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A sustainable and secure load 
management model for green 
cloud data centres
Deepika Saxena 1,2*, Ashutosh Kumar Singh 1*, Chung‑Nan Lee 3 & Rajkumar Buyya 4

The massive upsurge in cloud resource demand and inefficient load management stave off the 
sustainability of Cloud Data Centres (CDCs) resulting in high energy consumption, resource 
contention, excessive carbon emission, and security threats. In this context, a novel Sustainable 
and Secure Load Management (SaS‑LM) Model is proposed to enhance the security for users with 
sustainability for CDCs. The model estimates and reserves the required resources viz., compute, 
network, and storage and dynamically adjust the load subject to maximum security and sustainability. 
An evolutionary optimization algorithm named Dual‑Phase Black Hole Optimization (DPBHO) is 
proposed for optimizing a multi‑layered feed‑forward neural network and allowing the model to 
estimate resource usage and detect probable congestion. Further, DPBHO is extended to a Multi‑
objective DPBHO algorithm for a secure and sustainable VM allocation and management to minimize 
the number of active server machines, carbon emission, and resource wastage for greener CDCs. 
SaS‑LM is implemented and evaluated using benchmark real‑world Google Cluster VM traces. The 
proposed model is compared with state‑of‑the‑arts which reveals its efficacy in terms of reduced 
carbon emission and energy consumption up to 46.9% and 43.9%, respectively with improved 
resource utilization up to 16.5%.

Nowadays, there is a strong tendency towards “digitization in everything and everything in digitization” across 
the globe which has increased cloud data centre (CDC) traffic exponentially. Likely, the high emission of green-
house gases such as carbon footprints along with heat generation and shared computing-derived multi-tenant 
environment puts a significant question on sustainability and security of CDCs. The electrical energy consump-
tion of CDCs would increase up to 15-fold by 2030, i.e., approximately 8 per cent of projected global demand 
which is estimated to account for more than 3.2 per cent of the total worldwide greenhouse gas  emissions1. The 
power supply avenue has a huge impact on carbon footprint emission such as high carbon emitting source (for 
example, coal) dominates lower carbon sources such as renewable energy (for example, wind, sun) in carbon 
footprint  production2,3. Therefore, by establishing the proactive sustainability and efficiency measures at incep-
tion, and leveraging the latest technology CDCs have to explore using renewable energy such as wind, hydro 
or solar to power data centres and optimising technology to improve its efficiency and operating temperature 
while reducing carbon  emission4. Several factors contribute to the energy and carbon efficiency of  CDCs5,6 which 
must be considered during physical resource distribution and management based on environmental criteria. 
These factors include higher average utilization of physical server machines via virtualization; green power sup-
ply to the servers employing renewable sources of energy for reduced carbon emission; improved power usage 
efficiency (PUE) of the servers to save potential carbon emission; energy-efficient utilization of server machines 
while delivering cloud services to the end-users7. Among these, the most significant factor is efficient manage-
ment of load while distributing physical resources which directly affects the server utilization, PUE and security 
of  CDCs7,8. Nevertheless, while accomplishing a green cloud computing environment, an essential requirement 
of the cloud user i.e., security of application data during processing as well as storage should not be  neglected9. 
Co-residency of multiple users sharing the same server machine maximizes the probability of security threats 
such as data hampering, leakage of sensitive information  etc10. This gives a motivation to develop an effective 
solution for secure and sustainable cloud resource distribution and load management.
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The major challenge entangled with developing such a solution is the trade-off about the contradictory 
objectives during load management. Undeniably, the cloud service provider aspires to maximize the revenues by 
distributing maximum workload on the minimum number of active servers to exhilarate energy efficiency and 
reduce power consumption costs while ignoring the security aspects during load execution. Such a distribution 
of resources allows multiple users to share the common physical machines and accelerates the probability of 
security breaches on VMs executing the workload of different users. Contrary to this, energy efficiency of the 
cloud environment descends and carbon footprint emission rises if the CSP minimizes sharing of the physical 
servers to strengthen the security of users’ workload.

In view of the aforementioned context, this article proposes a novel Secure and Sustainable Load Manage-
ment (SaS-LM) Model to minimize the security threats, power consumption, and carbon emission and maximize 
server resource utilization and PUE. This model analyses cloud workload in anticipation while addressing dif-
ferent resource utilization on virtual machines and manages the entire load while considering multiple factors 
related to security and sustainability. It employs a Multi-layered Feed Forward Neural Network (MFNN) as a 
workload analyser which is optimized by a newly developed Dual-Phase BlackHole Optimization (DPBHO) 
algorithm. Further, a secure and sustainable VM placement (VMP) is presented for optimized allocation of 
physical resource among VMs to serve the perspectives of both cloud user and service providers while procuring 
sustainability of CDCs. For the cloud users, it ingrains the secure placement of VMs by minimizing the prob-
ability of security breaches and reduces the operational cost of CDC for service provider by maximizing server 
resource utilization and minimizing power consumption. Also, the sustainability of the cloud environment is 
enhanced by improving power usage effectiveness and minimizing carbon footprint intensity.

The key contributions of the proposed work are fivefold:

• MFNN-based cloud workload resource usage analyser is developed to forecast resource usage in real-time 
with enhanced accuracy which triggers load shifting to alleviate the effect of over/under-load on the server 
before its actual occurrence and improve performance of CDC.

• A novel DPBHO algorithm is proposed for optimization of MFNN during cloud resource usage estimation. It 
is further extended to a multi-objective DPBHO (i.e., M-DPBHO) for placement of VMs subject to multiple 
constraints and objectives.

• Secure and sustainable VMP is proposed to procure sustainability, energy consumption and security of CDC, 
simultaneously serving the perspectives of both service provider as well as end-user.

• It facilitates the secure execution of user applications by minimizing the resource sharing among users of 
common physical server machines in real-time.

• The experimental simulation and evaluation of the proposed model by using a real benchmark dataset reveal 
that the proposed work outperforms state-of-the-art approaches in terms of various performance metrics.

The rest of the paper is organized as follows: Section “Results” discusses experimental set-up and results of 
workload prediction, resource utilization, power consumption, sustainability, security, and trade-off among 
the obtained results. The proposed method is discussed in Section “Method” includes Dual-phase Black-Hole 
Optimization, cloud workload usage analysis, secure and sustainable VM placement, and VM management and 
SaS-LM operational summary. The background and related discussion is given in Section “Background and 
discussion”. Finally, Section “Conclusion and future work” entails conclusive remarks and future scope of the 
proposed work.

Results
The simulation experiments are executed on a server machine assembled with two  Intel®  Xeon® Silver 4114 CPUs 
with 40 core processors and a 2.20 GHz clock speed. The server machine is deployed with 64-bit Ubuntu 16.04 
LTS, having main memory of 128 GB. The data centre environment included three different types of servers 
and four types of VMs configuration shown in Tables 1 and 2. The resource features like power consumption 
( PWmax , PWmin ), MIPS, RAM, and memory are taken from real server  IBM11 configurations where S1 is ‘Pro-
LiantM110G5XEON3075’, S2 is ‘IBMX3250Xeonx3480’ and S3 is ‘IBM3550Xeonx5675’. The VMs configuration 
is inspired by the VM instances of the Amazon  website12. Table 3 shows the experimental set-up parameters 
and their values.

Google Cluster Dataset (GCD) is utilized for performance estimation of SaS-LM and comparative approaches 
which contains resources CPU, memory, disk I/O request and resource usage information of 672,300 jobs exe-
cuted on 12,500 servers for the period of 29  days13. The CPU and memory utilization percentage of VMs are 
obtained from the given CPU and memory usage percentage for each task in every five minutes over period of 
twenty-four hours.

Table 1.  Server configuration.

