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Abstract—Cloud computing has become increasingly popular model for delivering applications hosted in large data centers as

subscription oriented services. Hadoop is a popular system supporting the MapReduce function, which plays a crucial role in cloud

computing. The resources required for executing jobs in a large data center vary according to the job type. In Hadoop, jobs are

scheduled by default on a first-come-first-served basis, which may unbalance resource utilization. This paper proposes a job scheduler

called the job allocation scheduler (JAS), designed to balance resource utilization. For various job workloads, the JAS categorizes jobs

and then assigns tasks to a CPU-bound queue or an I/O-bound queue. However, the JAS exhibited a locality problem, which was

addressed by developing a modified JAS called the job allocation scheduler with locality (JASL). The JASL improved the use of nodes

and the performance of Hadoop in heterogeneous computing environments. Finally, two parameters were added to the JASL to detect

inaccurate slot settings and create a dynamic job allocation scheduler with locality (DJASL). The DJASL exhibited superior

performance than did the JAS, and data locality similar to that of the JASL.

Index Terms—Hadoop, heterogeneous environments, heterogeneous workloads, MapReduce, scheduling
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1 INTRODUCTION

THE scale and maturity of the Internet has recently
increased dramatically, providing excellent opportunities

for enterprises to conduct business at a global level withmini-
mum investment. The Internet enables enterprises to rapidly
collect considerable amounts of business data. Enterprises
must be able to process data promptly. Similar requirements
can be observed in scientific and Big Data applications. There-
fore, promptly processing large data volumes in parallel has
become increasingly imperative. Cloud computing has
emerged as a new paradigm that supports enterprises with
low-cost computing infrastructure on a pay-as-you-go basis.

In cloud computing, the MapReduce framework designed
for parallelizing large data sets and splitting them into thou-
sands of processing nodes in a cluster is a crucial concept.
Hadoop [1], which implements theMapReduce programming

framework, is an open-source distributed system used by
numerous enterprises, including Yahoo and Facebook, for
processing large data sets.

Hadoop is a server-client architecture system that uses
the master-and-slave concept. The master node, called Job-
Tracker, manages multiple slave nodes, called TaskTrackers,
to process tasks assigned by the JobTracker. A client submits
MapReduce job requests to the JobTracker, which subse-
quently splits jobs into multiple tasks, including map tasks
and reduce tasks. Map tasks receive input data and output
intermediate data to a local node, whereas reduce tasks
receive intermediate data from several TaskTrackers and out-
put the final result.

By default, Hadoop adopts a first-come-first-served (FCFS)
job scheduling policy: A TaskTracker transfers requests to a Job-
Tracker through the Heartbeat cycle. When the JobTracker
receives aHeartbeatmessage, it obtains the number of free slots
in the TaskTracker and then delivers the task to the TaskTracker,
which executes the task immediately. Because resource utili-
zation is not considered in the default job scheduling policy of
Hadoop (FCFS), some slave nodes do not have the capacity to
perform an assigned task. Therefore, such nodes cannot con-
tinue to execute tasks after the system releases resources, lead-
ing to poor performance in a Hadoop system. The resource
allocation problem is an NP-complete problem [25]; this type
of problem has received substantial attention in cloud com-
puting. In Facebook fair scheduler [4] and Yahoo capacity
scheduler [3], multiple queues are used to achieve resource
allocation through a policy that entails assigning a distinct
number of resources to each queue, thus providing users with
various queues to maximize resource utilization. However,

� S.-Y. Hsieh is with the Department of Computer Science and Information
Engineering, Institute of Medical Informatics, Institute of Manufacturing
Information and Systems, National Cheng Kung University, No. 1, Uni-
versity Road, Tainan 701, Taiwan. E-mail: hsiehsy@mail.ncku.edu.tw.

� C.-T. Chen, C.-H. Chen, T.-Z. Yen, and H.-C. Hsiao are with the Depart-
ment of Computer Science and Information Engineering, National Cheng
Kung University, No. 1, University Road, Tainan 701, Taiwan.
E-mail: babababa1108@gmail.com, {kitfretas, robinpkpk0523}@hotmail.
com, hchsiao@csie.ncku.edu.tw.

� R. Buyya is with the Department of Computing and Information Systems,
Cloud Computing and Distributed Systems Laboratory, The University of
Melbourne, Australia. E-mail: rbuyya@unimelb.edu.au.

Manuscript received 3 July 2015; revised 28 Feb. 2016; accepted 15 Mar. 2016.
Date of publication 11 Apr. 2016; date of current version 5 Dec. 2018.
Recommended for acceptance by G. Agrawal.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TCC.2016.2552518

1080 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 6, NO. 4, OCTOBER-DECEMBER 2018

2168-7161� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4746-3179
https://orcid.org/0000-0003-4746-3179
https://orcid.org/0000-0003-4746-3179
https://orcid.org/0000-0003-4746-3179
https://orcid.org/0000-0003-4746-3179
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:


users may have excessive resources, resulting in wasted
resources. In this study, we investigated an approach for bal-
ancing resource utilization in Hadoop systems in heteroge-
nous computing environments such as clouds. In this paper,
the term “heterogeneous” means that all nodes have different
computing capabilities (e.g., the number of CPUs). In a
Hadoop system, the workload of MapReduce jobs submitted
by clients typically differs: a job may be split into several tasks
that achieve the same function, but involve managing differ-
ent data blocks. When the default Hadoop job scheduling pol-
icy is applied, the task of a single job typically runs on the
same TaskTracker. When a TaskTracker executes the same task
for a single job, it is limited by specific resources, despite the
other resources remaining idle. For example, assume that jobs
are divided into two classes: CPU-bound jobs and I/O-bound
jobs. Clients submit the two classes of jobs to Hadoop and
then migrate these tasks to the TaskTracker. According to the
default job scheduling policy of Hadoop, each TaskTracker exe-
cutes the same tasks. However, some TaskTrackers are
assigned CPU-bound jobs, which are bounded by the CPU
resource, and the remaining trackers are assigned I/O-bound
jobs, which are bounded by the I/O resource. Tian et al. [23]
proposed a dynamicMapReduce (DMR) function for improv-
ing resource utilization during various job types. However,
the DMR function is applicable in only homogeneous experi-
mental environments. In a heterogeneous environment, the
DMR function might not be reasonable for resource utiliza-
tion. To overcome the limitations of currentMapReduce appli-
cation platforms, this paper first proposes a job scheduler
called the job allocation scheduler (JAS) for balancing resource
utilization in heterogeneous computing environments. The
JAS divides jobs into two classes (CPU-bound and I/O-
bound) to test the capability of each TaskTracker (represented
by a capacity ratio). According to the capacity ratio for the two
job classes, the TaskTrackers are assigned different slots corre-
sponding to the job types to maximize resource utilization.
However, if tasks are assigned according to only the two job
types, then the JAS may not have the benefit of locality [12],
increasing the data transfer time. To address this problem, this
paper proposes a modified JAS, called the job allocation sched-
uler with locality (JASL). The JASL can record each node’s exe-
cution time, and then compare the execution times of the local
and non-local nodes to determinewhether the task can be exe-
cuted on the non-local node. In addition, an enhanced JASL,
called the dynamic job allocation scheduler with locality (DJASL),
was developed by adding a dynamic function to the JASL. A
performance evaluation was conducted to compare the pro-
posed algorithms with the default job scheduling policy of
Hadoop and DMR. The experimental results indicated that
the proposed algorithms improved the job scheduling perfor-
mance of Hadoop and DMR. The JASL (DJASL) enhanced the
data locality of Hadoop and the JAS.

The rest of this paper is organized as follows. Section 2
describes the architecture of the Hadoop system and DMR
scheduler. In addition, this section reviews related studies.
Section 3 presents the components of the proposed
method, including job classification and task assignment
as well as the JAS, JASL, and DJASL algorithms. Section 4
presents the experimental results obtained in heteroge-
neous computing environments. Finally, Section 5 con-
cludes the paper.

