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Preface

The Internet of Things (IoT) paradigm promises to make “things” including consumer electronic de-
vices or home appliances, such as medical devices, fridge, cameras, and sensors, part of the Internet
environment. This paradigm opens the doors to new innovations that will build novel type of interac-
tions among things and humans, and enables the realization of smart cities, infrastructures, and services
for enhancing the quality of life and utilization of resources.

IoT as an emerging paradigm supports integration, transfer, and analytics of data generated by
smart devices (eg, sensors). [oT envisions a new world of connected devices and humans in which the
quality of life is enhanced because management of city and its infrastructure is less cumbersome, health
services are conveniently accessible, and disaster recovery is more efficient. Based on bottom-up anal-
ysis for IoT applications, McKinsey estimates that the IoT will have a potential economic impact of
$11 trillion per year by 2025—which would be equivalent to about 11% of the world economy. They
also expect that one trillion IoT devices will be deployed by 2025. In majority of the IoT domains such
as infrastructure management and healthcare, the major role of IoT is the delivery of highly complex
knowledge-based and action-oriented applications in real-time.

To realize the full potential of the IoT paradigm, it is necessary to address several challenges and
develop suitable conceptual and technological solutions for tackling them. These include development of
scalable architecture, moving from closed systems to open systems, dealing with privacy and ethical is-
sues involved in data sensing; storage, processing, and actions; designing interaction protocols; autonom-
ic management; communication protocol; smart objects and service discovery; programming framework;
resource management; data and network management; power and energy management; and governance.

The primary purpose of this book is to capture the state-of-the-art in 10T, its applications, archi-
tectures, and technologies that address the abovementioned challenges. The book also aims to identify
potential research directions and technologies that will facilitate insight generation in various domains
from science, industry, business, and consumer applications. We expect the book to serve as a reference
for systems architects, practitioners, developers, researchers, and graduate-level students.

ORGANIZATION OF THE BOOK

This book contains chapters authored by several leading experts in the field of IoT. The book is pre-
sented in a coordinated and integrated manner starting with the fundamentals, and followed by the
technologies that implement them. The content of the book is organized into five parts:

IoT Ecosystem Concepts and Architectures
IoT Enablers and Solutions

IoT Data and Knowledge Management
IoT Reliability, Security, and Privacy

IoT Applications

agrond=

Part I presents an overview of IoT and its related concepts and evolution through time. It throws
light upon different IoT architectures and their components and discusses emerging paradigms such as

XXi
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Fog computing. In addition, the essential element of a cloud computing infrastructure for IoT services
is discussed and a novel framework for collaborative computing between IoT devices and cloud is
presented.

Part II is dedicated to platforms and solutions supporting development and deployment of IoT ap-
plications. It covers embedded systems programming languages as they play an important role in the
development of IoT. Moreover, this part provides an elaborate introduction to message passing mecha-
nisms such as RPC, REST, and CoAP that are indispensable for distributed programming in IoT. Fur-
thermore, techniques for resource sharing and partitioning to enable multitenancy are explored. Three
basic virtualization techniques for embedded systems are considered: full virtualization, paravirtualiza-
tion (as instances of hardware-level virtualization), and containers (as instances of operating-system-
level virtualization). Besides, it introduces an architecture which utilizes both cloud and virtualization
for effective deployment of Cyber Physical Systems.

Part IIT focuses on data and knowledge management which have always been an integral part of IoT
applications. It explains how stream processing toolkits offer scalable and reliable solutions to handle
a large volume of data in motion and how they can be utilized in IoT environments. Furthermore, this
part introduces a framework for distributed data analysis (machine learning mechanism) based on the
core idea of Fog computing to use local resources to reduce the overhead of centralized data collection
and processing. It will explain how this can be achieved by learning local models of the data at the
nodes, which are then aggregated to construct a global model at a central node.

Part IV presents an argument for developing a governance framework for tackling the data con-
fidentiality, data integrity, and operation control issues faced by IoT. It outlines the organizational,
structural, regulatory, and legal issues that are commonly encountered in the IoT environment. In
addition, it provides a detailed overview of the security challenges related to the deployment of smart
objects. Security protocols at the network, transport, and application layers are discussed, together with
lightweight cryptographic algorithms to be used instead of conventional and demanding ones, in terms
of computational resources. Many of IoT applications are business critical, and require the underly-
ing technology to be dependable, that is, it must deliver its service even in the presence of failures.
Therefore, this part discusses the notion of reliability and recovery oriented systems in general and
then explains why this is important for an IoT-based system. A range of failure scenarios and reliability
challenges are narrated and tackled by failure-prevention and fault-tolerance approaches to make an
ToT-based system robust.

Part V introduces a number of applications that have been made feasible by the emergence of IoT.
Best practices for architecting IoT applications are covered, describing how to harness the power of
cutting-edge technologies for designing and building a weather station with over 10 sensors using a
variety of electronic interfaces connected to an embedded system gateway running Linux. This part
also introduces Internet of Vehicles (IoV) and its applications. It starts by presenting the background,
concept, and network architecture of IoV, and then analyzes the characteristics of IoV and correspond-
ingly new challenges in IoV research and development. Finally, this part discusses the role of IoT in
enabling efficient management of smart facilities and presents architecture for a cloud-based platform
for managing smart facilities and the underlying middleware services. Techniques for effective man-
agement of resources in sensor networks and in parallel systems performing data analytics on data
collected on a facility are discussed.



Acknowledgments

First and foremost, we are grateful to all the contributing authors for their time, effort, and understand-
ing during the preparation of the book.

Raj would like to thank his family members, especially his wife, Smrithi and daughters, Soumya
and Radha Buyya, for their love, understanding, and support during the preparation of the book. Amir
would like to thank his wife Elly and daughter Diana.

Finally, we would like to thank the staff at Morgan Kauffman, particularly, Amy Invernizzi, Priya
Kumaraguruparan, Brian Romer, and Todd Green. They were wonderful to work with.

