
15

A Cost-Efficient Container Orchestration Strategy in

Kubernetes-Based Cloud Computing Infrastructures with

Heterogeneous Resources

ZHIHENG ZHONG and RAJKUMAR BUYYA, University of Melbourne

Containers, as a lightweight application virtualization technology, have recently gained immense popularity
in mainstream cluster management systems like Google Borg and Kubernetes. Prevalently adopted by these
systems for task deployments of diverse workloads such as big data, web services, and IoT, they support agile
application deployment, environmental consistency, OS distribution portability, application-centric manage-
ment, and resource isolation. Although most of these systems are mature with advanced features, their opti-
mization strategies are still tailored to the assumption of a static cluster. Elastic compute resources would en-
able heterogeneous resource management strategies in response to the dynamic business volume for various
types of workloads. Hence, we propose a heterogeneous task allocation strategy for cost-efficient container
orchestration through resource utilization optimization and elastic instance pricing with three main features.
The first one is to support heterogeneous job configurations to optimize the initial placement of containers
into existing resources by task packing. The second one is cluster size adjustment to meet the changing work-
load through autoscaling algorithms. The third one is a rescheduling mechanism to shut down underutilized
VM instances for cost saving and reallocate the relevant jobs without losing task progress. We evaluate our
approach in terms of cost and performance on the Australian National Cloud Infrastructure (Nectar). Our
experiments demonstrate that the proposed strategy could reduce the overall cost by 23% to 32% for different
types of cloud workload patterns when compared to the default Kubernetes framework.

CCS Concepts: • Computer systems organization → Cloud computing; • Theory of computation →
Scheduling algorithms; • General and reference → Performance; • Computing methodologies →
Model development and analysis;

Additional Key Words and Phrases: Cluster management, container orchestration, resource heterogeneity,
cost efficiency

ACM Reference format:

Zhiheng Zhong and Rajkumar Buyya. 2020. A Cost-Efficient Container Orchestration Strategy in Kubernetes-
Based Cloud Computing Infrastructures with Heterogeneous Resources. ACM Trans. Internet Technol. 20, 2,
Article 15 (April 2020), 24 pages.
https://doi.org/10.1145/3378447

This work was supported by the China Scholarship Council and the Australia Research Council Discovery Project.
Authors’ address: Z. Zhong and R. Buyya, University of Melbourne, Cloud Computing and Distributed Systems (CLOUDS)
Laboratory, School of Computing and Information System, Parkville Campus, Melbourne, Victoria, 3010, Australia; emails:
zhiheng@student.unimelb.edu.au, rbuyya@unimelb.edu.au.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
1533-5399/2020/04-ART15 $15.00
https://doi.org/10.1145/3378447

ACM Transactions on Internet Technology, Vol. 20, No. 2, Article 15. Publication date: April 2020.

https://doi.org/10.1145/3378447
mailto:permissions@acm.org
https://doi.org/10.1145/3378447

15:2 Z. Zhong and R. Buyya

1 INTRODUCTION

Containers, as a lightweight application virtualization technology, provide a logical packing mech-
anism for application abstraction that packages software and dependencies together. Compared
with virtual machines that support resource virtualization at hardware level, containers provide
a virtual runtime environment based on a single operating system (OS) kernel and emulate an
OS. Containers support resource sharing across multiple users and tasks concurrently rather than
booting an entire OS for each application. This allows agile application deployment, environmen-
tal consistency, OS distribution portability, application-centric management, and resource isola-
tion for container-based applications. These features have led to the continuously rising popularity
and adoption of this technology in mainstream cloud computing platforms, whereas most of these
state-of-the-art container orchestration systems are already mature with advanced features, such
as CoreOS Fleet [1], Borg [2], and Kubernetes [3].

However, these existing systems remain with limited quality-of-service (QoS) management poli-
cies that mainly focus on infrastructure-level metrics, whereas specific application-level QoS re-
quirements are usually ignored [4]. For instance, long-running web applications usually need to
satisfy a condition where the number of requests processed per time unit must reach a certain
level, whereas batch jobs are configured with a deadline as a time constraint. In addition, other
factors including resource utilization, fault tolerance, and energy efficiency should be considered.
Although the aforementioned systems address these issues to a certain degree, further research
is needed to explore more sophisticated container-based application management strategies sup-
porting heterogeneous QoS requirements.

Unlike traditional application management and organization-specific clusters, where schedulers
are usually designed to manage a static pool of homogeneous machines with the same price and
characteristics for specific workloads, heterogeneous compute clusters are more likely to be com-
posed of various machine classes to satisfy the highly dynamic resource demands requested by
different types of workloads [38]. For instance, the machine configurations in a Borg cluster could
differ in multiple dimensions: sizes (CPU, RAM, disk, network), processor type, performance, and
capabilities [2]. Besides resource requirements (CPU, memory, disk, etc.), Google workloads usu-
ally specify task placement constraints of particular classes of machines where they could be de-
ployed to acquire machines with specific configurations or accelerators like GPUs. Such prefer-
ences or constraints complicate the decision-making process of task scheduling in heterogeneous
clusters, as neither machines nor workloads could be treated equally. The existing scheduling ap-
proaches that only target on specific workloads or environments become broken with poor per-
formance [22]. Given such a high degree of heterogeneity and variability in workload demand
and cluster configuration, task allocation strategies become significantly complicated for reducing
tasking scheduling delay and improving resource utilization [39].

Scheduling is a fundamental technique in container orchestration systems. Considering the het-
erogeneity of these systems and changes in the execution environment, it is a new challenge to
present dedicated scheduling strategies for each group of resources in complex cloud computing
environments [5]. However, the scheduling strategies in most of the existing frameworks are still
tailored to the assumption of a static cluster of resources, with bin-packing algorithms commonly
used to schedule containers on a fixed-sized cluster. This has become a bottleneck in terms of
compute resource elasticity and service heterogeneities. No matter how optimal the initial task
arrangement is, it will degrade as the resource utilization and workload change over time. For
example, a cluster could easily become overloaded when handling an unexpected bursty load of
tasks or underutilized when experiencing a drastic workload downgrade. Therefore, on-demand
cluster size adjustment is an essential complementary method for better cost-efficient cluster
management.

ACM Transactions on Internet Technology, Vol. 20, No. 2, Article 15. Publication date: April 2020.

A Cost-Efficient Container Orchestration Strategy 15:3

In light of this, supporting heterogeneous task configurations of resources such as VM types and
sizes would be another possible direction to satisfy dedicated QoS requirements and cost efficiency
with elastic pricing models [6]. For example, long-running web applications should be deployed on
steady instances leased with a lower price per time unit for long-term cost saving, whereas batch
jobs could be placed on unreliable rebated instances or compute-optimized nodes, depending on
the QoS requirement. However, considering different VM sizes and prices during autoscaling in
response to the workload fluctuation could produce more pricing models to minimize the cost
compared to rigid homogeneous scaling strategies. Another possible optimization approach for
container orchestration is resource utilization improvement through rescheduling and instance
deprovisioning. For instance, when a compute node continuously remains in underutilized status,
its tasks could be migrated to other nodes through task rescheduling so that it could be shut down
to avoid resource wasting and reduce cost.

To address these issues in container orchestration without assuming a fixed-size pool of homo-
geneous compute resources like the traditional clusters, the dynamicity and elasticity in workload
demand, resource management, and instance billing have become the key concerns [22]. To min-
imize the overall costs under the context of a heterogeneous cluster, it is required for the orches-
tration system to make proper decisions during scheduling and scaling in terms of managing task
allocation, on-demand instance acquisition, application queuing delay, and resource utilization.
Therefore, this article proposes a heterogeneous task allocation strategy (HTAS) for cost-efficient
container orchestration through resource utilization optimization and elastic instance pricing. Our
work makes the following three key contributions:

(1) We demonstrate how heterogeneous task allocation could be used to optimize the initial
placement of containers by task packing.

(2) We identify an elastic instance pricing model for cluster size adjustment in response to
the workload fluctuation at runtime through multiple autoscaling algorithms.

(3) We describe a rescheduling mechanism that adopts the container checkpointing technique
to enable VM cleaning of underutilized instances for the purpose of cost saving without
losing task progress.

The rest of the article is organized as follows. Section 2 introduces the original Kubernetes
framework, followed by other related scheduling algorithms. Section 3 formalizes the problem
definitions. Section 4 describes our system architecture and key components, whereas algorithm
implementations are given in Section 5. In Section 6, we present the experiment environment
and evaluation results of the proposed approach in terms of cost and performance. Finally, our
conclusion and future directions are discussed in Section 7.