Server PE MIPS RAM (GB) PWmax PWmin/PWidle

S1 2 2660 4 135 93.7

S2 4 3067 8 113 42.3

S3 12 3067 16 222 58.4
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Table 4 reports the performance metrics: MAE ( ̟ MAE ), MSE ( ̟ MSE ), PUE, carbon footprint rate (CFR), 
resource contention rate (RCR ), probability of co-residency threats ( � ), power consumption (PW), resource 
utilization (RU), the number of VM migrations (Mig#), and SLA violation ( SLAV ) achieved for GCD workloads 
for varying sizes of the data centre (200–1000 VMs) over 400 minutes.

The accuracy of forthcoming workload estimation using the proposed DPBHO optimized MFNN prediction 
unit governs the performance of the SaS-LM model. The average of failure prediction errors ̟MAE and ̟MSE 

Table 2.  VM configuration.

VM type PE MIPS RAM (GB)

vsmall 1 500 0.5

vmedium 2 1000 1

vlarge 3 1500 2

vXlarge 4 2000 3

Table 3.  Experimental set-up parameters and their values.

Parameter Value

Number of VMs 200-1000

Number of PMs 100-500

Number of users 60-300

Total time-period 400 mins

Periodic time-interval { t1 , t2} 5 mins

Number of failure-prone VMs ( Vfp) 20%, 50%, 80%

Number of malicious users ( UMal) 20%, 50%, 80%

Number of VMs associated to a user Random within range [1–8]

Temperature for cooling rackspace ( Tin) 20 °C

Table 4.  Performance metrics for GCD workloads. ̟ MAE : MAE average, ̟ MSE : MSE average, PUE: power 
usage efficiency, CFR: carbon foot-print rate, RCR : resource contention rate, � : probability of co-residency 
attack, PW: power consumption, RU: resource utilization, Mig#: number of VM migrations, SLAV : SLA 
violation.

VM# T (min.) ̟MAE ̟MSE PUE CFR (Kg/KWH) RCR  (%) � (%) PW (KW) RU (%) Mig# SLA
V (%)

200

100 0.0297 0.0023 1.34 16.51 2.17 18.12 7.86 80.1 91 2.25

200 0.0168 0.0063 1.26 18.86 3.88 18.12 8.98 79.3 80 2.15

300 0.0147 0.0006 1.34 20.77 1.92 18.12 9.89 79.7 77 1.85

400 0.0126 0.0033 1.26 17.18 2.66 18.12 8.18 79.9 82 1.55

400

100 0.0413 0.0076 1.26 22.43 4.34 13.61 10.68 79.1 207 1.90

200 0.0576 0.0009 1.24 21.40 5.31 13.62 10.19 78.6 198 2.05

300 0.0781 0.0022 1.23 25.41 4.53 13.62 12.10 78.6 172 2.22

400 0.0158 0.0017 1.18 23.26 6.55 13.60 11.08 78.9 176 1.95

600

100 0.0132 0.0011 1.18 37.92 1.92 19.15 14.05 79.5 274 2.81

200 0.0199 0.0090 1.16 30.56 2.42 19.15 14.55 79.1 280 2.61

300 0.0199 0.0031 1.08 28.81 1.25 19.15 13.81 79.2 268 1.95

400 0.0187 0.0086 1.09 36.62 1.62 19.15 14.43 79.7 290 2.23

800

100 0.093 0.0062 1.25 52.44 3.71 21.67 24.97 78.8 360 2.125

200 0.0116 0.0002 1.21 41.85 2.80 21.67 19.93 78.6 335 2.05

300 0.0205 0.0042 1.22 48.49 2.64 21.67 23.09 78.6 335 2.125

400 0.0108 0.0016 1.21 51.76 1.89 21.67 24.65 78.7 312 0.81

1000

100 0.0693 0.0033 1.12 60.61 1.61 17.71 28.86 78.5 507 3.53

200 0.0771 0.0070 1.11 58.76 1.97 17.70 27.98 79.6 449 3.26

300 0.0614 0.0018 1.14 54.01 3.70 17.71 25.76 79.7 453 2.08

400 0.0388 0.0043 1.13 57.54 2.73 17.71 27.40 79.7 448 1.96
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vary from 0.093 to 0.0126 and 0.0090 to 0.0006, respectively. The value of PUE is observed in the range 1 and 1.4 
which signifies the sustainable efficiency of SaS-LM. The values of CFR vary in line with the power consump-
tion (PW) which increase with the increasing size of the data centre. The value of PW depends on the workload 
execution and the number of active servers at a specific instance. Hence, PW changes non-uniformly over the 
observed period. The RCR  varies non-uniformly for the various sizes of data centre. The resource utilization is 
obtained closer to 80% which is independent of the size of the data centre. The number of VM migrations and 
SLA violations vary according to the variation of the workload i.e., the number of over-/under-loads experienced 
over a continuous period. Figure 1 plots the actual versus predicted normalized values of CPU and memory usage 
achieved via multiple resource prediction using MFNN, wherein the predicted values lie closer to or overlaps 
the actual values revealing its efficacy in terms of prediction accuracy.

The proposed work is compared for different performance metrics with various state-of-the-art approaches 
including Slack and Battery Aware placement (SBA)14, Static THReshold with Multiple Usage Prediction (THR-
P) and Dynamic threshold based on Local Regression with Multiple Usage Prediction (LR-P)15, Previously 
Co-located User First (PCUF)16, Prediction based Energy-aware Fault-tolerant Scheduling (PEFS)17, Online 
VM Prediction based Multi-objective Load Balancing (OP-MLB)18, Boruta-forest optimization based Multi-
objective Job Scheduling (BM-JS)4, VM placement with Online Multiple resources-based Feed-forward Neural 
Network (OM-FNN)19, Secure and Multi-objective VM placement (SVMP)20, and Wiener filter Prediction with 
Safety Margin (WP-SM) based VM  allocation21. The concise description of all these approaches is provided in 
the discussion of Background and Table 5 presents a comparison of key performance indicators of proposed 
framework versus comparative approaches.

Figure 1.  CPU and memory prediction accuracy.

Table 5.  Key performance indicators analysis. ̟ MAE : mean absolute prediction error, ̟ MSE : mean squared 
error, Aservers : Active servers, AcuPr : Prediction accuracy, PUE: power usage effectiveness, RCR : resource 
contention rate, CFR: carbon foot-print rate, � : probability of security threat, RU: Resource utilization, PW: 
Power consumption.

KPI 18 21 4 14 19 22 17 20 16 SaS-LM

̟MAE
× × × × × × × × × �

̟MSE � × × × � × × × × �

AcuPr � � × × � � × × × �

PUE × × � × × × × × × �

RCR � � × × × × × × × �

CFR × × � × × × × × × �

� × × × × × × × � � �

RU � � � � � × � � � �

PW � � � � � � � � × �

Aservers � � � � � � × � × �
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Workload prediction. The performance of the DPBHO optimized MFNN predictor is shown in Fig. 2, 
wherein Fig. 2a compares the prediction error ̟ MAE normalized concerning MAE obtained for SaS-LM model. 
Accordingly, the box-plot based comparison of resource prediction accuracy is observed in Fig. 2b which reveals 
a prediction accuracy ( AcuPr %) trend: SaS-LM ≥ OP-MLB ≥ PEFS ≥ tri-adaptive differential evolution based 
neural network (TaDE-NN) ≥ auto-adaptive differential evolution based neural network (AADE-NN). The con-
vergence capability of the proposed DPBHO algorithm while optimizing neural network based predictor, is 
compared with that of  AADE18 and  TaDE19 algorithms in Fig. 2c. DPBHO optimizes faster than AADE and 
TaDE while reducing prediction error ( ̟ MSE ) up to 33.3% and 19.8% over AADE and TaDE, respectively.