2 BACKGROUND

This section introduces Hadoop and related topics. Section
2.1 describes the default scheduler of Hadoop; Section 2.2
introduces job workloads; Section 2.3 presents the problem
caused by the default scheduler of Hadoop and job work-
load; Section 2.4 describes a scheduler designed to address
the problem and the problem that it may produce; and
Section 2.5 reviews related studies.

2.1 Hadoop Default Scheduler

Hadoop supports the MapReduce programming model
originally proposed by Google [9], and it is a convenient
approach for developing applications (e.g., parallel com-
putation, job distribution, and fault tolerance). MapRe-
duce comprises two phases. The first phase is the map
phase, which is based on a divide-and-conquer strategy.
In the divide step, input data are split into several data
blocks, the size of which can be set by the user, and are
then paralleled by a map task. The second phase is the
reduce phase. A map task is executed to generate output
data as intermediate data after the map phase is com-
plete, and these intermediate data are then received and
the final result is produced.

By default, Hadoop executes scheduling tasks on an
FCFS basis, and its execution consists of the following steps:

Step 1 Job submission: When a client submits a MapReduce
job to a JobTracker, the JobTracker adds the job to the
Job Queue.

Step 2 Job initialization: The JobTracker initializes the job in
the Job Queue by the JobTracker by splitting it into
numerous tasks; the JobTracker then records the data
locations of the tasks.

Step 3 Task assignment: When a TaskTracker periodically
(every 3 seconds by default) sends aHeartbeatto a Job-
Tracker, the JobTracker obtains information on the cur-
rent state of the TaskTracker to determine whether it
has available slots. If the TaskTracker contains free
slots, then the JobTracker assigns tasks from the Job
Queue to the TaskTracker according to the number of
free slots.

This approach differs considerably from the operating
mode implemented in the schedulers of numerous parallel
systems [6], [8], [15], [17], [18]. Specifically, some of the task
schedulers in such systems, co-scheduler [6] and gang-
scheduler [8], operate in heterogeneous environments. Co-
schedulers ensure that sub-tasks are initiated simulta-
neously and are executed at the same pace on a group of
workstations, whereas gang-schedulers involve using a set
of scheduled threads to execute tasks simultaneously on a
set of processors. Other parallel system task schedulers,
such as grid-schedulers [15], [17] and dynamic task schedu-
lers [18], have been designed for enhancing performance in
scheduling operations involving jobs with dissimilar work-
loads. The grid-scheduler determines the processing order
of jobs assigned to the distribution system, and the dynamic
task scheduler operates in environments containing varying
system resources and adapts to such variations. This paper
proposes a task scheduler that allocates resources at various
job workloads in a heterogeneous computing environment.
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2.2 Job Workloads

Rosti et al. [21] proposed that jobs can be classified accord-
ing to the resources used; some jobs require substantial
amount of computational resources, whereas other jobs
require numerous I/O resources. In this study, jobs were
classified into two categories according to their correspond-
ing workload: 1) CPU-bound jobs and 2) I/O-bound jobs.
Characterization and performance comparisons of CPU-
and I/O-bound jobs were provided in [16], [20], [26]. CPU-
and I/O-bound jobs can be parallelized to balance resource
utilization [21], [23].

2.3 Hadoop Problem

As mentioned, Hadoop executes job scheduling tasks on an
FCFS basis by default. However, this policy can cause sev-
eral problems, including imbalanced resource allocation.
Consider a situation involving numerous submitted jobs
that are split into numerous tasks and assigned to TaskTrack-
ers. Executing some of these tasks may require only CPU or
I/O resources. Neglecting the workloads of a job may lead
to imbalanced resource allocation. Fig. 1 illustrates an
imbalanced resource allocation scenario in the Hadoop
default scheduler.

Assume that the Job Queue contains two jobs: a CPU-
bound job (i.e., Job1) and an I/O-bound job (i.e., Job2). Job1
and Job2 are initialized with eight map tasks. Moreover,
TaskTracker1, TaskTracker2, and TaskTracker3 send sequential
Heartbeat messages to the JobTracker. According to the
default job scheduler of Hadoop, the JobTracker submits
tasks to the TaskTracker according to the Heartbeat order.
TaskTracker1 and TaskTracker2 are assumed to execute CPU-
bound jobs; therefore, they have high CPU utilization and
low I/O utilization, causing them to be bounded by CPU
resources. By contrast, TaskTracker3 is assigned to execute
I/O-bound jobs; therefore, TaskTracker3 has high I/O utili-
zation but low CPU utilization, causing it to be bounded by
I/O resources. Because the default job scheduler in Hadoop
does not balance resource utilization, some tasks in the Task-
Tracker cannot be completed until resources used to execute
other tasks are released. Because some tasks must wait for
resources to be released, the task execution time is pro-
longed, leading to poor performance.

2.4 Dynamic Map-Reduce Scheduler

To address the imbalanced resource allocation problem of
the default scheduler in Hadoop, as described in Section
2.3, Tian et al. [23] proposed a balanced resource utilization
algorithm (DMR) for balancing CPU- and I/O-bound jobs.
They proposed a classification-based triple-queue scheduler
to determine the category of one job and then parallelize
various job types and thus balance the resources of JobTrack-
ers by using CPU- and I/O-bound queues.

Consider the example shown in Fig. 2. The DMR scheduler
first evenly divides the slots into CPU and I/O slots. When
Job1 and Job2 are added to theWaiting Queue, they are divided
into eight map tasks (Fig. 2a). After the scheduler determines
the workload types of Job1 and Job2, the jobs are added to the
CPU- or I/O-bound queue. TaskTracker1, TaskTracker2, and
TaskTracker3 send sequential Heartbeat messages to the Job-
Tracker. The JobTracker then determines that all three Task-
Trackers have two idle CPU slots and two idle I/O slots
according to the Heartbeat information (assuming that each
TaskTracker has four slots). The JobTracker then queries the Job
Queue to determine whether any task can be assigned to the
TaskTrackers. The JobTracker knows that the CPU-bound queue
contains Job1 and that the I/O-bound queue contains Job2. It
then assigns two CPU-bound job tasks, J1t1 and J1t2, and two
I/O-bound job tasks, J2t1 and J2t2, to TaskTracker1 (Fig. 2b).
TaskTracker2 and TaskTracker3 execute similar steps to those of
TaskTracker1. These steps are repeated until all jobs are com-
pleted. According to the DMR concept, each TaskTracker has a
CPU-bound job and I/O-bound job. Furthermore, this
approach demonstrates improved performance because each
TaskTracker improves overall resource utilization (Fig. 2c).

The DMR approach generally improves resource utili-
zation in a Hadoop system. However, in a heterogeneous
computation environment, the DMR approach may cause
uneven resource utilization in some TaskTrackers, thus
reducing the performance of the Hadoop system. For
example, assume that three TaskTrackers, TaskTracker1,
TaskTracker2, and TaskTracker3, have distinct capabilities
(Fig. 3). TaskTracker1 can execute two CPU-bound jobs and
one I/O-bound job simultaneously; therefore, this Task-
Tracker has two CPU slots and one I/O slot. TaskTracker2
can execute one CPU-bound job and two I/O-bound jobs
simultaneously (i.e., TaskTracker2 contains one CPU slot
and two I/O slots). TaskTracker3 can execute one CPU-
bound job and three I/O-bound jobs simultaneously (i.e.,
TaskTracker3 has three CPU slots and one I/O slot). Never-
theless, according to the DMR approach, each TaskTracker
has two CPU slots and two I/O slots (implying a total of
four slots). After receiving jobs from clients, the JobTracker
assigns the tasks to a TaskTracker. Each TaskTracker con-
tains two CPU-bound tasks and two I/O-bound tasks.
Therefore, TaskTracker1 has one I/O-bound task that must
wait for the I/O resources to be released, resulting in its
I/O capacity becoming overloaded. TaskTracker2 has one
CPU slot that must wait for CPU resources to be released;
therefore, the CPU capacity of TaskTracker2 becomes over-
loaded. Finally, TaskTracker3 has one CPU slot that must
wait for CPU resources to be released; therefore, the CPU
capacity of TaskTracker3 becomes overloaded. Further-
more, TaskTracker3 includes one idle I/O slot, indicating

Fig. 1. Imbalanced resource allocation.
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that its I/O resources are not effectively used. According
to this example, the DMR may exhibit poor performance
in a heterogeneous environment because of its inefficient
resource utilization. Therefore, resource allocation is a crit-
ical concern in heterogeneous computing environments
involving varying job workloads.

