
Applied Soft Computing 136 (2023) 110027

a

b

M
c

e
s
i
v
e
r
q
a
i
c

n

t
w

h
1

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

Growable Genetic Algorithmwith Heuristic-based Local Search for
multi-dimensional resources scheduling of cloud computing
Guangyao Zhou a, WenHong Tian a,∗, Rajkumar Buyya b,a, Kui Wu c

School of Information and Software Engineering, University of Electronic Science and Technology of China, China
Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computing and Information Systems, The University of
elbourne, Australia
Department of Computer Science, the University of Victoria, Canada

a r t i c l e i n f o

Article history:
Received 6 July 2022
Received in revised form 6 January 2023
Accepted 8 January 2023
Available online 1 February 2023

Keywords:
Cloud computing
Multi-Dimensional Resource
Pareto Solution
Multi-Objective Optimization
Heuristic-Based Local Search
Growable Genetic Algorithm

a b s t r a c t

Multi-Dimensional Resources Scheduling Problem (MDRSP, usually a multi-objective optimization
problem) has attracted focus in the management of large-scale cloud computing systems as the
collaborative operation of various devices in the cloud affects resource utilization and energy con-
sumption. Effective management of the cloud requires a higher performance method to solve MDRSP.
Considering the complex coupling between multi-dimensional resources and focusing on virtual
machines allocation, we propose GGA-HLSA-RW (GHW, a novel family of genetic algorithms) to
optimize the utilization and energy consumption of the cloud. In GGA-HLSA-RW, we add a growth stage
to the genetic algorithm and construct a Growable Genetic Algorithm (GGA) using the Heuristic-based
Local Search Algorithm (HLSA) with Random multi-Weights (RW) as the growth route. Based on the
GHW, we propose GHW-NSGA II and GHW-MOEA/D by applying the sorting strategies and population
regeneration mechanism of NSGA II and MOEA/D. To evaluate the performance of GHW, we carry out
extensive experiments on the simulation dataset and AzureTraceforPacking2020 for the problems of
minimizing the maximum utilization rate of resources for each dimension and minimizing total energy
consumption. Experiment results demonstrate the advantages of growth strategy and dimensionality
reduction strategy of GHW, as well as validate the applicability and optimality of GHW in realistic
cloud computing. The experiments also demonstrate our proposed GHW-NSGA II and GHW-MOEA/D
have better convergence rates and optimality than state-of-the-art NSGA II and MOEA/D.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

The emerging trend of IoT and mobile communication accel-
rates the growth of Internet data urgently demanding large-
cale software systems [1]. As a successful distributed comput-
ng paradigm, cloud computing is playing an important role in
arious industries. Cloud computing interconnects extensive het-
rogeneous server nodes to flexibly provide services for various
equests from users including computing requests, storage re-
uests, cache requests and mixed requests [2]. With services
lmost covering all industries, cloud computing has blossomed
nto an indispensable impetus in the new network era of IoT
urrently [3].
The main work units of cloud computing are the compo-

ents integrated by various micro-circuits including CPU (Central

∗ Corresponding author.
E-mail addresses: guangyao_zhou@std.uestc.edu.cn (G. Zhou),

ian_wenhong@uestc.edu.cn (W. Tian), rbuyya@unimelb.edu.au (R. Buyya),
kui@uvic.ca (K. Wu).
ttps://doi.org/10.1016/j.asoc.2023.110027
568-4946/© 2023 Elsevier B.V. All rights reserved.
Processing Unit), RAM (Random Access Memory), DS (Disk Stor-
age), GPU (Graphics Processing Unit), BW (BandWidth), etc [4–6].
Constantly expanding requests from users extraordinarily en-
hance the difficulty and burden to manage resources of the cloud.
Some factors noteworthy in resource management comprise het-
erogeneity of resources, timeliness of response, operation cost,
quality of service, etc. These factors are complex and eventually
result in the inferior utilization rate of resources and exceed-
ingly massive energy consumption in realistic cloud computing
systems.

In practice, the resource bottleneck in any dimension will limit
the operating status of the cloud computing system, and then
affects the quality of services. Additionally, the inferior utilization
rate of resources usually accompanied by low energy conversion
efficiency will also cause excessive CO2 emissions. Therefore,
targeting the preservation of social resources, the research on ef-
fective multi-dimensional resources scheduling in heterogeneous
nodes of the cloud has become a hotspot.

Resource scheduling in cloud computing is defined by [7] as to

find an ‘‘optimal’’ mapping ‘‘Tasks → Resources’’ to meet one or

https://doi.org/10.1016/j.asoc.2023.110027
https://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2023.110027&domain=pdf
mailto:guangyao_zhou@std.uestc.edu.cn
mailto:tian_wenhong@uestc.edu.cn
mailto:rbuyya@unimelb.edu.au
mailto:wkui@uvic.ca
https://doi.org/10.1016/j.asoc.2023.110027

G. Zhou, W. Tian, R. Buyya et al. Applied Soft Computing 136 (2023) 110027

s
P
i
d
s
s
F
p
t
t
p
s
I
c
b
n
P
o

e
V
w
f
m
m
t
c
s
t
s
g
g
b
H
t
t
t
g
n
G
c
p
G
a
(
t
m
t
P
t
M
i
c
b
t
c
s

f
(

everal given objectives. Multi-Dimensional Resource Scheduling
roblem (MDRSP) in the heterogeneous nodes of cloud comput-
ng, as a multi-objectives problem involving resources in different
imensions, is an NP-hard problem and far more complex than
ingle-objective resource scheduling. Some heuristic algorithms,
uch as LPT (Longest Processing Time First), FCFS (First Come
irst Serve) and BFD (Best Fit Decreasing) [8,9], are inappro-
riate to solve MDRSP. Therefore, meta-heuristic is a common
ype of algorithm in the existing research on MDRSP such as
he modified binary pigeon-inspired algorithm [10], IBSMA (Im-
roved Developed-Slime-Mould-Algorithm) [11], force-directed
earch [12], NSGA II (Non-dominated Sorting Genetic Algorithm
I) [13]. For large-scale cloud computing with ultra-high energy
onsumption, small-scale improvements to these algorithms will
ring considerable significance [14]. Thus, better methods are still
ecessary especially to obtain the Pareto boundary, where the
areto boundary is frequently used to evaluate multi-objective
ptimization algorithms [15,16].
Focusing on the optimization of resource utilization and en-

