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Abstract—Inter-cloud is an approach that facilitates scalable resource provisioning across multiple cloud infrastructures. In this paper,

we focus on the performance optimization of Infrastructure as a Service (IaaS) using the meta-scheduling paradigm to achieve an

improved job scheduling across multiple clouds. We propose a novel inter-cloud job scheduling framework and implement policies to

optimize performance of participating clouds. The framework, named as Inter-Cloud Meta-Scheduling (ICMS), is based on a novel

message exchange mechanism to allow optimization of job scheduling metrics. The resulting system offers improved flexibility,

robustness and decentralization. We implemented a toolkit named “Simulating the Inter-Cloud” (SimIC) to perform the design and

implementation of different inter-cloud entities and policies in the ICMS framework. An experimental analysis is produced for job

executions in inter-cloud and a performance is presented for a number of parameters such as job execution, makespan, and

turnaround times. The results highlight that the overall performance of individual clouds for selected parameters and configuration is

improved when these are brought together under the proposed ICMS framework.

Index Terms—Cloud computing, interoperable clouds, inter-clouds, meta-scheduling systems
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1 INTRODUCTION

THE concept behind cloud computing is to provide an on
demand scalable and agile infrastructure. Its biggest

advantage is the service elasticity that offers scaling of the
cloud resources based on user demand [7]. In this work, we
focus on inter-cloud (IC) that is an infrastructure that
exploits communication across multiple clouds to support
diverse and large number of user requests. Inter-cloud aims
to increase cloud service elasticity and scalability while min-
imizing the operational costs. It allows the formation of a
collaborative partnership for service exchange under a
mutually agreed management while ensuring a certain level
of Quality of Service (QoS). In particular, an inter-cloud
facilitates communication by acting as a gateway and broker
between different cloud providers. In this work we propose
an inter-cloud framework that optimises the performance of
an infrastructure that may comprise of multiple clouds.

In order to realize it, meta-scheduling may play an
important role in the way resources are managed and
requests are processed [1]. Specifically, a meta-scheduler
could select available resources from multiple clouds

taking into account appropriate Service Level Agreements
(SLAs), operating conditions (e.g. cost, availability) and
performance criteria [4]. This requires resources from mul-
tiple clouds to be orchestrated in such a way that tasks are
efficiently executed. Our goal is to gain advantage of
already developed solutions for large-scale meta-schedul-
ing approaches and implement an Inter-CloudMeta-Sched-
uling (ICMS) framework that can improve performance
metrics including task execution times, latencies and make-
span times by exploiting resources frommultiple clouds.

The work is motivated from the future of Internet comput-
ing as described in [6]. Specifically, the authors note that today
there are different cloud providers that address different
needs andmay offer different functionality, yet they share the
same characteristics in terms of how resources are being pro-
visioned and consumed. These clouds share similarities in
structure and architecture. Inter-cloud models should allow
tasks to be exchanged in order to achieve better QoS levels by
exploiting the resources from a number of cloud providers by
employing novel meta-scheduling approaches. In this work
we address the limitation in the current cloud implementa-
tions that they do not offer support for task federation.

In contrast to other efforts, as described in [2] and [4], we
propose a more inclusive design that provides task federa-
tion through a decentralized meta-scheduling solution.
Each cloud infrastructure may have their own local sched-
uler which may not have information about resources in
other clouds. This work extends the initial effort in [15] by
presenting the complete architecture along with new algo-
rithms and the messaging model of ICMS. Further, the
experimental study demonstrates an extended use of per-
formance metrics based on new algorithms and use cases
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for evaluation purposes. Also, the new algorithms and per-
formance evaluation experiments have been produced in
the SimIC [16] that realizes inter-cloud algorithms along
with the messaging model. Its architecture is based on
CloudSim [21] yet it implements and extends its features
from the perspective of processing batch jobs in meta-sched-
uling systems. Having said that, the paper is organized as
follows, Section 2 presents a discussion of relatedworks. Sec-
tion 3 details the proposed ICMS framework and Section 4
presents the SimIC simulation toolkit and the experimental
configuration. Section 5 details the performance results and
evaluation. The work concludes in Section 6 with a summary
and a discussion of the future directions.

2 RELATED WORKS

The inter-cloud has been characterized as a large-scale
resource management system comprising of multiple auton-
omous clouds [5]. These independently managed clouds
may be homogenous or heterogeneous, yet in an inter-cloud
infrastructure they will need to function under a single fed-
erated management entity. This section focus on a literature
review of the meta-scheduling approaches developed for
large-scale systems that may exhibit similar characteristics
to inter-clouds. In detail, we focus on the algorithms with
regards to inter-clouds.

The work of [8] presents a decentralized dynamic algo-
rithm named Estimated Load Information Scheduling
Algorithm (ELISA). The algorithm estimates the queue
length of neighboring processors and then reschedules the
loads based on estimates. The method aims to increase the
possibilities to gain load balancing by estimation based on
updated information after large time intervals. Yet, the
method is not adaptable to inter-cloud as the algorithm
requires lengths of queues of neighboring hosts; conse-
quently it exposes internal information. In [9] authors dem-
onstrate a distributed computing scheduling model. The key
idea of the proposed meta-scheduler is to redundantly dis-
tribute each service to multiple sites, instead of sending the
service to the most lightly loaded. We envision that inter-
clouds will mainly be used for highly loaded scenarios;
therefore this methodwill decrease the overall performance.

The work of [10] presents a model for connecting various
Condor work pools that yield to a self-organizing flock of
Condors. The model uses the Condor resource manager to
schedule services to idle resources. This method, similar to
[8], includes comparison of queues, so makes local informa-
tion to be exposed and it is considered not adoptable to
inter-clouds. The authors conclude that it performs better
for lightly loaded sites and thus as in [9] this will also
decrease the overall performance. Authors in [11] present a
scheduling infrastructure called OurGrid which is based on
the Bag-Of-Tasks applications. OurGrid is a collection of
peers constituting a community. This is a decentralized
solution based on site reputation and debts. As debts grow
services could become less prioritized, thus could lead to
starvation, which in turn could affect inter-cloud perfor-
mance. In [12] authors discuss a market-based resource allo-
cation system. The scheduling mechanism in this system is
based on auctions. Specifically, each resource provider or
owner runs an auction for their resources. However, this

does not guarantee an optimized inter-cloud solution as
resources can be under-utilized due to meta-schedulers that
might bid always for a specific set of resources.

In [29], authors describe two scheduling algorithms,
namely Modified ELISA (MELISA) based on [8] and load
balancing on arrival. Both algorithms are based on the dis-
tributed scheme of sender-initiated load balancing. To
improve MELISA performance, the authors conclude that
the load balancing on arrival method will balance the high
service arrival rates. However, this solution includes
exchanging of local queues as discussed in [8], thus it is inef-
ficient with regards to inter-clouds. The delegated match-
making (DMM) approach presented by [13] is a novel
delegated technique, which allows the interconnection of
several grids without requiring the operation under a cen-
tral control point. Their simulation results show that DMM
can have significant performance and administrative advan-
tages. However, this work raises heterogeneity issues in
large-scale distributed settings.