2.5 Related Studies

Because of the increase in the amount of data, balancing
resource utilization is a valuable method for improving the
performance of a Hadoop system.1 Numerous resource allo-
cation algorithms have been proposed in recent years.

Bezerra et al. [7] a RAMDISK for temporary storage of
intermediate data. RAMDISK has high throughput and low
latency and this allows quick access to the intermediate
data relieving in the hard disk. Thus, adding RAMDISK
improves the performance of the shared input policy.
Ghoshal et al. [10] a set of pipelining strategies to effectively
utilize provisioned cloud resources. The experiments on the
ExoGENI cloud testbed demonstrates the effectiveness of
our approach in increasing performance and reducing
failures.

Isard et al. [14] mapped a resource allocation problem to
a graph data structure and then used a standard solver,
called Quincy, for computing the optimal online scheduler.
When fairness is required, Quincy increases fairness, sub-
stantially improving data locality.

Tumanov et al. [24] focused on the resource allocation of
mix workloads in heterogeneous clouds and proposed an
algebraic scheduling policy called Alsched for allocating
resources to mixed workloads in heterogeneous clouds.
Alsched allocates resources by considering the customizable
utility functions submitted as resource requests.

Schwarzkopf et al. [22] presented a novel approach to
address the increasing scale and the need for a rapid
response to changing requirements. These factors restrict
the rate at which new features can be deployed and even-
tually limit cluster growth. Two schedulers, an monolithic
scheduler and a statically partitioned scheduler, were pre-
sented in [22] to achieve flexibility for large computing
clusters, revealing that optimistic concurrency over a
shared state is a viable and attractive approach for cluster
scheduling.

Max-min fairness is a resource allocation mechanism
used frequently in data center schedulers. However,

Fig. 2. Workflow of a DMR scheduler.

Fig. 3. Different capabilities of TaskTrackers.

1. This study applied a different approach by proposing a job sched-
uling algorithm to achieve this goal.
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numerous jobs are limited to specific hardware or soft-
ware in the machines that execute them. Ghodsi et al. [11]
proposed an off line resource allocation algorithm called
Constrained Max-Min Fairness, which is an extension of
max-min fairness and supports placement constraints.
They also proposed an on-line version called Choosy.
Apache released a new version of the Hadoop system,
called YARN or MapReduce2.0 (MRv2)[2], which is cur-
rently adopted only by Yahoo. The two major function of
JobTrackers, namely resource management and job sched-
uling and monitoring, are split into two components
called ResourceManager and NodeManager. ResourceMan-
ager is used to schedule the demand of resources that
applications require, and NodeManager is used to monitor
the use of resources, such as CPU, memory, disk, and net-
work resources, by running applications. However,
default schedulers of both Hadoop and YARN still do not
support heterogenous computing environments. The
main focus of YARN is on improving resource utilization
and load balancing. Not only resource utilization and
load balancing are the important issue of cloud comput-
ing but data locality also the problem we need to concern.
Otherwise, although there are many different kinds of
mechanism and method to deal with job scheduling prob-
lem, but the kinds of mixed workloads and diverse of het-
erogeneous environments are important factor to effect
the results. Therefore, the novel scheduling algorithms
and policies proposed in this paper are incomparable and
take advantage of related studies for some reason on both
performance and data locality and also applicable to both
Hadoop and YARN on these problems.

3 PROPOSED ALGORITHMS

This section presents the proposed JAS algorithm, which
provides each TaskTracker with a distinct number of slots
according to the ability of the TaskTracker in a heterogeneous
environment.

3.1 JAS Algorithm

When a TaskTracker sends a Heartbeat message, the follow-
ing phases of the JAS algorithm are executed.

Step 1: Job classification: When jobs are in the Job Queue, the
JobTracker cannot determine the job types (i.e., CPU-
bound or I/O-bound). Thus, the job types must be
classified and the jobs must be added to the corre-
sponding queue according to the method introduced
in Section 3.1.1.

Step 2: TaskTracker slot setting: After a job type is deter-
mined, the JobTracker must assign tasks to each Task-
Tracker depending on the number of available slots
for each type in each TaskTracker (CPU slots and I/O
slots). Thus, the number of slots must be set on the
basis of the individual ability of each TaskTracker
according to the methods introduced in Sections 3.1.2
and 3.1.3.

Step 3: Tasks assignment: When a TaskTracker sends a Heart-
beat message, the JobTracker receives the numbers of
idle CPU slots and I/O slots and then assigns various
types of job tasks to the corresponding slots for

processing (i.e., the tasks of a CPU-bound job are
assigned to CPU slots, and vice versa). Sections 3.1.4
and 3.1.5 introduce the task assignment procedures.

3.1.1 Job Classification

Algorithm 1 presents job classification process. When a
TaskTracker sends a Heartbeat message, the JobTracker can
determine the number of tasks that have been executed in
the TaskTracker, which enables it to determine the states of
these tasks. When these tasks are complete, the JobTracker
can receive information on the tasks (Table 1).

The parameters used to classify jobs (Table 1) were
detailed in [23]. Assume that a TaskTracker has n slots; the
TaskTracker executes the same n map tasks, and the comple-
tion times of the map tasks are identical. A map task gener-
ates data throughput, including map input data (MID),
map output data (MOD), shuffle output data (SOD), and
shuffle input data (SID). Hence, n map tasks generate the
total data throughput ¼ n � ðMIDþMODþ SODþ SIDÞ,
and the amount of data that can be generated from a Task-
Tracker in 1 s is

throughput ¼ n � ðMIDþMODþ SODþ SIDÞ
MTCT

; (1)

whereMTCT is the map task completion time.

Algorithm 1. JOB_CLASSIFICATION (Heartbeat)

1 Obtain TaskTracerQueues information from Heartbeat:
2 for task in TaskTracker do
3 if task has been completed by TaskTracker then
4 obtain the task information from TaskTracker;

5 compute throughput :¼ n�ðMIDþMODþSODþSIDÞ
MTCT ;

6 if task belongs to a job J that has not been classified
then

7 if throughput < DIOR then
8 set J as a CPU-bound job;
9 move J to the CPU Queue;
10 else
11 set J as an I/O-bound job;
12 move J to the I/O Queue;
13 if task belongs to a CPU-bound job then
14 record the execution time of the task on

TaskTrackerCPUCapability;
15 else
16 record the execution time of the task on

TaskTrackerIOCapability.

TABLE 1
Parameters of Job Classification

Notation Meaning

n number of map tasks
MID Map Input Data
MOD Map Output Data
SID Shuffle Input Data
SOD Shuffle Output Data
MTCT Map Task Completed Time
DIOR Disk Average I/O Rate
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The JobTracker can determine the amount of data that a sin-
gle map task can generate from a TaskTracker in 1 s (i.e.,
throughput). When the throughput is less than the disk aver-
age I/O rate (DIOR), the JobTracker classifies a job according
to the determined information; in this case, the total data
throughput generated by n map tasks is still less than the
average I/O read/write rate.When themap tasks require few
I/O resources (i.e., throughput < DIOR), the JobTracker clas-
sifies the job as CPU-bound. Otherwise, throughput � DIOR,
implying that the total data throughput generated by n map
tasks is at least equal to the average I/O read/write rate. In
this case, the JobTracker classifies the job as I/O-bound. After
all jobs are classified, the JobTrackermust record the execution
time of all tasks, which can be used to compute the number of
CPU slots (I/O slots) of eachTaskTracker.