rgy consumption in cloud computing, this paper considers the
irtual Machine (VM) allocation scenario in heterogeneous nodes
ith Multi-Dimensional Resources (MDRs). In this scenario, we

ormulate two types of MDRSPs that are minimizing the maxi-
um utilization rate of each dimension of resources and mini-
izing energy consumption of the total system. Aiming to solve

hese problems, we apply the concept of stages to divide the
lassical genetic algorithm into four stages namely initialization
tage, infancy stage, mature stage and genetic stage. Based on
hese four stages of GA (Genetic Algorithm), we add a growth
tage for each individual and propose the Growable Genetic Al-
orithm (GGA) leveraging the Heuristic-based Local Search Al-
orithm (HLSA) as its growth route with Random multi-Weight-
ased dimensionality reduction (RW), which can be called GGA-
LSA-RW (abbreviated as GHW). In solving MDRSP, GHW selects
he better part of the individual in each generation to generate
he offspring, uses RW to reduce the dimensionality of MDRSP
o Multi Single–Objective Problems (MSOPs), utilizes HLSA to
ain the solution of these dimensionality-reduced MSOPs as the
ext individual and then updates the solution set of MDRSP.
HW can be regarded as a family of algorithms that allows the
ombination of various optimization strategies. To further im-
rove the convergence rate and optimality of GHW, we proposed
HW-NSGA II and GHW-MOEA/D applying the sorting strategies
nd population regeneration mechanism of NSGA II and MOEA/D
Multi-Objective Evolutionary Algorithm based on Decomposi-
ion). Extensive experiments on simulation dataset and experi-
ents driven by the AzureTraceforPacking2020 [17] demonstrate

he advantages of our proposed algorithms, where AzureTracefor-
acking2020 is a popular public VMs traces representing part of
he workload on Microsoft’s Azure Compute and is provided by
icrosoft Azure for VM allocation [18]. In the scenarios studied

n this paper, several multi-objective optimization quality indi-
ators, including hypervolume-over-time and the average proba-
ility of finding the theoretically optimal Pareto solutions, show
hat our proposed GHW family of algorithms has a much better
onvergence rate and optimality than the algorithms compared,
uch as NSGA II and MOEA/D.
The main contributions of this paper can be summarized as

ollows.
1) GGA: Enlighten by the existing research and natural phe-

nomenon, we use the concept of stages to divide the classical
genetic algorithm into four stages called initialization stage,
infancy stage, mature stage and genetic stage. Based on this,
we add a growth stage to GA and propose the Growable
Genetic Algorithm (GGA) which allows the individual in GA

to grow through various growth routes.

2

(2) HLSA-RW:We propose the Heuristic-based Local Search Algo-
rithm (HLSA) as the growth route of GGA and apply Random
multi-Weights (RW) to decompose MDRSP to MSOPs. Using
the heuristic algorithm as the search route of LSA (Local
Search Algorithm) and using LSA as the growth route of the
individual in GA are both novel perspectives. Combining GGA,
HLSA and RW, we obtain a well-performed GGA-HLSA-RW
(GHW) family of algorithms to solve MDRSP. GHW also has
a flexible structure to adapt to the combination of various
strategies.

(3) GHW-NSGA II and GHW-MOEA/D: We further apply the sort-
ing strategy and population regeneration mechanism of NSGA
II and MOEA/D to propose two instantiations of the GHW fam-
ily i.e., GHW-NSGA II and GHW-MOEA/D, which have better
convergence rate and optimality than NSGA II and MOEA/D.

(4) Extensive experiments on the simulation dataset and Azure-
TraceforPacking2020 [17] with various comparison sights
demonstrate the superiority of the GHW family in solving
MSRDPs.
The rest of this paper is organized as follows. We review

the related work in Section 2. The system model and problem
formulation of MDRSP in cloud computing are presented in Sec-
tion 3. The proposed methodology GHW is presented in Section 4.
The experiment design and evaluation results are presented in
Section 5. Finally, we conclude this paper in Section 6.

2. Related work

In this section, we briefly review the related work from three
aspects: scheduling algorithms in cloud computing, MDRSP and
the existing approaches to Multi-objective Optimization Problem
(MOP).

2.1. Scheduling algorithms in cloud computing

Approaches to optimize the resource utilization in cloud com-
puting include VMs migration [19], queueing model [20], schedul-
ing algorithm, etc. Among them, the scheduling algorithm is the
core. In cloud computing, the existing common categories of
scheduling algorithms include heuristic, machine learning and
meta-heuristic algorithms.

Heuristic algorithms, generally of low computational complex-
ity, are often used to obtain solutions with acceptable perfor-
mance. Some classical heuristic algorithms include RR (Round-
Robin), LPT, greedy, random, FCFS [8,9] etc. In other search al-
gorithms, they can also be used to generate initial solutions to
accelerate convergence, for example in JBA (Jacobi Best-response
Algorithm) [21], FISTA (Fast Iterative Shrinkage-Thresholding Al-
gorithm) [22], and LARAC (Lagrange Relaxation based Aggregated
Cost) [23].

