IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 8, AUGUST 2021

1729

A Cost-Efficient Auto-Scaling Algorithm for
Large-Scale Graph Processing in Cloud
Environments with Heterogeneous Resources

Safiollah Heidari

, Member, IEEE and Rajkumar Buyya

, Fellow, IEEE

Abstract—Graph processing model is being adopted extensively in various domains such as online gaming, social media, scientific
computing and Internet of Things (loT). Since general purpose data processing tools such as MapReduce are shown to be inefficient for
iterative graph processing, many frameworks have been developed in recent years to facilitate analytics and computing of large-scale
graphs. However, regardless of distributed or single machine based architecture of such frameworks, dynamic scalability is always a
major concern. It becomes even more important when there is a correlation between scalability and monetary cost - similar to what public
clouds provide. The pay-as-you-go model that is used by public cloud providers enables users to pay only for the number of resources
they utilize. Nevertheless, processing large-scale graphs in such environments has been less studied and most frameworks are
implemented for commodity clusters where they will not be charged for the resources that they consume. In this paper, we have
developed algorithms to take advantage of resource heterogeneity in cloud environments. Using these algorithms, the system can
automatically adjust the number and types of virtual machines according to the computation requirements for convergent graph
applications to improve the performance and reduce the monetary cost of the entire operation. Also, a smart profiling mechanism along
with a novel dynamic repartitioning approach helps to distribute graph partitions expeditiously. It is shown that this method outperforms
popular frameworks such as Giraph and decreases more than 50 percent of the dollar cost compared to Giraph.

Index Terms—Cloud computing, large-scale graph processing, auto-scaling, cost saving, heterogeneous resources

1 INTRODUCTION

RAPH-ORIENTED data has grown to a very large-scale

and it is becoming massively critical with the emer-
gence of social networks and Internet of Things (IoT) [1].
However, traditional data processing approaches such as
MapReduce [2] are not suitable for processing graphs due to
the inherent iterative characteristic of graph algorithms [3].
This has led to the development of graph processing frame-
works such as Pregel [4], GraphLab [5], and others [6],
[7] that can perform efficiently on various iterative graph
algorithms [8], [9].

Although it has been shown that graph processing sys-
tems offer a good level of scalability on fast interconnected
high-performance computing machines, their behavior on
“virtualized commodity hardware” — known as cloud com-
puting - is less studied [10]. Public cloud has become more
popular by offering cost scalability through provisioning
on-demand computing resources based on its pay-as-you-go
model where resource access is democratized. However,
there are issues that affect the advantages of using such
systems including: 1) the overhead for virtualizing

o The authors are with the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, School of Computing and Information Systems,
the University of Melbourne, Parkville, VIC 3010, Australia.

E-mail: sheidari@student.unimelb.edu.au, rbuyya@unimelb.edu.au.

Manuscript received 4 Apr. 2018; revised 18 June 2019; accepted 30 July 2019.
Date of publication 14 Aug. 2019; date of current version 13 Aug. 2021.
(Corresponding author: S. Heidari.)

Recommended for acceptance by A. Zisman.

Digital Object Identifier no. 10.1109/TSE.2019.2934849

infrastructure on a commodity cluster, 2) performing in con-
trolled situations and environments, 3) lack of complete
control on communication bandwidth and latency due to
imperfect virtual machine (VM) placement. On one side,
users may value the monetary cost more than reliability or
performance while selecting a public cloud service. On the
other side, while many scientific computing need to utilize
more than thousands of cores on a high-performance clus-
ter, the dollar cost of public cloud resources restricts the
number to tens/hundreds. Therefore, scientific applications
that require resources beyond a single large server and less
than a huge cluster of high-performance nodes can fit the
elasticity of public clouds.

Cloud providers usually provide a wide range of resour-
ces including various types of virtual machines so that
customers can find the best combination to fulfill their
requirements with different priorities. In fact, the adoption
of heterogeneous computing resources (i.e., VMs with different
configurations) by cloud users will enable improving the
efficiency of resources utilization.

Despite the significant impacts of elasticity and cost in
cloud environments, investigating these features for graph
processing systems’ performance on such platforms is still a
major gap in the literature. Few graph processing frame-
works such as Pregel.Net [10] (with its Bulk Synchronous
Parallel (BSP) model [11]) and Surfer [12] are developed to
be used on public clouds in order to process large graphs but
they are investigating only particular characteristics other
than scalability and monetary cost.

0098-5589 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on August 14,2021 at 01:00:45 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9392-8144
https://orcid.org/0000-0002-9392-8144
https://orcid.org/0000-0002-9392-8144
https://orcid.org/0000-0002-9392-8144
https://orcid.org/0000-0002-9392-8144
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
mailto:
mailto:

1730

(a) (b)

t=

Number of Messages

v

Supersteps

Fig. 1. General patterns of the number of messages passing through the
network during a typical processing show convergence by the end of the
operation for (a) CC and (b) SSSP, but (c) PageRank is not converged.

Scalability is another important feature that can help
cloud applications to gain optimal performance and mini-
mizes the cost. iGiraph [13] (a Pregel-like graph processing
framework based on Apache Giraph [14]) deploys a scalable
processing approach on clouds. It proposes a dynamic
repartitioning method to decrease the number of VMs dur-
ing the operation. This method uses network message traffic
patterns to merge or move partitions across workers which
eventually reduces the monetary cost of resource utilization.
However, iGiraph works only with homogeneous resources
instead of heterogeneous VMs.

Distributed graph processing contains a set of iterations
in which graph partitions will be placed on different
machines (workers). The operation continues until the
expected result is achieved or there are no more vertices to
be processed. An effective approach to minimize the cost in such
a system is to provide the best combination of resources (i.e.,
appropriate number of resources with the right type) out of the
available resource pool at any iteration. To utilize the aforemen-
tioned capacity of public clouds in providing heterogeneous
computing resources in the context of large-scale graph
processing, we equipped iGiraph with an auto-scaling algo-
rithm to minimize the cost of processing. Our approach sig-
nificantly reduces the financial cost of utilizing cloud
resources compared to other popular graph processing
frameworks such as Giraph [14] and ensures faster execu-
tion. To the best of our knowledge, this work is the first
implementation of a graph processing framework for scal-
able use of heterogeneous resources in a cloud environment.
This approach is very effective when the monetary cost is
important for the user.

The key contributions of this work are:

e A new cost-efficient provisioning of heterogeneous
resources for convergent graph applications.
A new resource-based auto-scaling algorithm.
A new characteristic-based dynamic repartitioning
method combined with a smart process monitoring
that allows efficient partitioning of the graph across
available VMs according to VM types.

e A new implementation of operation management on
the master machine.

The rest of the paper is organized as follows: Section 2

describes graph applications and the proposed auto-scaling

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 8, AUGUST 2021

method that we use in this paper. Section 3 explains the scal-
ing policy and how we are going to apply it to the heteroge-
neous resources in a cloud environment for processing large-
scale graphs. Section 4 explains the proposed approaches
and algorithms for repartitioning and processing graphs in
such a heterogeneous environment. The implementation and
evaluation of the proposed mechanisms are discussed in Sec-
tion 5, while related works are studied in Section 6. Finally,
we conclude the paper along with the directions for future
work in Section 7.

2 GRAPH APPLICATIONS AND AUTO-SCALING
ARCHITECTURE

In this section, we discuss in details the applications that we
used along with our proposed auto-scaling architecture.

2.1 Applications

According to iGiraph [13], when it comes to processing,
there are two types of graph algorithms: 1) non-conver-
gent algorithms, and 2) convergent algorithms. During
processing a large-scale graph by a non-convergent algo-
rithm such as PageRank [8], the number of messages
that are being created in every iteration (superstep) is
the same and will not change until the end of the oper-
ation (Fig. 1c).

On the other side, while processing a graph by a con-
vergent algorithm, the number of messages in the net-
work will start getting decreased at some point during
the operation and will continue reducing until the end
of processing (Figs. 1a and 1b). This is because the more
iterations are completing, the more vertices become deac-
tivated (i.e., processed), so they do not need to exchange
messages with their neighbors anymore. As a result,
deactivated vertices (i.e., processed vertices) can be kept
outside the memory in an operation that is using a con-
vergent algorithm. It means that the remaining active
vertices can be processed by using less amount (or
smaller type) of resources. This continues until there are
no more vertices left to be processed or the desirable
result has been achieved. Therefore, the processing can
be dynamically scalable. Two important algorithms in
this category are single source shortest path [15] and
connected components [9] that have been used in many
studies.