3.1.2 CPU Slot Setting

Algorithm 2 presents the procedure for setting the CPU
slots of a TaskTracker, and Table 2 lists the parameters used
in these procedures

Algorithm 2. SET_CPU_SLOT(Job Queue)

1 for Job in Job Queue do
2 if Job has been completed and Job is CPU-bound then
3 obtain the task information from TaskTracker;
4 compute the TaskTracker capability according to

TaskTrackerCPUCapability;

5 cy :¼ jMyj
ey

;

6 for each TaskTracker do
7 ky :¼ (the number of CPU slots) � cyPm

j¼1
cj
;

8 record ky on TaskTrackerCPUTable;
9 SetTaskTrackerCPUTable := 1;
10 return TaskTrackerCPUslot according to

TaskTrackerCPUTable;
11 break.

cy ¼ jMyj
ey

; (2)

ky ¼ the number of CPU slots � cyPm
j¼1 cj

: (3)

In Algorithm 1, when a task belonging to a CPU-bound
job has been completed, the JobTracker records the execution
time of the task in TaskTrackerCPUCapability. When the
JobTracker detects that the number of CPU slots in the Task-
Tracker has not been set, it executes Algorithm 2 to set the
number of CPU slots. In Algorithm 2, the JobTracker reads
the execution time of each task in TaskTrackerCPUCapability
and computes the CPU capability of each TaskTracker
according to (2). Finally, when the JobTracker computes the
CPU capability ratio of each TaskTracker according to (3), it
can determine the number of CPU slots in each TaskTracker.

Fig. 4 illustrates how the number of CPU slots in each Task-
Tracker is determined. Assume that a client submits a job J to
the JobTracker, which is a CPU-bound job divided into nine
tasks. This Hadoop system contains three TaskTrackers: r1, r2,
and r3. The JobTracker distributes the nine tasks such that t1,
t3, and t5 are assigned to r1; t2, t6, t7, and t8 are assigned to r2;
and t4 and t9 are assigned to r3. After a task has been com-
pleted, the JobTracker classifies the task as a CPU-bound job
and then records the execution time of that task in TaskTrack-
erCPUCapability. For example, when t1 has been completed
and then the JobTracker classifies it as a CPU-bound job, the
JobTracker records its execution time in r1 in TaskTrackerCPU-
Capability, therefore, TaskTrackerCPUCapability contains the
record that t1 has been completed by r1. These steps are
repeated for recording t2–t9 in TaskTrackerCPUCapability.
Fig. 4 illustrates the final results regarding TaskTrackerCPU-
Capability. After a job is complete, the JobTracker determines
whether the CPU slot in a TaskTracker has been set to 1. If this
is the case, then the JobTracker skips Algorithm 2; otherwise,
the JobTracker executes Algorithm 2. According to TaskTrack-
erCPUCapability, the JobTracker computes the CPU capability
of each TaskTracker according to (2). Equation (2) shows the
number of tasks belonging to J assigned to a TaskTracker that
can be completed in 1 s. Let s be the number of slots in the
Hadoop system. For example, the capacity of r1 is

c1 ¼ t1þt3þt5
3 ; the capacity of r2 is c2 ¼ t2þt6þt7þt8

4 ; and the capac-

ity of r3 is c3 ¼ t4þt9
2 . After determining the capacity of each

TaskTracker, the JobTracker uses (3) to compute the CPU capa-
bility ratio of each TaskTracker and calculates the number of
CPU slots in each TaskTracker. For example, the number of
CPU slots in r1 is k1 ¼ s

2 � c1
c1þc2þc3

; the number of CPU slots in

r2 is k2 ¼ s
2 � c2

c1þc2þc3
; and the number of CPU slots in r3 is

k3 ¼ s
2 � c3

c1þc2þc3
. Because the number of CPU slots (number of

I/O slots) is equal to half the number of Hadoop slots, the
number of CPU slots (I/O slots) is set to s

2.

After executing Algorithm 2, the JobTracker can determine
the number CPU slots in each TaskTracker. This is useful for
improving each TaskTracker’s CPU resource utilization.

TABLE 2
Parameters Used for Setting CPU Slots

Notation Meaning

T ¼ ft1; t2; . . . ; tn�1; tng; jT j ¼ n the set of tasks on a CPU-
bound job

ETti the execution time of task
ti, where ti 2 T

Mi ¼ ftj 2 T j tj runs
on TaskTrackerig

the set of tasks run on
TaskTrackeri

ei ¼
P

tj2Mi
gtj the total execution time of the

tasks run on TaskTrackeri
rj; j ¼ 1; . . . ;m the label of TaskTrackerj
s the number of all slots on

Hadoop
cy the CPU execution capability

of the TaskTrackery
ky the number of CPU slots

in TaskTrackery

Fig. 4. Illustration of Algorithm 2.
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3.1.3 I/O Slot Setting

A TaskTracker executes Algorithm 3 to set I/O slots. Table 3
lists the parameters used in the algorithm.

Suppose that m TaskTrackers exist: TaskTracker1;
TaskTracker2; . . . ; TaskTrackerm. Define

dy ¼ ny

fy
; (4)

and

iy ¼ (the number of I/O slots) � dyPm
j¼1 dj

: (5)

In Algorithm 1, when a task belonging to an I/O-bound job
has been completed, the JobTracker records the task execution
time in TaskTrackerIOCapability. If the JobTracker detects that
the number of I/O slots in a TaskTracker has not been set, it
executes Algorithm 3 to set the number of I/O slots. In Algo-
rithm 3, the JobTracker reads each task’s execution time inTask-
TrackerIOCapability and then computes each TaskTracker’s I/O
capability according to (4). Finally, the JobTracker computes
each TaskTracker’s I/O capability ratio according to (5) and
then sets the number of I/O slots for eachTaskTracker.

Algorithm 3. SET_I/O_SLOT(Job Queue)

1 for Job in Job Queue do
2 if Job has been finished and Job is I/O-bound then
3 obtain the task information from TaskTracker;
4 compute the TaskTracker capability according to

TaskTrackerIOCapability;

5 dy :¼ ny
fy
;

6 for each TaskTracker do

7 iy :¼ (the number of I/O slots) � dyPm

j¼1
dj
;

8 record iy on TaskTrackerIOTable;

9 SetTaskTrackerIOTable := 1;
10 return TaskTrackerIOslot according to TaskTrackerIO

Table;
11 break.

3.1.4 CPU Task Assignment

The JobTracker executes Algorithm 1 to classify each job
and then executes Algorithm 2 to set the number of CPU

slots for each TaskTracker. According to Heartbeat informa-
tion, the JobTracker determines the number of tasks (belong-
ing to a CPU-bound job) executed for a TaskTracker and
calculates the number of idle CPU slots (recorded in Avai-
lableCPUSlot) in the TaskTracker. After the JobTracker obtains
the AvailableCPUSlot information of the TaskTracker, the Job-
Tracker executes Algorithm 4 to assign CPU tasks to each
TaskTracker.

Algorithm 4. CPU_TASK_ASSIGN

1 for each AvailableCPUSlot do
2 for Job in the Job Queue do
3 if Job has not been classified then
4 select a task of Job and move it to the TaskTrack-

erQueues of a TaskTracker according to the
Heartbeat information;

5 break;
6 if 9 a task has not been selected and moved to the Task-

TrackerQueues of a TaskTracker then
7 for Job in the CPU Queue do
8 if Job has not been completed then
9 select a task of Job and move it to the Task-

TrackerQueues of the corresponding Task-
Tracker according to the information of
Heartbeat;

10 break;
11 if 9 a task that has not been selected and moved it

to the TaskTracker’s TaskTrackerQueues then
12 for Job in I=O Queue do
13 if Job has not been finished then
14 select a task of Job and move it to the

TaskTrackerQueues of the TaskTracker
according to Heartbeat information;

15 break.

