale up and down the resources based 

on their needs.   

Measured Service: often called as Pay As You Go (PAYG), offers computing 

resources as a utility which users pay for on a consumption basis. 

Service Models 

In addition to the above five essential characteristics, the cloud commu-

nity has extensively used the following three service models to categorise 

the cloud services: 

Software as a Service (SaaS). Cloud providers deliver applications hosted 

on the cloud infrastructure as internet-based on-demand services for end 

users, without requiring them to install these applications.  Examples of 

SaaS include SalesForce.com and Google Apps such as Google Mail and 

Google Docs.  

Platform as a Service (PaaS). PaaS provides a programming environment 

such as OS, hardware and network so that users can install software or 

develop their own applications. Examples of PaaS include Google AppEn-

gine, Microsoft Azure, and Manjrasoft Aneka. 

Infrastructure as a Service (IaaS). IaaS provides a set of virtualised infra-

structural components such as processing units, networks and storage. 

Users can build and run their own OS, software and applications. Exam-

ples of IaaS include Amazon EC2, Azure IaaS, and Google Compute Engine 

(GCE). 

These three services sit on top of one another, IaaS at the bottom and SaaS 

at the top, and form the layers of cloud computing.     

Deployment Models 

More recently, four cloud deployment models have been defined to de-

liver cloud services to users: 
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Private cloud. In this model, computing resources are used and controlled 

by a private enterprise. The access to resources is limited to the users 

that belong to the enterprise. 

Public cloud. In this model, computing resources are dynamically provi-

sioned over the Internet via web applications/web services.  

Community cloud. In this model, a number of organizations with similar 

interests and requirements share the cloud infrastructure. The cloud in-

frastructure could be hosted by a third-party vendor or within one of the 

organizations in the community. 

Hybrid cloud. In this model, the cloud infrastructure is a combination of 

two or more clouds (private, community or public) described above. This 

model is becoming popular as it enables organisations to increase their 

core competencies by outsourcing peripheral business functions onto the 

public cloud while controlling core activities on-premises through a pri-

vate cloud.  

While cloud computing optimises the use of resources, it does not (yet) 

provide an effective solution for hosting disaster management related big 

data applications to analyse tsunami of data in real time [30] due to multi-

ple reasons. First, most of the researches in the cloud computing space 

have been devoted to managing generic web-based applications, which 

are fundamentally different from big data applications. Second, current 

cloud resource programming abstractions are not at the level required to 

facilitate big data application development and cloud resource provision-

ing, defined as the process of selection, deployment, monitoring, and run-

time management of hardware and software resources to ensure QoS tar-

gets of big data applications. Finally, the system should be secure, i.e., the 

privacy of the citizens is maintained, the integrity of the data exchanged is 

guaranteed and the service is always available.  

Big Data  

Big data computing is an emerging data science paradigm of multidimen-

sional information mining for scientific discovery and business analytics 
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over large-scale infrastructure [10]. There is not a single standard defini-

tion of big data. Industry, academic and standard communities are defin-

ing big data from their own perspective. The following definitions from 

Gartner and National Institute of Standards and Technology (NIST) reflect 

the concept of big data from different angles.   

Gartner first defined big data as the three Vs: Volume, Velocity, and Ve-

racity [31]. This is the most well-known and widely-accepted definition of 

big data in scientific and business communities. Gartner now formally de-

fines big data as “Big data is high-volume, high-velocity and high-variety 

information assets that demand cost-effective, innovative forms of infor-

mation processing for enhanced insight and decision making” [32]. 

NIST offers the following definition [33]:  

“Big Data refers to the inability of traditional data architectures to efficiently handle the 

new datasets. Characteristics of Big Data that force new architectures are volume (i.e., 

the size of the dataset) and variety (i.e., data from multiple repositories, domains, or 

types), and the data in motion characteristics of velocity (i.e., rate of flow) and variability 

(i.e., the change in other characteristics)”. 

Big Data Lifecycle 

NIST defined [33] four stages for big data lifecycle are shown in Figure 

4Error! Reference source not found.. 

Collection: At this stage, the data is collected from a variety of sources 

where the data is generated. The outcome of this process is a collection 

of raw data.  There are a number of significant challenges in this phase 

such as data ingestion, transportation, and storing.  

Preparation: This stage processes the collected raw data to remove cor-

rupt and inaccurate data and produce the quality data. The significant 

challenges at this stage are to check the veracity, integrity and authentic-

ity of the data.      