Single source shortest path (SSSP): single source shortest
path has derived from general shortest path problem. In a
directed graph, the aim of SSSP is to find the shortest path
from a given source vertex r to every other vertex v €
V — {r}. The weight (length) of a path p = (v, v1, ..., vg) is
the sum of the weights of its constituent edges: w(p) =
>~ w(vi—1,7v;). At the beginning of the algorithm, the distance
(value) for all nodes will be set to INF (c0) except the source
node that will be set to zero (0) (because it has zero distance
from itself). During the first iteration in a graph processing
operation, all neighbors of the source node will be updated
by receiving its value and update their distance values. In
the second iteration, the updated neighbors will send their
values to their own adjacent vertices and this will continue
until all vertices in the graph update their value and there is
no more active node in the graph. Changing the status of

Authorized licensed use limited to: University of Melbourne. Downloaded on August 14,2021 at 01:00:45 UTC from IEEE Xplore. Restrictions apply.

HEIDARI AND BUYYA: A COST-EFFICIENT AUTO-SCALING ALGORITHM FOR LARGE-SCALE GRAPH PROCESSING IN CLOUD...

Master Workers
Partition {&
Distributor ‘ SLE]
Module L milerge
$
i L mlage |
—> Decision m2.medium
Making
Module m2.medium
' ml.small
;
Monitoring m1.small
Module ml.small
P—

Fig. 2. Proposed auto-scaling architecture.

processed vertices during the operation often means we do
not need them for the rest of processing. Therefore, SSSP is a
convergent algorithm.

Connected components (CC): Connected components algo-
rithm is for detecting various sub-graphs in a large graph
where there is a route between any two nodes of the sub-
graph but it may not be connected to all nodes in the large
graph. A highly connected component algorithm starts by
setting all graph nodes’ status to active. At the start of the
computation, each node’s ID will be considered as its initial
component ID. The component ID can be updated if a
smaller component ID is sent to the node. Then, the node
will send its new value to its neighbors. In this operation, the
number of messages required to be passed between vertices
will reduce as the processing progresses. It is because the
states of vertices change to inactive during the operation.
Similar to SSSP, CC is also a convergent algorithm that can
be considered for our auto-scaling approach.

We have targeted convergent algorithms in this paper as
they are more suitable for scaling scenarios. We will show
how they can benefit from resource heterogeneity in a pub-
lic cloud by using our proposed auto-scaling and reparti-
tioning algorithms and framework.

2.2 Proposed Auto-Scaling System Architecture
Most distributed graph processing frameworks only rely on
homogenous implementation while trying to reduce the
cost by speeding up the computation and decreasing the
execution time [16], [17], [18]. These frameworks consider
dedicated clusters in various sizes, whereas in real world it
is not possible for all users to provide such infrastructure.
Instead, from a user point of view, it is beneficial to use pub-
lic clouds for processing large-scale graphs [19]. There are
many important issues that influence the final performance
and cost of the processing. They include: 1) what is the best
scaling policy (i.e., horizontally or vertically) to reduce the
cost?, 2) what is the best partitioning method to take advan-
tage of more cost-efficient VMs?, 3) how these policies can
be applied to a graph processing framework?, and 4) how to
improve the system performance on public cloud? To
enhance the performance of large-scale graph processing on
public clouds, first, we implement an auto-scaling approach
within our framework to utilize the heterogeneity of resour-
ces in this environment.

As shown in Fig. 2, our proposed auto-scaling system
is aware of the states of available machines at any

1731

moment. The system consists of a monitoring module by
which it tracks different states of each machine and
network metrics such as the number of generated
messages, memory utilization, CPU utilization, VM info,
etc. There is also a decision-making module that decides
how to apply the right scaling policy based on the infor-
mation gathered about current situations of VMs, net-
work and the graph itself. Finally, the partition distributor
module distributes the partitions across the available VMs
according to the computing strategy. All these modules
are implemented on the master machine that controls the
entire processing and partition assignments.

At the end of each superstep, the monitoring module col-
lects various information from all workers about the current
state of the system, network and the graph. Then it passes the
information to decision making module. Decision-making
module compares new information with information from
the previous superstep and investigates different scenarios to
replace VMs in order to reduce the cost. For each calculation,
the cost of iteration 7 4 1 should be equal to or less than the cost
of iteration i. If migrating vertices and merged partitions to
smaller/less costly VMs decreases the cost of iteration com-
pared to the previous iteration, then current VMs will be
replaced by new ones. Otherwise, the current configuration
will be remained untouched. This module also determines
the number of VMs that can be replaced along with the types
of new VMs based on the information from monitoring mod-
ule. Partition distributor module will be notified about the
new configuration and eventually distributes new partitions
accordingly.

3 HORIZONTAL SCALING (STEP SCALING)

Horizontal scaling is simply adding more machines to the
existing configuration of resources. Although scaling hap-
pens based on additional needs to new resources, adding
new machines does not necessarily mean provisioning
more powerful machines. Sometimes a large resource needs
to be broken down into smaller types and share the burden
to minimize the cost. When the machines that are appended
to or removed from a pool of resources in a particular con-
figuration are from the same type, the scaling is called
homogeneous whereas it is called heterogeneous when
machines are from different types. Scaling also can be
upward when new resources (machines) are being added to
the system or downward when some machines are being
removed from it.

iGiraph [13] is an extension of Giraph [14] and the only
Pregel-like framework that scales down homogeneously
across public clouds while processing convergent algorithms
(Fig. 3a). Basic iGiraph does not monitor network factors
(except network traffic) or VM availability. Its decisions are
made only based on the number of generated messages in
the network, size of the partitions and memory. The idea is
to merge small partitions from two different machines to
make a bigger partition that fits into one machine; or migrate
border vertices of a partition to another partition to reduce
message passing ratio between VMs. Although the number
of VMs will be reduced in this approach, the processing
starts and finishes by using only one type of machines (e.g.,
large machines) during the entire operation.

Authorized licensed use limited to: University of Melbourne. Downloaded on August 14,2021 at 01:00:45 UTC from IEEE Xplore. Restrictions apply.

1732

. Superstepl Superstep 2 Superstepn

g)

A

AL ~
o M
<
2

A

AN

A

5 e e B

A

g)

(a) iGiraph homogeneous scaling policy

. Superstep1 Superstep 2 Superstepn

2)
=

N

2) E\' g)
A\"‘)
H (E) 2
\ \
AL
-
.
-

AL

)

]

)
A,

E\\

(b) Our proposed heterogeneous scaling policy

Fig. 3. Scaling policies for large-scale graph processing using convergent
algorithms (a) basic iGiraph uses the same VM type during the entire
processing, (b) iGiraph-heterogeneity-aware replaces VMs with smaller/
less costly types as the processing progresses.

A more efficient alternative to this method is using a
combination of different VM types. We observed that in
many experiments, during final supersteps, the last VM
(which is usually a large or medium size VM) is much larger
than what is needed for the operation to be completed. It
means that the user is paying for a large machine to accom-
plish a small task.

To address this issue, we propose a heterogeneous scaling
in VM level which is specifically appropriate for processing
large-scale graphs using convergent algorithms. In this
method, as the processing continues, the system chooses
suitable VM type based on the required capacity to host/pro-
cess the rest of the graph, and partitions it accordingly. The
new framework can be used easily as a cost-efficient graph
processing service. Fig. 3 compares the original iGiraph
homogeneous scaling policy versus our proposed policy.

Unlike default iGiraph, iGiraph-heterogeneity-aware
scheduling algorithm measures and monitors more net-
work factors such as bandwidth and CPU utilization in
addition to the network trafficc Combining this with
other information such as memory utilization, VM states,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 8, AUGUST 2021

partitioning changes, vertices migration, and available
VMs, provides a holistic view of the entire environment
that the system is operating in it. This is required to esti-
mate and optimize the cost of processing. Since every
processing operation consists of several iterations (super-
steps), in order to reduce the overall cost of the process-
ing, the summation of the costs of iterations must be
decreased. To achieve this, the cost of every iteration
should be either equal to or less than the cost of its pre-
vious iteration.