Resource utilization. Figure 3a compares the resource utilization ( RUCDC(%)) of SaS-LM model with that 
of state-of-the-art approaches:  PCUF16,  PEFS17,  SBA14, BM-JS4, OP-MLB18, and WP-SM21. All the quartiles viz., 
lower, upper, and median of the proposed model are higher than the respective values of quartiles of the com-
pared approaches which indicates effectiveness of the proposed model in enhancing the RUCDC(%). Specifically, 
it improves the average utilization of resources up to 14.67%, 11.4%, 7.3%, 13.2%, 16.5%, and 5.1% over PEFS, 
SBA, BM-JS, OP-MLB, WP-SM, and PCUF, respectively. The periodic values of RUCDC(%) observed during 
time-period of 400 minutes for CDC of size 600 VMs is shown in Fig. 3b. The RUCDC(%) obtained for varying 
size of CDC for SaS-LM, OP-MLB, and without SaS-LM (SaS-LM− ) is reported in Fig. 3c which depicts RUCDC

(%) is independent of the size of CDC.

Power consumption. The comparison of consumption of power ( PWCDC(KW)) is presented in Fig. 4a for 
CDC of size 200 VMs via box-plots, where SaS-LM reduced PWCDC up to 32.1%, 1%, 40.8%, 34.6%, and 43.9%, 
respectively over PEFS, SBA, BM-JS, OP-MLB, and WP-SM, respectively. Figure 4b compares the periodic values 
of consumption of power noticed for SaS-LM, OP-MLB, and without SaS-LM (SaS-LM− ) over the period of 400 
minutes. The PWCDC obtained for varying size of CDC for the compared approaches (SaS-LM− ) is reported in 
Fig. 4c that depicts PWCDC rises with the size of CDC.

Sustainability. Figure  5a compares the average percent of active servers of SaS-LM with the related 
approaches. The number of active servers for SaS-LM are observed in the range [18–40%] which are reduced by 
8.45%, 1.5%, 33.8%, 6.25%, and 43.5% against THR-P, SBA, BM-JS, OP-MLB, and WP-SM, respectively. The gen-

Figure 2.  Prediction analysis.

Figure 3.  Resource utilization.
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eration of carbon foot-print ( CFRCDC (Kg/KWH)) is observed inline with the consumption of power as depicted 
in Fig. 5b, where the CFRCDC is compared over a periodic interval of 400 mins for CDC of size 600 VMs. SaS-LM 
has reduced the CFRCDC up to 21.2% and 46.9% against OP-MLB and SaS-LM− , respectively. Further, the rate 
of resource contention realized for the related approaches is compared in Fig. 5c. The rate of failure of resources 
is below 4% for SaS-LM during all the experimental cases. Also, the rate of contention of physical resources is 
reduced up to 95.4%, 92.8%, and 89.4% over PEFS, OM-FNN, and OP-MLB, respectively.

The reason behind this performance improvement is the accurate estimation of required resources due to 
employment of proposed DPBHO for optimization of MFNN to allow intuitive pattern learning. Furthermore, 
to be acknowledged that the proposed multi-objective DPBHO has selected the most admissible VM placement 
strategy to enhance the resource utilization and minimize the power consumption by reducing the number of 
active servers while maintaining the resource availability constraints.

Security. Figure 6 noted the comparison for average security breaches ( � (%)) among SaS-LM and the rel-
evant state-of-the-art approaches over 400 mins. The resulted values for SaS-LM are the least ( ≤ 15.1%) among 
all the compared approaches. The security breaches are reduced up to 17.4% and 36.4% over  SVMP20 and SaS-
LM− , respectively for CDC of size 600 VMs. Table 6 compares the average co-residency resistance (%) of SaS-LM 
with  SVMP20,  PCUF16, and SaS-LM− for 600 VMs with malicious users in the range (1–10%).

Statistical analysis. The achieved results for DPBHO and M-DPBHO algorithms are validated via statisti-
cal analysis on STAC 23 web platform using the Friedman test followed by Finner post hoc analysis in Tables 7 
and 8, respectively. The Friedman test considers a null hypothesis ( H0 ) by assuming that there is no significant 
difference in the results of comparative approaches and assigns ranks to them based on the resultant values. The 
Finner post hoc test estimates the pairwise performance of the considered algorithms. The tests are conducted by 
using DPBHO algorithm as a control method with a significance level of 0.05 for both DPBHO and M-DPBHO 
algorithms. As depicted in Table 7, the Finner test accepts the H0 for  DNN17,  AADE18, and LR algorithms which 
indicates the absence of a significant difference in the obtained results. However, it is rejected for comparison 
with SVM algorithm specifying the presence of significant difference among the observed results. Similarly, 
M-DPBHO obtains the best rank among all the comparative approaches as shown in Table 8. The hypothesis H0 
is accepted for all the comparisons revealing the absence of significant difference among all the resultant values.

Figure 4.  Power consumption.

Figure 5.  Sustainability metrics.
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Figure 6.  Security.

Table 6.  Comparison of average co-residency resistance (%).

VMs U
Mal(%) SVMP20 PCUF16 SaS-LM− SaS-LM

600 1–10% 94–82% 95–75% 80–62% 97–84%

Table 8.  Statistical analysis report for M-DPBHO v/s state-of-the-art approaches.

Friedman test

Algorithm Rank

M-DPBHO 1.000

SBA14 2.000

PEFS17 3.000

OP-MLB18 4.000

BM-JS4 5.000

WP-SM21 6.000

Finner Post-hoc analysis (Using M-DPBHO as control method)

Comparison Statistics Adjusted p-value Result

M-DPBHO v/s SBA 0.37796 0.70546 H0 is accepted

M-DPBHO v/s PEFS 0.75593 0.52602 H0 is accepted

M-DPBHO v/s OP-MLB 1.13389 0.39027 H0 is accepted

M-DPBHO v/s BM-JS 1.51186 0.29517 H0 is accepted

M-DPBHO v/s WP-SM 1.88982 0.26133 H0 is accepted

Table 7.  Statistical analysis: DPBHO v/s comparative approaches.

Friedman test

Algorithm Rank

DPBHO 1.000

DNN17 2.000

AADE18 3.000

LR 4.000

SVM 5.000

Finner Post-hoc analysis (Using DPBHO as control method)

Comparison Statistics Adjusted p-value Result

DPBHO v/s DNN 0.77460 0.43858 H0 is accepted

DPBHO v/s AADE 1.80739 0.09314 H0 is accepted

DPBHO v/s LR 2.06559 0.07622 H0 is accepted

DPBHO v/s SVM 3.09839 0.00776 H0 is rejected
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Trade‑offs. There are noticeable trade-offs among resource utilization, power consumption, sustainability, 
and security during load management. The consolidation of VMs on a minimum number of physical machines 
reduces the consumption of power and wastage of resources which leads to reduced carbon footprint emissions. 
However, the probability of security threats increases with high virtualization and sharing of physical resources 
because of the multi-tenant environment. Furthermore, to enable smaller power consumption, the entire load 
must be allocated on the minimum number of servers which may incur resource contention among VMs and 
degrades security and overall performance. Hence, the sustainability improves at the cost of security at the 
resource management level unveiling a high contradiction between the two objectives.

Method
A Sustainable CDC infrastructure is organized utilizing P servers { S1 , S2 , …, SP } located within n clusters { CS1 , 
CS2 , …, CSn }, powered by Renewable Source of Energy (RSE) and grid via battery energy storage system as illus-
trated in Fig. 7. The electric power produced by multiple RSE such as solar panels, wind energy, and power grid 
charge battery storage including Uninterruptible Power Supply (UPS) which is discharged to provide required 
power supply and backup to clusters of servers { CS1 , CS2 , ..., CSn }. Consider M users { U1 , U2 , …, UM } submit 
job requests { �1 , �2 , …, �M } for execution on their purchased VMs { V1 , V2 , …, VQ}: M < Q , where Q is a total 
number of available VMs and one job may execute on multiple VMs.