Machine learning algorithms used for resource scheduling
mostly belong to Reinforcement Learning (RL) or Deep Rein-
forcement Learning (DRL) categories. Some examples are QEEC
(Q-learning based framework for Energy-Efficient Cloud) [24] and
ADEC (Autonomic Decentralized Elasticity Controller) [25] from
the RL category, as well as DQN (Deep Q Network) [26], ADRL
(hybrid Anomaly-aware Deep Reinforcement Learning) [6], and
DQTS (Deep Q-learning Task Scheduling) [5] from DRL. Combi-
nations of machine learning and other algorithms also adapt to
resource scheduling, examples of which are RL+Belief-Learning-
Based Algorithm [27], DeepRM-Plus [3] and NN-DNSGA II (Neural
Network with Dynamic NSGA II) [28].

The solution space of the NP-hard problem increases expo-
nentially with the increase in data volume. Meta-heuristic is
a common method to solve complex optimization problems,

especially in big data systems such as the cloud systems [14].

G. Zhou, W. Tian, R. Buyya et al. Applied Soft Computing 136 (2023) 110027

r

2

s
t
s
o
c
s
r
r

s
l
e
a
a
w
d
a
a
p
t
i
e
R
e
c
M
w
o

n
i
p

m
a
S
i

Table 1
Summary of scheduling algorithms in literature from three categories i.e.,
heuristic, machine learning and meta heuristic.
Categories Family Algorithms Scenarios

Heuristic LPT [9], FCFS [8], et al. SOP

Machine
learning

RL QEEC [24], ADEC [25] et al. SOP, MOPDRL DQN [26], ADRL [6] et al.

Meta
heuristic

GA NSGA II [13], NSGA III [31] et al.
SOP, MOPACO MALO [29], S-MOAL [30] et al.

PSO MOPSO [33], HAPSO [34] et al.

Meta-heuristic algorithms (also evolutionary algorithms always
inspired by natural phenomena) include ant colony algorithm
such as MALO (Multi-objective AntLion Optimizer) [29] and S-
MOAL (Spacing Multi-Objective AntLion algorithm) [30], genetic
algorithms such as NSGA II [13], NSGA III [31], MOGA (Multi-
Objective Genetic Algorithm) [32] and MOEAs (Multi-Objective
Evolutionary Algorithms) [16], Particle Swarm Optimization (PSO)
such as MOPSO (Multi-Objective PSO) [33] and HAPSO (Hybrid
Adaptive PSO) [34], Artificial Bee Colony (ABC) [35], as well
as Firefly Algorithm (FA) [36]. Searchability of solution enables
meta-heuristics to utilize local search algorithm or other meta-
heuristics as its input to accelerate the convergence, for ex-
ample: OEMACS [37] leveraged OEM (Order Exchange and Mi-
gration) local search techniques; ACO-GA [38], HGA-ACO [39]
and DAAGA (Dynamic Ant-colony Algorithm and Genetic Algo-
rithm) [40] leveraged Ant Colony Optimization (ACO) and GA to
optimize the search process.

For intuitive observation, we summarize the scheduling algo-
ithms in Table 1.

.2. MDRSP in cloud computing

For realistic cloud computing systems, many types of re-
ources need to be arranged simultaneously. The working sta-
us of each resource may affect that status of others on the
ame physical machine, which increases the difficulty of research
n MDRSP. Aiming at optimizing resource utilization, energy
onsumption and cost, researchers have carried out numerous
tudies on MDRSP in the cloud. In addition to the meta-heuristics
eviewed in Section 2.1, we continue to review some other
esearch on MDRSP.

Goudarzi and Pedram [12] proposed a force-directed search to
olve the multi-dimensional SLA-based resource allocation prob-
em in the cloud considering power, memory and bandwidth. Xie
t al. [41] designed MPTMG (Multi-dimensional Pricing mech-
nism based on Two-sided Market Game) for distributed MDR
llocation in mobile cloud computing considering storage, band-
idth and CPU in cloudset. Bao et al. [42] proposed MECC (Multi-
imensional resource allocation-Enabled Cloud Cache), a SLA-
ware cloud cache framework, to achieve both the SLA ensurance
nd cost optimization for NVM-based cloud cache. Pan et al. [43]
roposed a MDR sharing framework for heterogeneous nodes
o reduce the total cost and task failure probability. Combin-
ng Lyapunov optimization and Lagrange dual decomposition, Yu
t al. [44] proposed MERITS (Multi-timescale multi-dimEnsion
esource allocatIon and Task Splitting algorithm) to reduce en-
rgy consumption, queuing delay, queue backlog and increase
onnection success ratio. Gopu and Venkataraman [45] applied
OEA/D to solve optimal VM placement in the cloud considering
astage, power consumption and propagation delay simultane-
usly.
In addition, research on MDRSP is also a hot topic in other sce-

arios. For multi-dimensional knapsack problem, negative learn-
ng in ant colony optimization [46], sum-of-ratios-based decom-

osition [47], Modified-BPIO (Modified Binary Pigeon-Inspired

3

Optimization) [10] and IBSMA [11] were proposed and achieved
considerable performances. For multi-dimensional transport
problems, Aktar et al. applied three ways, i.e., weighted sum tech-
nique, max–min Zimmermann technique and neutrosophic pro-
gramming technique, to reduce multi-objective to single-objective
and then used generalized reduced gradient method for solu-
tions [48]. For diverse safety message transmissions in vehicular
networks, Chen et al. [49] developed a MDR allocation scheme to
jointly optimize the sensing resource allocation.

2.3. Existing approaches to MOP

MDRSP is actually one of the Multi-objective Optimization
Problems (MOP, also known as multicriteria optimization) [50,
51]. Solving a MOP generally requires two aspects: evaluation
indicator of solutions and simplification of problems. These two
aspects also extended various optimization algorithms to MOP. In
this subsection, we will review them from these two aspects.

Evaluation indicator-based methods include two popular
types: non-dominated sorting-based method [51,52] and
hypervolume-based method [53,54].