Analysis: The analysis phase takes the cleansed information and gener-

ates knowledge that can be used to take actions.  The challenges at this 

stage are to develop efficient and effective algorithms to process large 

volume of data including resource allocation and provisioning.   
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Figure 4: Big Data Life Cycle 

Action: The last phase of the big data life cycle is to take necessary action 

or make decisions based on the knowledge extracted from the analysis 

phase [34]. The actions depend on the application, for example dispatch-

ing paramedic services to an identified location in case of an identified 

medical emergency.  

Over the years big data technologies have been evolved from providing 

basic infrastructure for data processing and storage to data management, 

data warehousing, and data analytics. Recently, big data application plat-

forms such as Cask Data Application Platform (CDAP)1 are widely available 

for developers to more easily design, build, develop, deploy and manage 

big data applications on top of the existing Hadoop ecosystems. Such plat-

forms significantly reduce the learning time of the developers. However, 

provided the complex nature of data sources that need to be processed 

during a disaster situation, a thorough analysis is required to develop a 

framework for effective use of such platforms. 

Integrated Framework for Disaster Management 

A convergence of communication channels, including sensors, mobile 

apps, social media and telecommunication is important in disaster man-

agement applications. As introduced earlier, a big data analytics based ap-

plication consists of four major processes: collection, preparation, analy-

sis and actions. Here, we analyse the components to develop a 

framework for our disaster management application and present an ar-

                                                           

1 http://cask.co/ 
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chitecture of our application based on this framework. This framework as-

sumes that a cloud infrastructure service with big data tools is available 

where the application can be developed transparently. 

Application Components 

 

Figure 5: Components of an Integrated Disaster Application Framework 

An overview of the components required for an integrated disaster appli-

cation is shown in Figure 5. In this diagram, the Data Sources component 

highlights a list of data sources such as weather forecast, social media, 

sensors, mobile apps, SMS and specialists. They provide information from 

different channels that are relevant to disaster management. The devel-

opment of this component needs to consider the complexity presented 

due to gathering of data from heterogeneous sources with different vol-

ume, velocity and variety. It needs to make the data homogeneous for 

the downstream analytics. The analytics task is carried out by big data 

Tools. Event ontology plays a vital role of defining uniform nomenclature 

of disaster related events that are used for identification of events and 

generating notifications. During a disaster situation, transient networks 

such as social and ad-hoc mobile networks enable interactions among 

people and with the application system which can be used as a platform 

for taking relevant actions. Finally, the action tasks are carried out by data 

and alert services. The presentation of the results is performed by appli-

cation components using web portals and mobile applications.  
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System architecture  

 

Figure 6: A system architecture of our disaster management application 

Figure 6 shows our illustrative architecture of the disaster management 

application using the framework described earlier. In this example, we 

use the Bureau of Meteorology’s (BOM) weather forecast data as 

weather data source. BOM provides data through their ftp server and up-

dates once twice a day. The data collector communicates with the ftp 

server to collect the data. The updated forecast data is formatted and 

sent to the Apache Kafka server. Kafka is a distributed, reliable, and avail-

able service that can collect, aggregate, and move large amount of 

streaming data. Similar to the weather data, data collectors for other data 

sources such as CSIRO Emergency Situation Awareness (ESA), sensors, 

mobile apps, SMS gateway and web portal  also gather event data and 

submit the data to Kafka. In addition, event ontology defines disaster con-

ditions which are evaluated by Apache Spark on the event data. 

When a disaster event is identified, the event is pushed to event data 

server. The data from this server is used by the alert server and web por-

tal. The alert server works in an active mode. Based on the subscription 

for alerts, it sends alerts via the Google Cloud Messaging to android apps, 

and via SMS to the relevant subscribers. The web portal works in the pas-

sive mode. It publishes alerts on a web portal which can be viewed later 
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by the uses. Note that the mobile app, SMS and the web portal can also 

work as input sources and hence can be designed to both send and re-

ceive event messages. 

Transient network, especially transient social network in Android apps uses 

Google Cloud Messaging service to search and join transient networks, and 

interact with users in the network.  

The Application 

In order to demonstrate the application of our proposed application 

framework for disaster management, we developed a demonstrator as 

described below showcasing the key components of the architecture. 

Data sources and their integration 

Effective response to crises and disaster events depends not only on the 

historical data, but also real-time data from multiple digital channels in-

cluding social media feeds, text messages from mobile devices and sensor 

networks. The role of social media (e.g., Twitter, Facebook, etc.) and mo-

bile devices for disaster management has been well studied and docu-

mented [20, 35]. Timely analysis of data from these sources can help res-

cue teams, medics, and relief workers in sending early warning to people, 

coordinating rescue and medical operations, and reducing the harm to 

critical national infrastructure.  