In [17] authors present a model for an InterGrid system
that enables distributed resource provisioning from local to
global scale. In [18], authors evaluate the performance analy-
sis of the InterGrid architecture by using various algorithms
e.g. conservative backfilling. The results show that the aver-
age response time has improved in the aforementioned eval-
uated scheduling algorithms. Yet, [19] suggest that the
approach reflect an economical view as business application
is the primary goal. In [19], authors present a decentralized
model for addressing scheduling issues in federated grids.
This solution proposes the utilization of GridWay, as a meta-
scheduler to each grid infrastructure. The authors assume a
complete setting in terms of meta-brokers knowledge for
each other, thus makes it appropriate for small-scale settings
and not for large-scale inter-clouds.

In [20] is presented the problem of broker selection in
multiple grid scenarios by describing and evaluating sev-
eral scheduling techniques. In particular, system entities
such as meta-brokers are represented as gateways. Authors
claim that performance is not penalized significantly; how-
ever resource information accuracy may be lost. This work
did not address these meta-scheduling features in inter-
clouds. The work of [23] introduces a decentralized
dynamic scheduling approach called community aware
scheduling algorithm (CASA). The CASA that based on [28]
contains a collection of sub-algorithms to facilitate service
scheduling across distributed nodes. The message distribu-
tion is based on the probability to find a resource, thus
requires training of the system to define probabilities. In
this study, ICMS defines algorithms for dynamic scheduling
that goes beyond exchanging local scheduling queues.
Finally, in [3] authors present a scalable cloud system mod-
eled around the Amazon EC2 architecture, with a workload
model that offers fluctuating traffic characteristics. Table 1
shows a summary of large-scale scheduling approaches by
extending the work performed in [22]. It should be men-
tioned that in [6] authors present a detailed theoretical com-
parison among these approaches.

An important characteristic of our approach is the mes-
sage exchanging feature that is considered as a key require-
ment by most of the decentralized approaches, as reported
in [9], [10], [11], [12], and [19]. However, most of these
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approaches do not detail the whole request-response proce-
dure. For example, [24] suggests that messages are
exchanged among components in order to make coopera-
tive scheduling decisions. Since the rejected responses are
returned an increased message overhead is observed. Simi-
larly, [19] suggests an algorithm that allows rejected mes-
sages to return in the case a grid does not have the required
slots for allocation. Authors in [10] suggest that a node that
receives a message becomes aware of available resources in
the pool. This includes messages that are exchanged in all
the resources available in the resource pool. In contrast, [11]
considers a broadcasting approach where a resource does
not always require to reply back. However, majority of the
current performance optimization approaches overlook the
benefits that may derive from a more fine-grained message
exchanging approach. A more detailed discussion of the
message exchanging mechanisms in distributed systems is
presented in [14].

3 THE INTER-CLOUD META-SCHEDULING (ICMS)
FRAMEWORK

The ICMS is the means to represent the inter-cloud service
distribution that allows the integration of modular policies.
The ICMS is organized in a layered structure as detailed in
Fig. 1. The primary functionalities are divided in three
layers namely, the service submission, the distributed

Fig. 1 The three-layered structure of ICMS.

TABLE 1
Summary of Large-Scale Scheduling Approaches

Approach Advantages Disadvantages

Works of [8] and [29] demonstrate ELISA and
MELISA that calculate the neighboring nodes
load by considering job arrival rate and node
loads. Jobs are transferred based on the
comparison of nodes load and not queue length.

Distributed algorithm based on
the centre-initiated load balancing.
MELISA performs better in large
scale systems compared to
MELISA.

Adaptability for dynamics cannot be
guaranteed and privacy issues exposed
due to queues exchanging (comparison
of nodes load), and virtualization capa-
bilities are not included.

In [9], the scheduler redundantly distribute each
job to multiple sites, instead of sending the job
to the most lightly load though backfilling.

Increases the possibility of effec-
tive backfilling and brings better
fairness.

Performs best for low loaded sites, lower
overall performance for large-scale sys-
tems and no virtualization capability.

In [10], the approach connects various Condor
pools which yield to a self-organizing flock of
condors. It schedules jobs to idle resources by
using Condor resource manager and invokes
flocking mechanism only for busy machines.

It uses the Condor resource man-
ager for scheduling to idle resour-
ces and flocks can reduce the
maximum job waiting time in the
queue.

Pools are characterized to suitable/not
suitable; as a result unfairness will lead
to starvation, also comparison of queue
lengths exposes privacy issues and
virtualization is not determined.

In [11], scheduling executed by site reputation
and resource availability, and brokers schedule
jobs through arrangements and priorities to
peers where each peer can maintain ranking of
all known peers.

Total decentralized solution where
peers keep track of local balance
for each known peer based on past
interactions.

As debts grow, jobs become less priori-
tized, thus solution could lead to starva-
tion. Also resources can be under-
utilized due to meta-schedulers bidding
for specific resources.

In [13], the work temporarily binds local
resources to remote resources, when a user
cannot be satisfied at the local level, through
delegated matchmaking (DMM). Remote
resources are added transparently.

Improved performance by reduc-
ing administrative overhead, also
no local operation of central con-
trol point.

Dynamics of the system are ignored as a
steady state is assumed during simula-
tion. Also, heterogeneity and virtualiza-
tion issues are not fully considered.

In [18], the target is InterGrid infrastructure
where authors interlink grid islands using peer-
ing arrangements and gateways to allow a cross
collaboration among various grids.

It evaluates the performance of
four complex algorithms and
shows an improvement in average
response times.

The system dynamics may affect connec-
tions of grid islands (e.g. failures could
happen during communication) and
also brokers are self-interested and not
global.

In [19], a meta-scheduler called GridWay sits on
top of each grid infrastructure on the federated
grid. Four algorithms have been developed and
can be executed in the GridWay.

No requirements for information
of remotes nodes and it consider
past performance requirements to
forecasts new objectives.

Only adoptable for specific information
system as requires training mechanism
for forecasting performance, also over-
head during training may be increased.

In [20], a meta-broker selection process is shown
for multiple grid interoperating cases. The
scheduling policy consists of the bestBroker-
Rank policy.

Improves workloads and resource
utilization as well as load balanc-
ing among different grids.

The method assumes complete and
detailed resource information sharing in
a stable infrastructure.

In [23] shows a dynamic scheduling approach
called CASA which functions as a scheduling
decision to job schedule across decentralized
distributed nodes.

Could lead to the same amount of
executed jobs in centralized as in
decentralized.

Job distribution is based on a probability
to find a resource, thus requires training
of the system to define probabilities.
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resource and the local resource management layers. In
layer 1, a pre-defined topology includes users that forward
requests to layer 2. The latter includes a random topology
based on random interconnections of distributed meta-
brokers (represented as nodes) to exchange services. The
service distribution is based on messages that are
exchanged among meta-brokers. The ICMS supports a
dynamic workload management to allow decision-making
for services distribution on the meta-brokering level as
detailed in [15]. As indicated earlier, we focus on IaaS so
each service encompasses a request for a Virtual Machine
(VM) with regards to the computational power and other
related parameters (i.e., number of CPUs, CPU cores, mem-
ory, storage, and bandwidth). Each message includes a
description of such information.