C(Siz1) < C(S)). (1)

According to Equation (1), new VMs can be added and
replaced only if the cost of new configuration will be less
than the cost of the current configuration. C(S) is the cost of
the superstep. This decision will be made by the decision-
making module (Section 2.2). This approach successfully
deals with price heterogeneity of the cloud resources too as
price is one of the variables in the equation. It ensures that
not only smaller VMs are being used, but the monetary cost
is being considered as well.

4 DyYNAMIC CHARACTERISTIC-BASED
REPARTITIONING

We discuss the smart VM monitoring and our proposed
characteristic-based dynamic repartitioning approach.

4.1 Smart VM Monitoring

The first step towards a smart partitioning is smart monitor-
ing. A large number of existing graph processing frame-
works do not measure important environmental factors such
as network metrics and VM properties. These factors have
huge impacts on the system’s performance in various man-
ners. For example, monitoring network traffic can help to
direct communication messages to the channels with less
traffic to reduce latency, or monitoring available memory
and price of VMs enables to select the right machines for
hosting partitions in order to increase the performance and
reduce the cost of processing. In addition, the knowledge
that is achieved from monitoring these factors can be utilized
in helping to design and develop a more efficient framework.
Therefore, to better take advantage of aforementioned met-
rics, we have designed a smart monitoring center in the heart
of our proposed system, the master machine. The reason for
centralizing this information on the master is that all deci-
sions can be made in one place which leads to more accurate
decision-making process.

There are two types of information that are gathered by
our proposed system: 1). The information that is generated
during the processing which is very dynamic and can
change over time (such as network traffic, remaining VM
memory, etc.), and 2). The information that remains
unchanged during the entire operation (such as VM price,
VM total memory capacity, etc). At this stage, the informa-
tion that is listed in the proposed monitoring system
includes the network trafficc VM bandwidth, CPU utiliza-
tion, available VM memory and partition sizes. All informa-
tion will be stored on the master machine and updated at
the end of each superstep after the synchronization barrier

Authorized licensed use limited to: University of Melbourne. Downloaded on August 14,2021 at 01:00:45 UTC from IEEE Xplore. Restrictions apply.

HEIDARI AND BUYYA: A COST-EFFICIENT AUTO-SCALING ALGORITHM FOR LARGE-SCALE GRAPH PROCESSING IN CLOUD...

occurrence. Having these, the algorithm is able to choose the
best approach to repartition the graph continuously, scale
up by using available heterogeneous resources on the cloud
and distribute the new partitions accordingly. Meanwhile,
selecting the appropriate set of information to be used at
each step depends on the strategy that is defined in the
repartitioning algorithm. This is usually dependent on the
application itself. For example, if the application is commu-
nication-bound (which will be determined by the user at the
beginning of the processing in the input command), the
algorithm aims to reduce the network traffic by repartition-
ing the graph in a way that high-degree vertices will be
migrated and placed near their neighbors. This way, a large
number of messages will be passed in-memory and do not
need to travel across the network. The communication will
speed up as well by mapping new partitions and VMs
based on their bandwidth. The strategy would change
when the application is computation-bound. These situa-
tions have been investigated in [20]. In this paper, we use
two convergent communication-bound algorithms: single
source shortest path and connected components.

Different mechanisms have been implemented to mea-
sure various factors in the environment. As discussed in
[13], to measure the network trafficc we calculate the
number of messages that are passed between partitions
in each iteration. This measurement also shows us which
partitions contain more high-degree border vertices
which will affect our decision-making strategy. Band-
width and CPU utilization are two factors which were
not measured in basic iGiraph. For measuring the band-
width between each pair of machines, we use an end-to-
end mechanism that is utilized in [21]. This factor is
important because the bandwidth constantly changes in
a cloud environment. Moreover, since we store one parti-
tion on each worker, this evaluation gives us the band-
width between two partitions in the network which in
turn can be used in the mapping operation. On the other
side, we use Ganglia' monitoring tool to obtain CPU uti-
lization and other network metrics. To have a more accu-
rate measurement, the percentages of both CPU
utilization and CPU idle time are measured. CPU idle
time is for cases where a small piece of a job consumes a
large part of the computation resources for a very short
amount of time while they are free for the rest of the
time [20]. However, in some cases, one small continuous
task will be running on CPU for a long time. In this situ-
ation, the idle time is small while CPU utilization is also
small. So, only if idle time is small and the CPU utiliza-
tion is big, the VM will not be considered for migration
or replacement. The system will consider a default
threshold of 50 percent for both CPU utilization and idle
time and selects the policy based on that. Nevertheless,
the user can define the threshold for both variables man-
ually too. We also calculate the available capacity of
each machine by considering the correlation of the sizes
of partitions and VMs. Additionally, to avoid making
monitoring a bottleneck for the performance of the sys-
tem, changeable information will be stored on workers
until the synchronous barrier happens and final values

1. http:/ / ganglia.sourceforge.net/

1733

will be sent to the master only once after every barrier
signal.

Besides factors that are being persistently modified
during the processing, there are constant factors such
as VM properties, prices and types of machines that will
not change. In fact, they are inherently part of the
cloud environment. So, they will be stored at the begin-
ning of the operation. The system also will know how
many machines are available on the network and how
much resources they can provide for the execution. The
resource pool will be considered based on the maximum
amount of resource requirements by users at the begin-
ning of the processing which later will be optimized dur-
ing the operation. Another important difference between
iGiraph-heterogeneity-aware and basic iGiraph is that
the latter is environment-agnostic and did not use any of
this information for a better computation. All these infor-
mation alongside the changeable metrics’ information
will be stored in a separate file on the master machine to
be used in the partitioning algorithm.

4.2 Dynamic Repartitioning

To enable and improve the usage of heterogeneous reso-
urces, we have proposed a characteristic-based reparti-
tioning method. “Characteristic-based repartitioning”
here means that the system knows the characteristics of
the resources and is aware of specific statistics (such as
network metrics) by which new decisions can be made
about partitioning the graph again in a dynamic manner.
To achieve this, the algorithm contains two major
steps: 1) prioritization step, and 2) mapping step. In the
prioritization step, the algorithm prioritizes partitions
and resources based on the application requirements
before distributing partitions across the network. The
mapping step is where the algorithm decides how to uti-
lize the available resources.

As mentioned in Section 4.1, the static information about
the available VMs and their types will be stored on the mas-
ter. This information includes the price, the number of cores
and memory capacity of each VM along with labeling VMs
based on their size e.g., small, medium and large. The label-
ing mechanism increases the speed of algorithm when it is
making decisions about where to place the new partitions
(Without a labeling mechanism, the algorithm had to com-
pare VM capacities to find out which type they are). In this
paper, the system knows how many machines are available
in the network (resource pool) and it will be given by a list
of information before the processing starts. However, to
start the processing, the initial number and the type of VMs
will be given by the user. So, at this step, out of the resource
pool, only a specific number of VMs will be used to start the
processing with. This can be considered as a pre-processing
operation. Also, in all our experiments in this paper, at the
start of the processing, the graph will be partitioned ran-
domly (based on vertices identifiers). The first iteration of
processing (superstep 0) ends when the global synchroniza-
tion barrier happens. At this point, the VM monitoring
module collects the information (changeable information-
Section 4.1) before the next superstep to use them for repar-
titioning purpose.