As outlined in the framework and the architecture, we used data from dif-

ferent sources. From our application’s perspective, the data is virtually 

useless outside the context of disaster. Therefore, we developed mecha-

nisms to initiate data collection and analysis system based on triggers 

generated by some data sources. Firstly, the weather forecast data is ob-

tained from the Bureau of Meteorology, Australian Government2 website. 

                                                           

2 http://www.bom.gov.au/ 
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This data is used as the first triggers to start data collection system. Sec-

ondly, we established sensor data thresholds to as the second trigger. For 

this, sensor networks with two nodes, one in Marsfield, NSW and another 

in Crace, ACT have been deployed. The networks are built using Libelium 

Waspmote technology, as shown in Figure 7. Besides the internal board 

temperature and battery status, each node measures temperature, hu-

midity and noise levels. These sensor nodes transmit the measurement 

data via WiFi and ZigBee network, as well as through the USB ports. Fi-

nally, we used CSIRO Emergency Situation Awareness (ESA)3 as the third 

trigger to start the data collection system. ESA collects twitter feeds asso-

ciated with various geographical areas and identifies statistically signifi-

cant topics related to emergency situations. After authentication, these 

alerts are accessible through their RESTFul API. A snapshot of the ESA por-

tal is shown in Figure 8. 

 

Figure 7: A sensor node 

 

Figure 8: A snapshot of ESA portal 

                                                           

3 https://esa.csiro.au/ 
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Event Ontologies and Event Detection 

Since big data consist of structured, unstructured, and image data, we 

needed to develop novel techniques for detecting events. For this, firstly 

the scenarios of interest were identified to define the entities (i.e., the ac-

tors in the scenarios) to develop event ontology. This ontology is able to 

describe events such as disasters and distress situations and to describe 

resources and knowledge that are relevant to them. Secondly, for new 

event detection system, we surveyed several Machine Learning (ML) and 

Natural Language Processing (NLP) techniques including Naive Bayes, 

SVM, Random Forest, Logistic Regression or Hidden Markov Models to 

understand their suitability for detecting events from online streams of 

data from social media and other sensors [36, 37]. We then developed a 

novel approach, as described in [38], to detect events in real-time via im-

plementation of clustering and state vector machine learning technique 

over MapReduce programming framework. The designed event detection 

model has been implemented as a service in the current prototype sys-

tem. Furthermore, we created a fully functional system for high perfor-

mance event detection that includes ready to use virtual machines pre-

configured with  NoSQL database (for big data indexing), MapReduce (dis-

tributed processing), and Apache Mahout (for event extraction and ana-

lytics). Finally, to improve the data organization capacity of HDFS and 

MapReduce frameworks, we investigated and developed new plugin API 

that takes into account adjacent data dependency in the data workflow 

structure. This new modification helps us immensely in improving the 

performance of MapReduce enabled classifier for event detection from 

social media, mobile phone, and sensor data including images [39]. 

Mobile App for TSN over DTN 

We developed an Android based mobile app for TSN over DTN allowing 

users to register, subscribe and send messages as shown in Figure 9. 

Firstly, we developed a framework for distributed dissemination of mes-

sages over the GSM network by leveraging the capabilities of 

smartphones in an emergency situation. The fundamental challenge lies 
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in adapting community inspired publish subscribe model in privacy pre-

serving and scalable manner. We developed and implemented a broker-

based peer to peer protocol for prioritized delivery of messages in order 

to support a fast emergency alert and response mechanisms. The pro-

posed framework disseminates messages through streaming channels 

such as Twitter, Whatsapp, Telegram for social network based interac-

tion. We also implemented a distributed phone book for controlled dis-

semination of messages along with a framework for handling responses 

appropriate to alert messages.  

 

Figure 9: Android app for alert subscription 

Secondly, in an emergency scenario, the communication goes beyond 

GSM network. The amount of data generated in emergency situation can 

overwhelm computer infrastructures not prepared for such data deluge 

and consequent need for more CPU power. We developed a data-centric 

application and executed in clouds. The framework handles connections 

to data sources, data filtering, and utilization of cloud resources including 

provisioning, load balancing, and scheduling, enabling developers to focus 

on the application logic and therefore facilitating the development of 

data-centric emergency applications.  