Rajkumar Buyya
The University of Melbourne and Manjrasoft Pty Ltd, Australia

Amir Vahid Dastjerdi
The University of Melbourne, Australia

Xxiii



Page left intentionally blank



PART

loT ECOSYSTEM
CONCEPTS AND
ARCHITECTURES

1 INTERNETOF THINGS: AN OVERVIEW . . . .. . . o 3
2 OPEN SOURCE SEMANTIC WEB INFRASTRUCTURE FOR MANAGING loT RESOURCES IN THE CLOUD. . . . . . . . 29
3 DEVICE/CLOUD COLLABORATION FRAMEWORK FOR INTELLIGENCE APPLICATIONS . . . . .. ... ... . ... 49
4 FOG COMPUTING: PRINCIPLES, ARCHITECTURES, AND APPLICATIONS . . . . .. ... ... ... . ... ... 61



Page left intentionally blank



CHAPTER

INTERNET OF THINGS:
AN OVERVIEW

F. Khodadadi*, A.V. Dastjerdi*, R. Buyya***
*Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computing
and Information Systems, The University of Melbourne, Australia;**Manjrasoft Pty Ltd, Australia

1.1 INTRODUCTION

After four decades from the advent of Internet by ARPANET [1], the term “Internet” refers to the
vast category of applications and protocols built on top of sophisticated and interconnected computer
networks, serving billions of users around the world in 24/7 fashion. Indeed, we are at the beginning of
an emerging era where ubiquitous communication and connectivity is neither a dream nor a challenge
anymore. Subsequently, the focus has shifted toward a seamless integration of people and devices to
converge the physical realm with human-made virtual environments, creating the so- called Internet of
Things (IoT) utopia.

A closer look at this phenomenon reveals two important pillars of [oT: “Internet” and “Things” that
require more clarification. Although it seems that every object capable of connecting to the Internet
will fall into the “Things” category, this notation is used to encompass a more generic set of entities,
including smart devices, sensors, human beings, and any other object that is aware of its context and is
able to communicate with other entities, making it accessible at any time, anywhere. This implies that
objects are required to be accessible without any time or place restrictions.

Ubiquitous connectivity is a crucial requirement of 10T, and, to fulfill it, applications need to sup-
port a diverse set of devices and communication protocols, from tiny sensors capable of sensing and
reporting a desired factor, to powerful back-end servers that are utilized for data analysis and knowl-
edge extraction. This also requires integration of mobile devices, edge devices like routers and smart
hubs, and humans in the loop as controllers.

Initially, Radio-Frequency Identification (RFID) used to be the dominant technology behind IoT
development, but with further technological achievements, wireless sensor networks (WSN) and
Bluetooth-enabled devices augmented the mainstream adoption of the IoT trend. These technologies
and IoT applications have been extensively surveyed previously [2—5], however, less attention has been
given to unique characteristics and requirements of IoT, such as scalability, heterogeneity support, total
integration, and real-time query processing. To underscore these required advances, this chapter lists
10T challenges and promising approaches by considering recent research and advances made in the [oT
ecosystem, as shown in Fig. 1.1. In addition, it discusses emerging solutions based on cloud-, fog-, and
mobile-computing facilities. Furthermore, the applicability and integration of cutting-edge approaches
like Software Defined Networking (SDN) and containers for embedded and constrained devices with
IoT are investigated.
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1.2 INTERNET OF THINGS DEFINITION EVOLUTION
1.2.1 loT EMERGENCE

Kevin Ashton is accredited for using the term “Internet of Things” for the first time during a presenta-
tion in 1999 on supply-chain management [6]. He believes the “things” aspect of the way we interact
and live within the physical world that surrounds us needs serious reconsideration, due to advances in
computing, Internet, and data-generation rate by smart devices. At the time, he was an executive direc-
tor at MIT’s Auto-ID Center, where he contributed to the extension of RFID applications into broader
domains, which built the foundation for the current IoT vision.

1.2.2 INTERNET OF EVERYTHING

Since then, many definitions for IoT have been presented, including the definition [7] that focuses
mostly on connectivity and sensory requirements for entities involved in typical IoT environments.
Whereas those definitions reflect IoT’s basic requirements, new IoT definitions give more value to the
need for ubiquitous and autonomous networks of objects where identification and service integration
have an important and inevitable role. For example, Internet of Everything (IoE) is used by Cisco to
refer to people, things, and places that can expose their services to other entities [8].

1.2.3 INDUSTRIAL loT

Also referred to as Industrial Internet [9], Industrial IoT (IIoT) is another form of IoT applications
favored by big high-tech companies. The fact that machines can perform specific tasks such as data
acquisition and communication more accurately than humans has boosted IloT’s adoption. Machine to
machine (M2M) communication, Big Data analysis, and machine learning techniques are major build-
ing blocks when it comes to the definition of IIoT. These data enable companies to detect and resolve
problems faster, thus resulting in overall money and time savings. For instance, in a manufacturing
company, IIoT can be used to efficiently track and manage the supply chain, perform quality control
and assurance, and lower the total energy consumption.

1.2.4 SMARTNESS IN loT

Another characteristic of IoT, which is highlighted in recent definitions, is “smartness.” This distin-
guishes IoT from similar concepts such as sensor networks, and it can be further categorized into
“object smartness” and “network smartness.” A smart network is a communication infrastructure char-
acterized by the following functionalities:

e standardization and openness of the communication standards used, from layers interfacing with
the physical world (ie, tags and sensors), to the communication layers between nodes and with the
Internet;

e object addressability (direct IP address) and multifunctionality (ie, the possibility that a network
built for one application (eg, road-traffic monitoring) would be available for other purposes (eg,
environmental-pollution monitoring or traffic safety) [10].
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1.2.5 MARKET SHARE

In addition, definitions draw special attention to the potential market of IoT with a fast growing rate, by
having a market value of $44.0 billion in 2011 [11]. According to a comprehensive market research con-
ducted by RnRMarketResearch [ 12] that includes current market size and future predictions, the [oT and
M2M market will be worth approximately $498.92 billion by 2019. Quoting from the same research, the
value of the IoT market is expected to hit $1423.09 billion by 2020, with Internet of Nano Things (IoNT)
playing a key role in the future market and holding a value of approximately $9.69 billion by 2020.

Besides all these fantastic and optimistic opportunities, for current IoT to reach the foreseen mar-
ket, various innovations and progress in different areas are required. Furthermore, cooperation and
information-sharing between leading companies in IoT, such as Microsoft, IBM, Google, Samsung,
Cisco, Intel, ARM, Fujitsu, Ecobee Inc., in addition to smaller businesses and start-ups, will boost IoT
adoption and market growth.