A Resource Management Unit (RMU) is set up to receive and distribute these requests among VMs deployed 
on servers { S1 , S2 , …, SP }. RMU is employed to acquiesce secure and energy-efficient resource distribution based 
load balancing for sustainability and security augmentation within CDC. Further, it controls all the privileges of 
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Figure 7.  System architecture of the proposed model.
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physical resource management such as handling of over-/under-loading of servers, VM placement, VM migra-
tion, scheduling etc. RMU is obliged for two-phase scheduling including (i) distribution of job requests { �1 , �2 , 
…, �M } among VMs and (ii) placement of VMs { V1 , V2 , …, VQ } on servers. Accordingly, it assigns job requests { �1 , 
�2 , ..., �M } among VMs corresponding to the user specified resource (viz., CPU, memory, bandwidth) capacity. 
Further, it appoints a multi-objective load balancing optimization for allocation of users’ VMs { V1 , V2 , ..., VQ } to 
available physical servers { S1 , S2 , ..., SP } subject to security and energy-efficiency.

A Cloud Workload and Resource Usage Analyser (CW-RUA) is employed to estimate the workload and physical 
resource usage proactively and assist RMU by providing useful knowledge of resource provisioning in anticipa-
tion. CW-RUA captures the historical and live traces of resource utilization by VMs { V1 , V2 , ..., VQ } hosted on 
different servers { S1 , S2 , ..., SP } within clusters { CS1 , CS2 , ..., CSn }. The workload and resource usage analysis is 
performed in two steps: (i) Data preparation and (ii) Predictor optimization which are executed periodically. 
Data is prepared in the form of a vector of learning window using three consecutive steps including aggregation 
of resource usage traces, rescaling of aggregated values, followed by normalization. The learning window vec-
tor is passed to a neural network-based predictor which is trained/optimized with the help of a novel DPBHO 
evolutionary optimization algorithm. The detailed description of DPBHO, CW-RUA and Secure and Sustainable 
VMP (SS-VMP) is elucidated in Sections “Dual-phase black-hole optimization”, “Cloud workload resource usage 
analysis” and “Secure and sustainable VM placement”, respectively.

Dual‑phase black‑hole optimization. A two-phase population-based optimization algorithm named 
Dual Phase Black-Hole Optimization  (DPBHO) is proposed, wherein each phase, the candidate solutions are 
considered as stars while a star with the best fitness value is observed as a black-hole. Figure 8 portrays the 
DPBHO design which incorporates three consecutive steps: (i) Local population optimization, (ii) Global popula-
tion optimization, and (iii) Position Update.

Local population optimization. In this phase, the stars i.e., random solutions { ξ1 , ξ2 , …, ξN}∈ E are organized into 
K clusters or sub-populations, each of size N/K . All the members of each cluster ( ξ ki : i ∈ [1,N/K], k ∈ [1,K] ) 
are evaluated over training data using fitness value ( f ki  ) obtained by computing Eq. (1), where F(ξ ki ) is a fitness 
evaluation function. The best solution of each kth cluster is considered as its local blackhole ( ξ kLbest ) such that 
ξ kLbest = Best({ξ1 , ξ2 , …, ξN/K}).

Global population optimization. In the global optimization phase, all the local blackholes consitute the second 
phase population { ξ 1Lbest , ξ

2
Lbest , …, ξKLbest }, wherein heuristic crossover is performed to raise diversity of the sec-

(1)f ki = F(ξ ki ) ∀i ∈ [1,N/K], k ∈ [1,K]
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Figure 8.  DPBHO design.
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ond phase population by producing new individuals with a superior breed. In the course of heuristic crossover, 
stars act as chromosomes, where two parent chromosomes are randomly chosen and their fitness values are 
compared to find out the parent with better fitness value. Afterward, a new offspring is produced with the com-
bination of two parent chromosomes using Eq. (2) which is closer to the parent having better fitness  value24. This 
additional step brings significant diversity in the search space by adding new and better individuals in the second 
phase population. Let ξ kLbest and ξ jLbest be two parent chromosomes, wherein ξ kLbest is considered as a parent chro-
mosome with better fitness value. Thereafter, the offspring ξOff  is generated as follows:

where, Cri is a randomly generated crossover rate in the range [0, 1] for ith gene such that i = {1, 2, . . . , L} , ξOff  is 
new offspring, ξ kLbesti and ξ jLbesti are ith gene of parents: ξ kLbest and ξ jLbest , respectively such that k  = j . A new offspring 
is produced for each of K (which is equals to the total number of local blackholes) heuristic crossover. Equation 
(3) is applied to select best between new offspring ( ξOff  ) and parent with lesser fitness ( ξ jLbest ). This allows to 
enhance the diversity of the local population with members of enriched fitness value.

Thereafter, a best among the members of second phase population is nominated as global blackhole ( ξ kGbest).

Position update. The position of stars is updated in accordance with ξ kLbest and ξ kGbest as depicted in Eq. (4), 
where ξ ki (t) and ξ ki (t + 1) are the positions of i th star of k th sub population at time instances t and t + 1 , respec-
tively. r1 and r2 are random numbers in the range (0, 1) while αl and αg are the attraction forces applied on ξ ki (t) 
by ξ kLbest and ξ kGbest , respectively. The inclusion of local best in position update procedure maintains the diversity 
of stars by gradually controlling the convergence speed and retains their exploratory behaviour.

The fitness value of all the updated stars is computed by applying Eq. (1). In case, if kth cluster locates a better 
solution than the existing one, the respective ξ kLbest is replaced and ξ kGbest is updated as per the admissibility. SB 
algorithm is inspired by the natural blackhole phenomenon, where a blackhole consumes everything that enters 
it including light. DPBHO algorithm works on the concept of a standard blackhole optimization algorithm, 
wherein none of the candidate solutions is allowed to return from an event horizon (h) area of a blackhole solu-
tion delineated by its radius ( Rh ). The ratio between fitness value of a local blackhole ( f (ξ kLbest) ) and fitness value 
of its sub-population ( 

∑N/K
i=1 f (ξ ki ) ) computes the event horizon radius ( Rh

(

ξ kLbest

)

 ) of the respective blackhole as 
given in Eq. (5). Similarly, the event horizon radius of a global blackhole ( Rh

(

ξ kGbest

)

 ) is evaluated using Eq. (6), 
where f (ξ kGbest) is fitness value of global blackhole, 

∑K
k=1

∑N/K
i=1 f (ξ ki ) is a fitness value of the entire population.

The distance between both solutions is estimated by utilizing the arithmetic difference of their fitness values to 
confirm that a member solution has reached into the event horizon of the blackhole solution. The distance from 
local and global blackholes is calculated because each solution gets attracted to these two blackholes. Accordingly, 
the distance of ith star ( ξ ki  ) of kth sub-population from local blackhole ( ξ kLbest ) and global blackhole is computed 
in Eqs. (7) and (8), respectively.

If the distance between candidate solution ξ ki  and local blackhole ( ξ kLbest ) is less than or equals to the event 
horizon radius of ξ ki  i.e., Rh

(

ξ kLbest

)

 then ξ ki  gets collapse which is replaced by a new randomly generated solution 
to keep uniform number of solutions throughout the simulation. Following the same procedure, ξ ki  gets collapse 
and replaced by a new random solution when it enters into the event horizon radius of the global blackhole 
Rh

(

ξ kGbest

)

 . The operational summary of DPBHO is given in Algorithm 1.