Layer 3 contains a topology that involves the formation
of low-level infrastructure and its entities such as local-
brokers, data stores, hosts and VMs. It should be men-
tioned that our assumption is that clouds follow a stan-
dard setting (e.g. follow the open cloud computing
interfaces) that includes a local resource broker that con-
trols interactions with the datacenter hypervisor that in
turn sandboxes it to a VM. Policies for scheduling and
local resource management are implemented in the local
resource broker. As shown in Fig. 1, the layers include
the key elements of the service life cycle that are to plan,
deliver and operate.

Layer 1, the service submission management layer, is
responsible to create the service configuration by translat-
ing user requirements to system specification. The output
is in a form that is recognized by the inter-cloud entities.
Layer 2, the distributed resource management layer, col-
lects service submissions and descriptions, extracts infor-
mation regarding performance criteria (e.g. service size)
and forwards it to the appropriate execution entity. This
entity could be either a local resource queue or a remote
meta-broker that further distributes the service to inter-
connected brokers. Layer 3, the local resource manage-
ment layer, offers the service execution environment.
Here, services are forwarded to the lowest level of the
infrastructure (local resource management system—
LRMS) and sandboxed in VMs. Prior to this, each service
is queued into the LRMS queue where a scheduling algo-
rithm allocates services to resources depending on the
configuration of the scheduler (e.g. first come first service,
shortest service first etc.). The whole ICMS is based on a

group of modular policies and each of which realizes the
layered structure and the dynamic requirements.

Fig. 2 illustrates the configuration of the four modules of
the ICMS conceptual architecture, namely Service Request,
Service Distribution, Service Availability and Service Allo-
cation. First, the “Service Request” module includes the
user specification and the service formation process. Each
service request is recorded into a service level agreement
representation. SLAs describe service requirements e.g. ser-
vice CPU etc. along with a user policy for priorities or
advance reservation mechanisms for prioritized users. The
“Service Distribution” module contains the message distri-
bution, the meta-brokering and the SLA policy as in layer 2.

In addition, the module incorporates a mechanism for
interpreting and translating the content of the SLA. The
“Service Availability” module contains the SLA match-
making, dynamic workload and local resource policies as
in layer 3. This includes that each local-broker could
define the internal resource usage (by evaluating current
executions) in order to decide whether this is capable to
execute the service locally. Finally, the “Service
Allocation” module includes the hypervisor scheduler,
the host allocation and VM allocation policies as in layer
4. The hypervisor is responsible for a) the sharing of
host’s computational power between the VMs (host
scheduling), b) the sharing of VM allocation of computa-
tional units (VM allocation) and c) the management of the
hypervisor that queues the services in hosts.

The communication between the ICMS modules is
achieved by utilizing a novel message exchanging proce-
dure that allows services to be exchanged as events that
are sent and received between meta-brokers by following
the Message Exchanging Optimization (MEO) model [14],
[26]. The assumption here is that we have a decentralized
topology of meta-brokers to allow event request-response
during regular time intervals. The following steps demon-
strate that process.

1) The service distribution starts when a number of
services are submitted to a meta-broker. Each service
request contains a set of requirements such as time
intervals (e.g. waiting time, interval etc.) and compu-
tational units (CPU, memory, bandwidth, etc.). In
addition, each service request includes priorities and
advance reservation features for allowing specific
services to be executed on specific types of resources.

2) Each service request is stored in a list. Each list row
has a message with key characteristics including the
deadline and the service length as the mean for cal-
culating resource availability on remote resources.
The service requests are dispatched during regular
intervals.

3) The service requester defines the interval deadline,
which defines a delay limit and the size of the list.
For large lists the deadline could be higher as the
time needed to dispatch is higher. This also consid-
ers the cost of communication among entities. So a
small deadline results in a small number of submis-
sions, while a large one could lead to heavy submis-
sions. The ICMS default interval is configurable to
meet the needs of an experiment. Further details are

Fig. 2. The ICMS modular structure.
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provided in the experimental analysis section where
a detailed discussion of ICMS configuration is
shown.

4) The service requester collects addresses of inter-
connected nodes from an internal catalogue of
resources. These nodes are meta-brokers that are
used to receive the requests dispatched from the
service lists.

5) The service requester sends a service request as a
message consisting of quality of service require-
ments (e.g. deadline, service length etc.). The mes-
sage includes the ranking criteria (e.g. turnaround,
energy consumption level); so all brokers will use
the same resource selection criteria. It should be
noted that identification tags define a message. Dur-
ing communication, the tags are set to unique values
to characterize the group of messages.

6) A broker collects a single service request and per-
forms an internal resource availability check accord-
ing to the ranking criterion. Then it generates a
priority of services which is stored in a temporary
ranking list. If the list is empty, the broker cannot
execute the services and it will not respond back. In
any other case, the list with the ranked services is
forwarded back to service requester.

7) Each service request is ranked based on a scheduling
function and a decision is taken accordingly.

8) In case of service availability (each service of the list
can be executed locally) the broker generates a list
with services.

9) In case of non-availability (e.g. broker cannot
execute all or few of the services contained in the
list) a further service distribution request will be
re-performed using steps 1 to 6.

10) In case of complete non-availability the broker will
cease communication and therefore, responses are
not sent back.

11) A new list consisting of service requests which is
ranked in a descending order is created. This forms
the criteria for selecting services at the next resource
management level. In the case that the broker
acknowledges that the service request(s) will be exe-
cuted on a remote machine, the broker re-directs
messages to interconnected nodes. All messages are
assigned with updated time deadlines.

12) The ranked lists are collected from the service
requester that compares and decides whether a
remote resource will be selected for execution or not.

13) The procedure ends and each service request is sent
to a local or remote resource.

This concludes the steps of communication, in the next
section we focus on the definition of the service submission
and service execution features.

3.1 The Definition of Service Submission in ICMS

Let assume that there are Mmeta-brokers that form a decen-
tralized inter-cloud where M 2 fm1;m2; . . . ;mng. Each
meta-broker does not have a value but is associated with
the name of interacted cloud. For instance cloud 1 has a
meta-broker named as meta-broker1. The number n equals
the number of participating clouds in an inter-cloud, thus

each cloud has at least one meta-broker. Each service
request is defined as ji and is assigned to a meta-broker mi

and contains a number of physical characteristics named as
CPU cpui, memorymemi, cores cori, storage stori and band-
width bwi. Each ji is a set of tuples where each request
encapsulates a (ji ¼ cpui, cori, memi, stori, bwi). It should be
mentioned that a service request is an IaaS encapsulation
and it is defined in a similar manner to the Amazon EC2 ser-
vice specification [25]. The cpui and the cori define the clock
rate as ClockRatei ¼ cpui � cori. It includes also the cycles
per instructions for each service named as cpiji to calculate

the required execution time. This will help us to quantify
the service size in terms of traditional jobs length. Further to
this, the meta-broker defines a metric to characterize each
submission, e.g. the cycles per instruction (CPI) and the
execution time of the ji. The cpiji is defined as cpiji ¼
cyclesji=instructionsji [6]. The execution time execji is calcu-

lated as execji ¼ instructionsji � cpiji=ClockRateji � 105. In

this paper, we also define the millions of instruction per sec-
ond (mipsji ) to describe an additional service length metric

calculated as mipsji ¼ ClockRateji=cpiji � 10�6. Both cpiji
and mipsjidefine the service size with regards to the speci-

fied user submission. Each meta-broker mi is assigned with
a latency latmi

that defines the delay of the broker to execute

a service request including the time needed for coordination
and internal communication.