IoT growth rate with an estimated number of active devices until 2018 is depicted in Fig. 1.2 [13]. The
increase of investment in IoT by developed and developing countries hints at the gradual change in strate-
gy of governments by recognizing IoT’s impacts and trying to keep themselves updated as IoT gains mo-
mentum. For example, the IoT European Research Cluster IERC) (http://www.rfid-in-action.eu/cerp/)
has conducted and supported several projects about fundamental IoT research by considering special
requirements from end-users and applications. As an example, the project named Internet of Things Ar-
chitecture (IoT-A) (http://www.iot-a.eu) aims at developing a reference architecture for specific types of
applications in IoT, and is discussed in more detail in Section 1.3. The UK government has also initiated
a 5 million project on innovations and recent technological advances in IoT [14]. Similarly, IBM in the
USA [15] has plans to spend billions of dollars on IoT research and its industrial applications. Singapore
has also announced its intention to be the first smart nation by investing in smart transport systems, de-
veloping the e-government structure, and using surveillance cameras and other sensory devices to obtain
data and extract information from them [16].

Internet of Everything
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FIGURE 1.2 loT Trend Forecast [13]
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1.2.6 HUMAN IN THE LOOP

IoT is also identified as an enabler for machine-to-machine, human-to-machine, and human-with-
environment interactions. With the increase in the number of smart devices and the adoption of new
protocols such as IPv6, the trend of IoT is expected to shift toward the fusion of smart and autonomous
networks of Internet-capable objects equipped with the ubiquitous computing paradigm. Involving
human in the loop [17] of IoT offers numerous advantages to a wide range of applications, including
emergency management, healthcare, etc. Therefore, another essential role of 10T is to build a collab-
orative system that is capable of effectively responding to an event captured via sensors, by effective
discovery of crowds and also successful communication of information across discovered crowds of
different domains.

1.2.7 IMPROVING THE QUALITY OF LIFE

IoT is also recognized by the impact on quality of life and businesses [8], which can revolutionize
the way our medical systems and businesses operate by: (1) expanding the communication channel
between objects by providing a more integrated communication environment in which different sen-
sor data such as location, heartbeat, etc. can be measured and shared more easily. (2) Facilitating the
automation and control process, whereby administrators can manage each object’s status via remote
consoles; and (3) saving in the overall cost of implementation, deployment, and maintenance, by pro-
viding detailed measurements and the ability to check the status of devices remotely.

According to Google Trends, the word “IoT” is used more often than “Internet of Things” since
2004, followed by “Web of Things” and “Internet of Everything” as the most frequently used words.
Quoting the same reference, Singapore and India are the countries with the most regional interest in
IoT. This is aligned with the fact that India is estimated to be the world’s largest consumer of IoT de-
vices by 2020 [18].

1.3 loT ARCHITECTURES

The building blocks of IoT are sensory devices, remote service invocation, communication networks,
and context-aware processing of events; these have been around for many years. However, what IoT
tries to picture is a unified network of smart objects and human beings responsible for operating them
(if needed), who are capable of universally and ubiquitously communicating with each other.

When talking about a distributed environment, interconnectivity among entities is a critical require-
ment, and IoT is a good example. A holistic system architecture for IoT needs to guarantee flawless
operation of its components (reliability is considered as the most import design factor in [oT) and link
the physical and virtual realms together. To achieve this, careful consideration is needed in design-
ing failure recovery and scalability. Additionally, since mobility and dynamic change of location has
become an integral part of IoT systems with the widespread use of smartphones, state-of-the-art archi-
tectures need to have a certain level of adaptability to properly handle dynamic interactions within the
whole ecosystem.

Reference architectures and models give a bird’s eye view of the whole underlying system, hence
their advantage over other architectures relies on providing a better and greater level of abstraction,
which consequently hides specific constraints and implementation details.
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Several research groups have proposed reference architectures for IoT [19,20]. The IoT-A [19]
focuses on the development and validation of an integrated IoT network architecture and supporting
building blocks, with the objective to be “the European Lighthouse Integrated Project addressing the
Internet-of-Things Architecture.” IoT-i project, related to the previously mentioned IoT-A project,
focuses on the promotion of IoT solutions, catching requirements and interests. IoT-i aims to achieve
strategic objectives, such as: creating a joint strategic and technical vision for the IoT in Europe that
encompasses the currently fragmented sectors of the IoT domain holistically, and contributing to the
creation of an economically sustainable and socially acceptable environment in Europe for IoT tech-
nologies and respective R&D activities.

Fig. 1.3 depicts an outline of our extended version of a reference architecture for IoT [20]. Different
service and presentation layers are shown in this architecture. Service layers include event processing
and analytics, resource management and service discovery, as well as message aggregation and Enter-
prise Service Bus (ESB) services built on top of communication and physical layers. API management,
which is essential for defining and sharing system services and web-based dashboards (or equivalent
smartphone applications) for managing and accessing these APIs, are also included in the architecture.
Due to the importance of device management, security and privacy enforcement in different layers, and
the ability to uniquely identify objects and control their access level, these components are prestressed
independently in this architecture. These components and their related research projects are described
in more detail throughout this chapter.

1.3.1 SOA-BASED ARCHITECTURE

In 0T, service-oriented architecture (SOA) might be imperative for the service providers and users
[21,22]. SOA ensures the interoperability among the heterogeneous devices [23,24]. To clarify this,
let us consider a generic SOA consisting of four layers, with distinguished functionalities as follows:

* Sensing layer is integrated with available hardware objects to sense the status of things
e Network layer is the infrastructure to support over wireless or wired connections among things
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e Service layer is to create and manage services required by users or applications
* Interfaces layer consists of the interaction methods with users or applications

Generally, in such architecture a complex system is divided into subsystems that are loosely cou-
pled and can be reused later (modular decomposability feature), hence providing an easy way to main-
tain the whole system by taking care of its individual components [25]. This can ensure that in the
case of a component failure the rest of the system (components) can still operate normally. This is of
immense value for effective design of an IoT application architecture, where reliability is the most
significant parameter.

SOA has been intensively used in WSN, due to its appropriate level of abstraction and advantages
pertaining to its modular design [26,27]. Bringing these benefits to IoT, SOA has the potential to aug-
ment the level of interoperability and scalability among the objects in IoT. Moreover, from the user’s
perspective, all services are abstracted into common sets, removing extra complexity for the user to
deal with different layers and protocols [28]. Additionally, the ability to build diverse and complex
services by composing different functions of the system (ie, modular composability) through service
composition suits the heterogeneous nature of IoT, where accomplishing each task requires a series of
service calls on all different entities spread across multiple locations [29].