For each AvailableCPUSlot, the JobTracker first queries the
Job Queue. If an unclassified job appears in the Job Queue,
then the JobTracker selects one task from the job and assigns
it to a TaskTracker, terminating the iteration. Subsequently,
AvailableCPUSlot is reduced by one and the JobTracker ini-
tiates the next iteration. The JobTracker then requeries the
Job Queue until all jobs in the Job Queue have been classi-
fied. The JobTracker then queries the CPU Queue, and if it
detects an unfinished job in this queue, the JobTracker
assigns a task from the unfinished jobs in the CPU Queue
to a TaskTracker, terminating the iteration. Subsequently,
AvailableCPUSlot is reduced by one and the JobTracker ini-
tiates the next iteration. The JobTracker requeries the CPU
Queue until no unfinished jobs. These steps are repeated
until AvailableCPUSlot is zero, meaning that the TaskTracker
has no idle CPU slots; hence, the JobTracker terminates the
execution of Algorithm 4.

If AvailableCPUSlot is not zero and the JobTracker does not
select any task from the Job Queue or the CPU Queue for the
TaskTracker, then the JobTracker queries the I/O Queue to
ensure that no idle CPU slots are wasted. If an unfinished job
is detected in the I/O Queue, the JobTracker assigns a task from
this queue to a TaskTracker, terminating the iteration. These
steps are repeated until no unfinished jobs remain in the I/O
Queue or AvailableCPUSlot is zero. The JobTracker then termi-
nates Algorithm 4. Thus, the proposed Algorithm 4 enables

TABLE 3
Parameters Used for Setting I/O Slots

Notation Meaning

L ¼ ft1; t2; . . . ; tng; jLj ¼ n the set of tasks on a I/O-bound
job

lti the execution time of task ti, where
ti 2 L

Ni ¼ ftj 2 Lj tj run
on TaskTrackerig

the set of tasks run on TaskTrackeri

fi ¼
P

tj2Ni
ltj the total execution time of the

tasks run on TaskTrackeri
dy the I/O execution capability of

TaskTrackery
iy the number of I/O slots

in TaskTrackery
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the JobTracker to allocate tasks accurately to the idle CPU slots
of TaskTrackers, thus preventingwastage of idle CPU slots.

3.1.5 I/O Task Assignment

The JobTracker executes Algorithm 1 to classify each job and
Algorithm 3 to set the number of I/O slots for each Task-
Tracker. On the basis of Heartbeat information, the JobTracker
determines the number of tasks (belonging to an I/O-bound
job) executed by a TaskTracker, and then calculates the num-
ber of idle I/O slots (recorded in AvailableIOSlot) existing in
this Tracker. After the JobTracker obtains the AvailableIOSlot
of the TaskTracker, it executes Algorithm 5 to assign I/O
tasks to each TaskTracker.

Algorithm 5. I/O_TASK_ASSIGN

1 for each AvailableIOSlot do
2 for Job in the Job Queue do
3 if Job has not been classified then
4 select a task of Job and move it to the Task-

TrackerQueues of a TaskTracker according to
the Heartbeat information;

5 break;
6 if 9 a task is not selected and moved to the TaskTracker-

Queues of a TaskTracker then
7 for Job in the I=O Queue do
8 if Job has not been completed then
9 select a task of Job and move it to the Task-

TrackerQueues of the TaskTracker according to
the Heartbeat information;

10 break;
11 if 9 a task that is not selected and moved it to

TaskTracker’s TaskTrackerQueues then
12 for Job in the CPU Queue do
13 if Job has not been finished then
14 select a task of Job and move it to Task-

TrackerQueues of the corresponding Task-
Tracker according to the information of
Heartbeat;

15 break.

For each AvailableIOSlot, the JobTracker first queries the
Job Queue. If an unclassified job is detected in the Job Queue,
the JobTracker selects one task from the job and moves it to a

TaskTracker, terminating the iteration. Subsequently, Availa-
bleIOSlot is reduced by one and the JobTracker initiates the
next iteration. The JobTracker requeries the Job Queue until
no unclassified jobs remain in the queue. The JobTracker
then queries the I/O Queue, if an unfinished job exists in the
I/O Queue, the JobTracker assigns a task from the unfinished
jobs in the queue to a TaskTracker, terminating the iteration.
Subsequently, AvailableIOSlot is reduced by one and the Job-
Tracker begins the next iteration. The JobTracker requeries
the I/O Queue until no unfinished jobs remain in the queue.
These steps are repeated until AvailableIOSlot is zero, mean-
ing that the TaskTracker has no idle I/O slots; hence, the Job-
Tracker terminates Algorithm 5.

If AvailableIOSlot is not equal to zero and the JobTracker
does not assign any task from the Job Queue or I/O Queue to a
TaskTracker, the JobTracker queries the CPU Queue to ensure
that no idle I/O slots are wasted. If an unfinished job exists in
the CPU Queue, the JobTracker assigns a task from this queue
to a TaskTracker, terminating the iteration. These steps are
repeated until no unfinished jobs remain in the CPUQueue or
AvailableIOSlot is zero. The JobTracker then terminates Algo-
rithm 5. Therefore, the proposed Algorithm 5 enables the Job-
Tracker to allocate tasks accurately to the idle I/O slots of
TaskTrackers, thus preventing thewaste of idle I/O slots.

3.1.6 Complete JAS Algorithm

All the algorithms presented in the preceding sections were
compiled into one algorithm, forming Algorithm 6. Table 4
shows the required parameters.

Slots are set according to each TaskTracker’s ability, and
tasks from either the CPU- or I/O-bound queue are
assigned to TaskTrackers. The proposed JAS algorithm
reduces the execution time compared with the FCFS sched-
uling policy of Hadoop.

3.2 Improving the Data Locality of the JAS
Algorithm

3.2.1 Problems of the JAS Algorithm

Although Hadoop tends to assign tasks to the nearest node
possessing its block, the JAS algorithm assigns tasks accord-
ing to the number of CPU and I/O slots in Tasktrackers.
Because of the property of the JAS, data locality is lost and a

TABLE 4
JAS Parameters

Notation Meaning

SetTaskTrackerCPUTable a Boolean variable indicating whether the CPU slot of each
TaskTracker has been set by the JobTracker

SetTaskTrackerIOTable a Boolean variable indicating whether the I/O slot of each
TaskTracker has been set by the JobTracker

TaskTrackerCPUslot the number of CPU slots in the TaskTracker
TaskTrackerIOslot the number of I/O slots in the TaskTracker

TaskTrackerRunningCPUtask the number of CPU-bound job tasks currently being executed
by the corresponding TaskTracker

TaskTrackerRunningIO the number of I/O-bound job tasks currently being executed
by the corresponding TaskTracker

AvailableCPUSlots the number of idle CPU slots in a TaskTracker
(these idle CPU slots can work with CPU-bound job tasks)

AvailableIOSlots TaskTrackerIOslot � TaskTrackerRunningIO

HSIEH ET AL.: NOVEL SCHEDULING ALGORITHMS FOR EFFICIENT DEPLOYMENT OF MAPREDUCE APPLICATIONS IN HETEROGENEOUS... 1087



substantial amount of network traffic occurs. Fig. 5 illus-
trates these problems.