For the Non-dominated Sorting (NS) based method, Srinivas
and Deb [55] proposed Non-dominated Sorting Genetic Algo-
rithms (NSGA). Based on the concept of Pareto optimization,
NSGA stratifies the individuals according to their dominant and
non-dominant relationships, which improves the convergence
rate to solve MOPs [55]. Using elite strategy and congestion
comparison operator, Deb et al. [56] proposed NSGA II, which
guarantees the uniform distribution of the non-inferior optimal
solution. Subsequently, NSGA III [31] applied reference points to
replace congestion sorting of NSGA II, which is more suitable to
high dimensional MOP. Other variants of NSGA include B-NSGA
III, U-NSGA III [51], NSGA II-C [52], NN-DNSGA II algorithm [28],
et al.

HyperVolume (HV), proposed by Zitzler et al. is an impor-
tant indicator to evaluate the optimality of the Pareto solution
set [57,58]. The indicator HV also extended a novel type of ap-
proach (HV-based method) to solve MOP. Some examples are
R2HCA-EMOA (R2-based Hypervolume Contribution Approxima-
tion Evolutionary Multi-objective Optimization Algorithm) [53]
and UHV-GOMEA (Uncrowded HyperVolume and Gene-pool Op-
timal Mixing Evolutionary Algorithm) [54].

Simplification of problems-based methods mainly includes
some dimension reduction-based methods.

Dimension reduction in MOP means using some methods to
obtain problems with fewer objectives by decomposing MOP into
Multi Lower-Dimensional objective Problems (MLDPs) [59–61].
Brockhoff and Zitzler [61] proposed an exact algorithm and fast
heuristics to reduce the dimensions of objectives to assist evolu-
tionary MOP with large dimensions. Ruochen Liu et al. [59] pro-
posed a clustering and dimensionality reduction-based evolution-
ary algorithm for large-scale MOP with dimensions up to 5000.
Zheng Tan [60] et al. proposed multi-stage dimension reduction
to make surrogate-assisted evolutionary algorithms capable to
handle sparse MOPs.

A specific case of dimension reduction is scalarization, which
means decomposing the MOPs into Multiple Single-Objective
Problems (MSOPs) [50]. Aggregating the objectives into a
weighted sum is a frequent approach to scalar the MOP [50].
The weighted sum approach enables computation of the prop-
erly Pareto optimal in convex cases, while may work poorly in
non-convex cases [50]. Other approaches including ϵ-constraint
ethod, Benson’s method, and compromise programming are
pplicable in non-convex solution space to transform MOP to
OPs [50]. MOEA/D, proposed by Qingfu Zhang and Hui Li [62],
s a typical scalarization-based method, which combines genetic

G. Zhou, W. Tian, R. Buyya et al. Applied Soft Computing 136 (2023) 110027

i

2

f
i
f
S
f
g
s
a
a
s
l
s

i
p
t
w
t
t
l
e
i
e
g
m
i

p
a
o
T
i
M
S
a
o
G
c

3

T

Table 2
Summary of approaches to mops in literature from two aspects i.e., indicator- and simplification-based approaches.
Aspect Approaches Family Algorithms

Indicator-based NS-based NSGA NSGA II [56], NSGA III [31], B-NSGA III [51] et al.
HV-based R2HCA-EMOA [53], UHVI [54] et al.

Simplification-
based

Dimension
reduction-based

MOEA/D MOEA/D [62], MOEA/HD [63], MOEA/D-TS [64] et al.
Others ϵ-constraint method, Benson’s method [50] et al.
algorithms and a weighted sum method [50]. On the basis of
MOEA/D, Hang Xu et al. [63] proposed a novel MOEA based
on Hierarchical Decomposition (MOEA/HD) which decomposed
the MOP into subproblems layered in different hierarchies. Jie
Cao et al. [64] proposed MOEA/D-TS (a Two-Stage evolutionary
strategy based MOEA/D) to improve MOEA/D. In MOEA/D-TS [64],
the first stage focused on pushing the solutions into the area of
the Pareto front to speed up its convergence ability, as well as
the second stage conducted in the operating solution’s diversity
to make the solutions distributed uniformly.

For the sake of observation, we summarize these approaches
n Table 2.

.4. Analysis of related work

MDRSP, as a type of challenging MOPs, has complex problem
eatures and discontinuous solution spaces. One common type of
ts method is the meta-heuristic algorithm. Among them, NSGA
amily and MOEA/D family are the most popular to solve MOPs.
ome comparative studies between NSGA family and MOEA/D
amily [65,66] showed both these two families of algorithms have
ood convergence in continuous multi-objective optimization
pace. When in large-scale discrete solution space, the searching
bility of these algorithms is insufficient. Therefore, they require
bundant population size and generations to obtain an acceptable
olution, which will cost a lot of computing time. Moreover, their
ocal optimal solutions may be far from the theoretical optimal
olutions due to their essential characteristics.
Conventionally, a genetic algorithm contains several processes:

nitializing the individuals, selecting the excellent individuals to
articipate in the pairing, and executing crossover and mutation
o generate the children individuals, regenerate the population
ith a specific mechanism to generate the next generation. From
he above review, the existing genetic algorithms mainly focus on
he improvement of the population selection strategies and popu-
ation regeneration mechanisms, such as non-dominated sorting,
lite strategy, and competition mechanism [67–69], which have
mproved the searchability and local optimum of GA to some
xtent. However, as they do not pay special attention to the
rowth process of the individuals outside the crossover and
utation, the convergence rate and optimality need to be further

mproved.
Referring to the previous research, this paper reorganizes the

rocess of genetic algorithms by the concept of stages and adds
growth stage for each individual to obtain a novel architecture
f genetic algorithm called Growable Genetic Algorithm (GGA).
he GGA allows the combination of various algorithms and the
ndividuals have more flexible evolutionary routes. To solve the
DRSP in cloud computing, we propose the Heuristic-based Local
earch Algorithm (HLSA) to instantiate the growth route of GGA
nd use Random multi-Weights (RW) as the growth direction
f individuals. Combining the above components, we propose
GA-HLSA-RW (GHW), which can effectively solve MDRSP in the
loud.