1.3.2 API-ORIENTED ARCHITECTURE

Conventional approaches for developing service-oriented solutions use SOAP and Remote Method In-
vocation (RMI) as a means for describing, discovering, and calling services; however, due to overhead
and complexity imposed by these techniques, Web APIs and Representational State Transfer (REST)-
based methods were introduced as promising alternative solutions. The required resources range from
network bandwidth to computational and storage capacity, and are triggered by request—response
data conversions happening regularly during service calls. Lightweight data-exchange formats like
JSON can reduce the aforementioned overhead, especially for smart devices and sensors with a limited
amount of resources, by replacing large XML files used to describe services. This helps in using the
communication channel and processing the power of devices more efficiently.

Likewise, building APIs for IoT applications helps the service provider attract more customers
while focusing on the functionality of their products rather than on presentation. In addition, it is easier
to enable multitenancy by the security features of modern Web APIs such as OAuth, APIs which indeed
are capable of boosting an organization’s service exposition and commercialization. It also provides
more efficient service monitoring and pricing tools than previous service-oriented approaches [30].

To this end, in our previous research we have proposed Simurgh [31], which describes devices, sen-
sors, humans, and their available services using web API notation and API definition languages. Fur-
thermore, a two-phase discovery approach was proposed in the framework to find sensors that provide
desirable services and match certain features, like being in a specific location. Similarly, Elmangoush
et al. [32] proposed a service-broker layer (named FOKUS) that exposes a set of APIs for enabling
shared access to the OpenMTC core. Novel approaches for defining and sharing services in distributed
and multiagent environments like IoT can reduce the sophistication of service discovery in the applica-
tion development cycle and diminish service-call overhead in runtime.

Shifting from service delivery platforms (SDPs) toward web-based platforms, and the benefits of
doing so are discussed by Manzalini et al. [33]. Developers and business managers are advised to focus
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on developing and sharing APIs from the early stage of their application development lifecycle, so that
eventually, by properly exposing data to other developers and end users, an open-data environment is
created that facilitates collaborative information gathering, sharing, and updating.

1.4 RESOURCE MANAGEMENT

Picturing IoT as a big graph with numerous nodes with different resource capacity, selecting and pro-
visioning the resources greatly impacts Quality of Service (QoS) of the IoT applications. Resource
management is very important in distributed systems and has been a subject of research for years.
What makes resource management more challenging for IoT relies on the heterogeneous and dynamic
nature of resources in [oT. Considering large-scale deployment of sensors for a smart city use-case, it is
obvious that an efficient resource management module needs considerable robustness, fault-tolerance,
scalability, energy efficiency, QoS, and SLA.

Resource management involves discovering and identifying all available resources, partitioning
them to maximize a utility function—which can be in terms of cost, energy, performance, etc., and,
finally, scheduling the tasks on available physical resources. Fig. 1.4 depicts the taxonomy of resource
management activities in IoT.

1.4.1 RESOURCE PARTITIONING

The first step for satisfying resource provisioning requirements in IoT is to efficiently partition the
resources and gain a higher utilization rate. This idea is vastly used in cloud computing via virtualiza-
tion techniques and commodity infrastructures, however, virtual machines are not the only method for
achieving the aforementioned goal. Since the hypervisor, that is responsible for managing interactions
between host and guest VMs, requires a considerable amount of memory and computational capacity,
this configuration is not suitable for IoT, where devices often have constrained memory and processing
power. To address these challenges, the concept of Containers has emerged as a new form of virtual-
ization technology that can match the demand of devices with limited resources. Docker (https:/www.
docker.com/) and Rocket (https://github.com/coreos/rkt) are the two most famous container solutions.

Containers are able to provide portable and platform-independent environments for hosting the
applications and all their dependencies, configurations, and input/output settings. This significantly
reduces the burden of handling different platform-specific requirements when designing and develop-
ing applications, hence providing a convenient level of transparency for applications, architects, and
developers. In addition, containers are lightweight virtualization solutions that enable infrastructure
providers to efficiently utilize their hardware resources by eliminating the need for purchasing ex-
pensive hardware and virtualization software packages. Since containers, compared to VMs, require
considerably less spin-up time, they are ideal for distributed applications in IoT that need to scale up
within a short amount of time.

An extensive survey by Gu et al. [34] focuses on virtualization techniques proposed for embedded
systems and their efficiency for satisfying real-time application demands. After explaining numerous
Xen-based, KVM-based, and microkernel-based solutions that utilize processor architectures such as
ARM, authors argue that operating system virtualization techniques, known as container-based virtual-
ization, can bring advantages in terms of performance and security by sandboxing applications on top
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FIGURE 1.4 Taxonomy of Resource Management in loT

of a shared OS layer. Linux VServer [35], Linux Containers LXC, and OpenVZ are examples of using
OS virtualization in an embedded systems domain.

The concept of virtualized operating systems for constrained devices has been further extended
to smartphones by providing the means to run multiple Android operating systems on a single physi-
cal smartphone [36]. With respect to heterogeneity of devices in IoT, and the fact that many of them
can leverage virtualization to boost their utilization rate, task-grain scheduling, which considers indi-
vidual tasks within different containers and virtualized environments, can potentially challenge current
resource-management algorithms that view these layers as black box [34].

1.4.2 COMPUTATION OFFLOADING

Code offloading (computation offloading) [37] is another solution for addressing the limitation of
available resources in mobile and smart devices. The advantages of using code offloading translate to
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more efficient power management, fewer storage requirements, and higher application performance.
Several surveys about computation offloading have carefully studied its communication and execution
requirements, as well as its adaptation criteria [38—40], hence here we mention some of the approaches
that focus on efficient code segmentation and cloud computing.

Majority of code offloading techniques require the developers to manually annotate the functions
required to execute on another device [39]. However, using static code analyzers and dynamic code
parsers is an alternative approach that results in better adaptivity in case of network fluctuations and
increased latency [41]. Instead of using physical instances, ThinkAir [42] and COMET [43] leverage
virtual machines offered by IaaS cloud providers as offloading targets to boost both scalability and
elasticity. The proposed combination of VMs and mobile clouds can create a powerful environment for
sharing, synchronizing, and executing codes in different platforms.

1.4.3 IDENTIFICATION AND RESOURCE/SERVICE DISCOVERY

IoT has emerged as a great opportunity for industrial investigations, and is similarly pursued by research
communities, but current architectures proposed for creation of IoT environments lack support for an effi-
cient and standard way of service discovery, composition, and their integration in a scalable manner [44].

The discovery module in IoT is twofold. The first objective is to identify and locate the actual de-
vice, which can be achieved by storing and indexing metadata information about each object. The final
step is to discover the target service that needs to be invoked.