The total service execution time is the sum of the laten-
cies of the meta-broker mi to the execution time,
TotalJobExecTimeji ¼ Latencyji þ execji . The latency of

the mi is Latencymi
¼ Latencymi

þ ComLatencymi
. The

ComLatencymi
defines the time needed to communicate

with the local resource to extract addresses for further dis-
tribution. Each meta-broker mi has a load of services and
these are described as the throughput, where Troughpupmi

is equal to the count of mi in the inter-cloud.
The ICMS calculates the utilization of mi, e.g. the usage

levels, Utilization ¼ ðTroughputmi
=TroughputjiÞ. For exam-

ple, the utilization of the meta-broker mi is the division of
the throughput of the served jobs to the total throughput of
the jobs that could be served. Finally, the service perfor-
mance is described as the execution time of the VM that
sandboxes the service and is calculated as Performanceji ¼
PerformanceVMji ¼ 1=execji .

3.2 The Algorithmic Structure

Our approach includes request and response entities to
implement the whole set of service execution life cycle.
Fig. 3 shows the relationships of the algorithms. It should be
mentioned that events are the steps that happen in the life
of cloud service requests. The process starts with the event
formation and collection algorithms.

Fig. 3. The sequence diagram of the algorithmic model.
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Each event algorithm (along service configurations) is
then ranked and distributed in the inter-cloud. The event
assignment algorithm allocates the service computational
units. The structure and the relationship of the algo-
rithms follow the sequence below. First, the event collec-
tion, formation and sending procedure of the request
entity takes place. This is followed by the event gather-
ing, identification of specification, ranking and response
procedure of a broker. Finally the event redistribution
procedure and the event collection, ranking and assign-
ment processes take place.

3.2.1 The Event Formation Algorithm

The process starts with the event-formation algorithm. The
ICMS sets a time interval intcollection and a criterion for the
events to be ranked at a later stage. The assumption is that
the meta-brokers have the same uptime and are interlinked
in a decentralized topology. Users submit service requests
to one or many meta-brokers in an inter-cloud. During
a time interval inta for a submission a where inta �
incollection the meta-broker collects all the events including
characteristics such as cpui, memi, cori, stori, bwi, cpiji ,

ClockRatei. For all jmi
it creates a list Li where each row

contains the characteristics of the service request. The algo-
rithm then sets a tag value represented as ti 2 < and creates
the message including the Li, ti and a performance
criterion. The default ICMS configuration includes the
total service execution time given TotalJobExecTimeji ¼
Latencyjiþ execji , the turnaround time TurnTimecloud ¼
ðinstructionsji � cpiji=ClockRateji � 105Þ þ Comlatencymn

and the makespan Makespanji ¼ execji þ Latencymn . The

makespan defines the time from start to finish, and the turn-
aroundtime is the total execution time of the schedule.

The algorithm opens the profile of the entity profi for
8mn 2 profi it sends a message to the dedicated address. It
sets an interval intdist that is the distribution interval time.
For a time timei 2 < where timei � intdist compares the tag
ti for validation and collect responses by a classification
function. The latter is defined by the performance criterion
of the previous step. As soon as the classification event con-
cludes the algorithm updates the list Li and sends back an
msgmi

only if sizeLi 6¼ 0. Algorithm 1 demonstrates the ser-

vice formation algorithm. The operations are defined as fol-
lows: get for the collection procedure of service data, set as
the operation to set the required service specification, create
for the operation to create a list, open as the operation to
open a profile, size as the method to return the size value of
the profile, send as the method to send a message to an
address defined as ad, run as the method to run an algo-
rithm, wait as the method to wait for an interval to expire
and update as the method to update a list.

3.2.2 The Event Collection Algorithm

This algorithm configures an interval value for collecting
events from the source (e.g. users) and creates a list using
the incoming service request specification. Initially, the
algorithm sets a termination and redistribution flag
(ftrm; fred) to recognize whether this is the termination point
or the redistribution. For all 8msgmi

and ti 2 < identifiable,

it decomposes the message msgmi
and collects the list Li by

running the performance criterion classification function
that updates the list Li. If sizeLi > 0, then Li compares the
intervals of the service requester and responder meta-
broker. If intres < intreq then it sets the tag to an indicator
for returning messages (to perform validation).

Algorithm 1. Event Formation

Require: res the requesting resource
intervalcollection: the interval time to collect service

messages
time: the current time instance
i the service submitted by a source
clocksi the service required clocks
CPIi the service required CPI
coresi the service required cores
bwi the service required bandwidth
hi the service required duration
Li the list with the service

specification data
tag the tag value of the message (e.g. q)
msg the message contains the Li and

the tag
fi the profile of the entity i
ad the address of a node included in

the fi
e the tag value for incoming

messages
intervaldistribution the interval time to collect

distribution messages
response the notification of the responder
criterion the performance ranking criterion

defined by the entity i
Algo- Ranking the event ranking algorithm that
rithms: algorithm accepts the criterion as an input

value for service classification
Assignment the assignment algorithm that
algorithm accepts the Li as input value to

determine the next phase of
resource allocation

1. set intervalcollection, criterion
2. while time < intervalcollection wait
3. for all i
4. get(clocksi, CPIi, coresi, bwi, hi)
5. set i[clocksi, CPIi, coresi, bwi, hi]
6. create(Li[i])
7. end for
8. set tag q
9. create(msg[Li,tag, criterion]
10. open(fi)
11. for all fi.size()
12. ad get(fi[k])
13. send(msg, ad)
14. end for
15. set intervaldistribution
16. if time < intervaldistribution and
17. if tag ¼ e then
18. get(response)
19. run(Ranking algorithm(criterion))
20. update(Li[i])
21. end if22. for all Li.size()
22. run(Assignment algorithm(Li))
23. end for
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Algorithm 2. Event Collection

Require: i the requesting node
i’ the responding node
msgi the incoming message from

requester i
flag the flag variable
trm the termination flag
rds the redistribution flag
q the tag indication for incoming

message from requester
w the tag indication for incoming

message from redistributor
intresponder the interval of the responder
intrequester the interval of the requester
e the tag indication for returning

messages
Algorithms: Ranking the ranking algorithm that accepts

algorithm the criterion as value
Redis- the redistribution algorithm
tribution
algorithm

1. set flag {trm, rds}
2. for allmsgi and (tag ¼ q or tag ¼w)
3. decompose (msgi)
4. get Li

5. run(Ranking_algorithm(criterion))
6. update(Li)
7. if Li.size > 0 then
8. if intresponder < intrequester then
9. set tag e
10. ad i
11. send(msg, ad)
12. end if
13. else
14. if fi.size ¼ 0 then
15. flag ¼ trm
16. else then
17. flag ¼ rds
18. end if
19. case: flag ¼ trm
20. terminate(msgi)
21. destroy(Li)
22. case: flag ¼ rds
23. open(fi’)
24. for all fi.size()
25. run(Redistribution algorithm(fi’))
26. end for
27. end case
28. end if
29. end for

The broker sends the event back to the service requester
by sending msgmi

that includes the newly formedLi. In the
case of sizefi ¼ 0 it sets the ftrm flag on, else it sets it to fred
flag off. Specifically, for the first case the algorithm termi-
nates the Li, while for the second case it opens the local pro-
file profi and runs the redistribution algorithm in order to
find a new resource for service execution. This allows a
decentralized behaviour of the ICMS as we assume that
there are multiple levels of interconnected meta-brokers. In
addition it characterizes the responder meta-broker either

as a termination point or as an intermediate node on com-
munication. Algorithm 2 demonstrates the event collection
procedure. The operations are defined as follows:
“decompose” for a message decomposition operation, “get”
for the collection procedure of service data, “rank” for the
ranking procedure, “set” as the operation to set the required
service specification, “update” as the method to update a
list, “size” as the method to return the size value of the pro-
file, “send” as the method to send a message to address,
“terminate” as the method to terminate a message at the
responder, “destroy” as the method to delete a list namely
as Li at the responder, “open” as the method to open a pro-
file, and finally the “run” as the method to execute an algo-
rithm or an operation.