. System model and problem formulation of MDRSP

To assist with the system model and problem formulations,
able 3 lists the descriptions of some notations in this paper.
4

Table 3
Notations and descriptions.
Notation Description

n Number of tasks or VMs
m Number of nodes
d Number of dimensions of resources
i Index of task or VMs
j Index of nodes
k Index of dimensions of resources
Vi The task or VMs with index i
Pj The node with index j
Ci The property matrix of Vi
CCPU
ij The CPU capacity requested by Ti allocated on Pj in

unit of MIPS (Million Instructions Per Second)
CRAM
ij The RAM capacity requested by Ti allocated on Pj in

unit of Gigabytes
CDS
ij The Disk storage requested by Ti allocated on Pj in

unit of Gigabytes
CGPU
ij The GPU capacity requested by Ti allocated on Pj in

unit of Gigabytes
CBW
ij The bandwidth of network requested by Ti allocated

on Pj in unit of Mbps (Million bits per second)
ψj Set of tasks and VMs in node Pj
κ The set of ψj where κ = ⟨ψ1, ψ2, . . . , ψm⟩

xij If Vi ∈ Pj then xij = 1, otherwise xij = 0
Ljk The limited capacity of resource in the kth

dimension of the node Pj
Sjk The load of resource in kth dimension of the node Pj
Ujk The utilization rate in kth dimension of the node Pj
uijk The resource occupancy rate of Vi for the kth

dimension in Pj
Gjk
(
Sjk
)

The function between the load of resource in kth
dimension of server node Pj and energy consumption

Ej The total energy consumption the node Pj
E The total energy consumption of the cloud system
Np The number of individuals in each generation of

genetic algorithm
Ng The number of generations in genetic algorithm
Gstep The number of search steps of each individual in

each generation through HLSA in GGA

3.1. Cloud system model with multi-dimensional resources

A cloud computing system usually consists of a large number
of server nodes and integrates the resource layers of these nodes
through the high-speed network as Fig. 1. We demonstrate cloud
servers as heterogeneous nodes because of the default supporta-
bility of the cloud systems for heterogeneity. Then, we model it
as a multi-dimensional system model and model the problem of
VMs allocation in it as a MDRSP.

We consider a cloud system with m heterogeneous nodes (de-
noted as P = ⟨P1, P2, . . . , Pm⟩) and each node with d-dimensions
of resources such as CPU, RAM, disk storage, GPU, bandwidth
etc. The set of tasks and VMs in a time slot [t, t + δt) is de-
noted as V = ⟨V1, V2, . . . , Vn⟩. The executions of the same
request are different in different nodes and always need multi
resources synergistically. Thus, we assume that a task or VM
request from users equals a request for resources in multiple
dimensions. Based on the above, we can set the property of a task
or VM Vi as a matrix Ci =

{
Cijk
}
1≤j≤m,1≤k≤d. The jth row Cij =⟨

CCPU
ij , CRAM

ij , CDS
ij , C

GPU
ij , CBW

ij , . . .
⟩
denotes the capacity request for

resources in each dimension when V is allocated to the jth node.
i

G. Zhou, W. Tian, R. Buyya et al. Applied Soft Computing 136 (2023) 110027
Fig. 1. Structure of cloud computing with various resources.
Fig. 2. Allocation of a task or VM to heterogeneous nodes with multi-dimensional resources.
a

o
a

Each node has limited capacity in each dimension (i.e., the max-
imum load for healthy operation of components) that can be set
as L =

{
Ljk
}
1≤j≤m,1≤k≤d where Lj =

⟨
LCPUj , LRAMj , LDSj , L

GPU
j , LBWj , . . .

⟩
.

For example, LCPUj is the jth node’s capacity of CPU and LDSj is its
disk size. This model corresponds to various requests (computing
requests, storage requests, cache requests, transmission requests,
VMs requests, etc.) involved in cloud computing systems.

A diagram of the allocation of tasks or VMs to heterogeneous
nodes with MDRs is shown in Fig. 2. Although VMs migration
and task segmentation can also be leveraged to solve the resource
scheduling in the cloud, they still cannot avoid the allocation of
tasks or VMs. In view of this, we do not consider the VMs migra-
tion and task segmentation. Then, we mainly focus on the direct
allocation of tasks or VMs where any task or VM cannot be further
split into smaller ones. This also means any task or VM will be
allocated to only one server node supporting affinity while one
server node can process multiple tasks or VMs simultaneously.
We denote the set of tasks and VMs in node Pj as ψj. If a task
or VM Vi is allocated to the node Pj, we use Vi ∈ ψj. The ψj of
each node constitutes a vector κ = ⟨ψ1, ψ2, . . . , ψm⟩. Therefore,⋃m
we can gain the relationships of ψj that j=1 ψj = V , ψj ⊂ κ ,

5

and ψj
⋂
ψl = ∅ for ∀1 ≤ j ̸= l ≤ m. κ determines the unique

llocation result corresponding to the solution of MDRSP.
We use Sjk to denote the load of resource in the kth dimension

f the jth node. Then, the load vector of the jth node is expressed
s Sj =

⟨
Sj1, Sj2, . . . , Sjd

⟩
. The occupancy of most components

approximately satisfies linear superposition. Thus, resource occu-
pation of each dimension on a node is equal to the sum of the
requests of all VMs on it shown as Eq. (1). A diagram of Eq. (1) is
presented in Fig. 3.