Assume that TaskTrackers are available (i.e., Task-
Tracker1 and TaskTracker2); TaskTracker1 has three CPU
slots and one I/O slot, and TaskTracker2 contains two
CPU slots and two I/O slots. Job 1 and Job 2 are CPU-
bound jobs. According to Algorithm 6, the JobTracker
assigns J1t1, J1t2, and J1t3 to TaskTracker1, and assigns
J1t4 to TaskTracker2 (Fig. 5a). Job 2 remains in the CPU-
bound queue; subsequently, the JobTracker assigns its
tasks. When the JAS is applied, the JobTracker tends to
assign J2t1 to TaskTracker2. However, because the data
block required by J2t1 is in TaskTracker1; TaskTracker2
must retrieve this block from TaskTracker1. The transfer
of the data block results in extra network traffic, elimi-
nating the benefit of data locality (Fig. 5b).

Algorithm 6. Job_Allocation_Scheduler (JAS)

1 When a batch of jobs are submitted into JobTracker:
2 add jobs into Job Queue;
3 SetTaskTrackerCPUTable := 0;
4 SetTaskTrackerIOTable := 0;
5 while receive Heartbeat by TaskTracker do
6 TaskTrackerCPUslot := 0;
7 TaskTrackerIOslot := 0;
8 obtain TaskTrackerRunningCPUtask from Heartbeat

information;
9 obtain TaskTrackerRunningIOtask from Heartbeat

information;
10 AvailableCPUSlots := 0;
11 AvailableIOSlots := 0;
12 JOB_CLASSIFICATION(Heartbeat);
13 if SetTaskTrackerCPUTable == 1 then
14 obtain TaskTrackerCPUslot according to

TaskTrackerCPUTable;
15 else
16 TaskTrackerCPUslot:=SET_CPU_SLOT

(Job Queue);
17 if SetTaskTrackerIOTable == 1 then
18 obtain TaskTrackerIOslot according to

TaskTrackerIOTable;
19 else
20 TaskTrackerIOslot:=SET_IO_SLOT(Job Queue);
21 if TaskTrackerCPUslot == 0 then
22 TaskTrackerCPUslot := default CPU slot;
23 if TaskTrackerIOslot == 0 then
24 TaskTrackerIOslot := default I/O slot;
25 AvailableCPUSlots := TaskTrackerCPUslot� TaskTracker

RunningCPUtask;
26 AvailableIOSlots := TaskTrackerIOslot� TaskTracker

RunningIOtask;
27 CPU_TASK_ASSIGN(AvailableCPUSlot);
28 IO_TASK_ASSIGN(AvailableIOSlot).

3.2.2 Improving the JAS

To address the problem described in Section 3.2.1, the JAS
algorithm was modified to ensure that data locality is
retained. First, when Algorithm 1 is executed, the execu-
tion times of all TaskTrackers in LocalityBenefitTable in the
cluster, including the times required by the TaskTrackers
to execute local and non-local map-tasks, are recorded as

indicated by Algorithm 7. The JobTracker then assigns
either CPU- or I/O-bound tasks according to (6). If Non-
LocalBenefit is true, then the TaskTracker can execute a
non-local task; otherwise, it can execute only local tasks,
as indicated by Algorithm 8

NonLocalBenefit ¼ true if ETi > ETj þ Transfer time;
false else:

�

(6)

Let ETi and ETj be the execution times of two TaskTrack-
ers in a cluster, and let Transfer time be the transfer time of
a block from TaskTrackeri to TaskTrackerj.

To address the locality problem, Algorithm 5 can be
modified in a similar manner as Algorithm 4, deriving
Algorithm 8. Algorithm 9 presents the enhanced JASL. As
demonstrated in Section 4, Algorithm 9 exhibits superior
performance to the Hadoop scheduling policy and greater
data locality than does the JAS algorithm.

Fig. 5. JAS algorithm may increase network traffic.
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Algorithm 7. JOB_CLASSIFICATION_L (Heartbeat)

1 obtain TaskTracerQueues information from Heartbeat:
2 Initialize LocalityBenifitTable: = 0;
3 for task in TaskTracker do
4 if task has been completed by TaskTracker then
5 obtain the task information from TaskTracker;

6 compute throughput ¼ n�ðMIDþMODþSODþSIDÞ
MTCT ;

7 if task belongs to a job J that has not been classi-
fied then

8 if result < DIOR then
9 set J as a CPU-bound job;
10 move J to CPU Queue;
11 else
12 set J as a IO-bound job;
13 move J to IO Queue;
14 if task belongs to a CPU-bound job then
15 record the execution time of task on

TaskTrackerCPUCapability;
16 else
17 record the execution time of task on

TaskTrackerIOCapability.
18 record the execution time of task on LocalityBenefitTable;

Algorithm 8. CPU_TASK_ASSIGN_L

1 for each AvailableCPUSlot do
2 ET1: the execution time of the task executed by the

current TaskTracker;
3 ET2: the execution time of the task executed by the

remote TaskTracker;
4 Transfer_Time: the transfer time between the

TaskTrackers;
5 obtain ET1 and ET2 + Transfer_Time from

LocalityBenefitTable;
6 for Job in Job Queue do
7 if Job has not been classified then
8 select a task of Job and move it to Task

TracerQueues of a TaskTracker according to the
Heartbeat information;

9 break;
10 if 9 a task is not selected and moved to the TaskTracer-

Queues of a TaskTracker then
11 for Job in CPU Queue do
12 if Job has not been completed then
13 if 9 tasks belonging to local tasks then
14 assign one of them to TaskTracker;
15 break;
16 else
17 ifNonLocalBenefit==true then
18 assign a non-local task;
19 break;
20 break;
21 if 9 a task is not selected and moved to TaskTracer-

Queues of a TaskTracker then
22 for Job in I=O Queue do
23 if Job has not been completed then
24 select a task of Job and move it to Task-

TrackerQueues of the TaskTracker
according to the Heartbeat information;

25 break.

Algorithm 9. Job_Allocation_Scheduler_with_Locality
(JASL)

1 When a batch of jobs is submitted to JobTracker:
2 add jobs into Job Queue;
3 SetTaskTrackerCPUTable := 0;
4 SetTaskTrackerIOTable := 0;
5 Initialize LocalityBenifitTable := 0;
6 while receive Heartbeat by TaskTracker do
7 TaskTrackerCPUslot := 0;
8 TaskTrackerIOslot := 0;
9 obtain TaskTrackerRunningCPUtask from Heartbeat

information;
10 obtain TaskTrackerRunningIOtask from Heartbeat

information;
11 AvailableCPUSlots := 0;
12 AvailableIOSlots := 0;
13 JOB_CLASSIFICATION_L(Heartbeat);
14 if SetTaskTrackerCPUTable == 1 then
15 obtain TaskTrackerCPUslot according to

TaskTrackerCPUTable;
16 else
17 TaskTrackerCPUslot:=SET_CPU_SLOT(Job Queue);
18 if SetTaskTrackerIOTable == 1 then
19 get TaskTrackerIOslot according to TaskTrackerIO

Table;
20 else
21 TaskTrackerIOslot := SET_IO_SLOT(Job Queue);
22 if TaskTrackerCPUslot == 0 then
23 TaskTrackerCPUslot := default CPU slot;
24 if TaskTrackerIOslot == 0 then
25 TaskTrackerIOslot := default I/O slot;
26 AvailableCPUSlots := TaskTrackerCPUslot � TaskTracker

RunningCPUtask;
27 AvailableIOSlots:= TaskTrackerIOslot � TaskTracker

RunningIOtask;
28 CPU_TASK_ASSIGN_L(AvailableCPUSlot);
29 IO_TASK_ASSIGN_L(AvailableIOSlot).

3.3 Dynamic JASL Algorithm

Although the JASL algorithm can achieve a balance between
performance and data locality, it still exhibits some problems,
necessitating its modification. Network latency and inappro-
priate data block examination prolong task execution times,
thus affecting the execution of Algorithm 2 or 3, and conse-
quently preventing the JobTracker from accurately setting the
number of CPU and I/O slots for each TaskTracker. Therefore,
some TaskTrackers with high capability receive a low number
of CPU or I/O slots, resulting in the waste of CPU or I/O
resources. Conversely, some TaskTrackers with low capability
receive such a high number of CPU or I/O slots that they
have numerous additional tasks, reducing the performance of
the Hadoop system. To prevent resource waste, a dynamic
adjustment mechanism was added to the JASL algorithm,
resulting inAlgorithm 10.