2 BACKGROUND AND RELATED WORK

This section briefly presents a review of the default Kubernetes framework and related resource
management algorithms for orchestration of container-based applications.

2.1 Kubernetes

Inspired by its internal container-oriented cluster management system Borg [2], Google devel-
oped Kubernetes (K8s), an open source container orchestration system for automated task de-
ployment and cluster resource management with high flexibility and scalability [7]. Based on a
container-oriented resource allocation policy, it automates the orchestration process of computa-
tion resources, storage system, and networking for various types of workloads, such as stateless,
stateful, and data-processing workloads [8].

ACM Transactions on Internet Technology, Vol. 20, No. 2, Article 15. Publication date: April 2020.

15:4 Z. Zhong and R. Buyya

2.1.1 Key Components. The key components within a K8s cloud cluster referenced in this work
are described as follows:

(1) The master node manages the cluster’s control panel and handles global events for the
cluster, such as scheduling, node provisioning, and deprovisioning. Designed to scale more
instances horizontally, its API server exposes the K8s API like a front-end of the control
panel. The default kube scheduler also sits within the master node, which monitors the
new tasks and manages their resource allocation.

(2) Controlled by the master node, a worker node could be a VM instance or physical machine,
maintaining the running applications and the K8s runtime environment.

(3) A kubelet is the primary “node agent” running on each node, which monitors and manages
all of the containers created by K8s.

(4) As the basic element in K8s, a pod represents a running process at the lowest level within
the cluster. A pod could be configured with a set of specifications, such as processing
power requirement (CPU, memory, disk, etc.), execution policy, and application image.

2.1.2 Scheduling. The efficient initial placement of a pod is a key concern in terms of resource
utilization and system performance [35]. Every new pod created in a K8s cluster should be added to
a pending queue by default, waiting for deployments. The default K8s scheduler continuously picks
pods from the queue and assigns them to nodes with enough requested resources. For each pending
pod, a two-phase selection process is designed to determine the best-fit node within the cluster:

(1) Filtering: This is the first decision made by the scheduler to pick out the nodes that satisfy
all requirements of the pod and ignore the rest in the next phase.

(2) Ranking: As there is usually more than one node selected during the filtering phase, these
nodes are then scored and ranked by certain priority methods. Currently, the least re-
quested priority (LRP) algorithm is referenced as the default priority method during rank-
ing. The node with the lowest resource utilization is most preferred for pod allocation
under this priority algorithm, where CPU and memory are evaluated with equal values.
Note that this priority function has the effect of spreading pods across the nodes for load
balance and application protection against possible resource shortage. Nevertheless, this
is only a baseline approach for preventing resource overloading. For complex task co-
location and resource overbooking models addressed in Guo et al. [13] and Liu and Yu
[16], the current Kubernetes scheduling mechanism cannot efficiently manage the risk of
resource overloading when multiple applications on the same compute nodes are compet-
ing for the same type of resources, such as memory.

2.1.3 Autoscaling and Migration. The K8s Cluster Autoscaler (CA) is a stand-alone program
that periodically adjusts the size of a K8s cluster in response to workload fluctuation. CA checks
for any pending pods at a configurable frequency. A pod is defined as unschedulable when the
K8s scheduler is unable to find a suitable node that can accommodate the pod. Hence, node pro-
visioning could be triggered when there are pods that cannot be scheduled on any of the current
nodes due to insufficient resources. It is assumed that the cluster is running on top of a homoge-
neous node group, where all machines have identical capacity and the same set of assigned labels.
Therefore, increasing the size of a node group will create a new machine that is similar to those
already in the cluster. Although the primary function of CA is to apply extra resources for the de-
ployment of pending pods, only homogeneous scaling up with one instance at a time is supported
by CA, which limits the compute resource elasticity and service heterogeneities. For instance, if
the workload volume significantly rises over the scale of the instance size of the current node
group, it might take several autoscaling cycles to boot up enough machines for the pending pods,

ACM Transactions on Internet Technology, Vol. 20, No. 2, Article 15. Publication date: April 2020.

A Cost-Efficient Container Orchestration Strategy 15:5

Table 1. Comparison of Related Platforms

Platform Container
Technology

Workload Rescheduling Cluster Infrastructure Cluster
Elasticity

Borg [2] Linux cgroups
based

All � Physical Static

Kubernetes [3] Docker, rkt,
CRI, OCI

All � Virtualized, physical Elastic, manual
and autoscaling

Swarm [9] Docker Long-running jobs � Virtualized, physical Elastic, manual
scaling

Mesos [10] Docker, Mesos
containers

All Virtualized, physical Elastic, manual
scaling

Marathon [11] Docker, Mesos
containers

Long-running jobs � Virtualized, physical Elastic, manual
scaling

Aurora [12] Docker, Mesos
containers

Long-running and
cron jobs

� Virtualized, physical Elastic, manual
scaling

OpenShift [40] Docker, Gear All � Virtualized, physical Elastic, manual
and autoscaling

which leads to long-term cluster overloading and severe QoS degradation. However, the cost of
a set of relatively small instances could be potentially higher than an equivalent large machine.
For compute instances continuously staying in underutilized status, CA also manages the node
deprovisioning process after migrating all of their existing pods somewhere else. As K8s does not
support container checkpointing or live migration, the current migration logic would evict and
redeploy the target pod by force, which would directly cause QoS degradation. Furthermore, this
limited deprovisioning feature cannot efficiently prevent resource wasting from overprovisioning
or dramatic workload downgrade.

As summarized in Table 1, most of these mainstream platforms support advanced orchestration
features for specific types of workloads with regard to resource demand profiling and estimation.
However, their monitoring systems mainly focus on resource utilization metrics at the infras-
tructure level, such as CPU and memory usage, whereas QoS metrics at the application level are
usually ignored. In addition, there are no existing methodologies in terms of workload modeling
for container-based applications [35]. There is a potential demand for utilizing machine learning
approaches for analysis and prediction of the workload characterizations and arrival patterns in a
representative way to address complex task co-location scenarios [13]. A task rescheduling mech-
anism is employed by most of these systems as an approach for load balance, cost saving, and
energy efficiency. However, their current rescheduling techniques, including forced task eviction,
checkpointing, and live migration, would still cause a certain level of QoS degradation. How to
accurately estimate and control the costs of rescheduling algorithms remains an open research
challenge. Among these platforms, Kubernetes and OpenShift [40] support cluster-level autoscal-
ing to resize the cluster when task scheduling fails due to insufficient resources. Nevertheless,
it is only allowed to scale up one homogeneous instance per scaling cycle in their autoscaling
strategies, which limits the scalability in handling highly dynamic workloads. Therefore, cluster-
level autoscaling with heterogeneous resources is another possible enhancement regarding cost
efficiency and QoS management.

2.2 Resource Management and Scheduling Algorithms for Container Clouds

Container-based cloud applications and systems with sophisticated resource management algo-
rithms have been researched in various experience studies, aside from the production platforms
mentioned earlier. Table 2 summarizes the comparison of related works focused on resource man-

ACM Transactions on Internet Technology, Vol. 20, No. 2, Article 15. Publication date: April 2020.

15:6 Z. Zhong and R. Buyya

Table 2. Comparison of Related Algorithmic Works and Our Work

Work Objective Platform Workload
Cluster

Elasticity
Cluster

Infrastructure
Resource

Heterogeneity

Guo et al. [13] Resource utilization
improvement

Fuxi [48],
Sigma [49]

Long-running
and batch jobs

Static Physical

Zhang et al. [14] Resource utilization
optimization

Docker Network
intensive

Static Physical �

Kaewkasi and
Chuenmuneewong
[15]

Load Balance Docker Long-running
service

Static Physical �

Liu and Yu [16] Resource utilization
improvement

Fuxi, Sigma Long-running
and batch jobs

Static Physical

Guerrero et al. [17] Resource allocation
and elasticity
optimization

Kubernetes Simulation Static Physical �

Kehrer and
Blochinger [18]

Task deployment
automation

Mesos All Static Virtualized

Xu et al. [19] Energy saving Swarm Long-running
service

Elastic Physical

Xu and Buyya [43] Energy saving Swarm Long-running
service

Static Physical

Xu et al. [44] Response time
reduction

Docker Simulation Static Physical

Yin et al. [45] Task delay reduction Docker Simulation Static Physical

Taherizadeh and
Stankovski [20]

QoS and resource
elasticity assurance

Docker and
CoreOS

Simulation Static Virtualized

Paščinsk et al. [36] QoS optimization Kubernetes Network
intensive

Elastic Virtualized �

Kochovski et al.
[37]

QoS and NFR
assurance

SWITCH [47] Network
intensive

Elastic Virtualized �

Stratus [21] Cost saving Kubernetes Batch jobs Elastic Virtualized �
Rodriguez and
Buyya [22]

Cost saving Kubernetes Long-running
and batch jobs

Elastic Virtualized

HTAS Cost saving Kubernetes Long-running
and batch jobs

Elastic Virtualized �

agement and scheduling algorithms with our proposed approach (HTAS). HTAS is comprehensive
and supports resource heterogeneity for automated deployment of long-running and batch jobs.