Sjk =

∑
Vi∈ψj

Cijk (1)

3.2. Problem formulations for resources utilization and energy con-
sumption

Cloud computing is based on the pay-as-you-go pattern [3]
and regards the resources as ubiquitous ‘‘cloud’’. Generally, cloud
has several targets: providing as many services as possible, ensur-
ing flexibility in providing services, reducing the overall energy
consumption, optimizing the resource utilization and prolonging

G. Zhou, W. Tian, R. Buyya et al. Applied Soft Computing 136 (2023) 110027

n

Fig. 3. Relationship of linearly superposition for multi-dimensional resources allocating two tasks or VMs to one server node.
the service life of components. In this paper, we transform its
aims and focus on two problems:
(1) Minimizing the maximum utilization rate of resources for

each dimension under all nodes;
(2) Minimizing the energy consumption for the whole system.

3.2.1. Minimizing the maximum utilization rate of resources for each
dimension under all nodes

There are various indicators to evaluate balancing degree in
the cloud such as variance or standard deviation of load [5,36], av-
erage success rate [70], coefficient of variance [71], degree of im-
balance [28], etc. In this paper, we leverage the objectives of min-
imizing the maximum utilization of resources in each dimension.
It is also a method to perform load balancing, improve resource
utilization and ensure that the cloud system can process more
VMs. The problem with multi-objectives can be formulated as
Eq. (2), where we denote minω(1)

k = minmax (S1k, S2k, . . . , Smk)

and Sjk ≤ Ljk for ∀j ∈ {1, 2, . . . ,m} and ∀k ∈ {1, 2, . . . , d}.

minω(1)
=

(
min max

j=1,2,...,m
Sjk

)⏐⏐⏐⏐
k=1,2,...,d

= min

⎧⎪⎨⎪⎩
max (S11, . . . , Sm1)
max (S12, . . . , Sm2)
. . .

max (S1d, . . . , Smd)

(2)

Converting Eq. (2) to zero–one integer programming problem can
obtain Eq. (3).

minω(1)
k = min

(
max

j=1,2,...,m

(
n∑

i=1

xijCijk

))
(3)

We assume the resource utilization rate of each dimension as
the ratio of the occupied load to the limited capacity that is:

Ujk =
Sjk
Ljk

=

∑n
i=1 xijCijk

Ljk
(4)

In the system model of this paper, Ljk and Cijk are given and in-
variant. Thus, we can denote a parameter uijk = Cijk/Ljk to express
the occupancy rate of a single VMs Vi for the kth dimension of
ode Pj. The utilization rate uijk also satisfies the superposition

relationship:

Ujk =

∑
Vi∈ψj

uijk =

n∑
i=1

xijuijk. (5)

Thus, if an algorithm can adapt to Cijk, it can also apply to uijk,
and vice versa. Then, a problem to reduce the utilization rate of
resources for each dimension is as Eq. (6).

minω(2)
k = min

(
max

j=1,2,...,m

(
n∑

xijuijk

))
(6)
i=1

6

where the constraints are:

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
j=1

xij = 1,

n∑
i=1

xijCijk ≤ Ljk ⇔

n∑
i=1

xijuijk ≤ 1,

0 ≤ Cijk ≤ Ljk ⇔ 0 ≤ uijk ≤ 1,
xij ∈ {0, 1}, i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . ,m},

k ∈ {1, 2, . . . , d}

(7)

3.2.2. Minimizing the total energy consumption for system
Minimizing the number of working nodes is a frequent way to

optimize the energy consumption of the cloud, whose optimiza-
tion objective can be written as:

minω(3)
= min

m∑
j=1

max
i=1,2,...,n

xij (8)

The use of Eq. (8) requires the assumption that the operating
energy consumptions of all nodes are similar. However, the ratio
between load and energy consumption may be varying with the
different nodes. Therefore, we consider the relationship between
the energy consumption and load to lean closer to the actual
scene. We assume Gjk

(
Sjk
)
as the function between the load of

resource in kth dimension of server node Pj and its required
energy consumption where we denote Ej as the total energy
consumption the node Pj. In reality, Gjk

(
Sjk
)
is often non-linear

related to the status of sever nodes such as temperature. In this
paper, we do not address the issue of the relationship between
load, energy consumption and status. Thus, we assume each
Gjk
(
Sjk
)
is a given function. Without losing generality, we also

assume the energy consumption of all dimensions of resources is
subject to superposition. Then, formulas for energy consumption
can be obtained as:

E =

m∑
j=1

Ej =

m∑
j=1

d∑
k=1

Gjk
(
Sjk
)

(9)

The components in the computer mainly process the task by
switching high-low voltage signals. According to Ohm’s law, the
electrical power is equal to the square of the voltage divided by
the resistance. Thus, we set up the function Gjk

(
Sjk
)
as a quadratic

polynomial function in this paper:

Gjk

(q∑
k=1

Sjk

)
= ajkS2jk + bjkSjk + cjk + sgn

(
Sjk
)
djk (10)

where sgn() is the signum function. When
∑q

k=1 Sjk = 0, cjk =

E idle
jk corresponds to the energy consumption of kth dimensional

resource when node Pj is idle. When
∑q

k=1 Sjk > 0, cjk + djk =

Eon
jk corresponds to the energy consumption of kth dimensional
resource when node Pj is on working. Then, the total energy

G. Zhou, W. Tian, R. Buyya et al. Applied Soft Computing 136 (2023) 110027

c
s

E

Fig. 4. Basic steps of our proposed framework to solve MDRSPs.
onsumption of the system can be rewritten as follows by sub-
tituting xij and Eq. (10) into Eq. (9).

=

m∑
j=1

d∑
k=1

⎛⎝ajk

(
n∑

i=1

xijCijk

)2

+ bjk

(
n∑

i=1

xijCijk

)⎞⎠
+

m∑
j=1

d∑
k=1

(
cjk
)
+

m∑
j=1

(
n

max
i=1

(
xij
) d∑

k=1

djk

) (11)

Obviously, the objective of minimizing the total energy con-
sumption is as:

minω(4)
= min E (12)

where the constraints are also as Eq. (7).