Lack of an effective discovery algorithm can result in execution delays, poor user experience, and
runtime failures. As discussed in Ref. [45], efficient algorithms that dynamically choose centralized
or flooding strategies can help minimize the consumed energy, although other parameters such as
mobility and latency should be factored in to offer a suitable solution for IoT, considering its dynamic
nature. In another approach within the fog-computing context [46], available resources like network
bandwidth and computational and storage-capacity metrics are converted to time resources, forming a
framework that facilitates resource sharing. Different parameters like energy-consumption level, price,
and availability of services need to be included in proposing solutions that aim to optimize resource
sharing within a heterogeneous pool of resources.

The Semantic Web of Things (SWoT) envisions advanced resource management and service dis-
covery for IoT by extending Semantic Web notation and blending it with IoT and Web of Things. To
achieve this, resources and their metadata are defined and annotated using standard ontology-definition
languages such as RDF and OWL. Additionally, search and manipulation of these metadata can be
done through query languages like SPARQL. Ruta et al. [47] have adopted the SSN-XG W3C ontology
to collect and annotate data from Semantic Sensor Networks (SSN); moreover, by extending the CoAP
protocol (discussed in Section 1.6) and CoRE Link Format that is used for resource discovery, their
proposed solution ranks resources based on partial or full request matching situations.

1.5 loT DATA MANAGEMENT AND ANALYTICS

Although IoT is getting momentum to enable technology for creating a ubiquitous computing envi-
ronment, special considerations are required to process huge amounts of data originating from, and
circulating in, such a distributed and heterogeneous environment. To this extent, Big Data related
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procedures, such as data acquisition, filtering, transmission, and analysis have to be updated to match
the requirements of the IoT data deluge.

Generally, Big Data is characterized by 3Vs, namely velocity, volume, and variety. Focusing on
either an individual or a combination of these three Big Data dimensions has led to the introduction of
different data-processing approaches. Batch Processing and Stream Processing are two major methods
used for data analysis. Lambda Architecture [48] is an exemplary framework proposed by Nathan Marz
to handle Big Data processing by focusing on multiapplication support, rather than on data-processing
techniques. It has three main layers that enable the framework to support easy extensibility through
extension points, scale-out capabilities, low-latency query processing, and the ability to tolerate human
and system faults. From a top-down view, the first layer is called “Batch Layer” and hosts the master
dataset and batch views where precomputed queries are stored. Next is the “Serving Layer,” which
adds dynamic query creation and execution to the batch views by indexing and storing them. Finally,
the “Speed Layer” captures and processes recent data for delay-sensitive queries.

Collecting and analyzing the data circulating in the IoT environment is where the real power of IoT
resides [49]. To this end, applications utilize pattern detection and data-mining techniques to extract
knowledge and make smarter decisions. One of the key limitations in using currently developed data-
mining algorithms lies in the inherent centralized nature of these algorithms, which drastically affects
their performance and makes them unsuitable for [oT environments that are meant to be geographical-
ly distributed and heterogeneous. Distributed anomaly-detection techniques that concurrently process
multiple streams of data to detect outliers have been well-studied in the literature [50]. A comprehen-
sive survey of data-mining research in IoT has been conducted by Tsai et al. [51] and includes details
about various classifications, clustering, knowledge discovery in databases (KDD), and pattern-mining
techniques. Nevertheless, new approaches like ellipsoidal neighborhood factor outlier [52] that can
be efficiently implemented on constrained devices are not fully benchmarked with respect to different
configurations of their host devices.

1.5.1 loT AND THE CLOUD

Cloud computing, due to its on-demand processing and storage capabilities, can be used to analyze
data generated by IoT objects in batch or stream format. A pay-as-you-go model adopted by all cloud
providers has reduced the price of computing, data storage, and data analysis, creating a streamlined
process for building IoT applications. With cloud’s elasticity, distributed Stream Processing Engines
(SPEs) can implement important features such as fault-tolerance and autoscaling for bursty workloads.

IoT application development in clouds has been investigated in a body of research. Alam et al. [53]
proposed a framework that supports sensor-data aggregation in cloud-based IoT context. The frame-
work is SOA-based and event-driven, and defines benefits from a semantic layer that is responsible
for event processing and reasoning. Similarly, Li et al. [54] proposed a Platform as a Service (PaaS)
solution for deployment of IoT applications. The solution is multitenant, and users are provided with
a virtually isolated service that can be customized to their IoT devices while they share the underlying
cloud resources with other tenants.

Nastic et al. [55] proposed PatRICIA, a framework that provides a programming model for devel-
opment of IoT applications in the cloud. PatRICIA proposes a new abstraction layer that is based on
the concept of intent-based programming. Parwekar [56] discussed the importance of identity detection
devices in IoT, and proposed a service layer to demonstrate how a sample tag-based acquisition service
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can be defined in the cloud. A simple architecture for integrating M2M platform, network, and data lay-
ers has also been proposed. Focusing on the data aspect of IoT, in our previous research we proposed
an architecture based on Aneka, by adding support for data filtering, multiple simultaneous data-source
selection, load balancing, and scheduling [57].

IoT applications can harness cloud services and use the available storage and computing resources
to meet their scalability and compute-intensive processing demands. Most of the current design ap-
proaches for integrating cloud with IoT are based on a three-tier architecture, where the bottom layer
consists of IoT devices, middle layer is the cloud provider, and top layer hosts different applications
and high-level protocols. However, using this approach to design and integrate cloud computing with
an IoT middleware limits the practicality and full utilization of cloud computing in scenarios where
minimizing end-to-end delay is the goal. For example, in online game streaming, where perceived delay
is an important factor for user satisfaction, a light and context-aware loT middleware [58] that smartly
selects the nearest Content Distribution Network (CDN) can significantly reduce the overall jitter.

1.5.2 REAL-TIME ANALYTICS IN loT AND FOG COMPUTING

Current data-analytics approaches mainly focus on dealing with Big Data, however, processing data
generated from millions of sensors and devices in real time is more challenging [59]. Proposed solu-
tions that only utilize cloud computing as a processing or storage backbone are not scalable and cannot
address the latency constraints of real-time applications. Real-time processing requirements and the
increase in computational power of edge devices such as routers, switches, and access points lead to
the emergence of the Edge Computing paradigm.

The Edge layer contains the devices that are in closer vicinity to the end user than the application
servers, and can include smartphones, smart TVs, network routers, and so forth. Processing and storage
capability of these devices can be utilized to extend the advantages of using cloud computing by creat-
ing another cloud, known as Edge Cloud, near application consumers, in order to: decrease network-
ing delays, save processing or storage cost, perform data aggregation, and prevent sensitive data from
leaving the local network [60].