Private cluster management. Private clusters usually have a static pool of resources with what-
ever configurations. The current state-of-the-art works [15, 17, 18, 20, 44, 45] have tried to optimize
task allocation within the fixed set of instances from various perspectives. However, such solutions
would fail to manage costs and QoS requirements efficiently under the context of an elastic cluster
where its size and composition could be adjusted on demand. The resource rental costs and task
queuing delay could change in response to any cluster adjustment.

QoS-aware orchestration. Given the polyglot nature of container-based applications where dif-
ferent applications are implemented in various languages and data ecosystems, it significantly
raises the complexity of tracking and managing QoS requirements for individual applications [35].
Kochovski et al. [37] proposed a formal QoS assurance method (FoQoSAM) based on stochastic
Markov models. It manages to make the optimal task deployment decision by ranking the avail-
able cloud resources according to the QoS monitoring data and user-provided metrics. However,
it is common to evaluate the QoS metrics under a task-per-instance assumption in such studies,
ignoring the dynamically changing environment where any kinds of task packing or workload
co-location could change the cost efficiency and overall system performance.

ACM Transactions on Internet Technology, Vol. 20, No. 2, Article 15. Publication date: April 2020.

A Cost-Efficient Container Orchestration Strategy 15:7

Workload characterization. The diversity of workloads is becoming an essential characteristic in
modern data centers [50]. Through workload characterization of long-running services (diurnal
pattern) and batch jobs (nocturnal pattern) in the Alibaba data center [13, 16], Fuxi [48] manages
the task overcommitment process by assigning more batch jobs to the co-located cluster at mid-
night when long-running services stay inactive. Although this approach achieves better resource
utilization at the infrastructure level, there remains a potential resource mismatch caused by un-
predicted workload spikes, which leads to frequent task evictions and rescheduling. Balancing
the tradeoff between resource utilization and QoS degradation caused by rescheduling through
accurate workload characterization remains a major concern in task co-location.

Application-specific scheduling. Considering the unique nature and characteristics of different
application workloads, there is a rich history of developing application-specific scheduling ap-
proaches. Within SDDCs [46], Paščinsk et al. [36] developed a Kubernetes-based Global Cluster
Manager specialized in geographic orchestration of network-intensive workloads. It supports au-
tonomic task arrangement by picking the best-fit geographic instance according to application-
specific QoS models. By utilizing service similarity matching and time-series nearest neighbor
regression to predict future resource need, Zhang et al. [14] present a container-based novel video
surveillance system supporting dynamic resource utilization optimization and QoS awareness.
Stratus [21] is a container-based cluster scheduler designed for batch job scheduling on public
IaaS platforms. To achieve high cost efficiency and cluster utilization, it follows an aggressive
scheduling mechanism by scheduling jobs as tightly as possible and shutting down underutilized
instances. A representative heterogeneous workload in modern data centers commonly contains
both batch jobs and long-running services [2, 13, 16]. To build a robust solution for cost-efficient or-
chestration of such workloads, our previous study [22] designed a customized scheduler on top of
the Kubernetes platform by extending the existing rescheduling feature for better arrangements
of task co-location. Nevertheless, it fails to solve the bottleneck of resource elasticity and QoS
degradation caused by frequent task evictions. To address these problems, this work is a natural
extension and improvement of it, and we include it in the evaluations.

Energy profiling and energy awareness. Xu et al. [19] and Xu and Buyya [43] managed to apply
a brownout mechanism in container-based data centers through resource overbooking, autoscal-
ing, and power-saving techniques, which dynamically deactivates optional containers or physical
machines for energy consumption control in response to workload changes. Such research draws
a parallel to our study, which aims to minimize cloud resource rental costs through efficient task
packing and resource utilization optimization. Provisioning/deprovisioning of a VM instance from
the public cloud is equivalent to activating/deactivating a physical machine.

3 PROBLEM FORMALIZATION

This section enumerates our assumptions for container-based applications and cloud resources,
followed by the problem definition.

3.1 Assumptions

We assume a container orchestration framework deployed on top of an IaaS cloud environment as a
service provider, which has unlimited access to VM instances for on-demand resource provisioning
and deprovisioning. Cloud applications could be submitted to the service provider by multiple
users simultaneously and charged by the configurations of requested resources (CPU, memory,
storage, etc.) and billing periods. Our motivation is to optimize this resource management process
with the lowest amount of costs. Hence, our assumptions are listed next.

ACM Transactions on Internet Technology, Vol. 20, No. 2, Article 15. Publication date: April 2020.

15:8 Z. Zhong and R. Buyya

3.1.1 Workload Models. We consider workload models consisting of two types of containerized
tasks:

(1) Long-running services that require high availability, stability, and low latency, such as
web-based applications and databases.

(2) Batch jobs that have a limited lifetime from a few seconds to a few days with looser per-
formance requirements. These jobs could tolerate being stopped and migrated to another
compute node.

These are the two most typical workloads used by most existing cluster management systems,
such as Borg and Alibaba. We assume that all tasks specify the amount of requested resources
with the best-effort QoS requirement, including CPU and memory. To ensure successful task de-
ployments, tasks will only be allocated to nodes with at least their required amount of resources
available. Since resource heterogeneity, elasticity, and task migration are the key concerns in this
work, workload characterization is limited to long-running services and batch jobs without further
considerations on detailed workload behaviors such as resource consumption patterns or task de-
pendencies. Application modeling for complex scenarios, such as resource co-location, overbook-
ing, and time-based workload prediction discussed in other works [13, 16, 24, 38], is not considered
within the scope of this work.

As Kubernetes does not support live pod migration or replicating new pods from checkpoint
images, we employ a task migration approach based on Checkpoint/Restore in Userspace (CRIU)
[29] to simulate the migration process with the following assumptions:

(1) Tasks could be migrated without progress loss.
(2) There are no hard scheduling constraints defined in job configurations
(3) Both long-running services and batch jobs are configured as single-container pods, as the

“one-container-per-pod” model is the most common Kubernetes use case. Multicontainer
pods composed of modular containers with inner task dependencies, such as Sidecar Con-
tainers and Ambassador Containers [41], are beyond the scope of our study.

(4) Each task is stand-alone without dependencies to others. To simplify the overall task struc-
ture, workflows with directed acyclic graphs of tasks are not considered [42].

3.1.2 Resource Configurations. Kubernetes is a cloud-native platform that not only manages
container orchestration but also utilizes cloud provider capabilities, such as resource elasticity, au-
toscaling, IP allocation, security, monitoring, load balancing, and multiregion deployment. Hence,
the public cloud is the ideal fit for Kubernetes. It supports a virtual cluster to be resized over time
on an on-demand basis with heterogeneous VMs of various dimensions, such as resource capac-
ities (CPU, RAM, etc.), processor type, and performance. Furthermore, costs could be evaluated
explicitly based on the rental prices of the underlying instance types. Although hosting a Kuber-
netes cluster on top of physical servers could save platform virtualization cost for VM provisioning
with a potentially higher performance ratio and shorter response time, the management and main-
tenance costs are excessively high and time consuming. Each physical server must be configured
and maintained manually in terms of node initialization, failure recovery, IP allocation, volume
management, and load balancing [3]. Autoscaling and multiregion deployment will not be plausi-
ble. Therefore, we only consider virtual Kubernetes clusters composed of heterogeneous VMs in
our resource configuration assumptions:

(1) The IaaS cloud environment provides heterogeneous VMs with various configurations
(CPU, memory, storage, etc.) and prices. Following the prevalent pay-as-you-go billing
standard at mainstream cloud providers, VM instances are charged by the minute,

ACM Transactions on Internet Technology, Vol. 20, No. 2, Article 15. Publication date: April 2020.