The event collection algorithm facilitates the assembly
procedure for incoming messages and the formation of the
ranked list. The algorithm identifies messages for service
delegation by identifying port tags (key: tag ¼ q, for incom-
ing message for requester and tag ¼ w, for incoming mes-
sage for further redistribution/decentralization).

3.2.3 The Event Ranking Algorithm

The event ranking algorithm defines the criteria for service
classification in the request or response from a meta-broker.
To quantify such action we aim to minimize a function that
calculates a set of metrics (known as rankings). In this
paper, we define a number of parameters to calculate rank-
ings such as: execution times, total times as well as energy
consumption and service cost metrics as detailed in
Algorithm 3. The operation includes the size as the method
to return the size value of the profile.

The degree criterion defines the degree of the decentral-
ized meta-broker topology as presented in [14], [26]. In
addition, we have implemented the consumption per entity
cost for monitoring energy utilization (e.g. at datacentre and
host level). At last, we included the cost functions for defin-
ing the message and delay cost.

3.2.4 The Event Redistribution Algorithm

This algorithm describes the process of a meta-broker mn

to redistribute the event request to its interconnected
meta-brokers. The message redistribution algorithm
implements the event relocation procedure in the case of
further event dissemination. The procedure alters the tag
values of messages and forwards each one to a node
belonging to a personalized profile list. For all incoming
msgi that have a flag fi and fi ¼ fred it opens the profi
and collects the address of the linked meta-brokers. It sets
the tag ti 2 < to an indicator q 2 < for outgoing messages
from redistribution. After for 8jmi

it creates a list Li with

each row containing the characteristics of the service and
creates the message msgi that includes Li, ti and the per-
formance criterion. The algorithm defines an interval
timei where timei � intred, so during that time it sends
messages to other meta-brokers. Algorithm 4 demon-
strates the event redistribution algorithm.

A key aspect is that the algorithm operates under the
initial deadline value in order to be terminated in cases of
interval violations. The algorithm allows messages to be
forwarded only if there is no availability in the local
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resource pool. In this case, messages are reformed and
transferred to remote entities for requesting resource avail-
ability according to specific criterion.

Algorithm 3. Event Ranking

Require: i the requesting or responding node
Rank the output of the criterion
instr the number of instructions
cycles the number of service cycles
h the uptime of the service in host
dl the delay of the entity
int the interval of an entity (e.g. inti is

the interval of requester)
udl the decision making time (e.g. udly)
watts the watts of the host entity
consPerKW the consumption per kW rate of the

entity
Coef the coefficient value of the entity
Nomsg the total number of messages

(e.g. from entity i to y is Nomsgi:y)

1. if criterion ET (Execution Time)
2. Rank = instr*cycles
3. end if
4. if criterion TT (Total Time)
5. Rank = (instr*CPI*1/CPU)*1.cores*h
6. end if
7. if criterion LA (Latency)
8. Rank ¼ dl þ dli’
9. end if
10. if criterion DE (Degree)
11. Rank

P
dli þ

P
dli0

12. end if
13. if criterion TuT (Turnaround Time)
14. Rank ¼ ET þ LA
15. end if
16. if criterion MS (Makespan)
17. Rank ¼ ET þ udli’
18. end if
19. if criterion CPE (Consumption per entity)
20. Rank ¼ (watts�TT�10�3)�consPerKW�coef
21. end if
22. if criterion CPH (Consumption per host)
23. Rank ¼watts �h�10�3

24. end if
25. if criterion MeC (Message Cost)
26. Rank ¼ (size(Li) þ size(Li’))

�(1/bw)
27. end if
28. if criterion DeC (Delay Cost)
29. Rank ¼ (Nomsgi:i’ þ((Nomsgi’:i)/ Nomsgi:i’))/inti
30. end if
31. if criterion PR (Probability Cost)
32. Rank ¼ dlentity/intentity
33. end if

3.2.5 The Event Assignment Algorithm

The event assignment algorithm determines the next
phase of the resource allocation. Here the events have
been concluded and the service request is sandboxed in a
VM. Algorithm 5 implements the allocation of services in
entities (thus to their local hosts’ scheduler). The algo-
rithm collects the execution results after the completion

of a service request. In particular for all service requests
8ji allocates each of which to the LRMS. The operations
include: set the tag to allocate the service to resource and
the send (LRMS) to send procedure of service data into
LRMS.

Algorithm 4. Event Redistribution

Require: msg the requesting message
i the requesting or responding node
msgi the incoming message from requester i
Li the list with the service specification data
fi’ the profile of the entity
flag the flag variable
rds the redistribution flag
p the tag indication for outcoming message

from redistributor
int the interval of the requester
t the time instance

1. for allmsgwhere flag ¼ rds
2. open(fi’)
3. get(ad)
4. set tag p
5. while Rank o then
6. create(Li’[ji])
7. end while
8. create(msg[Li’,tag, criterion]
9. while t < inti then
10. send(msg,ad)
11. end while
12. end for

Algorithm 5. Service Assignment

Require: i the requesting or responding node
j the service
jset the set of services in not i
a the value to define assignment
res the performance results of the service

assignment

1. for all j 2 jset
2. set tag a
3. allocate (j,ad)
4. send(LRMS)
5. end for

The procedure first collects the user service request from
the SLA and selects the VM allocation policy according to
the LRMS specification. The default queues implemented in
ICMS are the First Come First Served (FCFS), Shortest Ser-
vice Frist (SJF), Earliest Deadline First (EDF) and Priority
Scheduling (PS). For all services 8ji 2 queueLRMS the hyper-
visor policy controls the current workload wi and calculates
the total delay that includes the turnaround time and the
hypervisor processing time TotalDelay ¼ TurnTimeþ
hypervisorDelay. Each service ji is queued into queueLRMS

by adding a keyi; ji as a pair. For an interval inti or for a spe-
cific queue length sizeQueueLRMS � bwhere b 2 <, it sched-
ules the service requests and allocates host computational
units based on a host allocation policy. Finally, it updates
the current workload wi. This concludes the ICMS
description.
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4 SIMULATING THE INTER-CLOUD (SIMIC) TOOLKIT

This section illustrates the description of SimIC v2.0 (Simu-
lating the Inter-Cloud version 2) that is a novel simulator
used to implement the inter-cloud functionality. SimIC is a
discrete event simulation toolkit based on the process ori-
ented simulation package of SimJava [16]. SimIC is used to
simulate an inter-cloud facility where multiple clouds col-
laborate for service request distribution in a simulation
setup. The package encompasses the ICMS algorithms
including users, meta-brokers, local-brokers, datacenters,
hosts, hypervisors and virtual machines (VMs). In SimIC,
the message initialization begins at time instance 1, and
then a message is created at state 1. After this, state 2 collects
the message (get from out port State 1) and sends the mes-
sage to in port State 3. During this time, the instance passes
from time 2 to 3 and finally to time instance 4. Finally, the
message is terminated (or initialized) from another state in
order to continue the information exchanging. A more
detailed discussion of the tool is presented in [16] that illus-
trate the layered structure of the tool and internal processes.