(2)ξOff = Cri(ξ
k
Lbesti

− ξ
j
Lbesti

)+ ξ kLbesti i ∈ [1, L]

(3)ξ
j
Lbest =

{

ξOff If (fitness(ξOff ) ≥ fitness(ξ
j
Lbest))

ξ
j
Lbest Otherwise

(4)

Lf (t) = αk
1r1

(

ξ kLbest(t)− ξ ki (t)
)

Gf (t) = αg r2
(

ξ kGbest(t)− ξ ki (t)
)

ξ ki (t + 1) = ξ ki (t)+ Lf (t)+ Gf (t)

(5)Rh

(

ξ kLbest
)

=

f (ξ kLbest)
∑N/K

i=1 f (ξ ki )
k ∈ [1,K]

(6)Rh

(

ξ kGbest
)

=

f (ξ kGbest)
∑K

k=1

∑N/K
i=1 f (ξ ki )

(7)DξkLbest

(

ξ ki
)

= f (ξ kLbest)− f (ξ ki ) i ∈ [1,N/K]

(8)DξkGbest

(

ξ ki
)

= f (ξ kGbest)− f (ξ ki ) i ∈ [1, 2K]
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Step 1 initializes random solutions, and has complexity O(1) . Step 2 evaluates the fitness of N solutions with 
O(N) complexity. Steps [3–5], steps [6–12], and steps [13–15] iterate K times and have equal time complexity of 
O(K) . Assume steps [16–29] repeat for t intervals, wherein steps [19–21] have O(K) while steps [24–28] have 
O(N) complexities. Hence, the total time complexity for the DPBHO algorithm is O(NKt).

An illustration. Let there are 9 solutions (or stars) in the initial population ( E1 ) as shown in Table 9 which are 
grouped into 3 clusters during the first generation or epoch such that Cluster11 (Table 10), Cluster12 (Table 11), and 
Cluster13 (Table 12). The fitness of each candidate solution is estimated using Eq. (11) and local best candidate 
is selected from each cluster. Likewise, ξLbest1 , ξLbest2 , and ξLbest3 constitute local best population (Table 13). The 
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heuristic crossover operation is performed to improve the local best population using Eq. (2) and a global best 
candidate ( ξGbest ) is chosen after fitness evaluation as depicted in Table 14. Further, the population is updated 
by computing event horizon radius for each cluster as well as a global radius of entire population as observed in 
Table 15. The distance of each candidate of the first generation population is estimated using Eqs. (7) and (8) to 
generate the next generation population as illustrated in Table 16, wherein the candidates ξ1 , ξ5 , ξ6 , and ξ8 , are 
updated.

Cloud workload resource usage analysis. The cloud workload analysis comprises of two steps: data 
preparation and multi-layered feed-forward neural network (MFNN) optimization using DPBHO algorithm as 
described in detail in the following subsections.

Data preparation. MFNN derives intial information for data preparation from Historical Resource Usage data-
base of different clusters { CS1 , CS2 , …, CSn } which is updated periodically with live resource usage information 
as portrayed in block CW-RUA of Fig. 7. Let the received historical resource usage information: { d1 , d2 , …, dz }: 

Table 9.  Initial generation population ( E1).

ξ1: − 0.94 − 0.66 − 0.84 − 0.22 − 0.126 − 0.99 − 0.13 − 0.15 − 0.71 0.06 − 0.03 − 0.60 0.20 − 0.07

ξ2: − 0.40 − 0.02 0.56 − 0.97 − 0.40 − 0.99 0.17 0.26 0.59 0.61 − 0.99 − 0.29 − 0.85 − 0.31

ξ3: − 0.49 − 0.41 − 0.58 − 0.70 − 0.59 0.17 − 0.94 − 0.64 − 0.08 − 0.02 − 0.88 0.18 0.09 0.23

ξ4: − 0.72 − 0.89 − 0.95 0.23 0.03 0.11 − 0.96 − 0.04 0.33 − 0.49 − 0.86 − 0.12 0.17 0.17

ξ5: 0.37 0.56 − 0.51 − 0.89 − 0.39 0.89 0.37 − 0.54 0.58 − 0.92 0.77 0.04 0.03 0.24

ξ6: − 0.90 − 0.78 0.83 − 0.64 0.10 − 0.73 0.51 0.63 0.11 − 0.52 0.68 0.52 0.64 − 0.48

ξ7: − 0.81 − 0.52 − 0.76 0.63 − 0.80 − 0.19 0.36 0.59 0.61 0.19 − 0.45 − 0.85 − 0.96 0.26

ξ8: 0.70 0.82 0.08 − 0.74 0.19 − 0.17 0.04 0.44 − 0.68 − 0.02 − 0.17 − 0.18 0.79 0.57

ξ9: − 0.47 − 0.41 0.51 0.23 − 0.39 0.09 0.38 0.54 − 0.08 − 0.12 0.37 0.54 0.67 − 0.24

Table 10.  (Cluster1
1
).

ξ1: − 0.94 − 0.66 − 0.84 − 0.22 − 0.126 − 0.99 − 0.13 − 0.15 − 0.71 0.06 − 0.03 − 0.60 0.20 − 0.07

ξ2: − 0.40 − 0.02 0.56 − 0.97 − 0.40 − 0.99 0.17 0.26 0.59 0.61 − 0.99 − 0.29 − 0.85 − 0.31

ξ3: − 0.49 − 0.41 − 0.58 − 0.70 − 0.59 0.17 − 0.94 − 0.64 − 0.08 − 0.02 − 0.88 0.18 0.09 0.23

Table 11.  Cluster1
2
.

ξ4: − 0.72 − 0.89 − 0.95 0.23 0.03 0.11 − 0.96 − 0.04 0.33 − 0.49 − 0.86 − 0.12 0.17 0.17

ξ5: 0.37 0.56 − 0.51 − 0.89 − 0.39 0.89 0.37 − 0.54 0.58 − 0.92 0.77 0.04 0.03 0.24

ξ6: − 0.90 − 0.78 0.83 − 0.64 0.10 − 0.73 0.51 0.63 0.11 − 0.52 0.68 0.52 0.64 − 0.48

Table 12.  Cluster1
3
.

ξ7: − 0.81 − 0.52 − 0.76 0.63 − 0.80 − 0.19 0.36 0.59 0.61 0.19 − 0.45 − 0.85 − 0.96 0.26

ξ8: 0.70 0.82 0.08 − 0.74 0.19 − 0.17 0.04 0.44 − 0.68 − 0.02 − 0.17 − 0.18 0.79 0.57

ξ9: − 0.47 − 0.41 0.51 0.23 − 0.39 0.09 0.38 0.54 − 0.08 − 0.12 0.37 0.54 0.67 − 0.24

Table 13.  Local best population. ( ξ 1
Lbest

).

ξLbest1: − 0.40 − 0.02 0.56 − 0.97 − 0.40 − 0.99 0.17 0.26 0.59 0.61 − 0.99 − 0.29 − 0.85 − 0.31

ξLbest2: − 0.72 − 0.89 − 0.95 0.23 0.03 0.11 − 0.96 − 0.04 0.33 − 0.49 − 0.86 − 0.12 0.17 0.17

ξLbest3: − 0.47 − 0.41 0.51 0.23 − 0.39 0.09 0.38 0.54 − 0.08 − 0.12 0.37 0.54 0.67 − 0.24
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∈ ̟ In is aggregated with respect to a specific time-interval (for example, 1 min, 5 min, 10 min, 60 min and so 
on). The aggregated values have high variance which are rescaled within the range [0.001, 0.999] by applying Eq. 
(9), where ̟ In

min and ̟ In
max are the minimum and maximum values of the input data set, respectively. The normal-

ized vector is denoted as ˆ̟ In , which is a set of all normalized input data values as ˆ̟ In.

These normalized values (in single dimension) are organized into two dimensional input and output matrices 
denoted as ̟ In and ̟ Out , respectively as stated in Eq. (10):

MFNN optimization. The prepared data values ̟ In are divided into three groups: training (60%), testing 
(20%), and validation (20%) data, where training data is used to optimize the predictor while testing data is used 
for evaluating the prediction accuracy over unseen data. During training, MFNN extracts intuitive patterns from 
actual workload ( ̟ In ) and analyzes z previous resource usage values to predict the (z + 1) th instance of work-
load in each pass. In the course of training and testing period, the performance and accuracy of the proposed 
model is evaluated by estimating the Mean Squared Error ( ̟ MSE ) score as fitness function) using Eq. (11); where 
̟AO and ̟ PO are actual and predicted output,  respectively25. Further, validation data is applied to confirm the 
accuracy of the proposed prediction model, wherein Mean absolute error ( ̟ MAE ) stated in Eq. (12) is used as 
a fitness function because it is an easily interpretable and well established metric to evaluate regression models.