Authorized licensed use limited to: University of Melbourne. Downloaded on August 14,2021 at 01:00:45 UTC from IEEE Xplore. Restrictions apply.

http://ganglia.sourceforge.net/

1734

Algorithm 1. Characteristic-based Dynamic
Re-partitioning

1: Get the information about available VMs in the network

2: Partition the graph randomly

3: Set PP = 0 for each partition and WP = 0 for each worker

4: For the rest of the computation do

5 Calculate PP for each partition based on the number of
messages that each partition receives

6: Calculate WP for each worker using end-to-end

mechanism

7: If global synchronization happened then

8: If Size(PartitionP1+PartitionP2)< = Size(Memo-

ryOfSmall VM) then

9: mergelntoSmallVM(P1,P2)

10: removeCurrentVM(PP1,P2)

11: elif Size(P1+P2)>Size(MemoryOfSmallVM) and
Size(P1+P2)< = Size(MemoryOfCurrentVM)
then

12: mergelntoCurrentVM(P1,P2)

13: removeCurrentVM()

14: elif

Size(PartitionP1+Adjacentpartitions)< = Size
(MemoryOf AdjacentVMs) then

15: migrateIntoAdjacentVMs(P1)

16: removeCurrentVM()

17: Merge the partitions or migrate vertices if needed

18: Set the priorities based on PP and WP

19: Add/Remove VMs if needed

20: Map partitions(based on PP) and workers(based on WP)

21: If VoteToHalt() then

22: Break

After superstep 0, the algorithm starts prioritizing parti-
tions and VMs according to the changes that occurred in the
first iteration. It also investigates any scaling possibility at
the resource level for the next iteration. At this phase, each
partition will be given a new label value called Partition Pri-
ority (PP) based on the number of messages they have
received. The PP for the partition that has received the largest
number of messages will be set to 0 (PP = 0), the PP for the
partition that has received the second largest number of mes-
sages through the network will be set to 1 (PP = 1) and so
on. When a partition receives more messages in comparison
with other partitions, it means that it contains more high-
degree border vertices. Therefore, since the aim is to move
high-degree vertices closer to their adjacent vertices, this can
be considered as a candidate for partition merge or vertex
migration. With a similar mechanism, all worker machines
that were used in the operation will be labeled by a Worker
Priority (WP) label. Because we are using communication-bound
application in this paper (computation-bound algorithms will
be investigated in our future works), the prioritization of
workers is based on their bandwidth (not CPU utilization)
and available memory. So, the WP for the VM with the high-
est bandwidth will be set to 0 (WP = 0), WP for the VM with
the second highest bandwidth will be set to 1 (WP = 1) and
so on. If two partitions or two workers have the same value
for prioritization, one of them will be given the higher prior-
ity randomly. After this phase, because we put one partition
per VM, the partitions and VMs with the same priority num-
ber will be mapped to each other. This calculation is fast as
all information is gathered during the iteration.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 8, AUGUST 2021

Although assigning priorities seems very straightforward,
there are situations that need to be taken into consideration
during the assignment process. Any partition merging or ver-
tex migration could affect the prioritization. According to [20],
the partition that has been given more migrated vertices gets
the highest priority. In case that vertices are migrated across
multiple partitions, the partition that has received more verti-
ces will be set to the highest priority and so on. Meanwhile,
the priorities of the new partitions that are formed by merging
other partitions will be set to the highest priority among parti-
tions before merging. For example, if partition P1 has higher
priority than partition P2, after merging these two partitions
(P3 =P1 + P2), P3's priority will be set to the former priority
of P1. Also in cases a large VM is splitting into smaller VMs or
moving its entire assigned partition to a smaller type of VM,
the priority of the new VM will be calculated the same way as
a large VM (described in the previous paragraph). The priori-
ties of all partitions and VMs are set to 0 at the beginning of
the operation (before superstep O starts).

As mentioned above, the system selects VMs of the same
type from the resource pool based on the user’s requirement.
For example, if the user sets the number of VMs to 16, and
chooses the type medium, then 16 medium VMs will be allo-
cated to the processing. Nevertheless, both the number and
the type (size) of VMs will change during the execution due to
partition merges or vertices’ migrations. The aim of merging
partitions or migrating vertices is to take high-degree vertices
closer to their adjacent vertices. This, results in a significant
reduction in cross-edges between machines which leads to less
message transmission throughout the network. When the total
number of messages that are transferred during the superstep
i+ 1 is less than the total amount of the messages that were
transferred during superstep i, there is a possibility for parti-
tion merge. So, as long as the number of messages is increas-
ing, partitions cannot merge (e.g., SSSP). After each superstep,
if the sum of the size of typical partition P1 and partition P2 is
less than the memory capacity of a smaller VM type, then they
will merge and partition (P1 + P2) will be moved to the new
small VM. If (P1 + P2) is larger than the memory of small VM,
but it can be fit into the memory of one of current VM types,
they will merge into one VM and the other VM will be
removed. If some partitions, that are neighbors of a very small
partition (a partition that has occupied a tiny fraction of a VM
memory), have enough space to host the vertices of the small
partition without needing to employ a new VM, then all verti-
ces of the small partition will be distributed among its adjacent
partitions. So, there is no need to add a new machine. Algo-
rithm 1 shows the characteristic-based dynamic repartitioning.
In this algorithm, CurrentVM and SmallVM are two representa-
tives of the current utilized VM and the smaller VM that parti-
tions and vertices will be migrated or merged to, respectively.
For example, if the CurrentVM is “Large” type, then SmallVM
can be a “Medium” type and so on. As a result, this algorithm
works for all other types of VMs.

5 PERFORMANCE EVALUATION

5.1 Experimental Setup
To evaluate the effectiveness of our framework and proposed

algorithms, we utilized resources from Australian national
Cloud Infrastructure NECTAR) [22]. We utilize three different

Authorized licensed use limited to: University of Melbourne. Downloaded on August 14,2021 at 01:00:45 UTC from IEEE Xplore. Restrictions apply.

HEIDARI AND BUYYA: A COST-EFFICIENT AUTO-SCALING ALGORITHM FOR LARGE-SCALE GRAPH PROCESSING IN CLOUD...

TABLE 1
Some Typical Amazon VM Types
VM Type #Cores RAM Disk Price/hour
(root/ephemeral)
m?2.large 4 12GB 110 GB (30/80) $0.24
ml.medium 2 8 GB 70 GB (10/60) $0.12
m1.small 1 4GB 40 GB (10/30) $0.0292

VM types for our experiments based on NECTAR VM stan-
dard categorization: m2large, ml.medium, and ml.small
Detailed characteristics of utilized VMs are shown in Table 1.
The reason for using m-type VM is because the algorithms that
we are using are memory-intensive and using m-type
machines provides better performance. Since NECTAR does
not correlate any price to its infrastructure for research use
cases, the prices for VMs are put proportionally based on Ama-
zon Web Service (AWS) on-demand instance costs in Sydney
region according to the closest VM configurations as an
assumption for this work. According to this, NECTAR m2.
large price is put based on AWS mb5.xlarge Linux instance,
NECTAR ml.medium price is put based on AWS mb.large
Linux instance and NECTAR m1.small price is put based on
AWS t2.small Linux instance. All VMs have NECTAR Ubuntu
14.04 (Trusty) amd64 installed on them, being placed in the
same zone and using the same security policies. We observed
that regardless of which region the user chooses the VMs
from, our approach reduces the monetary cost by the order of
magnitude compared to other existing frameworks. We use
iGiraph [13] (the extended version of Giraph [14]) with its
checkpointing characteristics turned off along with Apache
Hadoop version 0.20.203.0 and modify that to contain hetero-
geneous auto-scaling policies and architecture. All experi-
ments are run using 17 machines where one large machine is
always the master, and workers are a combination of medium
and small instances. We use shortest path and connected com-
ponents algorithms as two convergent graph algorithms for
our experiments. They are good representatives of many other
algorithms regarding their behavior. We also use three real-
world datasets of different sizes: YouTube, Amazon, Pokec
and Twitter [23] as shown in Table 2.

5.2 Evaluation Results

We have compared our system and algorithms with Giraph
because it is a popular open source Pregel-like graph process-
ing framework and is broadly adopted by many companies
such as Facebook [24]. We also compared the performance of
basic iGiraph that scales out homogeneously with our pro-
posed heterogeneous extension of iGiraph (i.e., iGiraph-
Heterogeneity-aware). In this paper, the size of the messages
in all experiments is equal, hence the relative cost of commu-
nication is independent of message size. Instead, the total

TABLE 2
Databases’ Properties
Graph Vertices Edges
YouTube Links 1,138,499 4,942 297
Amazon (TWEB) 403,394 3,387,388
Pokec 1,632,803 30,622,564
Twitter WWW) 41,652,230 1,468,365,182

1735

number of messages that are transferring through the net-
work has been calculated for cost. All experiments start with
medium VMs as their workers.