Algorithm 10 is an enhanced algorithm called the dynamic
job allocation scheduler with locality and includes two accumula-
tive parameters, namely CPUcount and IOcount, that are used
to quantify the overload frequency of CPU and I/O utiliza-
tion. When a TaskTracker sends a Heartbeat message, the Job-
Tracker executes job classification and sets the number of the
slots for each TaskTracker, in addition to monitoring the CPU
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utilization and I/O read/write rate of each TaskTracker. If the
CPU utilization exceeds a certain value (default: 90 percent),
the CPUcount is increased by one. In addition, if the I/O
read/write rate exceeds a certain value (default: 35 MB), the
IOcount is increased by one. These steps are repeated until the
CPUcount or IOcount value exceeds the threshold, during
which the JobTracker determines that slots for some TaskTrack-
ers are inappropriately set; hence, the JobTracker re-executes
Algorithm 2 to obtain the accurate slot settings for each Task-
Tracker. This modified procedure enables the JobTracker to
adjust the CPU or I/O slots for each TaskTracker dynamically.
As demonstrated in Section 4, the proposed algorithm
increases the resource utilization of each TaskTracker and
improves the overall performance of theHadoop system.

Algorithm 10. Dynamic_Job_Allocation_Scheduler_
with_Locality (DJASL)

1 When a batch of jobs are submitted into JobTracker:
2 add jobs into Job Queue;
3 Initialize SetTaskTrackerCPUTable := 0;
4 Initialize SetTaskTrackerIOTable := 0;
5 Initialize CPUcount := 0;
6 Initialize IOcount := 0;
7 Initialize LocalityBenifitTable := 0;
8 while receive Heartbeat by TaskTracker do
9 TaskTrackerCPUslot := 0;
10 TaskTrackerIOslot := 0;
11 obtain TaskTrackerRunningCPUtask from Heartbeat

information;
12 obtain TaskTrackerRunningIOtask from Heartbeat

information;
13 AvailableCPUSlots := 0;
14 AvailableIOSlots := 0;
15 JOB_CLASSIFICATION_L(Heartbeat);
16 if SetTaskTrackerCPUTable == 1 then
17 obtain TaskTrackerCPUslot according to

TaskTrackerCPUTable;
18 else
19 TaskTrackerCPUslot :=SET_CPU_SLOT(Job Queue);
20 if SetTaskTrackerIOTable == 1 then
21 obtain TaskTrackerIOslot according to TaskTrackerIO

Table;
22 else
23 TaskTrackerIOslot :=SET_IO_SLOT(Job Queue);
24 if TaskTrackerCPUslot == 0 then
25 TaskTrackerCPUslot := default CPU slot;
26 if TaskTrackerIOslot == 0 then
27 TaskTrackerIOslot := default I/O slot;
28 if TaskTracker.CPUusage > 90% of CPU usage then
29 CPUcount += 1;
30 if TaskTracker.IOusage > 35MB then
31 IOcount += 1;
32 if CPUcount >¼ 100 then
33 reset CPU_slot;
34 if IOcount >¼ 100 then
35 reset I/O_slot;
36 AvailableCPUSlots :¼ TaskTrackerCPUslot� TaskTracker

RunningCPUtask;
37 AvailableIOSlots :¼ TaskTrackerIOslot� TaskTracker

RunningIOtask;
38 CPU_TASK_ASSIGN_L(AvailableCPUSlot);
39 IO_TASK_ASSIGN_L(AvailableIOSlot).

4 PERFORMANCE EVALUATION

This section presents the experimental environment consid-
ered in Section 4.1 and the experimental results regarding
the JAS algorithm presented in Section 3.

4.1 Experimental Environment

The experimental setup included an IBM Blade Center H23
with 7 Blades (84 CPUs, 1,450 GB of memory, and 3 TB of
disk space divided into four partitions) and a Synology
DS214play NAS was mounted to extend hardware resour-
ces (Intel Atom CE5335 CPU, and 3 TB of disk space). More-
over, VirtualBox 4.2.8 was used to create several virtual
machines. One of the machines served as the master
machine and the remaining ones served as slaves. Several
heterogenous experimental environment setups (Tables 5, 6
and 7) were employed to observe performance diversifica-
tion and data locality. We setup different heterogeneous
experimental environment each with 100 VMs separated to
four partitions of disk space. IBM Blade Center with seven
Blades share these partitions together. In order to create
diversity of data locality problem, slave nodes are average
setup on each disk partitions. The first setup, Environment
1, comprised one master machine, which contained two
CPUs with 4 GB of memory, and 99 slave machines, with
one CPU each, with 2 GB of memory. Environment 1 was
set to the control group. The second setup, Environment 2,

TABLE 5
Heterogeneous CPU Experimental Environment

Master Slave

Quantity Specification Quantity Specification

Environment 1 1 2 cpu &
4 GB memory

33 1 cpu &
2 GB memory

33 1 cpu &
2 GB memory

33 1 cpu &
2 GB memory

Environment 2 1 2 cpu &
4 GB memory

33 2 cpu &
2 GB memory

33 4 cpu &
2 GB memory

33 8 cpu &
2 GB memory

TABLE 6
Heterogeneous Ram Experimental Environment

Master Slave

Quantity Specification Quantity Specification

Environment 1 1 2 cpu &
4 GB memory

33 1 cpu &
2 GB memory

33 1 cpu &
2 GB memory

33 1 cpu &
2 GB memory

Environment 3 1 2 cpu &
4 GB memory

33 1 cpu &
2 GB memory

33 1 cpu &
4 GB memory

33 1 cpu &
8 GB memory
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comprised one master, which contained two CPUs with 4
GB of memory, and 99 slaves. Among these 99 slaves, 33
comprised two CPUs with 2 GB of memory, 33 had four
CPUs with 2 GB of memory, and 33 had eight CPUs with 2
GB of memory. Environment 2 was established to assess the
effect of distinct numbers of CPUs on various group of
slaves. The third setup, Environment 3, comprised one mas-
ter, containing two CPUs with 4 GB of memory, and 99
slaves. Among these 99 slaves, 33 had one CPU with 2 GB
of memory, 33 had one CPU with 4 GB of memory, and 33
had one CPU with 8 GB of memory. Environment 3 was
established to evaluate the effect of various memory capaci-
ties on different groups of slaves. The final setup, Environ-
ment 4, comprised one master containing four CPUs with 8
GB of memory and 99 slaves with one CPU and 2 GB of
memory. Environment 4 was established to assess the vari-
ous computing ability of the master node. All machines
shared 6 TB of hard disk space. Ubuntu 14.04 LTS was
adopted as the operating system. Hadoop-0.20.205.0 was
used, and each node comprised four map slots and one
reduce slot.

Eight job types were executed: Pi, Wordcount, Terasort,
Grep, Inverted-index, Radixsort, Self-join, and K-Means.
The data size of different jobs was designed from 5 to 100
GB. When a client sent a request to Hadoop to execute these
eight jobs, they were executed in a random order. Ten
requests were sent to determine the average job execution
time. Section 4.2 reports the results.

4.2 Results

The experimental results can be classified into three themes
presented in three sections: 1) Section 4.2.1 presents the
individual performance of each job and indicates the effect
of various data sizes; (2) Section 4.2.2 shows that the JAS
algorithm improves the overall performance of the Hadoop
system and that the JASL algorithm improves the data
locality of the JAS; and 3) Section 4.2.3 indicates that the
proposed DJASL algorithm improves the overall perfor-
mance of the Hadoop system and that this algorithm has
similar data locality to the JASL algorithm.