(9)ˆ̟ In
= 0.001+

di −̟ In
min

̟ In
max −̟ In

min

× (0.999)

(10)̟ In
=







̟1 ̟2 .... ̟z

̟2 ̟3 .... ̟z+1

. . .... .
̟m ̟m+1 .... ̟z+m−1






̟Out

=







̟z+1

̟z+2

.
̟z+m







(11)̟MSE
=

1

m

m
∑

i=1

(̟AO
i −̟ PO

i )2

Table 14.  Global best candidate ( ξ 1
Gbest

 ) after Heuristic Crossover.

ξGbest: − 0.80 0.32 − 0.70 − 0.85 − 0.40 − 0.79 0.69 0.21 0.40 0.41 − 0.52 − 0.27 − 0.75 − 0.61

Table 15.  Event horizon computation.

Radius Value

Local radius for Cluster1
1

1.19350

Local radius for Cluster1
2

1.75069

Local radius for Cluster1
3

2.17435

Global radius 0.15525

Table 16.  Second generation population ( E2).

ξ1: − 0.24 − 0.76 0.44 − 0.22 0.16 − 0.79 0.18 − 0.65 − 0.31 0.05 − 0.03 − 0.66 0.30 − 0.87

ξ2: − 0.40 − 0.02 0.56 − 0.97 − 0.40 − 0.99 0.17 0.26 0.59 0.61 − 0.99 − 0.29 − 0.85 − 0.31

ξ3: − 0.49 − 0.41 − 0.58 − 0.70 − 0.59 0.17 − 0.94 − 0.64 − 0.08 − 0.02 − 0.88 0.18 0.09 0.23

ξ4: − 0.72 − 0.89 − 0.95 0.23 0.03 0.11 − 0.96 − 0.04 0.33 − 0.49 − 0.86 − 0.12 0.17 0.17

ξ5: − 0.07 0.66 − 0.51 − 0.85 − 0.29 0.82 0.35 − 0.54 0.18 − 0.02 0.47 0.54 0.83 0.34

ξ6: 0.92 0.73 − 0.88 − 0.64 0.16 − 0.23 0.71 − 0.03 0.15 0.52 − 0.68 − 0.82 0.24 − 0.62

ξ7: − 0.81 − 0.52 − 0.76 0.63 − 0.80 − 0.19 0.36 0.59 0.61 0.19 − 0.45 − 0.85 − 0.96 0.26

ξ8: − 0.75 0.02 − 0.58 0.44 0.18 − 0.12 0.04 0.84 − 0.48 − 0.02 − 0.67 − 0.18 − 0.79 − 0.92

ξ9: − 0.47 − 0.41 0.51 0.23 − 0.39 0.09 0.38 0.54 − 0.08 − 0.12 0.37 0.54 0.67 − 0.24
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In the proposed approach, MFNN represents a mapping p-q1-q2-q3-r, wherein p, q1 , q2 , q3 and r are the num-
bers of neurons in input, hidden#1 , hidden#2 , hidden#3 , and output layer, respectively. Since the output layer 
has only one neuron, the value of r is constantly 1. The activation function used to update a neuron is stated in 
Eq. (13), where a linear function ( (̟) ) is applied to input layer neurons and sigmoid function ( 1

1+e−̟  ) for the 
rest of the neural layers.

The training begins with randomly generated N networks of real-numbered vectors denoted as { ξ1 , ξ2 , …, ξN
}∈ E , wherein each vector ( ξi : 1 ≤ i ≤ N ) has size L =((p+ 1)×q1 + q1 × q2 + q2 × q3 + q3 × r ). The number 
of neurons in input layer become p+ 1 by reason of consideration of one additional bias neuron. The synaptic 
or neural weights ( W∗

ij ) are generated randomly with uniform distribution as shown in Eq. (14), where lbj = −1 
and ubj = 1 are the lower and upper bounds, respectively and r is a random number in the range [0, 1].

MFNN is optimized periodically using DPBHO by considering each network vector ( ξi : 1 ≤ i ≤ N ) as a 
star, where Eq. (11) is applied as a fitness function and the candidate having least fitness value is nominated as 
a best candidate both in local and global population optimization phase.

Secure and sustainable VM placement. Let ω represents a mapping between VMs and servers such that 
ωkji = 1 , if server Si hosts Vj of kth user, else it is 0 as stated in Eq. (15).

The essential set of constraints that must be satisfied concurrently have been formulated in Eq. (16):

where C1 implies jth VM of kth user must be deployed only on one server. The constraints C2 , C3 , C4 state that j th 
VM’s CPU ( VC

j  ), memory ( VM
j  ), and bandwidth ( VBW

j  ) requirement must not exceed available resource capacity 
of i th server ( SC∗

i  , SM∗

i  , SBW∗

i  ). C5 specifies that aggregate of the resource capacity request of all the users must not 
exceed total available resources capacity of the servers altogether. C6 states that required resource capacity ( Rk ) 
of request rk must not exceed total available resources capacity ( R∗

∈ {C∗,M∗,BW∗
} ) of VM Vj.

The considered load management problem in CDC entangled with multiple constraints seeks to provide a 
secure and energy-efficient VM placement. Accordingly, a multi-objective function for allocating VMs is stated 
in Eq. (17):

Likewise, the following five distinct models associated to each objective are designed and utilized to establish 
a secure and sustainable VM placement scheme for CDC.

Security modeling. The sharing of servers among different users is minimized by reducing the allocation of 
VMs of different users on a common physical server to resist the probability of security attack via co-resident 
malicious VMs. The probability of occurrence of security attacks is represented as � . Let βki specifies a mapping 
between user Uk and server Si , whereif a server hosts VMs of more than one user then βki = 1 , otherwise it is 
0. The total number of users having their VMs located on server Si are obtained by computing 

∑M
k=1 βki . The 

number of shared server percentile is referred as � which is be computed over time-interval { t1 , t2 } by using Eq. 
(18). In contrast to existing secure VM allocation  scheme26, the proposed security model is capable of reducing 
co-residential vulnerability threats without any prior information of malicious user and VM.
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Server resource utilization modeling. Let SCi  , SMem
i  and SBWi  be the CPU, memory, and bandwidth capacity, 

respectively for ith server and VC
j  , VMem

j  and VRAM
j  represents CPU, memory, and bandwidth utilization, respec-

tively for j th VM. When Si is active, ϒi = 1 , otherwise it is 0. CPU, memory and bandwidth utilization of a server 
can be estimated by applying Eqs. (19)–(21).

Equation (22) calculates resources utilization of server ( RUR
Si
: {C,Mem,BW} ∈ R ) and complete resource 

utilization of data centre ( RUCDC ) is determined by applying Eq. (23) where, N is the number of resources 
observed.

Server power consumption modeling. Consider all the servers based on inbuilt Dynamic Voltage Frequency 
Scaling (DVFS) energy saving  technique27 which defines two states of CPU: inactive and active state. In active 
state, CPU works in least operational mode with reduced clock cycle and some internal components of CPU are 
set inactive. On the other hand, in active state, power consumption depends on the CPU utilization rate and pro-
cessing application. Therefore, power consumption for a server can be formulated as PWSi for ith server and total 
power consumption PWCDC for time-interval { t1 , t2 } as given in Eqs. (24) and (25), respectively, where RUSi ∈ 
[0, 1] is resource utilization of server ( Si).