4.1 The SimIC Technical Features

The SimIC has been developed using the Java 2 Platform
(JDK 1.6). It is based on the process event simulation API of
the SimJava version 2 [6]. Its high level structure is based on
the entities of CloudSim [21]. We have extended these in
order to implement meta-scheduling capabilities and batch
job simulation.

4.2 The SimIC Layered Architecture

The entities and their functionality are organized in a three-
layer structure. This includes the entity layer, the queuing,
behaviour and tagging layer, and the performance and trac-
ing layer. Specifically, Layer 1 includes the entities represent-
ing the objects of the system. In a SimJava simulation, each
feature is represented by a sim_entity class that encapsulates
the core functionality. Each SimIC class defines the actual
behaviour (layer 2) of entities that are the ICMS resources.
The core classes are User, Meta-broker, Local-broker, Data-
center, Hypervisor, Hosts, VMs and Bucket. The initializa-
tion process begins when a user starts communication with
the meta-broker through a user interface. Like a meta-sched-
uling system. The latter acts on behalf of the user and for-
wards the request to low level resources (either local or
remote sites). This procedure is executed by a local-broker.

Layer 2 represents the core features of SimIC including
the utilization of ports, functionalities and constraints that
demonstrate the actual behaviour of the system entities.
Each class contains at least one port for input or output mes-
sages to other linked entities. In addition, it incorporates
mechanisms for collecting messages, taking decisions
(based on policies) and forwarding to an entity for request
delegation and execution. Each entity is defined by con-
straints to govern its actions. The actual communication is
based on the tags that are assigned to messages during
exchange. These tags are the means of identifying the origin
of a message and the operations expected from a responder.
Additionally, queuing refers to the orchestration of events
(that are service messages) according to different LRMS
(FCFS, SJF, PS).

Layer 3 relates to the performance monitoring and tracing
operations of the system entities. The performance measures
include execution time of the VM, turnaround time of ser-
vice, makespan of the service, throughput of services in an
entity, host utilization levels, VM utilization levels, service
latencies and VM uptime times. Most of these metrics could
be utilized by different entities in order to measure the per-
formance of SimIC at different instances, for example
throughput of a datacentre or latency at a hypervisor.

4.3 The SimIC Entities

SimIC automates service request distribution among decen-
tralized meta-brokers. Meta-brokers are placed on top of
each cloud in order to communicate with other brokers to
produce a distributed and interoperable cloud infrastruc-
ture (similar to grid computing). In SimIC each request is
treated as unique. For example, a user requests for a VM,
suppose with 0.25 of 1 host performance and executes a set
of programs with 100�106 instructions, and CPI (cycles per
instructions) of 3 (300 cycles/100 instructions) in a machine
with clock rate of 1,000 MHz (0.25 of 4,000 MHz of Host
with single core). The performance indicators of the VM are
calculated as follows. The execution time is given by
ExecTimeVM ¼ Instruction� CPI � 1=cpu� 1=cores. Thus,
the result is calculated as follows: ExecTimeVM ¼ 100�
106 � 3� 1=1;000� 1 ¼ 3� 105 ns ¼ 0:3ms. The performance
of the VM is calculated at 3.33 based on PerformanceVM ¼
1=ExecTimeVM ¼ 3:33. Next, we present a description of the
SimIC entities that implement ICMS functionality.

The UserCharacteristics class instantiates the service infor-
mation for each of the users by incorporating hardware and
software requirements that has been previously defined in
two different files. Each service ji is assigned to a meta-bro-
ker mi. It contains a number of physical characteristics
named as CPU cpui, memory memi, cores cori, storage stori
and bandwidth bwi. The ServiceCharacteristics class calcu-
lates an initial performance request based on the perfor-
mance estimation that is calculated by the number of MIPS

as given by the formula ClockRate=CPI � 106. The Outpu-
tUserRequirements class generates a dynamic user profile
that includes a variety of hardware, software (heteroge-
neous requirements) and initial performance request
measurements.

The User class is responsible in forwarding requests
(namely as jmi

) to resources, wherein each request is
scheduled after a specific processing delay to a dedicated
meta-broker. The Meta-broker class implements the interop-
erability functionality of SimIC (M 2 fm1;m2; . . . ;mng).
Specifically, each meta-broker is interconnected with one or
more meta-brokers depending on a simulation experiment.
The Bucket class represents the terminal entity that collects
the unexecuted services and keeps logs related to services.
These could be either re-directed to an inter-cloud after a
regular interval or terminated if there is an SLA mismatch-
ing. Termination and re-distribution flags (ftrm; fred) are
used to decide whether this is the termination or the re-dis-
tribution point.

The local-broker (that is the internal cloud broker) class
defines an SLA matchmaking process for deciding whether
the specification of user requirements could be addressed
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by a local resource. The datacentre’s current performance is
dynamically calculated for measuring the available compu-
tational power. This is realized by a messaging policy, as for
allmsgmi

and the ti 2 < is identifiable, the algorithm decom-
poses the message msgmi

and collects the list Li by running

the performance criterion classification function that
updates the list Li. This includes the validation process of
tag ti. The OpenHost class imports each host characteristic
from a file by allowing SimIC to access host hardware char-
acteristics while OpenHostsList opens a list from a file that
contains the individual hosts dedicated to a specific cloud.

The Datacenter class accepts events for VMs deployment
in the cloud that are determined by a hypervisor. This class
implements functionality for calculating costs and energy
consumption. It passes all events to a local policy enforce-
ment engine. The Hyper class represents a hypervisor and is
responsible for collecting requests for VMs from the data-
center class by accessing the host and VM allocation poli-
cies. This class queues each service ji into a queueLRMS by
adding a keyi; ji as a tuple. The HyperCall class generates an
internal thread to release the services that have been sched-
uled in the queue according to the LRMS algorithm (inti
and sizeQueueLRMS � b).

The HostCharacteristics class imports each specific host
computational capacity as defined in a file. The Hosts class
represents a static computing machine. The class gets an
event from Hyper for requesting an instance of the host
characteristics. Eventually, this adds an additional delay to
the hypervisor decision making process when allocating a
VM. This is the latency of the host for starting the service
execution. The VM class sandboxes the user profile. A more
detailed discussion of the SimIC implementation is pre-
sented in [16].