4.2.1 Individual Performance of Each Workloads

Fig. 6 illustrates the individual performance of each jobs,
and each job setup comprised nearly 10 GB of data. The

average execution time of the DJASL was compared with
that of the default Hadoop algorithm in Environment 1
(Table 5); the results revealed that the sorting type jobs reg-
istered a higher execution time than the other jobs did, and
that the join type jobs exhibited a shorter execution time.
However, as shown in Fig. 7, when multiple data were
batch processed, the execution time did not increase multi-
ples in continuation of the experiment. For example, if we
have double data size of workloads, but the execution time
will increase less than two times. We allocated nearly 100
GB of data storage space for each request involving different
jobs and processed them in batches. The following sections
present the experimental results.

4.2.2 Performance and Data Locality of the JAS and

JASL Algorithms

In some of the ten requests, the performance of the JAS algo-
rithm was not superior to those of Hadoop and DMR
because the JAS algorithm sets slots inappropriately. There-
fore, the resource utilizations of some TaskTrackers became
overloaded, and some tasks could not be executed until
resources were released. Hence, the execution times of these
tasks increased, causing the performance of the JAS algo-
rithm to decrease compared with those of Hadoop and
DMR. However, to simulate real situations, the average exe-
cution times of all jobs over ten requests were derived. In
the heterogeneous computing environment, average execu-
tion times of the JAS and JASL algorithms were shorter than
those of Hadoop and DMR.

Fig. 8a depicts the average execution times of Hadoop,
DMR, and the JAS and JASL algorithms. Because a sub-
stantial difference was observed in the CPU and memory

TABLE 7
Heterogeneous Master Experimental Environment

Master Slave

Quantity Specification Quantity Specification

Environment 1 1 2 cpu &
4 GB memory

33 1 cpu &
2 GB memory

33 1 cpu &
2 GB memory

33 1 cpu &
2 GB memory

Environment 4 1 4 cpu &
8 GB memory

33 1 cpu &
2 GB memory

33 1 cpu &
2 GB memory

33 1 cpu &
2 GB memory

Fig. 6. Average execution time of each job in the Hadoop system and
DJASL algorithm.

Fig. 7. Average execution time of each job for various data sizes.
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resources between the nodes in those Environments
(Tables 5, 6 and 7), the performance of the algorithms in
Environment 2 was superior to that of the algorithms in
the other environments. However, the difference in perfor-
mance between the environments was small. The execution
time of the JASL algorithm was longer than that of the JAS

algorithm, but the data locality of the JASL algorithm was
substantially greater than that of the JAS algorithm (Fig. 9).
Thus, the large amount of extraneous network transforma-
tion produced by the JAS algorithm can be reduced.
Because of the large processing capability difference
between the nodes in Environment 2, higher numbers of
efficient nodes were assigned for higher numbers of tasks,
reducing data locality.

Fig. 8b illustrates the percentage execution time relative
to Hadoop. In the four environments, the performance of
the JAS algorithm improved by nearly 15-18 percent com-
pared with Hadoop and nearly 18-20 percent compared
with DMR. Moreover, the data locality of the JASL algo-
rithm improved by nearly 25-30 percent compared with the
JAS in these environments.

4.2.3 Performance and Data Locality of the DJASL

Algorithm

The JobTracker occasionally inaccurately sets the slots when
the JASL algorithm is applied, potentially reducing the per-
formance. Hence, the DJASL algorithm includes two param-
eters, namely CPUcount and IOcount, which are used to
ensure accurate slot settings. The JobTracker resets slots
according to threshold values, and differences in the thresh-
old values cause performance results to vary. If a threshold
value is too high (i.e., slots are set incorrectly when the
DJASL is applied), the JobTrackermust wait for a long period
to reset the slots. By contrast, if a threshold value is too low,
the JobTracker must reset slots frequently. Inappropriate
threshold settings hinder the maximization of resource utili-
zation and negatively affect the performance of the Hadoop
system. Therefore, an experiment was conducted in this
study to determine the values of various threshold settings.
The threshold was set to 100, 200, 300, 400, and 500. Accord-
ing to these five values, five requests were sent to Hadoop,
and each request contained ten disordered jobs (five Word-
count and five Terasort). According to Fig. 10, setting the
threshold value to 300 yielded the optimal performance.

Because the DJASL algorithm can reset slots through a
count mechanism, its performance was superior to that of
Hadoop. On average, the performance of the DJASL algo-
rithm was superior to that of DMR. However, the perfor-
mance of the DJASL algorithm was occasionally inferior to

Fig. 8. Performance of JAS and JASL compared with Hadoop and DMR
in four computing environments.

Fig. 9. Data locality of JAS and JASL compared with Hadoop in four
environments.

Fig. 10. Average execution time of a job in DJASL for setting the various
thresholds.
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that of DMR because slots must be reset. In some scenarios,
tasks executed by TaskTrackers are not removed by the Job-
Tracker. Therefore, the JobTracker must wait for such tasks to
be completed. When TaskTrackers become overloaded, the
contained tasks cannot be completed until resources are

released. Therefore, the execution times for these tasks are
prolonged, reducing the performance of the DJASL algo-
rithm compared with that of DMR. When the slots of the
JobTracker have been reset, the resources of each TaskTracker
can be used to improve the performance of the Hadoop
system. The average execution time of all jobs was used to
simulate real situations.

We implemented three heterogeneous computing envi-
ronments (Tables 5, 6 and 7) and compared each of them in
detail with all the presented algorithms (e.g., Hadoop,
DMR, JAS, JASL, DJASL). Fig. 11a shows a comparison of
the performance of the DJASL algorithm in Environment 2,
which comprised a higher number of CPUs in slave com-
puters compared with the master computers, and Environ-
ment 1. Fig. 11b depicts a comparison of the performance of
the DJASL algorithm in Environment 3 in which more mem-
ory was allocated to the slave computers compared with the
master computers, and Environment 1. Fig. 11c depicts a
comparison of the performance of the DJASL algorithm in
Environment 4, in which a higher number of CPUs and
memory was allocated to the master node compared with
the slave node, and Environment 1. A comparison of the
results in Fig. 11 revealed that the numbers of CPUs demon-
strated a considerably greater effect on performance regard-
ing the amount of memory resources and improved
processing capability of the master node. As shown in
Fig. 11, the performance of the DJASL algorithm improved
by approximately 27-32 percent compared with DMR and
by approximately 16-21 percent compared with Hadoop.

The four heterogeneous computing environments were
compared, and Fig. 12 illustrates the results. The data local-
ity of the DJASL algorithm was nearly identical to that of
the JASL algorithm. In these environments, the JASL and
DJASL effectively improved the data locality and also
reduced the differences between these algorithms and
Hadoop.

5 CONCLUSION

This paper proposes job scheduling algorithms to provide
highly efficient job schedulers for the Hadoop system. Job
types are not evaluated in the default job scheduling policy
of Hadoop, causing some TaskTrackers to become over-
loaded. According to the proposed DJASL algorithm, the

Fig. 11. Performance of the DJASL compared with the JAS and JASL in
different heterogeneous computing environments.

Fig. 12. Data locality of the DJAS compared with JASL and Hadoop in
four different environments.
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JobTracker first computes the capability of each TaskTracker
and then sets the numbers of CPU and I/O slots accordingly.
In addition, the DJASL algorithm substantially improves the
data locality of the JAS algorithm and resource utilization of
each TaskTracker, improving the performance of the Hadoop
system. The experimental results revealed that performance
of the DJASL algorithm improved by approximately 18 per-
cent compared with Hadoop and by approximately 28 per-
cent compared with DMR. The DJASL also improved the
data locality of the JAS by approximately 27 percent.

The proposed scheduling algorithms for heterogeneous
cloud computing environments are independent of systems
supporting the MapReduce programming model. There-
fore, they are not only useful for Hadoop as demonstrated
in this paper, but also applicable to other cloud software
systems such as YARN and Aneka.
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