4. Methodology for MDRSP: GGA-HLSA-RW (GHW) and its in-
stantiations

For MDRSP, the commonly used three basic steps to obtain a
solution set are as:
(1) Reducing dimensionality of the MDRSP to Multi

Single-Objective Problems (MSOPs) or Multi Lower-
Dimensional objective Problems (MLDPs);

(2) Solving the solutions of MSOPs or MLDPs;
(3) Integrating the solutions of MSOPs or MLDPs to obtain the

solution set of the original MDRSP.
Therefore, we need to achieve these three steps by building

corresponding methods to solve MDRSP. We map them into a
growable genetic algorithm framework as shown in Fig. 4. In
this framework, we leverage the Random multi-Weights method
(RW) to achieve dimensionality reduction and use the individ-
uals of GGA to represent the dimensionality-reduced MSOPs;
propose the HLSA-based growth route to represent the solving
process of each MSOP and obtain the mature individuals after
HLSA-based growth as the solution of MSOP; finally, update the
Pareto solution set of MDRSP by integrating the grown mature
individuals.

The key to our proposed framework is the Growable Genetic
Algorithm (GGA) using HLSA as the growth route. To illustrate its
structure and highlight the difference between it and the classical
GA, we present their flowchart in Fig. 5, where the flowchart
of the classical GA is obtained by integrating the genetic-related
literature [13,31,32,55,56].

As shown in Fig. 5, we apply a concept of stages to divide
the classical GA into four stages namely initialization stage, in-
fancy stage, mature stage and genetic stage. The classical GA
firstly takes the initialized individuals as the early individuals
of the infancy stage; secondly selects some excellent individuals
in the mature stage according to some strategies such as fast
non-dominated sorting algorithm [31,56]; then pairs the selected
individuals; executes crossover and mutation to generate the
7

children individuals; finally, choose a part of individuals as the
individuals of the next infancy stage.

On the basis of the four stages of the classical GA, we add a
growth stage in GGA shown as the part in the red box of Fig. 5. In
the growth stage, we randomly entrust weights to the individuals
as their directions of ability cultivations, use the Heuristic-based
Local Search Algorithm (HLSA) to cultivate the individuals of the
infancy stage, and then select the grown individuals for the sub-
sequent genetic process. The application of a novel growth stage
is conducive to quickly obtaining better optimization solutions
for MDRSP. Finally, we obtain our proposed Growable Genetic
Algorithm (GGA) using the HLSA-based growth route with Ran-
dom multi-Weights (RW) named GGA-HLSA-RW (abbreviated as
GHW).

Next, we will present the components of GGA-HLSA-RW
(GHW) respectively including RW, HLSA, and GGA based on
various growth strategies.

4.1. Random multi-weights-based dimensionality reduction

In this paper, we mainly consider transforming MDRSP into
MSOPs. However, for strict consideration, the framework of this
paper is also suitable for transforming MDRSP into MLDPs. There-
fore, we still use dimensionality reduction (or decomposition)
instead of scalarization in this paper.

Before discussing the method of dimensionality reduction,
we first presuppose we have a valid and efficacious algorithm
(marked as Ah) to solve the single-dimensional resource schedul-
ing problem. Taking ω(2)

k in Eq. (6) as an example, it can be
regarded as a single-dimensional resource scheduling problem
(also a single-objective optimization problem) regardless of other
dimensions. Ah can gain a sufficiently optimized solution of Eq. (6)
for the kth dimension based on our presuppose. Assuming mini-
mizing the weighted sum of utilization in each dimension marked
as ω̄(2)

(w), modification of Eq. (6) can gain a problem as:

min ω̄(2)
(w) = min

(
max

j=1,2,...,m

(
n∑

i=1

xij
d∑

k=1

(
wk · uijk

)))
(13)

where w = ⟨w1, w2, . . . , wd⟩ is a vector of weights. It can be
set Wij =

∑d
k=1wk · uijk. Because w and uijk are given and

invariant, Wij is a constant, which means Eq. (13) is a single-
dimensional problem and has the same form as Eq. (6). More
crucially, the algorithm Ah can apply to solve it and obtain a
sufficiently optimized solution. Other problems are analogous to
this property. For sake of the following discussion, we set the
solution in each dimension of Eq. (13) obtained by Ah as Ah

(
ω̄

(2)
(w)

)
where:

Ah

(
ω̄

(2)
(w)

)
=

⟨
ω

(2)
1 , ω

(2)
2 , . . . , ω

(2)
d

⟩
(14)

Therefore, ω(2)
k = maxj=1,2,...,m

(∑n
i=1 xij

∑d
k=1

(
wk · uijk

))
where

{xij} is the obtained optimization solution of Eq. (13) solved by
A .
h

G. Zhou, W. Tian, R. Buyya et al. Applied Soft Computing 136 (2023) 110027

d

w
n
a
t
t

B

t
s
a
d
s
D

w
m
m
T
A
d
c
s
r
l
A

a
G
e
(
p
w
e
g

Fig. 5. The flowchart comparison between the classical GA and our proposed GGA-HLSA-RW (GHW).
The weight vector w is actually an angle to slice the multi-
imensions of resources and Wij is the projection of this slice.

This enlightens us to analyze whether the optimal solutions for
the weights of all angles can cover all Pareto solutions. A general
MDRSP can be assumed as:

minω = min

⎧⎪⎨⎪⎩
ω1
ω2
. . .