Thirdly, the communication is vital to effective coordination in a disaster 

response and recovery system. In case of severe disaster, we envisioned a 

situation where the communication infrastructure is severely damaged 

and therefore wired communication is not possible. Furthermore, wire-

less communication depending on infrastructures like GSM communica-

tion system may only be inaccessible in patches. Under such situation, es-

tablishing a graded response and recovery mechanism appears almost 

impossible. To solve this problem, we developed a Transient Social Net-

working (TSN) for disaster situations using opportunistic mesh network of 
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mobile phones. The TSN creation is driven by implementation of a distrib-

uted phone book for controlled dissemination of alert messages along 

with a response mechanism. The proposed system is built by taking into 

consideration the usual limitations of a smartphone like battery power, 

processing power, and storage capacity.  

Finally, adapting community inspired publish and subscribe model in a pri-

vacy preserving and scalable manner is a challenge. We explored some 

obvious security and privacy issues encountered in a community inspired 

framework of information dissemination system. An android app has 

been developed for entire system. The privacy aspects of the message 

dissemination is handled through message flow labelling techniques. 

Scalable Cloud Computing 

Emergency management application deployed in the cloud co-exist and 

share the same infrastructure with other critical applications. Therefore it 

is important to develop robust resource share estimation for such data-

intensive applications. However, developing a reliable resource estimator 

is quite challenging due to various reasons. We proposed an inclusive 

framework and related techniques for workload profiling, resource per-

formance profiling, similar job identification, and resource distribution 

prediction. We developed a Linear Programming model that captures the 

attributes of virtual machines in cloud environments. The model consid-

ers cost, CPU resources, and memory resources of VMs. The virtual ma-

chine model was initially designed for multi-objective optimization and 

was later extended to support multi-criteria optimization in the context of 

cloud resource selection. The model will be applied in the context of auto-

nomic management of cloud resources to adapt to variations in the appli-

cation workload [40]. In addition, we have developed a number of algo-

rithms to select, optimise, provision/schedule and monitor cloud 

resources for different scenarios and resources (refer to [41-55]).  

We also developed an evolutionary migration process for application clus-

ters distributed over multiple cloud locations. It clearly identifies the most 

important criteria relevant to the cloud resource selection problem. 

Moreover, we developed a multi criteria-based selection algorithm based 
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on Analytic Hierarchy Process (AHP) [56]. Because the solution space 

grows exponentially, we developed a Genetic Algorithm (GA)-based ap-

proach to cope with computational complexities in a cloud market [57]. 

Hosting of next generation big data applications in domain of disaster 

management on cloud resources necessitates optimization of such real-

time network QoS (Quality of Service) constraints for meeting Service 

Level Agreements (SLAs). To this end, we developed a real-time QoS 

aware multi-criteria decision making technique that builds over well-

known Analytics Hierarchy Process (AHP) method. The proposed tech-

nique is applicable to selecting Infrastructure as a Service (IaaS) cloud of-

fers, and it allows users to define multiple design-time and real-time QoS 

constraints or requirements. We considered end-to-end QoS optimisation 

of a typical Streaming Data Analytics Flow (SDAF) that adequately models 

the data and control flow of an emergency management workflow appli-

cation. An SDAF consists of three layers: data ingestion, analytics, and 

storage, each of which is provided by a data processing platform. Despite 

numerous related studies, we still lack effective resource management 

techniques across an SDAF. To solve this challenge, we invented a method 

for designing adaptive controllers tailored to the data ingestion, analytics, 

and storage layers that continuously detect and self-adapt to workload 

changes for meeting users’ service level objectives. Our experiments, 

based on a real-world SDAF, show that the proposed control scheme is 

able to reduce the deviation from desired utilization by up to 48% while 

improving throughput by up to 55% compared to fixed-gain and quasi-

adaptive controllers. Furthermore, we developed a new resource provi-

sioning algorithms for deploying data-intensive applications on hybrid 

Cloud Computing environments [58]. Here, we have demonstrated its 

usefulness beyond the disaster situation by deploying Smart-Cities appli-

cation on Clouds.  We also developed secure Virtual Networking with Az-

ure for hybrid Cloud Computing.  

Security and Privacy  

We considered security and privacy in both mobile phone apps and sen-

sors based IoT systems. In an Android operating system based mobile 
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phone application, Sinai et al. [59] gives a detailed account of possible at-

tacks on a social navigation. One of the attacks applicable to our TSN over 

DTN application in a disaster scenario is the Sybil attack. The Sybil attack 

is an attack wherein a reputation system is subverted by forging identities 

in peer-to-peer networks. The lack of identity in such networks enables 

the bots and malicious entities to simulate fake GPS report to influence 

social navigation systems. The Sybil attack is more critical in a disaster sit-

uation where people are willing to help the distressed person. The vulner-

ability could be misused to compromise people’s safety. For example, the 

malicious user can simulate a fake disaster alarm to motivate a good sa-

maritan to come for help in a lonely place and get harmed. The attacker 

can also divert the attention of rescue team from the real disaster. 