Similarly, Fog Computing is a term coined by Salvatore Stolfo [61] and applies to an extension of
cloud computing that aims to keep the same features of Cloud, such as networking, computation, virtu-
alization, and storage, but also meets the requirements of applications that demand low latency, specific
QoS requirements, Service Level Agreement (SLA) considerations, or any combination of these [62].
Moreover, these extensions can ease application development for mobile applications, Geo-distributed
applications such as WSN, and large-scale systems used for monitoring and controlling other systems,
such as surveillance camera networks [63,64]. A comparison of Cloud and Fog features is presented in
Table 1.1 and Fig. 1.5 shows a general architecture for using cloud and fog computing together.

Stonebraker et al. [65] pointed out that the following requirements should be fulfilled in an efficient
real-time stream processing engine (SPE):

e Data fluidity, which refers to processing data on-the-fly without the need for costly data storage
e Handling out-of-order, missing, and delayed streams

e Having a repeatable and deterministic outcome after processing a series or bag of streams

e Keeping streaming and stored data integrated by using embedded database systems

e Assuring high availability, using real-time failover and hot backup mechanisms

e Supporting autoscaling and application partitioning
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Table 1.1 Cloud Versus Fog
Fog Cloud
Response time Low High
Availability Low High
Security level Medium to hard Easy to medium
Service focus Edge devices Network/enterprise core services
Cost for each device Low High
Dominant architecture Distributed Central/distributed
Main content generator—consumer Smart devices—humans and devices | Humans—end devices

Cloud Computing (Centralized computing)
Applications, Private/Public cloud hosting, Core Network

I I I

Fog Computing Fog Computing Fog Computing
(Distributed computing) (Distributed computing) (Distributed computing)
Access points, Wi-Fi/LAN Access points, Wi-Fi/LAN Access points, Wi-Fi/LAN

@ II J

End Devices (Smart Devices)
Vehicles, Setup box, IP TV, Machines, Gaming

FIGURE 1.5 Typical Fog Computing Architecture

To harness the full potential of Fog computing for applications demanding real-time processing,
researchers can look into necessary approaches and architectures to fulfill the aforementioned require-
ments.

1.6 COMMUNICATION PROTOCOLS

From the network and communication perspective, IoT can be viewed as an aggregation of different
networks, including mobile networks (3G, 4G, CDMA, etc.), WLANs, WSN, and Mobile Adhoc Net-
works (MANET) [21].

Seamless connectivity is a key requirement for IoT. Network-communication speed, reliability, and
connection durability will impact the overall IoT experience. With the emergence of high-speed mobile
networks like 5G, and the higher availability of local and urban network communication protocols such
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FIGURE 1.6 Use of Various Protocols in loT Communication Layers

as Wi-Fi, Bluetooth, and WiMax, creating an interconnected network of objects seems feasible, how-
ever, dealing with different communication protocols that link these environments is still challenging.

1.6.1 NETWORK LAYER

Based on the device’s specification (memory, CPU, storage, battery life), the communication means and
protocols vary. However, the commonly used communication protocols and standards are listed below:

e RFID (eg, ISO 18000 series that comes with five classes and two generations, and covers both
active and passive RFID tags)

e IEEE 802.11 (WLAN), IEEE 802.15.4 (ZigBee), Near Field Communication (NFC), IEEE
802.15.1 (Bluetooth)

e Low-power Wireless Personal Area Networks (6LoWPAN) standards by IEFT

e M2M protocols such as MQTT and CoAP

e [P layer technologies, such as IPv4, IPv6, etc.

More elaboration on the aforementioned network-layer communication protocols is available in
Ref. [66], and a breakdown of layers in the IoT communication stack that these protocols will operate
is shown in Fig. 1.6.

1.6.2 TRANSPORT AND APPLICATION LAYER

Segmentation and poor coherency level, which are results of pushes from individual companies to
maximize their market share and revenue, has made developing IoT applications cumbersome. Uni-
versal applications that require one-time coding and can be executed on multiple devices are the most
efficient.

Protocols in 10T can be classified into three categories:

1. general-purpose protocols like IP and SNMP that have been around for many years and are vastly
used to manage, monitor, configure network devices, and establish communication links;
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2. lightweight protocols such as CoAP that have been developed to meet the requirements of
constrained devices with tiny hardware and limited resources;

3. device- or vendor-specific protocols and APIs that usually require a certain build environment and
toolset.

Selecting the right protocols at the development phase can be challenging and complex, as factors
such as future support, ease of implementation, and universal accessibility have to be considered.
Additionally, thinking of other aspects that will affect the final deployment and execution, like
required level of security and performance, will add to the sophistication of the protocol-selection
stage. Lack of standardization for particular applications and protocols is another factor that increases
the risk of poor protocol selection and strategic mistakes that are more expensive to fix in the future.
In order to enhance their adoption, it is important to make sure that communication protocols are well
documented; sensors and smart devices limit their usage in IoT.

Table 1.2 summarizes the characteristics of major communication protocols in IoT, while it also
compares their deployment topology and environments.

M2M communication aims to enable seamless integration of physical and virtual objects into larger
and geographically distributed enterprises by eliminating the need for human intervention. However,
to achieve this, the enforcement of harmony and collaboration among different communication layers
(physical, transport, presentation, application), as well as the approaches used by devices for message
storage and passing, can be challenging [67].

The publish/subscribe model is a common way of exchanging messages in distributed environ-
ments, and, because of simplicity, it has been adopted by popular M2M communication protocols
like MQTT. In dynamic scenarios, where nodes join or leave the network frequently and handoffs are
required to keep the connections alive, the publish/subscribe model is efficient. This is because of using
push-based notifications and maintaining queues for delayed delivery of messages.

Table 1.2 IoT Communication Protocols Comparison

Protocol Transport

Name Protocol Messaging Model Security Best-Use Cases Architecture

AMPQ TCP Publish/Subscribe High-Optional Enterprise pP2P

integration

CoAP UDP Request/Response Medium-Optional | Utility field Tree

DDS UDP Publish/Subscribe and | High-Optional Military Bus
Request/Response

MQTT TCP Publish/Subscribe and | Medium-Optional IoT messaging Tree
Request/Response

UPnP — Publish/Subscribe and | None Consumer p2p
Request/Response

XMPP TCP Publish/Subscribe and | High-Compulsory | Remote Client server
Request/Response management

ZeroMQ UDP Publish/Subscribe and | High-Optional CERN P2p
Request/Response
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On the other hand, protocols like HTTP/REST and CoAP only support the request/response model,
in which a pulling mechanism is used to fetch new messages from the queue. CoAP also uses IPv6 and
6LoWPAN protocols in its network layer to handle node identification. Ongoing efforts are still being
made to merge these protocols and standardize them, as to support both publish/subscribe and request/
response models [68,69].