Power usage effectiveness. This is a very significant metric for measuring power efficiency of CDC. It is expressed 
as ratio of the total power supply ( PWtotal

Si
 ) of a server ( Si ) to run its processing equipments and other overheads 

like cooling and support systems and effective power utilized ( PWutilized
Sj

 ) by it. Equations (26) and (27) calculate 
the power usage effectiveness of a server Si and CDC, respectively.

Carbon foot‑print rate. The carbon emission intensity varies in accordance with source of electricity gen-
eration. Here, the variables S , W , and N refer to carbon intensity of the energy sources: solar, wind and non-
renewable energy sources, respectively. The carbon intensity is measured in Tons per Mega Watt hour (Tons/
MWh) electricity used. The emission of carbon dioxide in the environment directly depends on the carbon 
intensity represented as CFR(Vj) and computed by applying in Eq. (28)4:
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t2
∫

t1

(
∑P

i=1

∑M
k=1 βki

|S|

)
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VM management. The VMs are allocated by utilizing Multi-objective DPBHO (i.e., M-DPBHO) which is 
an integration of proposed DPBHO algorithm and pareto-optimal selection procedure of Non-dominated Sort-
ing based Genetic Algorithm (NSGA-II)28. M-DPBHO comprises of steps: (i) initialization, (ii) evaluation, (iii) 
selection, and (iv) position update. As illustrated in Fig. 9, X VM allocations represented as stars/solutions: { �g

1 , 
�

g
2 , …, �g

X}∈ � are randomly initialized, where g is the number of generation. These stars are evaluated using a 
fitness function η(�g ) = [ f (�g )�CDC , f (�g )PWCDC , f (�g )PUECDC , f (�g )CFRCDC , f (�g )RUCDC ] associated with 

(28)CFR(Vj) =
∑

x∈{S,W,N}

(

ERU ,x + Eothers,x
)

× RUE
x
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security [Eq. (18)], power consumption [Eq. (25)], power usage effectiveness [Eq. (27)], carbon-foot rate [Eq. 
(28)], and resource utilization [Eq. (23)], respectively.

The population of stars is distributed into K sub-populations and local best blackholes ( �k
Lbest ) are selected 

by estimating the fitness value using pareto-optimal selection procedure of NSGA-II. Thereafter, a second phase 
population is generated with the help of heuristic crossover [using Eq. (2)]. Similar to the local phase, a global 
best solution ( �k

Gbest ) is observed from the second phase population using pareto-optimal procedure.
Therefore, to select the best VMP solution, a pareto-front selection procedure of NSGA-II is invoked that 

concedes all the objectives non-dominantly. A solution ( �i ) dominates other solution ( �j ), if its fitness value is 
better than that of �j on atleast one objective and same or better on other objectives. The position update step of 
DPBHO [including Eq. (4)] along with Eqs. (5) and (6) for computing event horizon radius of local and global 
blackholes, respectively while Eqs. (7) and (8) are used to determine distance of a candidate solution from a 
local and global blackhole, respectively) is invoked to regenerate or update the existing population. Let a user 
job request ( � ) is distributed into sub-units or tasks such as { τ1 , τ2 , …, τz}∈ � . Eq. (29) is employed to select an 
appropriate VM for user application execution,

where VR
S  , VR

M , VR
L  and VR

XL represents small, medium, large and extra-large types of VM respectively, having 
capacity of resources R ∈ {CPU ,memory} depending on their particular type, and τRi  represents resource utiliza-
tion of i th task. If the maximum resource requirement of a task from i th task is lesser or equals to the resource 
capacity of VS , then small type of VM is assigned to the task.

SaS‑LM: operational design and complexity. Algorithm 2 elucidates a concise operational design of 
SaS-LM. Step 1 initializes list of VMs ( ListV ), list of servers ( ListS ), list of users ( ListU ), and iteration counter (g) 
with O(1) complexity. Step 2 optimizes MFNN based predictor for resource usage analysis by invoking Algo-
rithm 1 having O(XKt) complexity for t time-intervals. The steps 3–31 repeat for �t , wherein any resource con-
tention is detected and mitigated with the help of steps 4–9 with O(P) complexity. Step 10 receives live requests 
of users has O(1) complexity. Steps 11–13 select suitable VMs for requests execution with O(Q) complexity. X 
VM allocations are randomly initialized in step 14 with O(X) complexity.

(29)VM
type
selected =















VS, (τRi ≤ VR
S )

VM , (VR
S < τRi ≤ VR

M)

VL, (VR
M < τRi ≤ VR

L )
VXL, otherwise
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The cost values associated to five objectives is computed in step 15, where complexity is O(X) and step 16 
distributes X VM allocations into K with O(1) complexity. The best VM allocation candidate is selected in steps 
17–19 by invoking Pareto-optimal function have O(X2) complexity. The local population of VM allocations is 
upgraded using heuristic crossover in steps 20-26, consume O(K) complexity. Further, the cost values of second 
phase population (as mentioned in DPBHO Algorithm) is evaluated and global best candidate is selected in steps 
27–29 with O(K2) complexity. Step 30 invokes set of instructions 16–29 of Algorithm 1, have O(KX) complexity. 
The total complexity of SaS-LM becomes O(X2K2PQt).
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Implementation. Figure 10 portrays a design and operational flow of the proposed model. Specifically, SaS-LM 
model is configured with the cooperative interaction of the distinguished modules discussed as follows:

• Preprocessing (): The relevant numerical values of historical and live workloads are extracted and normalized 
to prepare input values for training of workload predictor.

• Workload Predictor: This module is employed to estimate future resource usage on different servers with the 
help of multi-resource feed-forward neural network MFNN () module. This neural network is trained (offline) 
periodically to precisely estimate the approaching job requests in real-time to provide prior information to 
the Resource Manager () about the required amount of resources and alleviate any delay in job processing.

• DPBHO (): This module implements Algorithm 1 for optimization of MFNN based predictor during training 
or learning process.

• User (): User assigns job requests to Requests allocator () module at regular intervals for execution on different 
VMs. It also specifies deadline, cost, security, and resource availability constraints in Service Level Agreement 
(SLA).

• Virtual machines (): As per the demand of the users, varying types of VM instances with specific configura-
tion such as CPU, storage, bandwidth, operational status etc. are configured and allocated to servers.

• Physical machines (): The varying types of servers configuration is defined by specifying their CPU, storage, 
bandwidth, operational status etc.

• Resource availability and Sustainability constraints (): The security and sustainability constraints depict the 
computational models mentioned in Section “Secure and sustainable VM placement” which are considered 
non-dominantly to decide the most admissible allocation of VMs.

• Multi-objective DPBHO (): This module appoints the VM placement strategy mentioned in Section “VM 
Management” to explore and exploit the population of random VM allocations and select the best VM place-
ment.

• Resource Manager (): This module receives essential information from different modules including Resource 
allocator (), Multi-objective DPBHO based VM placement, predicted resource capacity from MFNN (). 
Accordingly, it decides the allocation of available physical machines and manage the resources adaptively.

Background and discussion
The background study deals with discussion of several approaches proposed thus far for cloud resource provision-
ing using meta-heuristic  approaches29 and machine learning algorithms for cloud workload  analysis30. An online 
prediction based multi-objective load-balancing (OP-MLB) framework is proposed  in18 for energy-efficient data 
centres. The forthcoming load on VMs is estimated using an Auto Adaptive Differential Evolutionary (AADE) 
trained neural network-based prediction system to determine the future resource utilization of the servers 
proactively. Also, it detected an overload condition on each server and tackled it by migrating VMs of highest 
resource capacity from overloaded server to an energy-efficient server machine. The VM placement and migra-
tion are executed using a non-dominated sorting with genetic algorithm based multi-objective algorithm for 
minimization of power consumption. A distributive UPS topology at server-level and rack-level based framework 
for cloud resource management is proposed  in14. This framework established VM placement, appropriate time of 
battery charging and discharging, and selected a battery that minimizes the peak demands and monthly electricity 
bill. The VM requests are scheduled by developing a Slack and Battery Aware (SBA) placement based on power 
state of the servers, resource utilization, and the amount of energy stored in server batteries. It helped to reduce 
the number of active servers and maximize the accessible stored energy to be utilized during peak demands.