A Cost-Efficient Container Orchestration Strategy 15:9

assuming any partial usage rounded up to the closest minute. The expense of an instance
is evaluated per minute with reference to the Microsoft Azure B-series instance type with-
out impacting the significance of the results.

(2) VM instances could be provisioned or deprovisioned at any time. On the one hand, it may
take a few minutes to boot up a new instance and merge it into the current cluster. Such
a time gap is called an instance acquisition lag. On the other hand, it only needs a few
seconds to shut down a running instance.

(3) During the evaluation process of autoscaling, each VM type is associated with a cost-
efficiency score defined by its price p and normalized used constraining resource nc:

Score =
nc

p
.

This figure is referenced to find the instance with the lowest cost per resource used [21]. The
normalized used constraining resource is calculated by computing the utilization for each resource
type within the constraining scope, including CPU usage cu and memory usage mu:

nc = w1 × cu +w2 ×mu .

To balance CPU and memory utilization during resource allocation, they are evaluated equally
[34] with their weights, namely w1 and w2, both set as 0.5.

3.2 Problem Definition

We adopt the cloud application model derived from Mao and Humphrey [25]. The performance of
each VM is defined as a vector with reference to the predicted execution time of each task Si , the
cost per billing period cv , and the evaluated acquisition lag laдv :

VMv =
{ [
tSi

]
v , cv , laдv

}
.

Hence, the cost of each running task is tSi
× cv . Based on this assumption, our orchestration

strategy consists of three parts:

(1) Scheduling: The scheduling algorithm decides the best-fit resource allocation to compute
node VMv for task Si at time point t:

Schedulet = {Si → VMv}.
(2) Autoscaling: It is decided by the autoscaling mechanism how many new instances Nv of

each VM type VMv should be provisioned at time point t in response to the workload
fluctuation within the cloud cluster:

Scalinдt = {VMv , Nv }.
(3) Rescheduling: At time point t, the rescheduling algorithm picks out each VM instance

VMv of which the resource utilization ratio ui remains below a threshold for a certain
amount of time, under circumstances where there is enough space on the other nodes to
deploy the tasks Sv currently running on it. Furthermore, this instance is shut down after
all of its tasks are migrated to other nodes:

Reschedulinдt = {VMv , Sv }.

Therefore, our primary goal is to develop a solution with these three parts, which minimizes
the overall cost C:

Min (C) = Min ��
∑

v

cvNv
�
� .

ACM Transactions on Internet Technology, Vol. 20, No. 2, Article 15. Publication date: April 2020.

15:10 Z. Zhong and R. Buyya

Fig. 1. System architecture.

4 SYSTEM ARCHITECTURE

As is depicted in Figure 1, our approach is built as a customized scheduling component on top of the
K8s platform. Worker nodes are divided into two node groups with heterogeneous configurations,
including a batch node group with short-living VMs that only handle batch jobs and a long-running
node group with steady, cost-saving instances that only accept long-running services. Each node
group is bound with different scheduling and autoscaling algorithms. Its task processing lifecycle
contains the following steps:

(1) Each new task is submitted to the application queue with a metadata file specifying its
name, type, container image, and amount of requested resources.

(2) Task Packer periodically consumes the application queue and classifies the pending jobs
by their types and estimated runtime. It decides when and where tasks are scheduled.

(3) Task Packer acquires the latest VM instance list from Resource Profiler and generates job-
instance name bindings for further deployments. If there are not enough resources in the
cluster, extra instances will be acquired from the IaaS cloud through autoscaling.

(4) The cloud adaptor reads the name bindings sent from Task Packer and accordingly man-
ages job deployments in the K8s cluster.

(5) At the end of each scheduling cycle, if the application queue stays empty without any
new jobs submitted for a configurable period (e.g., 5 minutes), the VM cleaner will shut
down those underutilized VMs in the batch node group after migrating the existing jobs
on them to other available VMs.

4.1 Resource Profiler

Resource Profiler keeps a list of all available instances in the K8s cluster with their types, capacities,
latest statuses, and available resources, among others. For a large-scale container orchestration
system, it is computationally expensive to retrieve the list of available instances directly from the
API server in every scheduling cycle. Therefore, it is necessary to keep a snapshot of the latest
cluster status to reduce response time. Based on this assumption, Resource Profiler is built on top
of the Cassandra database [28], with all VM instance information stored as time-series data in the
data structure shown in Table 3.

The cluster status stored in Cassandra will be updated by Resource Profiler under the following
scenarios:

(1) New task deployment
(2) Existing task termination
(3) Rescheduling
(4) VM provisioning
(5) VM deprovisioning.

ACM Transactions on Internet Technology, Vol. 20, No. 2, Article 15. Publication date: April 2020.

A Cost-Efficient Container Orchestration Strategy 15:11

Table 3. Data Structure in Cassandra

Column Name Data Type

event_time timestamp
instance_name text
instance_type text
runtime int
ramcapacity decimal
cpucapacity decimal
ramavailable decimal
cpuavailable decimal

4.2 Cloud Adaptor

Implemented using K8s API and OpenStack API, Cloud Adaptor plays the role of a broker between
the scheduling component and the K8s cluster with the following functionalities:

(1) Task deployment
(2) VM instance acquisition from the IaaS cloud into the K8s cluster
(3) VM instance deprovisioning
(4) Container migration.

Since K8s does not presently support live pod migration or container checkpointing, we im-
plement a workaround solution based on the migration of a single container to preserve task
progress with minimal service disruption. The CRIU project provides the functionality of check-
pointing/restoring Docker-based containers under the Linux environment [23]. By adopting CRIU,
a container could be live captured into a transmittable format, whereas its memory state could be
transferred and stored in the image file through memory dumping [29]. Hence, the container cou-
pled to a pod could be moved from the source pod to the destination pod without losing task
progress. In case of any unexpected failures during the migration process, we choose the “leave-
running” mode for memory dumping, which checkpoints the container and leaves it running af-
terward. As internal data transmission within the K8s cluster is quite limited and communications
between nodes are not allowed at the orchestration level, container checkpoint images are manu-
ally transported between nodes through Linux SCP (Secure Copy Protocol) within our design. The
overall migration process of a single-container pod consists of the following steps:

(1) Checkpoint the container belonging to the pod at the source node.
(2) Copy the container image to the destination node through SCP.
(3) Receive data until the checkpoint image arrives.
(4) Restore the container from the image.
(5) Once container migration is complete, eliminate the pod at the source node.
(6) If data transmission fails, it will be retried within a configurable number of times (three

times by default). In case of any irrecoverable situations (e.g., destination node crashes),
the migration process would be terminated with the original pod left running at the source
node and all relevant changes rolled back.

As the manually migrated container in the destination node is not backed by any controller
objects, it is not controlled by kubelet. Its execution status and resource allocation will be mon-
itored and managed by Resource Profiler. Therefore, this approach is only feasible for emulating
workload migrations across nodes.

ACM Transactions on Internet Technology, Vol. 20, No. 2, Article 15. Publication date: April 2020.

15:12 Z. Zhong and R. Buyya

4.3 Task Packer

Task Packer is a customized K8s scheduler that decides when and where a pod should be deployed.
Its primary objective is to achieve high cost efficiency and quick deployments. It supports hetero-
geneous configurations for two main types of workloads: (1) long-running services that should
never go down, such as web applications and databases, and (2) batch jobs that could take from
a few seconds to a few days to finish. The core procedures in the task packing mechanism are
described as follows:

(1) Task bundling: Jobs are periodically consumed from the application queue and classified
into separate task groups, according to their job types and estimated runtime. In other
words, batch jobs and long-running services are packed into two separate task groups.
Furthermore, batch jobs are sorted by their runtime in descending order. The primary
motivation of task bunding is tight task allocation by assigning tasks with the same type
and similar runtime to the same compute node. Hence, these tasks would complete around
the same time so that the node could be terminated for cost saving if the workload falls
down.

(2) Task scheduling: With the current node groups retrieved from Resource Profiler in each
scheduling cycle, each task group is mapped to its corresponding node group, according
to its job type. Then job-instance name bindings are generated by scheduling algorithms
in terms of task allocation.