1.7 INTERNET OF THINGS APPLICATIONS

IoT promises an interconnected network of uniquely identifiable smart objects. This infrastructure creates
the necessary backbone for many interesting applications that require seamless connectivity and address-
ability between their components. The range of IoT application domain is wide and encapsulates applica-
tions from home automation to more sophisticated environments, such as smart cities and e-government.

Industry-focused applications include logistics and transportation [70], supply-chain management
[71], fleet management, aviation industry, and enterprise automation systems. Healthcare systems,
smart cities and buildings, social IoT, and smart shopping are a few examples of applications that try to
improve the daily life of individuals, as well as the whole society. Disaster management, environmental
monitoring, smart watering, and optimizing energy consumption through smart grids and smart meter-
ing are examples of applications that focus on environment.

In a broader magnitude, Gascon and Asin [72] classified 54 different [oT applications under the fol-
lowing categories: smart environment, smart cities, smart metering, smart water, security and emergen-
cies, retail, logistics, industrial control, smart agriculture, smart animal farming, domestic and home
automation, and eHealth. For further reference, Kim et al. [73] have surveyed and classified research
about IoT applications based on application domain and target user-groups.

In this section we present categorization of enterprise IoT applications based on their usage domain.
These applications usually fall into the following three categories: (1) monitoring and actuating, (2)
business process and data analysis, and (3) information gathering and collaborative consumption. The
rest of this section is dedicated to characteristics and requirements of each category.

1.7.1 MONITORING AND ACTUATING

Monitoring devices via APIs can be helpful in multiple domains. The APIs can report power usage,
equipment performance, and sensor status, and they can perform actions upon sending predefined com-
mands. Real-time applications can utilize these features to report current system status, whereas man-
agers and developers have the option to freely call these APIs without the need for physically accessing
the devices. Smart metering, and in a more distributed form, smart grids, can help in identifying pro-
duction or performance defects via application of anomaly detection on the collected data, and thus in-
crease the productivity. Likewise, incorporating IoT into buildings, or even in the construction process
[74], helps to move toward green solutions, save energy, and, consequently, minimize operation cost.

Another area that has been under focus by researchers is applications targeting smart homes that
mainly target energy-saving and monitoring. Home monitoring and control frameworks like the ones
developed by Verizon [75] and Boss support different communication protocols (Wi-Fi, Bluetooth,
etc.) to create an interconnected network of objects that can control desired parameters and change
configurations based on the user’s settings.
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1.7.2 BUSINESS PROCESS AND DATA ANALYSIS

Riggins et al. [76] categorized the level of IoT adoption through Big Data analytics usage to the fol-
lowing categories:

e Society level, where IoT mainly influences and improves government services by reducing cost
and increasing government transparency and accountability

e Industry level, in which manufacturing, emergency services, retailing, and education have been
studied as examples

e Organizational level, in which IoT can bring the same type of benefits as those mentioned in
society level

e Individual level, where daily life improvements, individual efficiency, and productivity growth are
marked as IoT benefits

The ability to capture and store vast amounts of individual data has brought opportunities to health-
care applications. Patients’ data can be captured more frequently, using wearable technologies such as
smart watches, and can be published over the Internet. Later, data mining and machine-learning algo-
rithms are used to extract knowledge and patterns from the raw data and archive these records for future
reference. Healthsense eNeighbor developed by Humana is an example of a remote controlling system
that uses sensors deployed in houses to measure frequent daily activities and heath parameters of oc-
cupants. The collected data is then analyzed to forecast plausible risks and produce alerts to prevent
incidents [77]. Privacy and security challenges are two main barriers that refrain people and industries
from embracing IoT in the healthcare domain.

1.7.3 INFORMATION GATHERING AND COLLABORATIVE CONSUMPTION

Social Internet of Things (SIoT) is where IoT meets social networks, and, to be more precise, it prom-
ises to link objects around us with our social media and daily interaction with other people, making
them look smarter and more intractable. SIoT concept, motivated by famous social media like Face-
book and Twitter, has the potential to affect many people’s lifestyles. For example, a social network is
helpful for the evaluation of trust of crowds involved in an IoT process. Another advantage is using the
humans and their relationships, communities, and interactions for effective discovery of IoT services
and objects [78].

Table 1.3 contains a list of past and present open-source projects regarding IoT development and
its applications.

1.8 SECURITY

As adoption of IoT continues to grow, attackers and malicious users are shifting their target from servers
to end devices. There are several reasons for this. First, in terms of physical accessibility, smart devices
and sensors are far less protected than servers, and having physical access to a device gives the attackers
an advantage to penetrate with less hassle. Second, the number of devices that can be compromised are far
more than the number of servers. Moreover, since devices are closer to the users, security leads to leaking
of valuable information and has catastrophic consequences. Finally, due to heterogeneity and the distrib-
uted nature of 10T, the patching process is more consuming, thus opening the door for attackers [2,79].
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Table 1.3 List of IoT-Related Projects

Name of Project/Product Area of Focus

Tiny OS Operating System

Contiki Operating System

Mantis Operating System

Nano-RK Operating System

LiteOS Operating System
FreeRTOS Operating System

RIOT Operating System

Wit. Al Natural Language
Node-RED Visual Programming Toolkit
NetLab Visual Programming Toolkit
SensorML Modeling and Encoding
Extended Environments Markup Language (EEML) Modeling and Encoding
ProSyst Middleware

MundoCore Middleware

Gaia Middleware

Ubiware Middleware

SensorWare Middleware

SensorBus Middleware

OpenloT Middleware and development platform
Koneki M2M Development Toolkit
MIHINI M2M Development Toolkit

In an IoT environment, resource constraints are the key barrier for implementing standard security
mechanisms in embedded devices. Furthermore, wireless communication used by the majority of sen-
sor networks is more vulnerable to eavesdropping and man-in-the-middle (proxy) attacks.