The first group of experiments is conducted for processing
various datasets using shortest path algorithm. As shown in
the above figures, the blue area demonstrates the number of
VMs that are being used by Giraph which is correlated with
the cost of the operation. So, Giraph is the most costly solution
among all the systems because it uses the same number of
machines during the entire operation. Many existing distrib-
uted graph processing frameworks never reduce the number
of resources during the processing. On the other hand, as the
operation is being progressed, more vertices become proc-
essed. So, iGiraph removes unnecessary VMs and distributes
the rest of partitions on the remaining machines. The red area
shows that iGiraph is reducing the number of utilized VMs.
This declines the cost significantly on a public cloud compared
to Giraph. However, basic iGiraph only utilizes homogeneous
machines. It means that if the processing has been started with
medium size VM, it will be ended with medium size VMs as
well despite the VM reduction. In this case, although smaller
partitions tend to be merged to create a bigger partition to opti-
mize VM utilization, there are always situations where a tiny
partition (that has occupied a large VM and all its capacity)
cannot be merged or migrated. To address this issue, iGiraph-
Heterogeneity-aware replaces current VMs by smaller ones. It
has been shown that iGiraph-Heterogeneity-aware provides
more than 20 percent cost reduction compared to original iGir-
aph (the green area). The majority of this cost saving is due to
removing unnecessary VMs from the list of active VMs or
replacing them with smaller types. We consider a VM as a
package of resources including computation and storage
resources. Hence, removing or downsizing VMs leads to sig-
nificant cost savings. All VM types are correlated with particu-
lar prices as shown in Table 1. Therefore, as it can be seen in
the diagrams (Figs. 4, 5, 6, 7) for both basic iGiraph and

18
W Giraph,PowerGraph, LFGraph

miGiraph

iGiraph-Heterogeneity-aware

16
14
12
10

Number of Machines
w0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Supersteps

Fig. 4. Number of machines during processing shortest path on Amazon.

W Giraph,PowerGraph, LFGraph W iGiraph iGiraph-Heterogeneity-aware

Number of Machines

Supersteps

Fig. 5. Number of machines during processing shortest path on
YouTube.

Authorized licensed use limited to: University of Melbourne. Downloaded on August 14,2021 at 01:00:45 UTC from IEEE Xplore. Restrictions apply.

1736

m Giraph,PowerGraph, LFGraph

miGiraph m iGiraph-Heteroge neity-aware

Number of Machines

1 2 3 4 5 6 7 8 9

Supersteps

Fig. 6. Number of machines during processing shortest path on Pokec.

m Giraph,PowerGraph, LFGraph ~ miGiraph miGiraph-Heterogeneity-aware

Number of Machines

O N & 00 ®

1 3 5 7 9 111315 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Supersteps

Fig. 7. Number of machines during processing shortest path on Twitter
for the first 50 supersteps.

300
m Giraph miGiraph miGiraph-Heterogeneity-aware m PowerGraph mLFGraph

250

200

150
100
50
o, HEAENE mmmnsm HEEElE

TouTube

Time (s)

Amazon Pokec Twitter

Fig. 8. Total execution time for processing shortest path algorithm on
various datasets.

iGiraph-heterogeneity-aware, the cost of each superstep is
either equal to or less than the cost of its previous superstep due
to VM elimination or replacement (Section 3). However, iGir-
aph-heterogeneity-aware achieves better results by taking
advantage of resource heterogeneity. As shown in Figs. 8§ and
16, iGiraph-Heterogeneity-aware even completes the process-
ing faster than other frameworks due to its new partitioning
approach which distributes partitions based on their character-
istics and the properties of available machines. Figs. 9, 10, and
11 show the number and types of machines in each iteration.
These results that have been generated by putting together the
average outcomes of 45 runs demonstrate the behavior of our
proposed solution and how it removes or replaces VMs during
the processing.

As a result, the total cost of the processing is dependent
on the number and the time (duration) that a particular type
of VM is being utilized during the operation. This is shown
in Equation (2), where C(VM;) is the price of the VM and
T(VM;) is the time that within the VM is used. The equation
calculates the cost for all VMs (n) during the entire process-
ing iterations (m).

m n
Costfina = Y > _ (C(VM;) x T(VM,)). @)
=0 =1

J

2

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 8, AUGUST 2021

Medium VM & Small VM

12 3 45 6 7 8 910111213141516 17 18 19 2021 22 23

Fig. 9. Resource modification during processing shortest path on
Amazon.

& Medium VM B Small VM

Fig. 10. Resource modification during processing shortest path on
YouTube.

®m Medium VM @ Small VM

1 2 3 4 5 6 7 8 9

Fig. 11. Resource modification during processing shortest path on
Pokec.

Although data transfer affects the ultimate cost calcula-
tion, we did not consider that in this equation, but we will
take it into consideration for our future works. Table 3
shows the cost comparison for different datasets for shortest
path algorithm on each framework.

We carried out similar experiments on connected compo-
nent algorithm using the same datasets. Final results are
showing significant improvements and cost saving com-
pared to Giraph (Figs. 12, 13, 14, and 15). Also, our pro-
posed partitioning method for iGiraph-Heterogeneity-
aware makes it outperform basic iGiraph up to 20 percent.
Table 4 shows the cost comparison for different datasets for
connected components algorithm on each framework.

Authorized licensed use limited to: University of Melbourne. Downloaded on August 14,2021 at 01:00:45 UTC from IEEE Xplore. Restrictions apply.

HEIDARI AND BUYYA: A COST-EFFICIENT AUTO-SCALING ALGORITHM FOR LARGE-SCALE GRAPH PROCESSING IN CLOUD...

TABLE 3
Processing Cost for SSSP on Different Frameworks
iGiraph-

Dataset ~ Giraph PowerGraph LFGraph iGiraph heterogeneity-

aware
Amazon $0.0133 $0.0118 $0.0107 $0.0082 $0.0064
YouTube $0.0117 $0.0114 $0.0098 $0.0070 $0.0045
Pokec $0.0149 $0.0143 $0.0121 $0.0095 $0.0056
Twitter ~ $8.84 $7.48 $5.61 $4.92 $3.303

=
o

m Giraph,PowerGraph, LFGraph

miGiraph m iGiraph-Heterogeneity-aware

Bos e R
o N & O

Number of Machines
o

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Supersteps

12 3 4 5 6

Fig. 12. Number of machines during processing connected components
on Amazon.

M Giraph,PowerGraph, LFGraph W iGiraph M iGiraph-Heterogeneity-aware

Number of Machines

O N & OO ®

1 2 3 4 5 6 7 8 9 10 11
Supersteps

Fig. 13. Number of machines during processing connected components
on YouTube.

Table 6 (Section 6) demonstrates different characteristics
of these systems and the newly implemented features.

5.3 Discussion and Analysis

The results demonstrate that our iGiraph-Heterogeneity-
aware approach significantly reduces the monetary cost
of the operation compared to other frameworks while
improving the performance. These improvements are
obtained through a series of interconnected/interoperable
operations. In our system, each component has a critical role
and each one of them contributes to overall system perfor-
mance. For example, dynamic repartitioning heuristics have
higher overhead than a simple random partitioning appr-
oach. This is due to the time and resources that are required
for making smarter decisions or merging/migrating parti-
tions across the system. However, this reduces drastically for
later itterations (as observed in Fig. 17).

According to Fig. 17, the average time overhead for proc-
essing connected component algorithm on Amazon dataset
using Giraph framework is almost intact during the entire
operation due to its simple random partitioning strategy. On
the other hand, the average time overhead varies remarkably
while processing by iGiraph-Heterogeneity-aware. At the
start of the operation, the number of partitions that need to be

1737

W Giraph,PowerGraph, LFGraph

W iGiraph miGiraph-Heterogeneity-aware

«n
L
£ 12
=
3 10
=
S 8
[}
o 6
1S
=1 4
=
2
0
1 2 3 a 5 6 7 8 9
Supersteps

Fig. 14. Number of machines during processing connected components
on Pokec.

W Giraph,PowerGraph, LFGraph W iGiraph W iGiraph-Heterogeneity-aware

Number of Machines

1 3 5 7 9 111315 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Supersteps

Fig. 15. Number of machines during processing connected components
on Twitter for the first 50 supersteps.