(3) Autoscaling: If some tasks cannot be scheduled to any existing nodes due to resource short-
age, autoscaling algorithms will be triggered to launch more instances as needed. Since
there are multiple node groups within the cluster, Task Packer would determine which
node group should be scaled up, based on the types and volumes of the pending tasks left
after the scheduling phase.

4.4 Instance Cleaner

Instance Cleaner is an extension of the K8s CA deprovisioning feature. Within the scope of our
work, only batch jobs are assumed to be tolerant of being frozen and migrated. However, long-
running jobs are not considered feasible for task migrations with regard to the possible risk of
impacting service stability (e.g., stateful web applications currently handling requests). By the end
of each scheduling cycle when no batch jobs remain in the application queue, Instance Cleaner
retrieves all underutilized instances from Resource Profiler in ascending order and starts the
rescheduling process from the worst-utilized node. Since it is always more time consuming for
provisioning than deprovisioning, Instance Cleaner should avoid frequent deprovisioning, which
may lead to severe QoS degradation and high task delay.

5 ORCHESTRATION ALGORITHMS

Our primary goal is cost saving with heterogeneous resource configurations under the Kubernetes-
based cloud environment in three ways: (1) by supporting heterogeneous task configuration to
optimize the initial placement of containers, (2) by resizing the cluster through autoscaling in
response to the workload fluctuation at runtime, and (3) by rescheduling and deprovisioning of
underutilized VM instances.

5.1 Scheduling

For long-running services, the scheduling process could be regarded as an online version of
the two-dimensional bin packing problem. Each pod is associated with two properties: CPU
and memory requests. Our goal is to allocate these pods with the least number of VMs. As one

ACM Transactions on Internet Technology, Vol. 20, No. 2, Article 15. Publication date: April 2020.

A Cost-Efficient Container Orchestration Strategy 15:13

of the prevalent approximation algorithms to solve this scenario, the best fit decreasing (BFD)
bin packing algorithm [26] would arrange each pod to the most utilized instance with enough
requested resources. Assuming CPU as a compressible resource, memory is evaluated at a higher
priority than CPU when ranking the available instances in BFD for each pod. Executing the BFD
algorithm in Resource Profiler with n available instances has time complexity of O (logn).

However, batch jobs are scheduled starting from the longest task by an extended time-bin BFD
algorithm. Each batch node is associated with a runtime field that represents the remaining run-
time of the longest batch job deployed on the node. In each scheduling cycle, instances in the batch
node group are divided into multiple time bins defined by their runtimes rt and scaling cycle sc:

bin =
rt

sc
.

The reason behind this is twofold: (1) grouping batch jobs with similar runtime and (2) resource
utilization prediction within the next scaling cycle. Each bini contains tasks with remaining run-
times falling within its corresponding time interval [i × sc, (i + 1) × sc). At the initial stage, nodes
from the same bin as the batch jobs are scanned through the BFD algorithm. If no node is eligible
within its original bin, instances in progressively greater bins will be considered. After examina-
tion of all of the greater bins, the lesser bins could also be checked in descending order until a
suitable instance is found. If no scheduling plan can be produced after all of the evaluations men-
tioned earlier, autoscaling algorithms will be invoked accordingly. In a batch node group of n bins
where bins j to k are iterated in this function, the total time overhead T is

T =
k∑

i=j

ti .

In the worst case, where j = 0 and k = n − 1, all bins are checked before finding a suitable node.
When j = k as the original time bin of the task, only one bin is examined as the best case.

ALGORITHM 1: BFD

Input: Pending pod p and node group ng

Output: Schedule plan S = {p→ node}

1. select node, min(node.availableRAM, node.availableCPU) from ng

2. where node.availableRAM >= p.memory && node.availableCPU >= p.CPU
3. S = {p→ node}
4. If(p.runtime > node.runtime) then

5. node.runtime = p.runtime
6. end if

7. return S

ALGORITHM 2: Time-bin BFD

Input: Pending pod p, batch node group ng, and scaling cycle sc

Output: Schedule plan S = {p→ node}

1. int bin = p.runtime/sc
2. for(int i = bin; i <= ng.maxBin; i++)
3. S = BFD(p, nдi)
4. If(S != null) then

5. return S

6. end if

ACM Transactions on Internet Technology, Vol. 20, No. 2, Article 15. Publication date: April 2020.

15:14 Z. Zhong and R. Buyya

7. end for

8. for(int i = bin; i >= ng.minBin; i–)
9. S = BFD(p, nдi)
10. If(S != null) then

11. return S

12. end if

13. end for

14. return null

5.2 Autoscaling

For a long-running node group, a greedy autoscaling (GA) algorithm is implemented to find a
combination of heterogeneous VMs with the highest cost-efficiency scores in terms of the re-
quested resource volume by iterating through the available instance flavor list multiple times. As
for the batch node group, the total resource capacity of the current batch nodes sitting in the
0-bin is checked first, with their runtimes less than the scaling cycle. Since these resources can be
released before any instance acquisitions, their capacity directly affects the autoscaling decision.
Autoscaling will be considered unnecessary if the capacity could satisfy the need for all pending
jobs. Otherwise, an enhanced GA algorithm is invoked with the 0-bin capacity deducted from the
requested resource volume.

For scaled instance v , the time complexity of the scoring process within f flavors is O (f). The
node provisioning time Tv is the sum of scoring time Ts and instance acquisition lag L:

Tv = Ts + L.

Assuming that n instances are concurrently scaled up in response to p pending pods, the overall
time overhead Ta of autoscaling is

Ta = max
i ∈n

(Ti) .

ALGORITHM 3: GA

Input: Pending pods p and available VM instance flavors f

Output: VM instance combination vc

1. tcpu← total CPU request sum(p.CPU)
2. tram← total RAM request sum(p.memory)
3. while(tcpu > 0 || tram > 0)
4. fi ← flavor with the highest cost-efficiency score max(scoref)
5. tcpu = tcpu - fi .CPU
6. tram = tram - fi .RAM
7. vc.append(fi)
8. end while

9. return vc

ALGORITHM 4: Batch node group autoscaling

Input: Pending pods p, batch node group np, and available VM instance flavors f

Output: VM instance combination vc

1. tcpu← total CPU request sum(p.CPU)
2. tram← total RAM request sum(p.memory)
3. for node in np0

ACM Transactions on Internet Technology, Vol. 20, No. 2, Article 15. Publication date: April 2020.

A Cost-Efficient Container Orchestration Strategy 15:15

4. tcpu = tcpu - node.CPUCapacity
5. tram = tram - node.RAMCapacity
6. end for

7. if(tcpu <= 0 && tram <= 0) then

8. return null
9. end if

10. while(tcpu > 0 || tram > 0)
11. fi ← flavor with the highest cost-efficiency score max(scoref)
12. tcpu = tcpu - fi .CPU
13. tram = tram - fi .RAM
14. vc.append(fi)
15. end while

16. return vc

5.3 Rescheduling

If the resource utilization ratio of a batch node continuously stays under a configurable threshold
(50% by default), its running batch jobs will be migrated by a rescheduling algorithm. If there is
not enough space in the cluster to redeploy all containers in the pods, task migration will not be
triggered. Otherwise, the underutilized node will be gracefully shut down for cost saving after
rescheduling completes without losing task progress. For rescheduled pod m, the migration time
Tm is decided by the container image size C, available bandwidth B, and task termination time K

at the source node:

Tm =
C

B
+ K .

Hence, the time overheadTr of the whole rescheduling process includes the maximum migration
time in all of the underlying pods p and a constant cost D for node shutdown:

Tr = max
i ∈p

(Ti) + D.

ALGORITHM 5: Rescheduling

Input: Underutilized batch node n, its running pods p, and its corresponding node group ng

1. an← ng - n, other available nodes in ng

2. for each pi in p

3. Si = schedule(pi , an)
4. if(Si is null)
5. break;
6. end if

7. end for

8. if(all Si is not null) then

9. deploy migrations defined by all Si and shut down n

10. else

11. rescheduling is not triggered due to resource shortage
12. end if

6 PERFORMANCE EVALUATION

To compare the cost and performance of the proposed approach (HTAS) with related algorithmic
works, including the default K8s framework, COCA [22], and Stratus [21], we implemented our

ACM Transactions on Internet Technology, Vol. 20, No. 2, Article 15. Publication date: April 2020.