Unique Identifier can be used to prevent the Sybil Attack. Hardware iden-

tifier such as International Mobile Equipment Identity (IMEI) is more suit-

able than software identifier which can be easily modified.  

Moreover, there is a risk of the privacy breach in case of disclosure of 

user information. Particularly, users are tried to do their best to com-

municate with others when they are in distressed situation, e.g. by creat-

ing their own TSN. This requires proper information flow models such as 

Bell-LaPadula model [60, 61], Lattice model [62] and  Readers-Writers 

Flow Model (RWFM) [63] to protect the user’s information on the TSN.  

Combined with proper access control mechanisms, those information 

flow model can be used to guarantee that the information flow follows 

the required privacy rules in the TSN and does not leak any critical infor-

mation to the adversary. For example, in RWFM, the sender can control 

the readers of a message by specifying their names in the readers list.  

Another hard challenge was how to enable end-to-end security and pri-

vacy in processing big data streams emitted by geographically distributed 

mobile phones and sensors. We have investigated a number of tech-

niques for Cloud4BigData application (refer to [64-70] for details). Appli-

cations in risk-critical domains such as disaster management need near-

real-time stream data processing in large-scale sensor networks. We in-

troduced a new module named as Data Stream Manager (DSM) to per-

form security verification just before stream processing engine (SPE). 

DSM works by removing the modified data packets and supplying only 
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original data back to SPE for evaluation. Furthermore, we proposed a Dy-

namic Key-Length-Based Security Framework (DLSeF) based on a shared 

key derived from synchronized prime numbers; the key is dynamically up-

dated at short intervals to thwart potential attacks to ensure end-to-end 

security [64, 71]. DLSeF has been designed based on symmetric key cryp-

tography and dynamic key length to provide more efficient security verifi-

cation of big sensing data streams. This model is designed by two-dimen-

sional security, that is, not only the dynamic key but also the dynamic 

length of the key. This model decreases communication and computation 

overheads because a dynamic key is initialized along with a dynamically 

allocated key size at both sensors and the DSM without rekeying.  

Furthermore, to secure big sensing data streams we have also proposed 

Selective Encryption (SEEN) method that satisfies the desired multiple lev-

els of confidentiality and data integrity [71]. As the smart sensing devices 

are always deployed in disaster monitoring area with different sensitive 

levels, we need to protect data streams based on the level of sensitivity 

for the efficiency because building a strong encryption channel requires a 

large computations that consume a lot of battery power. This higher con-

sumption is not acceptable in resource constrained sensing devices. Here, 

to avoid unnecessary waste of resources, we divided the data streams 

into three levels i.e. high sensitive, low sensitive and open access and se-

cured them based on their sensitive levels. SEEN can significantly improve 

the life-time of sensing devices and buffer usage at DSM without compro-

mising the confidentiality and integrity of the data streams. 

Conclusions and Future Work 

IoT and cloud enabled BigData applications have potentials to create sig-

nificant impact in the management of disasters. In this chapter, we firstly 

introduced the concepts related disaster as well as IoT, cloud and BigData 

technologies. Specifically, we introduced the concept of using DTNs and 

TSNs during disaster situations. Secondly, we discussed about a potential 

disaster situation and how these technologies would work in such a situa-

tion. This situation was then used to understand the gaps that required 

further research and development. Thirdly, we introduced a framework 
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and developed an overall system architecture for disaster management. 

Finally, we described the details of our prototype system. This prototype 

system can help understand the components and complexities for devel-

opment of innovative disaster management applications. 

We also identified additional avenues of research in this area. Firstly, our 

selective encryption method needs to be extended to incorporate infor-

mation flow model. However, implementation of such system can be 

challenging. In disaster situation, any security overhead created in mobile 

phones needs to be minimal in order to preserve the power and elongate 

the battery life. Our proposed light-weight shared key based encryption 

method for such applications will be developed in future.  

Secondly, we identified the need of developing TSN over an opportunistic 

mobile mesh network in order to relay data during disaster situation. We 

have tested preliminary implementation to augment opportunistic net-

work stack for communication over mobile mesh network which consists 

of nodes with multiple radio interfaces. We will continue to work on an 

overlay layer as an application to interconnect the islands of disaster hit 

networks of mobile phones. This application will provide the capabilities 

of end to end connectivity for TSNs and DTNs. Further research is needed, 

particularly in the area of developing scheduling plans for enabling hot-

spot creation while preserving the battery power of the smartphones. 
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