To calculate the total communication delay of mes-
sages we split the latencies incurred at different stages of
a service request execution life cycle in an inter-cloud.
Thus, let’s assume that a number of entities E with
E ¼ fe1; e2; . . . ; eng are linked as a directed graph to form
a topology in an inter-cloud. For each communication a
message msgi is sent containing the service requirements
ji and a tag tagi 2 <. The assumption is that a trail is gen-
erated from one entity to another in such a way that the
weight of the trail wei : wen is calculated as the latency of

the message msgi to reach entity en. The cumulative
latency of the user to VM communication is calculated
as follows: Latencymrb ¼

P
mbri2E degðmeta-brokeriÞ,

Latencydci ¼ð12�
P

dci2E degðdciÞþ
P

i degðdciÞÞ � coef thus,

Latencyuser�vm ¼ Latencymbi þ Latencydci þ Latencyhyperi

So, for each messagemsgi that is sent from entity e1 to en,
the messaging factor (MF) defines a metric for the cost of
message distribution. In a bi-directional graph formation
this is calculated as the division of the sum of the messages
received by the sum of the messaged sent as MF ¼
P#

j¼0 msgj=
Ph

j¼0 msgi where msgi 2 fmsg1;msg2; . . . ;msgng,
msgj 2 fmsg1;msg2; . . . ;msgjg and Li 6¼ 0. Here h repre-
sents the maximum number of requested messages and # is
the maximum number of received messages. To conclude,
this section presented SimIC, a toolkit that allows system
architects to configure a variety of inter-clouds in terms of
entities and policies. The toolkit contains a number of
scheduling algorithms and features for achieving configura-
ble service execution. Fig. 4 demonstrates the various actors
and the interactions among the SimIC entities. A more
detailed discussion and explanations of the various entities
alongwith their relationships are presented in [16]. Next sec-
tion demonstrates an experimental analysis and evaluation
of the ICMS.

5 PERFORMANCE EVALUATION

The experimental setup implements the messaging
approach of [14] and involves the comparison of two
approaches, namely a centralized inter-cloud and the
decentralized ICMS model of inter-cloud being followed
in this paper. In centralized approach the assumption is
that there is a bi-directional communication among all
nodes in a cloud. In this approach, we first focus on dem-
onstrating that there is no experimental bias. We achieve
this by running a number of tests, which show that a cen-
tralized IC does not affect cloud performance. Then we
configure an ICMS based IC for service executions which
is similar to the centralized setup. Finally, we show per-
formance analysis of ICMS considering service request
arrivals and load distributions in both static and dynamic
modes. Our experimental results show that ICMS with
dynamic workload management outperforms static mode
when all resources are available. Our simulations imple-
ment the next experimental setting where five users sub-
mit requests in cycles, as it is shown in Table 2. The hosts
specification includes a total of 166 cores per cloud with
an average of 103 MHz CPU, 10 GB RAM, 104 GB storage
and 10 mbps bandwidth per host.

5.1 Cloud versus Inter-Cloud Settings

The first experiment aims to demonstrate that IC does not
affect performance of a cloud, thus we compare with a

Fig. 4. Description diagram of the SimIC entities performance
evaluation.

TABLE 2
The SimIC Configuration

Username StS MaL OlS NiS NiB

Memory 4,000 6,000 2,000 2,000 8,000
CPU-cores 4 4 2 2 4
CPU-speed 4,000 4,000 2,000 2,000 10,000
Storage-HD 10,000 10,000 10,000 10,000 10,000
BW 10,000 10,000 5,000 10,000 10,000
Instructions 10�108 12�108 15�108 16�108 16�108

CPI 1 4 3 3 3
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similar hardware setup. We show that IC performs better
than or equal to non-IC setting where both cases have
exactly the same computational capacity. This means that a
cloud that is non-IC based has exactly the same capacity
(CPU, memory, storage and bandwidth) as with an IC based
cloud that is made from two clouds, cloud 1 and cloud 2.
The experimental analysis involves constant submissions of
intervals of 2 ms. Cloud 1 includes five users that submit 10
to 50 service requests. Each time a request arrives in the
hypervisor, a new VM is generated according to the avail-
able resources.

In both cases (cloud and IC) the utilization model of
[5] is applied. This involves that resources will be allo-
cated if they are available until the utilization reaches its
peak (100 percent). IC distributes the jobs based on the
MEO and centralized distribution approaches as dis-
cussed in [14]. In both cases (cloud and IC) all services
are executed in local clouds, as there is no option for fur-
ther service distribution. As the number of service
requests increases, the IC will increase the makespan
value due to the latency (set to 2 ms) that is caused by
the message exchanges. In particular, the study sets this
value to a low number (2 ms) as the assumption is that
cloud 1 divided over two.

Fig. 5 shows the makespan values for 10 to 50 service
requests per user to each cloud. Both trend lines show
similar variations, which means that non-IC and IC fol-
low similar makespan trends. Fig. 6 shows the execution
times (10 to 50 services) for both IC and non-IC cases.
The average execution time for a single service request
in the non-IC case is 5.79 ms while for IC case is
5.38 ms. This shows that IC achieves better execution
time due to the better allocation of the resources. The
improvement of IC is calculated at 7 percent (percentage
of the division of the difference of higher to lower value,
to the higher value).

Fig. 7 shows the average execution time and average
utilization rates for both cases. It indicates that the average
utilization of the IC case is 37.2 percent and the non-IC case
is 35.4 percent. The average execution time shows decreas-
ing value for the IC case. To conclude, IC increases utiliza-
tion levels because it executes more service requests by
decreasing the IC average execution times. The values are
calculated based on the formulas of Section 3.1 and is
related to the throughput value of services. In detail, the val-
ues are relatively low due to the low number of service
requests with respect to the cloud resources.

5.2 The Inter-Cloud versus ICMS Setting (1 Service
Request Submission Per Cloud)

We present two cases for 1 and 50 user submissions per
cloud and we monitor the performance in both cases. The
experiment demonstrates that ICMS performs better than or
equal to the IC setting (with augmented datacenter view)
with both having the same host configuration (five clouds).
This increase in performance is due to the service distribu-
tion and meta-scheduling approach being followed in the
ICMS framework. In IC each meta-broker has a complete
knowledge of the actual cloud infrastructure (e.g. datacen-
ter characteristics, Hosts, VMs) as it communicates with
other cloud brokers for information exchange. In contrast,
the ICMS approach has a partial knowledge of the infra-
structure and follows the decentralized message distribu-
tion as it is discussed in [14]. This offers a higher level of
abstraction for the entire cloud because a set of users are
only mapped to a restricted set of meta-brokers at a time.

5.2.1 The Inter-Cloud versus ICMS Setting for

1 Service Submission per Cloud

The experiment includes an IC of five clouds that have the
same host specification with the ICMS and the topology is
considered as decentralized. Specifically we first assume
that each cloud meta-broker can access the next in the list.
For example, meta-broker 1 sends a service request to meta-
broker 2, then meta-broker 2 to meta-broker 3, etc. For each
service request that is submitted, if cannot be executed in
the local cloud, it is always forwarded to remote cloud(s).
The availability is set so that each service can be executed in
the next cloud (e.g. service 1 to cloud 2, service 2 to cloud 3
etc.). In the centralized case (IC) the assumption is that all
clouds can access all other clouds directly. Fig. 8 shows the
makespan times for one service submission per user with
1 ms interval.