15:16 Z. Zhong and R. Buyya

Table 4. Task Configurations

Type Name Task Memory Requests CPU Requests

Batch job batch_small sleep 1–4 minutes 0.3 GiB 100 m

batch_med sleep 4–8 minutes 0.6 GiB 200 m

batch_large sleep 9–12 minutes 0.9 GiB 300 m

Long-running service nginx nginx server [30] 0.4 GiB 100 m

Fig. 2. Cloud workload patterns.

algorithms and carried out the empirical evaluation by deploying experiments on the Australian
National Cloud Infrastructure (Nectar) [27].

6.1 Workload

We evaluate our approach through different cloud workload patterns by utilizing two types of
synthetic applications, including batch jobs and long-running services. As depicted in Table 4, the
workload models from Rodriguez and Buyya [22] are adopted in our experiments.

As shown in Figure 2, four representative workload scenarios are included in our experiments:

(1) A stable workload pattern represents situations where the workload density does not have
any obvious fluctuations.

(2) A growing workload pattern may emulate a scenario where an application suddenly be-
comes popular and attracts a considerable number of visits, holding a high accelerating
rate.

(3) A cycle/bursting workload could simulate online shopping websites where the network
traffic experiences periodical changes and reaches a peak during certain time ranges.

(4) An on-and-off workload pattern depicts applications periodically having a short active
stage, such as map-reduce jobs executed on a daily or weekly basis.

6.2 Testbed

Four Kubernetes-based virtual clusters are configured on Nectar Cloud to evaluate the proposed
container orchestration algorithms under the workloads aforementioned. There are two types of
nodes in each cluster:

(1) Master node: The master node manages the cluster’s control panel and global state. The
default K8S master is initialized with the original K8s scheduler and CA as mentioned in

ACM Transactions on Internet Technology, Vol. 20, No. 2, Article 15. Publication date: April 2020.

A Cost-Efficient Container Orchestration Strategy 15:17

Table 5. Initial Node Configurations

Node Type VM Flavor VCPU RAM (GiB) OS

Master m3.small 2 4 Ubuntu 17.01
Worker m1.medium 2 8 Ubuntu 17.01

Table 6. System Parameters

Parameter Value

Scheduling cycle 20 seconds
Autoscaling cycle 5 minutes
The upper threshold of resource utilization ratio for underutilized nodes 50%
Maximum number of times for retrying container migration 3

Table 7. VM Pricing Details

Nectar Instance Flavor VCPU RAM (GiB) Price ($/hour)

t3.xsmall 1 1 0.0198
m3.xsmall 1 2 0.0344
m3.small 2 4 0.0686
m1.medium 2 8 0.1371
m1.large 4 16 0.2746
m1.xlarge 8 32 0.5479

Section 2. COCA master adopts the default K8s CA with its customized best-fit scheduler
and rescheduler that follows an aggressive compaction strategy through task eviction.
Stratus master is configured with its customized LRP scheduler and cluster scaler based
on HotSpot [51]. The extended scheduling components of our work described in Section 4
are deployed in HTAS master.

(2) Worker node: The worker node maintains the K8s runtime environment and applications
assigned by master. Each worker node is initialized similarly with the default K8s kubelet.

Each cluster consists of one master node and two worker nodes, with reference to the node con-
figurations described in Table 5 and other system parameters depicted in Table 6. To avoid signifi-
cant costs of cross-region task migrations, we limit VM instance acquisitions to the melbourne-qh2

region where the bandwidth per VM is 1,200 Mbps. Since Nectar Cloud provides free cloud service
for researchers, the costs of resource usage are calculated according to the prevalent pay-as-you-go
billing standard with reference to Microsoft Azure B-series heterogeneous instance types detailed
in Table 7. The VMs selected are of different types and capabilities, making it a heterogeneous
computing environment.

6.3 Results

Each workload is repeated for 10 iterations to calculate the average values of significant figures
for verification of the results with higher validity. Hence, all test results shown are mean values
over 10 runs with the error bars representing the maximum and minimum. As shown in Figures 3
through 8, each solution is primarily evaluated based on total cost, average task scheduling time,
resource utilization, number of running worker nodes, rescheduling frequency, and average time
overhead of task migration. We define scheduling duration as the time gap from the moment when

ACM Transactions on Internet Technology, Vol. 20, No. 2, Article 15. Publication date: April 2020.

15:18 Z. Zhong and R. Buyya

Fig. 3. Total cost and average task scheduling time.

Fig. 4. Resource utilization.

a job is submitted to the time point when it is deployed in running status. The total cost in Figure 3
is estimated based on the accumulation of the resource usage by each VM instance when the same
combination of batch jobs and long-running services are successfully deployed and completed.

Stable workload pattern. In this scenario, the workload density stays at a steady level. HTAS
outperforms the default K8s by cost reduction of 27% through tight task packing and cost-efficient
autoscaling, as K8s follows a loose packing manner based on the LRP algorithm and rigid homo-
geneous autoscaling strategy. As observed in Figure 4(a) and Figure 5(a), all clusters experience
resource overprovisioning after the first three rounds of autoscaling and their resource utiliza-
tions start to drop. HTAS, COCA, and Stratus employ different task rescheduling strategies to
clean underutilized nodes and improve utilization, whereas Figure 6(a) and Figure 7(a) depict their

ACM Transactions on Internet Technology, Vol. 20, No. 2, Article 15. Publication date: April 2020.

A Cost-Efficient Container Orchestration Strategy 15:19

Fig. 5. Number of active worker nodes in response to the workload over time.

Fig. 6. Task migration frequency.

Fig. 7. Node deprovisioning caused by rescheduling.

task rescheduling and node deprovisioning rates. Compared to the others, HTAS enjoys the high-
est node deprovisioning rate after rescheduling and improves resource utilization more efficiently.
Specialized for orchestration of batch jobs, Stratus’s runtime bin LRP algorithm could co-locate
both long-running services and batch jobs to the same instance. Since long-running services are
not feasible for migration, this leads to a lower rescheduling rate. As COCA applies direct task
eviction and relocation during rescheduling, it causes severe task progress loss. Therefore, HTAS
outperforms Stratus and COCA by cost saving of 10% and 25%, respectively. As a tradeoff, HTAS
has the highest task scheduling time.

ACM Transactions on Internet Technology, Vol. 20, No. 2, Article 15. Publication date: April 2020.

15:20 Z. Zhong and R. Buyya

Fig. 8. Average time overhead of task migration.

Growing workload pattern. Here, the workload intensity keeps increasing over time. As shown
in Figure 4(b) and Figure 5(b), both COCA and the default K8s continuously suffer from cluster
overloading with their resource utilization ratios close to 100%, due to their limited autoscaling
mechanisms (only scaling up a homogeneous instance per scaling cycle). Consequently, most jobs
remain in pending status with poor QoS performance and long response time. However, this leads
to higher costs, as the expenses of resource usage from all active long-running jobs keep accu-
mulating simultaneously. By contrast, HTAS supports an on-demand autoscaling strategy with
an elastic pricing model for cost-efficiency evaluation. Hence, HTAS outperforms COCA and the
default K8s by cost reduction of 24% and 23%, respectively, and additionally, its average task sched-
uling time is also 47% and 46% shorter than them, respectively. As Stratus also supports dynamic
autoscaling of heterogeneous instances to meet the rising workload in a cost-efficient manner, its
average task scheduling time, resource utilization, and number of active instances are quite close
to HTAS. Task rescheduling is not triggered under this scenario, as the workload density keeps
rising and overall resource utilization remains high.

Cycle workload pattern. The cycle workload pattern experiences periodical changes and reaches
a peak/bottom in each cycle. As shown in Figure 4(c) and Figure 5(c), resource utilization of the de-
fault K8s starts to fall after the workload reaches the peak in each cycle. By utilizing task reschedul-
ing to deal with the periodical workload decrease and avoid resource wasting, HTAS reduces the
cloud bill of the default K8s by 30%. Although COCA’s rescheduling algorithm could improve re-
source utilization and prevent overprovisioning to a certain degree, the task progress loss caused
by its task eviction approach remains a performance bottleneck in terms of QoS assurance and
migration costs as observed in Figure 8. Hence, HTAS outperforms COCA by cost reduction of
15%. As presented in Figure 6(b) and Figure 7(b), Stratus enjoys the lowest rescheduling rate due
to its task co-location strategy, which leads to poor overall utilization. Compared to Stratus, HTAS
also reduces costs by 12%.