Dabbagh et al.21 presented an integrated energy-efficient VM placement and migration framework for cloud 
data centre. It applied a Wiener filter with safety margin (WP-SM) based prediction for estimation of the number 
of VM requests and the future resource requirement. These predicted values are used to allow only the required 
number of physical machines in active state and helps in achieving a substantial energy saving and resource 
utilization. Kaur et al.4 have presented a Boruta algorithm driven multi-objective optimization scheme based 
job scheduling (BM-JS) along with energy-efficient VM placement for sustainable cloud environment. Spe-
cifically, they have classified upcoming workload using Boruta algorithm and sensitive hashing-based support 
vector machines approach followed by Greedy scheme based VM placement to reduce carbon footprint and 
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Figure 10.  Design and operational flow.
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energy consumption. A secure and multi-objective VM placement (SVMP) framework is proposed  in20, where 
an integrated version of whale optimization algorithm and non-dominated sorting based genetic algorithm is 
implemented to attain multiple objectives concurrently. Marahatta et al.17 have proposed a failure management 
aware cloud resource distribution approach named Prediction based Energy-aware Fault-tolerant Scheduling 
scheme (PEFS). Specifically, a deep neural network based failure predictor is utilized to differentiate between 
failure prone and non-failure prone tasks. Three replicas are executed for failure-prone tasks on separate servers 
to prevent redundant execution on the same server while non-failure tasks execute normally. Nguyen et al.15 
addressed the VM consolidation problem by adopting multiple usage prediction by applying multiple linear 
regression to estimate the relationship between the input variables and the output for energy efficient data centres. 
This work estimated overloaded host detection with multiple usage prediction (OHD-MUP) and underloaded 
host detection with multiple usage prediction (UHD-MUP) and balanced load by migrating selected VMs from 
overloaded servers to energy-efficient server.

A metaheuristic technique-based Fuzzy C-means clustering (MTFC) mechanism is proposed  in31 to locate 
most promising clusters according to the users’ Quality-of-Service (QoS) requirement. Further, a gray wolf opti-
mization is applied to make an appropriate scaling decision for cloud resource provisioning. Tarahomi et al.32 
have proposed a micro-genetic approach (MGA) to present power-efficient resource distribution of physical 
resources for sustainable cloud services. The micro-genetic algorithm helps to select suitable destinations for VMs 
amongst physical hosts. Likely, a resource elasticity management issue is resolved  in33 by proposing an elastic 
controller based on colored Petri Nets (EC-CPN) that assists in automatic handling of over-/under-provisioning 
of resources. A co-location resistant VM placement method, “Previously Co-Located Users First” (PCUF) is 
presented  in16 where VMs are placed and co-located according to their user identities of previous allocation 
in order to reduce the co-residency attacks. A Link Based Virtual Resource Management (LVRM) algorithm is 
proposed  in22 which employed a mapping of virtual links and nodes for reduction of their impact on request 
execution time to minimize the number of active servers. It assigned a highest priority to the virtual link having 
maximum network bandwidth to minimize the execution time of request. Also, it assigned multiple VMs to 
a single server by applying Dijkstra algorithm for selection of the substrate path between two servers so as to 
enhance the request execution rate. To meet dynamic demands of the future applications, an energy-efficient 
resource provisioning framework is developed  in19. This framework addressed the challenges including resource 
wastage, degradation of performance and QoS by comparing the application’s predicted resource requirement 
with resource capacity of VMs and consolidating entire load on the minimum number of servers. An online 
multi-resource feed-forward neural network (OM-FNN) is developed and optimized with Tri-adaptive Differ-
ential Evolutionary (TaDE) algorithm to forecast the multiple resource demands and predicted VMs are placed 
on energy-efficient servers. This integrated approach optimized resource utilization and energy consumption.

Majority of the existing works have investigated sustainability of CDCs with respect to energy consumption 
only and few others have studied resource utilization while ignoring carbon emission, power usage efficiency, 

Table 17.  Comparison of SaS-LM model with state-of-the-art approaches. WP∗ : Workload prediction, LM∗ : 
Load management, NN: Neural network, DNN: Deep neural network, LR: Linear Regression, GCD: Google 
Cluster Dataset, PLB: Planet Lab VM traces, BB: Bitbrains VM traces.

Model

Approach Objectives Evaluation

RemarksWP∗ LM∗ � RU PW PUE CFR Dataset Tool

OP-MLB18 NN � × � � × × GCD, PLB, BB Python CPU temperature, CFP, & security were ignored

SBA14
× � × � � × × GCD CloudSim Battery-aware approach only, PUE, CFP ignored

WPSM21 Wiener Filter � × � � × × GCD CloudSim Adoption of weak approach for overload prediction, 
security lacking

BM-JS4
× � × � � � � GCD CloudSim Task elasticity is exploited, but overload handling is 

ignored

SVMP20
× � � � � × × GCD Python Resource contention and overload handling are 

ignored

PEFS17 DNN � × � � × × GCD Python Security and over-/under-load handling are ignored

MUP15 LR � × � � × × GCD, PLB Java Security and system sustainability perspectives are 
missing

MTFC31
× � × � × × × GCD, internet CloudSim Task elasticity is exploited, overload handling and 

other aspects ignored

MGA32
× � × × � × × PLB CloudSim Power consumption minimized but ignored resource 

wastage

EC-CPN33
× � × � × × × GCD, Yahoo, Wiki. CPN Tools + Cloudsim Task elasticity is considered, over-/under-load han-

dling concepts are ignored

PCUF16
× � � � × × × Azure traces CloudSim May suffer from security breaches not based on 

previous co-locations

LVRM22
× � × � × × × Artificial traces CVI-Sim (java) Bandwidth usage of a task is given higher priority 

over computing

OM-FNN19 NN � × � � × × GCD Python Underload handling provisions are ignored

SaS-LM MFNN+ DPBHO � � � � � � GCD Python Provides secure & sustainable LM where trust & reli-
ability can be included to improve security
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which are essential credentials to be considered during sustainable resource management. Further, none of the 
prior works have considered security along with sustainability during VM consolidation. In the light of the exist-
ing approaches, the proposed SaS-LM model addresses multiple objectives associated to sustainability of CDCs as 
well as considers security of users’ applications under processing in real-time. The proposed DPBHO algorithm 
training based workload analyser learns resource usage patterns and characteristics with precise accuracy to 
allow enhanced utilization of servers, PUE, and reduced carbon emission. Also, multi-objective DPBHO based 
VM management consolidates VMs on most efficient servers which caters multiple objectives for enhanced 
sustainability of CDCs with usage of green power supply while meeting QoS constraints simultaneously. Table 17 
compares the SaS-LM model with state-of-the-art approaches thoroughly.

Conclusion and future work
A novel SaS-LM model is proposed to provide a pareto-optimal solution for secure and sustainable workload 
management in the green cloud environment. The model incorporates a newly developed DPBHO evolutionary 
optimization algorithm for neural network-based resource usage estimation. Further, Multi-objective DPBHO-
based real-time VM placement and management are presented to serve the perspectives of both the cloud user 
and service provider, concurrently. There is a substantial reduction in security attacks, carbon emission, and 
power consumption with an improvement in resource utilization and PUE. The achieved results show superiority 
of SaS-LM model compared to the existing state-of-the-art approaches. Also, a trade-off is observed revealing that 
sustainability improves at the cost of security and vice-versa. In the future, the proposed model can be extended 
by prioritizing the objectives as per the dynamic requirement, adding objectives like trust and reliability-based 
VM allocation scheme.

Data availability
The dataset used and/or analysed during the current study available from the corresponding author on reason-
able request.
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