Cryptographic algorithms need considerable bandwidth and energy to provide end-to-end protection
against attacks on confidentiality and authenticity. Solutions have been proposed in RFID [80,81] and
WSN [82] context to overcome aforementioned issues by considering light cryptographic techniques.
With regard to constrained devices, symmetric cryptography is applied more often, as it requires fewer
resources; however, public key cryptography in the RFID context has also been investigated [83].

WSN with RFID tags and their corresponding readers were the first infrastructure for building loT
environments, and, even now, many loT applications in logistics, fleet management, controlled farm-
ing, and smart cities rely on these technologies. Nevertheless, these systems are not secure enough and
are vulnerable to various attacks from different layers. A survey by Borgohain et al. [84] investigates
these attacks, but less attention is given to solutions and counter-attack practices.
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1.9 IDENTITY MANAGEMENT AND AUTHENTICATION

When talking about billions of connected devices, methods for identifying objects and setting their
access level play an important role in the whole ecosystem. Consumers, data sources, and service pro-
viders are essential parts of I0oT; identity management and authentication methods applied to securely
connect these entities affect both the amount of time required to establish trust and the degree of confi-
dence [4]. IoT’s inherent features, such as dynamism and heterogeneity, require specific consideration
when defining security mechanisms. For instance, in Vehicular Networks (VANETS), cars regularly
enter and leave the network due to their movement speed; thus, not only do cars need to interact and
exchange data with access points and sensors along the road, but they also need to communicate with
each other and form a collaborative network.

Devices or objects in 10T have to be uniquely identified. There are various mechanisms, such as
ucode, which generate 128-bit codes and can be used in active and passive RFID tags, and also Electric
Product Code (EPC), which creates unique identifiers using Uniform Resource Identifier (URI) codes
[85,86]. Being able to globally and uniquely identify and locate objects decreases the complexity of
expanding the local environment and linking it with the global markets [84].

It is common for IoT sensors and smart devices to share the same geographical coordinates and
even fall into same type or group, hence identity management can be delegated to local identity man-
agement systems. In such environments, local identity management systems can enforce and monitor
access-control policies and establish trust negotiations with external partners. Zhou et al. [87] inves-
tigated security requirements for multimedia applications in IoT and proposed an architecture that
supports traffic analysis and scheduling, key management, watermarking, and authentication. Context-
aware pairing of devices and automatic authentication is another important requirement for dynamic
environments like IoT. Solutions that implement a zero-interaction approach [88] to create simpler
yet more secure procedures for creating a ubiquitous network of connected devices can considerably
impact IoT and its adoption.

1.10 PRIVACY

According to the report published by IDC and EMC on Dec. 2012 [89], the size of the digital universe
containing all created, replicated, and consumed digital data will be roughly doubled every 2 years,
hence, forecasting its size to be 40,000 exabytes by 2020, compared to 2,837 exabytes for 2012. Ad-
ditionally, sourced from statisticbrain.com, the average cost of storage for hard disks has dropped from
$437,500 per gigabyte in 1980 to $0.05 per gigabyte in 2013. These statistics show the importance of
data and the fact that it is easy and cheap to keep the user’s data for a long time and follow the guide-
lines for harvesting as much data as possible and using it when required.

Data generation rate has drastically increased in recent years, and consequently concerns about
secure data storage and access mechanisms has be taken more seriously. With sensors capable of sens-
ing different parameters, such as users’ location, heartbeat, and motion, data privacy will remain a hot
topic to ensure users have control over the data they share and the people who have access to these data.

In distributed environments like IoT, preserving privacy can be achieved by either following a cen-
tralized approach or by having each entity manage its own inbound/outbound data, a technique known
as privacy-by-design [84]. Considering the latter approach, since each entity can access only chunks
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Table 1.4 IoT Standards
Organization Name Outcome

Internet of Things Global Standards Initiative (IocT-GSI) | JCA-IoT

Open Source Internet of Things (OSIoT) Open Horizontal Platform
IEEE 802.15.4 standards, developing a reference architecture
Internet Engineering Task Force (IETF) Constrained RESTful Environments (CoRE),

6LOWPAN, Routing Over Low power and Lossy
networks (ROLL), IPv6

The World Wide Web Consortium (W3C) Semantic Sensor Net Ontology, Web Socket, Web of
Things

XMPP Standards Foundation XMPP

Eclipse Foundation Paho project, Ponte project, Kura, Mihini/M3DA,
Concierge

Organization for the Advancement of Structured MQTT, AMPQ

Information Standards

of data, distributed privacy- preserving algorithms have been developed to handle data scattering and
their corresponding privacy tags [90]. Privacy-enhancing technologies [91,92] are good candidates for
protecting collaborative protocols. In addition, to protect sensitive data, rapid deployable enterprise
solutions that leverage containers on top of virtual machines can be used [93].

1.11 STANDARDIZATION AND REGULATORY LIMITATIONS

Standardization and the limitation caused by regulatory policies have challenged the growth and adop-
tion rate of IoT and can be potential barriers in embracing the technology. Defining and broadcasting
standards will ease the burden of joining IoT environments for new users and providers. Additionally,
interoperability among different components, service providers, and even end users will be greatly
influenced in a positive way, if pervasive standards are introduced and employed in IoT [94].

Even though more organizations and industries make themselves ready to embrace and incorporate
IoT, increase in IoT growth rate will cause difficulties for standardization. Strict regulations about ac-
cessing radio frequency levels, creating a sufficient level of interoperability among different devices,
authentication, identification, authorization, and communication protocols are all open challenges fac-
ing IoT standardization. Table 1.4 contains a list of organizations that have worked toward standard-
izing technologies either used within IoT context or those specifically created for IoT.

1.12 CONCLUSIONS

IoT has emerged as a new paradigm aimed at providing solutions for integration, communication, data
consumption, and analysis of smart devices. To this end, connectivity, interoperability, and integration
are inevitable parts of IoT communication systems. Whereas 10T, due to its highly distributed and
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heterogeneous nature, is comprised of many different components and aspects, providing solutions to
integrate this environment and hide its complexity from the user side is inevitable. Novel approaches
that utilize SOA architecture and API definition languages to service exposition, discovery, and com-
position will have a huge impact in adoption and proliferation of the future IoT vision.

In this chapter, different building blocks of 10T, such as sensors and smart devices, M2M commu-
nication, and the role of humans in future IoT scenarios are elaborated upon and investigated. Many
challenges ranging from communication requirements to middleware development still remain open
and need further investigation. We have highlighted these shortcomings, have provided typical solu-
tions, and have drawn guidelines for future research in this area.
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