On-and-off workload pattern. Similar to the cycle pattern, the workload density periodically ex-
periences a dramatic decrease after each active period. In light of the same reasons aforementioned,
HTAS outperforms the default K8s, COCA, and Stratus by cost reduction by 32%, 22%, and 18%,
respectively. Since Stratus manages the bursty workload during each active period through task
co-location in a loose packing manner, no task rescheduling is observed in the Stratus cluster under
this scenario.

Figure 8 shows the average time overhead of different task migration approaches. The migration
duration in HTAS consists of container migration and task termination at the source node. Because
of the small task sizes in our experiments, container migration usually finishes under 10 seconds,
which is only a small portion of the overall cost. If large tasks and cross-region migrations are
considered, more sophisticated migration strategy is needed. By contrast, Stratus includes node
provisioning time as an extra cost. It may apply for a smaller/cheaper instance as a replacement

ACM Transactions on Internet Technology, Vol. 20, No. 2, Article 15. Publication date: April 2020.

A Cost-Efficient Container Orchestration Strategy 15:21

of an underutilized node where the running jobs cannot be moved elsewhere during rescheduling.
However, this could easily lead to frequent scaling and overprovisioning if those jobs complete
before any instance acquisition. Moreover, the underutilized node is tagged as unschedulable be-
fore it is terminated, which could also lead to resource wasting during the time gap of instance
acquisition lag and container migrations. Considering that batch jobs are usually short lived [13],
scaling extra instances for migration is rather impractical. As for COCA, it enjoys the highest time
overhead of task migration. Since it directly evicts and redeploys a task during migration, task
progress loss becomes an inevitable cost that depends on the nature of the underlying task. The
longer the task runs before migration, the more the overall system performance will suffer from
resource wasting and QoS degradation.

Overall, HTAS outperforms the other solutions by cost reduction through tight task packing,
cost-efficient autoscaling, and resource-saving rescheduling. Except for the growing workload pat-
tern, the average task scheduling time of HTAS is higher than that of the other solutions, which
could be regarded as an acceptable tradeoff for cost-efficiency.

7 CONCLUSION AND FUTURE DIRECTIONS

In light of elastic compute resources, we propose HTAS in response to the dynamic business vol-
ume for four types of representative cloud workloads. Each application model is coupled with
a specific priority method and node group to make task scheduling and scaling decisions in a
cost-efficient manner through resource utilization optimization and elastic resource pricing. Fur-
thermore, our rescheduling mechanism prevents resource wasting and overprovisioning while
minimizing QoS degradation through container checkpointing. It is demonstrated through our
evaluation results that our proposed approaches could reduce the overall cost by 23% to 32% for
different types of cloud workload patterns when compared to the default Kubernetes framework.

Only the heterogeneous configuration of VM sizes is supported at this stage, due to the limitation
of our test environment. VM types should also be considered for different task requirements. For
instance, the performance of a task may fluctuate drastically on different instance types. A task
with a strict time constraint would prefer a compute-optimized machine (high expense per time
unit) instead of a standard machine, on account of the significant execution time reduction. If the
task processing time could be estimated on different types of VMs, more pricing models could be
provided to minimize the overall cost under the QoS requirement. Furthermore, QoS management
is another improvement worth investigating. Within the scope of our work, we assume all jobs
with the best-effort QoS requirement. However, jobs are usually associated with specific service-
level agreements, such as application throughput requirement and execution time constraint. A
more sophisticated approach is needed to support heterogeneous service-level-agreement-aware
resource management.

In this work, we assume that container migrations across nodes through CRIU would not lose
task progress or cause severe QoS degradation. Although it appears to be an ideal solution for
an unbalanced cluster load, it is limited by various factors. For instance, during the initial stage
of container checkpointing, container image creation would lead to a certain level of performance
and QoS degradation. However, this could be unacceptable for applications with rigid requirements
regarding performance and stability, such as a real-time data monitoring system under high work-
load density. Therefore, it is only feasible for services that could tolerate a short period of downtime
without impacting their task progress. Another important factor is network latency, which decides
whether the migration could be successfully finished within the given time constraint. However,
the data volume and status of an application could affect the migration process. Image generation
and data transmission across nodes could be compute expensive and time consuming for large
applications with fast-changing data [31].

ACM Transactions on Internet Technology, Vol. 20, No. 2, Article 15. Publication date: April 2020.

15:22 Z. Zhong and R. Buyya

Autoscaling is an extremely time-sensitive process by satisfying the need of dynamically chang-
ing workload through instance acquisition [25]. As one of the key factors in autoscaling, the in-
stance acquisition lag could impact the overall resource utilization more than the task execution
time. If the instance acquisition lag is unexpectedly high, the autoscaling decisions might not
be optimal, which could directly lead to underprovisioning or overprovisioning cases. Therefore,
our next goal is to reduce and precisely estimate the instance acquisition lag. Another possible
future direction would be cloud workload prediction. Considering instance acquisition lag and
workload prediction, the autoscaling decision could be further optimized in response to the work-
load changes at the exact time point of instance acquisitions. Hence, various resource demand
prediction models could be applied to improve the accuracy of dynamic task volume estimates
(e.g., [32, 33]).

ACKNOWLEDGMENT

We thank Shashikant Ilager for his help in improving the quality of the article.

REFERENCES

[1] R. Mocevicius. 2015. CoreOS Essentials. Packt Publishing Ltd.
[2] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes. 2015. Large scale cluster management

at Google with Borg. In Proceedings of the 10th European Conference on Computer Systems. 18.
[3] K. Hightower, B. Burns, and J. Beda. 2017. Kubernetes: Up and Running: Dive into the Future of Infrastructure. O’Reilly

Media.
[4] M. A. Rodriguez and R. Buyya. 2019. Container-based cluster orchestration systems: A taxonomy and future direc-

tions. Software: Practice and Experience 49, 5 (2019), 698–719.
[5] H. D. Karatza. 2004. Scheduling in distributed systems. In Performance Tools and Applications to Networked Systems.

Lecture Notes in Computer Science, Vol. 2965. Springer, 336–356.
[6] G. Copil, D. Moldovan, H. Truong, and S. Dustdar. 2016. rSYBL: A framework for specifying and controlling cloud

services elasticity. ACM Transactions on Internet Technology 16, 3 (2016), 18.
[7] D. Bernstei. 2014. Containers and cloud: From LXC to Docker to Kubernetes. IEEE Cloud Computing 1, 3 (2014), 81–84.
[8] V. Medel, O. Rana, J. Á. Bañares, and U. Arronategui. 2016. Modelling performance and resource management in

Kubernetes. In Proceedings of the 9th IEEE/ACM International Conference on Utility and Cloud Computing (UCC’16).
257–262.

[9] N. Naik. 2016. Building a virtual system of systems using Docker swarm in multiple clouds. In Proceedings of the 2nd

IEEE International Symposium on Systems Engineering (ISSE’16). 1–3.
[10] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz, S. Shenker, and I. Stoica. 2011. Mesos:

A platform for fine-grained resource sharing in the data center. In Proceedings of the 8th USENIX Conference on

Networked Systems Design and Implementation. 295–308.
[11] GitHub. 2019. Marathon. Retrieved March 22, 2020 from https://mesosphere.github.io/marathon.
[12] R. DelValle, G. Rattihalli, A. Beltre, M. Govindaraju, and M. J. Lewis. 2016. Exploring the design space for optimiza-

tions with Apache Aurora and Mesos. In Proceedings of the 9th IEEE International Conference on Cloud Computing

(CLOUD’16). 537–544.
[13] J. Guo, Z. Chang, S. Wang, H. Ding, Y. Feng, L. Mao, and Y. Bao. 2019. Who limits the resource efficiency of my

datacenter: An analysis of Alibaba datacenter traces. In Proceedings of the ACM International Symposium on Quality

of Service (IWQoS’19). 39.
[14] H. Zhang, H. Ma, G. Fu, X. Yang, Z. Jiang, and Y. Gao. 2016. Container based video surveillance cloud service

with fine-grained resource provisioning. In Proceedings of the 9th IEEE International Conference on Cloud Comput-

ing (CLOUD’16). 758–765.
[15] C. Kaewkasi and K. Chuenmuneewong. 2017. Improvement of container scheduling for Docker using ant colony

optimization. In Proceedings of the 9th International Conference on Knowledge and Smart Technology (KST’17). 254–
259.