TABLE 4
Processing Cost for CC on Dlfferent Frameworks
iGiraph-

Dataset ~ Giraph PowerGraph LFGraph iGiraph heterogeneity-

aware
Amazon $0.0138 $0.0116 $0.0110 $0.0062 $0.0051
YouTube $0.0128 $0.0109 $0.0087 $0.0065 $0.0053
Pokec $0.0160 $0.0146 $0.0135 $0.0086 $0.0072
Twitter $8.5 $7.99 $5.78 $4.07 $3.43

merged or vertices that need to be migrated is the most. There-
fore, it takes more time to move partitions and vertices across
the workers. However, as the operation progresses, processed
vertices and edges will be removed from the memory which
results in quicker repartitioning among the remaining nodes.

Our observations showed that although dynamic reparti-
tioning in iGiraph-Heterogeneity-aware creates larger time
overhead compared to random partitioning in Giraph, it
contains only 5-8 percent of the entire runtime of the opera-
tion. This overhead does not noticeably affect the system
performance because of other optimizations that increase
in-memory computation and reduce other overheads such
as network and memory overheads (as follows).

Another important overhead in a graph processing sys-
tem is caused due to the network traffic. Since iGiraph-
Heterogeneity-aware is using iGiraph as its core framework,
its dynamic repartitioning distinguishes between internal
and border vertices [14]. In this method high degree border
vertices will be placed with their adjacent neighbors in the
same partition. Therefore, it minimizes the number of cross-
edges between partitions (workers), which in turn minimizes
message transmission across the network as shown in
Fig. 18. Table 5 compares the maximum number of messages
that needed to be passed through the network in the peak
superstep in both Giraph and iGiraph-Heterogeneity-aware

Authorized licensed use limited to: University of Melbourne. Downloaded on August 14,2021 at 01:00:45 UTC from IEEE Xplore. Restrictions apply.

1738 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 8, AUGUST 2021

TABLE 5
Maximum Number of Messages that Needed to Be
Transferred Through the Network in the Peak
Superstep While Processing SSSP

Amazon YouTube Pokec
iGiraph 643,237 215,754 1,259,613
iGiraph -Heterogeneity-aware 500,964 84,382 524,496

while processing SSSP. Our iGiraph-Heterogeneity-aware
approach significantly reduces the network overhead by uti-
lizing the new dynamic repartitioning method proposed in
this paper. It also speeds up the process by mapping parti-
tions and traffic based on the available bandwidth.

Complexity Analysis. We analyzed the time complexity of
our dynamic repartitioning algorithm. This algorithm relies
on the number of supersteps (N) when N can fluctuate
based on the application and the number of nodes in the
graph. Moreover, partition prioritization (PP) and worker
prioritization (WP) that are required to be calculated in
every superstep are affecting the algorithm too. Hence, the
worst case complexity can be O(N (PP + WP)) where both
PP and WP are dependent to the number of machines (m).
Whereas, the best case complexity can be O(N(logm)). Gir-
aph complexity is O(N(n)) where n is the number of verti-
ces. It shows that our approach is better than default Giraph
in terms of complexity.

The benefits /advantages of using our proposed approach
for processing large-scale graphs include: 1) reducing mem-
ory overhead by removing inactive vertices from the mem-
ory, 2) enhancing computation speed by increasing in-
memory computations, 3) decreasing network traffic by
reducing cross-edge connections between partitions, 4),
improving partitioning by using a smart characteristic-based
dynamic repartitioning method, and 5) significant monetary
cost reduction by improving elasticity and utilizing hetero-
geneous resources. All these benefits will be effective even if
homogeneous resources are used. We have investigated this
case in our previous works [13], [20].

6 RELATED WORK

We investigated various factors such as scalability, dynamic
partitioning, which are studied individually by other works.
Scalability is a major concern in many systems. Each work

300

W Giraph ®iGiraph iGiraph-Heterogeneity-aware PowerGraph ™ LFGraph

250
. 200
«
[}
£ 150
=

100

50

, WARNE mEmem HEmiE

Amazon YouTube Pokec Twitter

Fig. 16. Total execution time for processing connected components
algorithm on various datasets.

has addressed scalability issue in a different way. Pregel-
like frameworks such as Giraph [14], GPS [25] and GiraphX
[26] along with some non-Pregel-like frameworks such as
Trinity [27], Presto [28] and PowerSwitch [29] argue that a
distributed architecture can provide better scalability. The
system can access as many resources as needed to operate
and increase the performance.

However, these systems use other optimizations to deli-
ver better performance as well. GPS [25], for instance, intro-
duced a dynamic repartitioning approach by which the
partitions will be distributed again among faster workers
who complete their jobs before other workers inside each
iteration. This keeps all workers busy all the time during the
processing and faster workers do not need to wait until
slower workers finish their jobs. This approach has become
possible by utilizing an asynchronous implementation of
partition distribution inside supersteps. Another system
called PowerSwitch [29], improves the performance of the
system by effectively predicting the proper heuristic for
each step. It then switches between synchronous and asyn-
chronous execution states if required. Not only iGiraph-
heterogeneity-aware provides scalability over heterogene-
ous resources, but also provides elasticity as it provisions in
an autonomic way. Hence, the current demand and resource
consumption matches at any given time, according to [30].

Uta et al. [31] have studied elasticity in graph processing
and proposed a benchmarking framework called JoyGraph
for elastic graph processing. They found that graph work-
loads are sensitive to data migration when employing or
releasing resources. JoyGraph is using more metrics to pro-
vide accurate elasticity. Although the paper is using different
application and datasets, it shows that increasing or

TABLE 6
A Comparison with the Most Relevant Works

System Implemented Partitioning Network-aware Resource-aware Resource

Environment Method Configuration
Pregel HPC Static No No Homogeneous
Giraph HPC Static No No Homogeneous
PowerGraph HPC Static No No Homogeneous
GPS HPC Dynamic No No Homogeneous
Pregel Net Cloud Dynamic No No Homogeneous
Surfer Cloud Dynamic No No Homogeneous
iGiraph Cloud Dynamic No No Homogeneous
iGiraph- Network-aware Cloud Dynamic Yes No Homogeneous
iGiraph -Heterogeneity-aware Cloud Dynamic Yes Yes Heterogeneous
(Our Work)

Authorized licensed use limited to: University of Melbourne. Downloaded on August 14,2021 at 01:00:45 UTC from IEEE Xplore. Restrictions apply.

HEIDARI AND BUYYA: A COST-EFFICIENT AUTO-SCALING ALGORITHM FOR LARGE-SCALE GRAPH PROCESSING IN CLOUD...

80

e Giraph e iGiraph-Heterogeneity-aware

70
60

50

40
30
20

10

Time (ms)

0
123 456 7 8 91011121314 151617 18 19 20 21 22 23 24 25

Superstep

Fig. 17. Average time overhead for random partitioning in Giraph versus
smart dynamic repartitioning in iGiraph-Heterogeneity-aware during
processing connected components on Amazon.

decreasing the number of machines creates significant over-
head on CPU and memory. Unlike JoyGraph, we have pro-
posed a novel processing and dynamic repartitioning
strategy in our work (iGiraph-Heterogeneity-aware) by
which all processed vertices are being removed from the
memory. This reduces overheads drastically. Another differ-
ence is that JoyGraph is not investigating the monetary cost
of processing large-scale graphs on public cloud environ-
ments. Financial cost is a factor that has critical impact on
user’s decision while selecting a particular service [32].

Although distributed graph processing frameworks are
developed based on commodity cluster environment proper-
ties, the situation is different on cloud environments, particu-
larly public clouds. There are different pricing models
available on clouds and users have to pay for the resources
that they use. They can also use a pay-as-you-go billing
model. In such environment, it is important to reduce the
cost of utilizing resources as much as possible. Many graph
frameworks tried to decrease the processing cost by provid-
ing faster execution to reduce the total runtime so that they
can release the resources quicker to pay less. For example,
Surfer [12] develops a bandwidth-aware repartitioning
mechanism by which partitions are being placed on workers
based on their bandwidth. While only few graph processing
frameworks are developed to specifically operate in cloud
environments, iGiraph [13], which we used in this paper as
one of the benchmarks, is using a different strategy. Using its
novel dynamic repartitioning approach, iGiraph eliminates
unnecessary resources during the processing period while
operating on convergent algorithms which leads to signifi-
cant cost saving compared to other frameworks. Although
systems such as GPS [25] and Mizan [33] implement
dynamic repartitioning and vertex migration, they do not
scale across VMs. It has been shown that iGiraph outper-
forms frameworks such as popular Giraph while operating
on non-convergent algorithms such as PageRank. It declines
the number of messages that are passing through the net-
work and executes faster.