It is apparent that the values are decreasing for the case
of ICMS. The average value is calculated to 519 ms, while

Fig. 5 Makespan for 10 to 50 services (non-IC versus IC).

Fig. 6. Execution times for 10 to 50 services (non-IC versus IC).

Fig. 7. Average execution time and average utilization for 10 to 50 serv-
ices (non-IC versus IC).
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the IC is measured to 534 ms; that shows an improvement of
15 ms in the average values. The improvement factor for
this case is calculated to be 3 percent. Similarly to makespan
values, the turnaround times for one service submission for
both cases are as follows. The average value for ICMS is
524 ms and for IC it is 539 ms. On this basis, the centralized
case increases the turnaround times mainly because of
transferring services among datacenters. An improvement
of 5 percent in turnaround times is observed in cloud 5
where the same submission requires 521 ms in ICMS and
548.4 ms in IC. Fig. 9 shows the performance comparison of
both cases in terms of response ratios. Specifically, the
response ratio is calculated as the difference of the highest
value of the metric from the lowest value of the same metric
divided with the highest value e.g. ðx� yÞ=x� 100% when
x and y represent latencyuser-vm. The figure shows that the
performance increases for ICMS as more users submit
requests in a linear manner. Yet as requests are transferred
to remote clouds (e.g. cloud 2, cloud 3 etc.) the ICMS perfor-
mance decreases with regards to the performance as in the
original ICMS setup.

5.2.2 The Inter-Cloud versus ICMS Setting for 50

Service Submissions per Cloud

This experiment demonstrates the simulation results for
high workload submissions (50) per user. As more services
are exchanged resource availability becomes more limited
and allocation management becomes more complex. In
order for the results to be comparable the study takes into
account clouds with exactly the same utilization levels (e.g.
for this experiment clouds 3 and 4 offer the same utilization
of 20 percent and clouds 2 and 5 with utilization of
6 percent). Services that cannot be executed due to non-
resource availability or SLA mismatching are dropped, as
the dynamic workload is inactive. This means that we do
not re-schedule jobs to resources.

Fig. 10 shows that the makespan times for 50 services per
user have slightly improved results for ICMS and clouds 3
and 4 (same utilization levels). The average makespan time
for IC (clouds 3 and 4) is 639,706 ms while the same metric
value for ICMS (clouds 3 and 4) is 638,806 ms (900 ms differ-
ence). Fig. 11 shows the makespan for clouds with low utili-
zation of 6 percent (clouds 2, 5). Again, ICMS algorithms
offer lower makespan times when compared to IC. To con-
clude, both cases (1 and 50 users) show that the ICMS
achieves better makespan and turnaround times. This will
affect the resource utilization and resource usage as the total
scheduling and execution time of services is reduced.

5.3 The ICMS Setting: Low and High Delays and 40
to 100 Percent Resource Availability

This experiment demonstrates the dynamic workload man-
agement for an ICMS case. The decentralized ICMS sends
service requests to different clouds by incorporating
dynamic distribution. This experiment executes requests
having a combination of 1 to 4 ms delay and 40 to 100 per-
cent resource availability. The percentage is related to the
ability of a cloud to execute the specific service task; e.g. the
40 percent availability is selected as it demonstrates a cloud
with low resource availability. The next list is a mixture of
different combinations in the experiment.

i) 1-40%: delay 1 ms, availability 40 percent.
ii) �4-40%: delay 4 ms, availability 40 percent (where �

indicates that delay is 4 times higher than case i).
iii) 1-100%: delay 1 ms, availability 100 percent.
iv) �4-100%: delay 4 ms, availability 100 percent (where �

indicates that delay is 4 times higher than case iii).
Fig. 12 shows the makespan times of ICMS for each of the

four cases. It is shown that when the availability is 40 per-
cent ICMS distributes service requests to all clouds;

Fig. 8. Makespan times for one service per user (IC versus ICMS).

Fig. 9. Comparison of performance (response ratios) of ICMS-IC.

Fig. 10. Makespan times for 50 services per user for clouds with same
utilization (clouds 3, 4).

Fig. 11. Makespan times for 50 services per user for clouds with same
utilization of 6 percent (clouds 2, 5).
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however in the case of 100 percent availability, cloud 4 exe-
cutes most of the service requests. This is because of the
high number of hosts that are available in cloud 4, which
increase the available computational power. Fig. 13 shows
the overall resource utilization levels of clouds 1 to 5 for all
four cases. Specifically the highest utilization is found in
case 3 that details execution of all the services with high
resource availability. It is also demonstrated that case 2 that
involves experimentation with high delays it decreases the
utilization levels. This is because of the increasing delay
when continuous submissions occur.

5.4 The ICMS Setting: A Mixing of User
Submissions and 100 Percent Resource
Availability

This experiment demonstrates the ICMS performance for
a combination of user submissions. In the first case, 50
service requests are submitted to cloud 1, while in the
second case 10 service requests are submitted to each
cloud by a user (total of 50 service requests). Fig. 14
shows the percentage of successful executions when com-
paring one user per cloud and all users in cloud 1. It is
shown that the user requests distribution in different
clouds offers better percentages of successful service
requests execution. Thus, this shows that in an IC, the
spreading of users in different clouds could assist in
achieving higher percentages of successful executions.

Fig. 15 shows the makespan and turnaround times for
services served by five clouds (1 to 5). It is shown that for
high number of service request submissions, ICMS makes a

better distribution by allocating resources more efficiently
(based on the lower makespan times). In addition, turn-
around times for higher workloads have been sufficiently
decreased. For example, makespan times for cloud 2 shows
an improvement rate of 4.9 percent.

6 CONCLUDING REMARKS AND FUTURE WORK

This work presents the ICMS, a framework that allows
inter-cloud service distribution. We have developed this
framework to address the issue of large scale service
request distributions in IC that cannot be achieved from
current approaches. Our experimental results support the
following conclusions: (a) ICMS has an improved make-
span time and reduced turnaround time, (b) ICMS out-
performs standard IC in terms of remote cloud
invocations and (c) ICMS improves performance each
time a new service request is submitted to IC. Future
directions involve the extension of SimIC in terms of VM
migration policies. Further experiments with more clouds
would have given a better reflection of the performance
improvements. In addition, we aim to work on a message
passing interface system for queuing host processors for
information processing during interactions.

We aim to explore the security issues during communica-
tion between IC in order to enhance the effectiveness of our
ICMS framework. Also, a future research direction will be
to test the system in terms of high variability in inter-inter-
vals and service times in order evaluate probability based
distribution of services in inter-cloud. Finally, we aim to
extend ICMS to support real cloud platforms. In particular
in [27] we developed a platform service to retrieve data
from clouds e.g. instances, images and resources in
OpenStack systems and we implement an inter-cloud meta-
broker that acts as mediation service. In particular, the plat-
form service does not target to change internal cloud system
processes but to utilize available interfaces by enabling

Fig. 12. Makespan times for ICMS cases.

Fig. 13. Overall utilization levels for ICMS cases.

Fig. 14. Successful execution percentages for cases 5a and 5b.

Fig. 15. Makespan and turnaround times for both cases.
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remote management of inter-cloud services in a unified
manner. A future direction is to include the whole algorith-
mic model included in ICMS in within the platform service
and to explore experimentation results for heterogeneous
platforms.
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