[16] Q. Liu and Z. Yu. 2018. The elasticity and plasticity in semi-containerized co-locating cloud workload: A view from
Alibaba Trace. In Proceedings of the ACM Symposium on Cloud Computing (SoCC’18). ACM, New York, NY, 347–360.

[17] C. Guerrero, I. Lera, and C. Juiz. 2018. Genetic algorithm for multi-objective optimization of container allocation in
cloud architecture. Journal of Grid Computing 16, 1 (2018), 113–135.

ACM Transactions on Internet Technology, Vol. 20, No. 2, Article 15. Publication date: April 2020.

https://mesosphere.github.io/marathon

A Cost-Efficient Container Orchestration Strategy 15:23

[18] S. Kehrer and W. Blochinger. 2018. TOSCA-based container orchestration on Mesos. Computer Science—Research and

Development 33, 3–4 (2018), 305–316.
[19] M. Xu, A. Toosi, and R. Buyya. 2019. iBrownout: An integrated approach for managing energy and brownout in

container-based clouds. IEEE Transactions on Sustainable Computing 4, 1 (2019), 53–66.
[20] S. Taherizadeh and V. Stankovski. 2018. Dynamic multi-level autoscaling rules for containerized applications. Com-

puter Journal 62, 2 (2018), 174–197.
[21] A. Chung, J. W. Park, and G. R. Ganger. 2018. Stratus: Cost-aware container scheduling in the public cloud. In Pro-

ceedings of the ACM Symposium on Cloud Computing. 121–134.
[22] M. A. Rodriguez and R. Buyya. 2018. Containers orchestration with cost-efficient autoscaling in cloud computing

environments. arXiv:1812.00300.
[23] D. N. Jha, S. Garg, P. P. Jayaraman, R. Buyya, Z. Li, and R. Ranjan. 2018. A holistic evaluation of Docker containers

for interfering microservices. In Proceedings of the 2018 IEEE International Conference on Services Computing. 33–40.
[24] J. Son, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya. 2017. SLA-aware and energy-efficient dynamic overbooking in

SDN-based cloud data centers. IEEE Transactions on Sustainable Computing 2, 2 (2017), 76–89.
[25] M. Mao and M. Humphrey. 2011. Auto-scaling to minimize cost and meet application deadlines in cloud workflows.

In Proceedings of the 2011 International Conference for High Performance Computing, Networking, Storage, and Analysis

(SC’11). 1–12.
[26] J. Kang and S. Park. 2003. Algorithms for the variable sized bin packing problem. European Journal of Operational

Research 147, 2 (2003), 365–372.
[27] Nectar. Home Page. Retrieved March 22, 2020 from https://nectar.org.au/.
[28] Lakshman and P. Malik. 2010. Cassandra: A decentralized structured storage system. ACM SIGOPS Operating Systems

Review 44, 2 (2010), 35–40.
[29] S. Pickartz, N. Eiling, S. Lankes, L. Razik, and A. Monti. 2016. Migrating LinuX containers using CRIU. In High Per-

formance Computing. Lecture Notes in Computer Science, Vol. 9945. Springer, 674–684.
[30] Nedelcu, Clément. 2010. Nginx HTTP Server: Adopt Nginx for Your Web Applications to Make the Most of Your Infras-

tructure and Serve Pages Faster Than Ever. Packt Publishing Ltd.
[31] M. Chen, W. Li, G. Fortino, Y. Hao, L. Hu, and I. Humar. 2019. A dynamic service migration mechanism in edge

cognitive computing. ACM Transactions on Internet Technology 19, 2 (2019) 30.
[32] Z. Gong, X. Gu, and J. Wilkes. 2010. PRESS: PRedictive elastic resource scaling for cloud systems. In Proceedings of

2010 International Conference on Network and Service Management. 9–16.
[33] Khan, X. Yan, S. Tao, and N. Anerousis. 2012. Workload characterization and prediction in the cloud: A multiple time

series approach. In Proceedings of the 2012 IEEE Network Operations and Management Symposium. 1287–1294.
[34] V. Medel, O. Rana, J. Á. Bañares, and U. Arronategui. 2016. Adaptive application scheduling under interference in

Kubernetes. In Proceedings of the 9th IEEE/ACM International Conference on Utility and Cloud Computing (UCC’16).
426–427.

[35] C. T. Joseph and K. Chandrasekaran. 2019. Straddling the crevasse: A review of microservice software architecture
foundations and recent advancements. Software: Practice and Experience 49, 10 (2019), 1448–1484.

[39] U. Paščinsk, J. Trnkoczy, V. Stankovski, M. Cigale, and S. Gec. 2018. QoS-aware orchestration of network intensive
software utilities within software defined data centres. Journal of Grid Computing 16, 1 (2018), 85–112.

[37] P. Kochovski, P. D. Drobintsev, and V. Stankovski. 2019. Formal quality of service assurances, ranking and verification
of cloud deployment options with a probabilistic model checking method. Information and Software Technology 109,
2 (2019), 14–25.

[38] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch. 2012. Heterogeneity and dynamicity of clouds at
scale: Google trace analysis. In Proceedings of the 3rd ACM Symposium on Cloud Computing. 7.

[39] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat, and C. R. Das. 2011. Modeling and synthesizing task placement
constraints in Google compute clusters. In Proceedings of the 2nd ACM Symposium on Cloud Computing. 3.

[40] C. Pahl and B. Lee. 2015. Containers and clusters for edge cloud architectures—A technology review. In Proceedings

of the 3rd IEEE International Conference on Future Internet of Things and Cloud. 379–386.
[41] B. Burns and D. Oppenheimer. 2016. Design patterns for container-based distributed systems. In Proceedings of the

8th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud’16). 2016.
[42] J. Yu and R. Buyya. 2005. A taxonomy of scientific workflow systems for grid computing. ACM SIGMOD Record 34, 3

(2005) 44–49.
[43] M. Xu and R. Buyya. 2019. BrownoutCon: A software system based on brownout and containers for energy-efficient

cloud computing. Journal of Systems and Software 155, 5 (2019), 91–103.
[44] X. Xu, H. Yu, and X. Pei. 2014. A novel resource scheduling approach in container based clouds. In Proceedings of the

17th IEEE International Conference on Computational Science and Engineering. 257–264.
[45] L. Yin, J. Luo, and H. Luo. 2018. Tasks scheduling and resource allocation in fog computing based on containers for

smart manufacturing. IEEE Transactions on Industrial Informatics 14, 10 (2018), 4712–4721.

ACM Transactions on Internet Technology, Vol. 20, No. 2, Article 15. Publication date: April 2020.

https://nectar.org.au/

15:24 Z. Zhong and R. Buyya

[46] R. Buyya, R. N. Calheiros, J. Son, A. V. Dastjerdi, and Y. Yoon. 2014. Software-defined cloud computing: Architectural
elements and open challenges. In Proceedings of the 3rd IEEE International Conference on Advances in Computing,

Communications, and informatics (ICACCI’14). 1–12.
[47] Z. Zhao, A. Taal, A. Jones, I. Taylor, V. Stankovski, I. G. Vega, and C. de Laat. 2015. A software workbench for in-

teractive, time critical and highly self-adaptive cloud applications (SWITCH). In Proceedings of the 15th IEEE/ACM

International Symposium on Cluster, Cloud, and Grid Computing. 1181–1184.
[48] Z. Zhang, C. Li, Y. Tao, R. Yang, H. Tang, and J. Xu. 2014. Fuxi: A fault-tolerant resource management and job sched-

uling system at Internet scale. Proceedings of the VLDB Endowment 7, 13 (2014), 1393–1404.
[49] L. Qi. 2019. Maximizing CPU Resource Utilization on Alibaba’s Servers. Retrieved March 22, 2020 from https://102.

alibaba.com/detail/?id=61.
[50] C. Delimitrou, D. Sanchez, and C. Kozyrakis. 2015. Tarcil: Reconciling scheduling speed and quality in large shared

clusters. In Proceedings of the 6th ACM Symposium on Cloud Computing. 97–110.
[51] S. Shastri and D. Irwin. 2017. HotSpot: Automated server hopping in cloud spot markets. In Proceedings of the 8th

ACM Symposium on Cloud Computing. 493–505.

Received August 2019; revised November 2019; accepted January 2020

ACM Transactions on Internet Technology, Vol. 20, No. 2, Article 15. Publication date: April 2020.

https://102.alibaba.com/detail/?id=61
https://102.alibaba.com/detail/?id=61