In addition to distributed systems, many graph process-
ing frameworks are developed at the scale of a single
machine [34], [35], [36], [37], [38], [39], [40]. Since high capac-
ity memories and disks have become unprecedentedly
available on single PCs, these frameworks implement mech-
anisms for processing large-scale graphs without the hassle
of distributing computations on several machines. Solid state
drives (S5SD) that provide higher speed data access compared

1739

O v ®
O\ @& ® O

© n - P2

(a)
O v @
o e @ O
O m ® w

(b)

Fig. 18. The role of high degree border vertices in reducing network traffic
by reducing the number of cross-edges between partitions (a) before
repartitioning, (b) after repartitioning [14].

to hard disk drives (HDD) have made the idea of processing
on a single server even more promising. GraphChi [41] is a
pioneer in this category. It is a vertex-centric framework that
offers a parallel sliding window (PSW). PSW is an asynchro-
nous computing method for leveraging external memory
(disk) and is suitable for sparse graphs. Using this technique,
GraphChi only requires to transmit a small number of disk-
blocks sequentially. PSW’s input is a subset of the graph that
is loaded from the disk. It then updates the values on vertices
and edges and finally writes the new values back on the disk.
Systems such as FlashGraph [42] are specifically designed to
perform on SSDs. In FlashGraph, 1/O requests will be
merged cautiously to improve the throughput and decrease
CPU overhead.

Finally, dynamic partitioning and network factors are the
last two aspects of our work in this paper. Many graph proc-
essing frameworks partition the graph at the start of opera-
tion and never change it again until the end of processing.
Nonetheless, repartitioning the graph during the operation is
becoming more common as the system/user can change the
partitions’ properties at any time to improve the perfor-
mance. According to [25], a dynamic repartitioning function
should be able to answer three main questions: 1) Which ver-
tices must be reassigned?, 2) How and when to move the
reassigned vertices to their new machine?, and 3) How to
place the reassigned vertices? A framework like GPS [25]
repartitions the graph based on using high-degree vertices
while LogGP [43] does so based on analyzing and reusing
“the historical statistical information” to rectify the partition-
ing outcomes. Other systems such as Mizan [33], XPregel [44]
and xDGP [45] also have used various approaches to parti-
tion graphs dynamically. Network is another important fac-
tor that affects partitioning and the processing but it is
studied less in the context of graph processing. Frank
McSherry”® has investigated the impact of fast networks on
graph analytics after an NSDI paper [46] claimed that the net-
work speed does not make a huge change in the processing
performance. He showed that under some general condi-
tions, a faster network can improve the operation’s efficiency.
Our earlier work [20] has used network factors such as band-
width, traffic, and CPU utilization to partition the graph
dynamically. It shows that using a suitable combination of

2. http:/ /www frankmcsherry.org/pagerank/distributed /
performance/2015/07/08/pagerank.html

Authorized licensed use limited to: University of Melbourne. Downloaded on August 14,2021 at 01:00:45 UTC from IEEE Xplore. Restrictions apply.

http://www.frankmcsherry.org/pagerank/distributed/performance/2015/07/08/pagerank.html
http://www.frankmcsherry.org/pagerank/distributed/performance/2015/07/08/pagerank.html

1740

factors will make the system to outperform frameworks such
as Giraph. A detailed comparison of many existing graph
processing frameworks are discussed in [42], [47].

7 CONCLUSIONS AND FUTURE WORK

In this paper, a new auto-scaling algorithm is proposed and
is plugged into the iGiraph framework to reduce the mone-
tary cost of graph processing on public clouds. To achieve
this, heterogeneous resources have been considered along-
side horizontal scaling policy. Also, a new characteristic-
based dynamic repartitioning approach is introduced which
distributes new partitions on heterogeneous resources. The
experiments show that the new mechanism that is called
iGiraph-heterogeneity-aware reduces the cost of processing
significantly and outperforms frameworks such as original
iGiraph and the famous Giraph. To the best of our knowl-
edge, iGiraph-heterogeneity-aware method is the first
implementation in a graph processing framework for sup-
porting horizontally scalability by using heterogeneous
resources in a real cloud environment.

As part of future work, we plan to make the system
completely environment agnostic, which means it will
dynamically identify characteristics and capabilities of the
resources in the network. We plan to consider the large-scale
graph processing, as a service on cloud platforms. Therefore,
we will investigate the role of SLA (service level agreement)
and how the quality of service should be applied in such
environment. We also plan to investigate the impact of start-
ing the operation with other partitioning approaches such as
METIS and how they can improve the performance even
more. In addition, we will investigate the possibility of start-
ing the processing by utilizing heterogeneous combination
of VMs instead of starting by VMs of the same type. We will
also explore how to deal with computation-intensive graph
applications and non-convergent applications such as Pag-
eRank for executing them on elastic Clouds.

ACKNOWLEDGMENTS

This work is partially supported by ARC Future Fellowship
and ARC Discovery Project grants. We thank NECTAR for
providing access to Australian cloud infrastructure.

REFERENCES

[1] L. Belli, S. Cirani, G. Ferrari, L. Melegari, and M. Picone, “A
graph-based cloud architecture for big stream real-time applica-
tions in the internet of things,” in Proc. Adv. Serv.-Oriented Cloud
Comput., 2014, pp. 91-105.

[2]]. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” in Proc. 6th Symp. Operating Syst. Des. Imple-
mentation, 2004, pp. 137-150.

[3] F.N. Afrati, A. Das Sarma, S. Salihoglu, and]J. D. Ullman, “Vision
paper: Towards an understanding of the limits of map-reduce
computation,” in Proc. Cloud Futures Workshop, 2012, pp. 1-5.

[4] G. Malewicz, M. H. Austern, A.]J. C. Bik, J. C. Dehnert, 1. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-scale
graph processing,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2010, pp. 135-146.

[5] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J. Hellerstein, “GraphLab: A new framework for parallel machine
learning,” in Proc. 26th Conf. Uncertainty Artif. Intell., 2010, pp. 1-11.

[6] A.Roy,I Mihailovic,and W. Zwaenepoel, “X-Stream: Edge-centric
graph processing using streaming partitions,” in Proc. 24th ACM
Symp. Operating Syst. Principles, 2013, pp. 472-488.

[7]

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 47, NO. 8, AUGUST 2021

R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica, “GraphX: A
resilient distributed graph system on spark,” in Proc. 1st Int. Work-
shop Graph Data Manage. Experiences Syst., 2013, Art. no. 2.

L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank
citation ranking: Bringing order to the web,” in Proc. 7th Int. World
Wide Web Conf., 1998, pp. 161-172.

D. S. Hirschberg, A. K. Chandra, and D. V. Sarwate, “Computing
connected components on parallel computers,” Commun. ACM,
vol. 22, no. 8, pp. 461464, 1979.

M. Redekopp, Y. Simmhan, and V. K. Prasan, “Optimizations and
analysis of BSP graph processing models on public clouds,” in
Proc. IEEE 27th Int. Symp. Parallel Distrib. Process., 2013, pp. 203-214.
L. G. Valiant, “A bridging model for parallel computation,” Com-
mun. ACM, vol. 33, no. 8, pp. 103-111, 1990.

R. Chen, X. Weng, B. He, and M. Yang, “Large graph processing in
the cloud,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2010,
pp- 1123-1126.

S. Heidari, R. N. Calheiros, and R. Buyya, “iGiraph: A cost-efficient
framework for processing large-scale graphs on public clouds,” in
Proc. 16th IEEE/ACM Int. Symp. Cluster Cloud Grid Comput., 2016,
pp- 301-310.

“Apache Giraph!,” Apache, [Online]. Available: https://giraph.
apache.org/. [Accessed on May 31, 2019].

P. Roy, “A new memetic algorithm with GA crossover technique
to solve single source shortest path (SSSP) problem,” in Proc.
Annu. IEEE India Conf., 2014, pp. 1-5.

J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“PowerGraph: Distributed graph-parallel computation on natural
graphs,” in Proc. 10th USENIX Conf. Operating Syst. Des. Implemen-
tation, 2012, pp. 17-30.

Y. Tian, A. Balmin, S. Andreas Corsten, S. Tatikond, and
J. McPherson, “From “Think like a vertex” to “Think like a
graph”,” VLDB Endowment, vol. 7, no. 3, pp. 193-204, 2013.

Y. Bu, V. Borkar, J. Jia, M.]. Carey, and T. Condie, “Pregelix: Big
(ger) graph analytics on a dataflow engine,” VLDB Endowment,
vol. 8, no. 2, pp. 161-172, 2014.

R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud computing and emerging IT platforms: Vision, hype, and
reality for delivering computing as the 5th utility,” Future Genera-
tion Comput. Syst., vol. 25, no. 6, pp. 599-616, 2009.

S. Heidari and R. Buyya, “Algorithms for cost-efficient network-
aware scheduling of large-scale graphs in cloud computing envi-
ronments,” Softw.: Practice Experiences, vol. 48, no. 12, pp. 2174-2192,
2018.

Y. Gong, B. He, and J. Zhong, “Network performance aware MPI
collective communication operations in the cloud,” IEEE Trans.
Parallel Distrib. Syst., vol. 26, no. 11, pp. 3079-3089, Nov. 2015.
“NECTAR Cloud,” [Online]. Available: http://nectar.org.au/
research-cloud/. [Accessed on June 1, 2019].

J. Kunegis, “KONECT - the koblenz network collection,” in Proc.
Int. Web Observatory Workshop, 2013, pp. 1343-1350.

A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan,
“One trillion edges: Graph processing at facebook-scale,” VLDB
Endowment, vol. 8, no. 12, pp. 1804-1815, 2015.

S. Salihoglu and J. Widom, “GPS: A graph processing system,” in
Proc. 25th Int. Conf. Sci. Statist. Database Manage., 2013, Article
no. 22.

S. Tasci and M. Demirbas, “Giraphx: Parallel yet serializable large-
scale graph processing,” in Proc. 19th Int. Conf. Parallel Process.,
2013, pp. 458—-469.

B. Shao, H. Wang, and Y. Li, “Trinity: A distributed graph engine
on a memory cloud,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2013, pp. 505-516.

S. Venkataraman, E. Bodzsar, I. Roy, A. AuYoung, and R. S. Schreiber,
“Presto: Distributed machine learning and graph processing with
sparse matrices,” in Proc. 8th ACM Eur. Conf. Comput. Syst., 2013,
pp- 197-210.

C. Xie, R. Chen, H. Guan, B. Zang, and H. Chen, “SYNC or
ASYNC: Time to fuse for distributed graph-parallel comp-
utation,” in Proc. 20th ACM SIGPLAN Symp. Principles Practice Par-
allel Program., 2015, pp. 194-204.

N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in cloud
computing: What it is, and what it is not,” in Proc. 10th Int. Conf.
Auton. Comput., 2013, pp. 23-27.

A.Uta, S. Au, A. Ilyushkin, and A. Iosup, “Elasticity in graph ana-
lytics? A benchmarking framework for elastic graph processing,”
in Proc. IEEE Int. Conf. Cluster Comput., 2018, pp. 381-391.

Authorized licensed use limited to: University of Melbourne. Downloaded on August 14,2021 at 01:00:45 UTC from IEEE Xplore. Restrictions apply.

https://giraph.apache.org/
https://giraph.apache.org/
http://nectar.org.au/research-cloud/
http://nectar.org.au/research-cloud/

HEIDARI AND BUYYA: A COST-EFFICIENT AUTO-SCALING ALGORITHM FOR LARGE-SCALE GRAPH PROCESSING IN CLOUD... 1741

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

S. Heidari and R. Buyya, “Quality of Service (QoS)-driven resource
provisioning for large-scalegraph processing in cloud computing
environments: GraphProcessing-as-a-Service (GPaaS),” Future
Generation Comput. Syst., vol. 96, pp. 490-501, 2019.

Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoo, D. Williams, and
P. Kalnis, “Mizan: A system for dynamic load balancing in large-
scale graph processing,” in Proc. 8th ACM Eur. Conf. Comput. Syst.,
2013, pp- 169-182.

W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim, J. Kim, and H. Yu,
“TurboGraph: A fast parallel graph engine handling billion-scale
graphs in a single PC,” in Proc. 19th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2013, pp. 77-85.

D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infra-
structure for graph analytics,” in Proc. 24th ACM Symp. Operating
Syst. Principles, 2013, pp. 456-471.

J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing
framework for shared memory,” in Proc. ACM SIGPLAN Symp.
Principles Practice Parallel Program., 2013, pp. 135-146.

Y. Chi, G. Dai, Y. Wang, G. Sun, G. Li, and H. Yang, “NXgraph:
An efficient graph processing system on a single machine,” in
Proc. 32nd IEEE Int. Conf. Data Eng., 2016, pp. 409-420.

L. Ma, Z. Yang, H. Chen, J. Xue, and Y. Dai, “Garaph: Efficient
GPU-accelerated graph processing on a single machine with bal-
anced replication,” in Proc. USENIX Conf. Usenix Annu. Tech.
Conf., 2017, pp. 195-207.

S. Maass, C. Min, S. Kashyap, W. Kang, M. Kumar, and T. Kim,
“MOSAIC: Processing a trillion-edge graph on a single machine,”
in Proc. Eur. Conf. Comput. Syst., 2017, pp. 527-543.

P. Sun, Y. Wen, T. Nguyen Binh Duong, and X. Xiao, “GraphMP:
An efficient semi-external-memory big graph processing system
on a single machine,” in Proc. IEEE 23rd Int. Conf. Parallel Distrib.
Syst., 2017, pp. 276-283.

A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi: Large-scale
graph computation on just a PC,” in Proc. 10th USENIX Conf.
Operating Syst. Des. Implementation, 2012, pp. 31-46.

D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E. Priebe, and
A. S. Szalay, “FlashGraph: Processing billion-node graphs on an
array of commodity SSDs,” in Proc. 13th USENIX Conf. File Storage
Technol., 2015, pp. 45-58.

N. Xu, L. Chen and B. Cui, “LogGP: A log-based dynamic graph par-
titioning method,” VLDB Endowment, vol. 7, no. 14, pp. 1917-1928,
2014.

N. Thien Bao and T. Suzumura, “Towards highly scalable pregel-
based graph processing platform with x10,” in Proc. 22nd Int.
Conf. World Wide Web, 2013, pp. 501-508.

L. M. Vaquero, F. Cuadrado, D. Logothetis, and C. Martella,
“xDGP: A dynamic graph processing system with adaptive parti-
tioning,” in Proc. 4th Annu. Symp. Cloud Comput., 2013, pp. 1-13.

K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun,
“Making sense of performance in data analytics frameworks,” in
Proc. 12th USENIX Symp. Netw. Syst. Des. Implementation, 2015,
pp- 293-307.

S. Heidari, Y. Simmhan, R. N. Calheiros, and R. Buyya, “Scalable
graph processing frameworks: A taxonomy and open challenges,”
ACM Comput. Survey, vol. 51, no. 3, 2018, Article no. 60.

Safiollah Heidari working toward the PhD degree
in the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, School of Computing and
Information Systems (CIS), the University of Mel-
bourne, Australia. His research interests include
scheduling and resource provisioning for distrib-
uted systems. Currently he is working on large-
scale graph processing scheduling and resource
provisioning approaches in cloud environment.
He is a member of the IEEE.

Rajkumar Buyya is a Redmond Barry distin-
guished professor and the director of the Cloud
Computing and Distributed Systems (CLOUDS)
Laboratory at the University of Melbourne, Aus-
tralia. He has authored more than 625 publica-
tions and seven text books. He is one of the
highly cited authors in computer science and soft-
ware engineering worldwide (h-index = 127, g-
index = 280, 84,900+ citations). He is recog-
nized as a “Web of Science Highly Cited
Researcher” in 2016 and 2017 by Thomson Reu-
ters, and Scopus Researcher of the Year 2017 with Excellence in Inno-
vative Research Award by Elsevier for his outstanding contributions to
Cloud Computing. He is a fellow of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: University of Melbourne. Downloaded on August 14,2021 at 01:00:45 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