ωL

(15)

where:

ωk = f
({

xijYijk
}
1≤i≤n,1≤j≤m

)
(16)

hich expresses a function related to all the elements of the
× m matrix

{
xijYijk

}
1≤i≤n,1≤j≤m where Yijk is given parameter,

nd the constraints are as Eq. (7). Assuming Tw as a weight set
raversing all angles in Euclidean space RL, then we can denote
he optimization solution set under each weight of Tw as B where:

=
{
Ah(ω(w))|∀w ∈ Tw

}
, (17)

heoretical Pareto solution set of Eq. (15) as D, and the set of
olutions included in B as G subject to properties that: for ∀g ∈ G
nd ∀b ∈ B, b does not dominate g; for ∀b ∈ B − G, ∃g ∈ G s.t. g
ominates b. Therefore, the key is to find a Tw s.t. card(D− G) as
mall as possible, where card(D− G) means the cardinality of set
− G.
This reveals a method to obtain the Pareto solutions of MDRSP

hich is to traverse weights of all angles. The way to approxi-
ately perform traversing weights is enumerated by cyclic iso-
etrics based on a definite interval. However, the weight set
w is continuous containing infinite elements, and the solutions
h(ω(w1)) and Ah(ω(w2)) of two weights w1 and w2 expressing
ifferent angles may be the same. Therefore, differentiating from
yclic isometric, a random multi-weights is applied to obtain the
lices of reduced dimension. It means to select multi-weights
andomly to generate corresponding single-dimensional prob-
ems and respectively obtain the solutions of these problems, as
lgorithm 1.
As the growth stage of GGA allows the combination of various

lgorithms, a multi-objective optimization algorithm (including
HW itself) can be nested in the growth stage. However, consid-
ring this paper focuses on the proposal of the GHW framework
a novel genetic-based framework) and the validation of its ap-
licability in MDRSP, this paper mainly uses a group of random
eights to transform a MOP into MSOPs at the growth stage of
ach generation, which also means the weights is variable after a
eneration.
8

Algorithm 1: Random multi-weights-based dimensionality
reduction

Input : MDRSP with form as Eq. (15), constraints as Eq.
(7) and the parameters of tasks as Yij where
Yij =

⟨
Yij1, Yij2, . . . , Yijd

⟩
Output: Solution set B of decomposed problems

1 Generate random weight set Tw =
⟨
w(1), w(2), . . .

⟩
with

multiple weights where w(l) is vector with length d
2 Obtain dot product w(l) · Yij as new parameters
3 Obtain the problem after dimensionality reduction as:

minω(wl) = min f
({

xij
(
w(l) · Yij

)}
1≤i≤n,1≤j≤m

)
(18)

where Eq. (18) is single-dimensional problem in w(l)
4 Solve the problem Eq. (18) by the given algorithm Ah
5 Obtain the solution set B as Eq. (17)

4.2. Heuristic-based local search algorithm

The next key is an effective algorithm Ah to gain the optimal
solution for dimensionality-reduced problems, which directly de-
termines the optimality of the solution for MDRSP. To improve
the solution of Ah, we proposed the Heuristic-based Local Search
Algorithm (HLSA) combining the superiorities of heuristic and
local search.

Entrusting the heuristic algorithm the role of search route, we
define a neighborhood in the heuristic-based local search algo-
rithm as: It can be assumed that two solutions κ = ⟨ψ1, ψ2, . . . ,
ψm⟩ and κ ′

=
⟨
ψ ′

1, ψ
′

2, . . . , ψ
′
m

⟩
. If ∃j1 ̸= j2 ∈ {1, 2, . . . ,m}

subject to that ψl = ψ ′

l for ∀l ∈ {1, 2, . . . ,m} − {j1, j2}. And if
the result after reallocating the VMs set ψj1 ∪ ψj2 on two server
nodes Pj1 and Pj2 through the specific heuristic algorithm is κ ′.
Then κ ′ is defined as the corresponding heuristic-based neighbor
of κ and all heuristic-based neighbors of κ consist of a solution
set as Ner(κ).

A HLSA-based neighbor solution of a given solution can be also
described as the solution obtained by the given solution by calling
the HLSA algorithm once. If ∀κ ′

∈ Ner(κ), the solution of κ ′ is not
optimal than that of κ , stop the local search and regard κ as a local
optimum. In the proposed GHW, we set additional criteria to stop
the HLSA search of one individual in one generation, which can
be called the number of growth steps (denoted as Gstep). Then,
the heuristic-based local search algorithm with Gstep criteria can
be seen in Algorithm 2.

Then, an appropriate heuristic algorithm as the search route is
the critical factor. Because this framework has great adaptability

G. Zhou, W. Tian, R. Buyya et al. Applied Soft Computing 136 (2023) 110027

{
I

1

Algorithm 2: Heuristic-based local search algorithm
Input : Dimensionality reduced problem ω(wl) as Eq. (18)

and the number of growth step (Gstep)
Output: Solution Ah

(
ω(wl)

)
of the problem

1 Initially Allocate tasks to resources with confirmed or
random initialization policy and gain the general initial
status of κ

2 Set i = 0, Exists_Ner = True
3 while Exists_Ner and i < Gstep do
4 Exists_Ner = False, i + +

5 Search neighborhood Ner(κ) of κ in the specific
heuristic-based local search algorithm such as
Algorithm 3 (modified LSPT-based local search
algorithm)

6 if κ ′
∈ Ner(κ) s.t. the solution of κ ′ is optimal than κ

then
7 Exists_Ner = True
8 Choose the optimal neighbor to update κ = κ ′

9 Set κ as the solution Ah
(
ω(wl)

)
of the problem

to various algorithms, almost any algorithm that can solve the re-
source scheduling of two nodes can be applied as its search route.
Without losing generality, we propose the modified LSPT (modi-
fied Longest-Shortest Process Time) to search the heuristic-based
neighbor considering the performance to address the single-
dimensional resource scheduling of heterogeneous nodes. A mod-
ified LSPT-based neighborhoods can be defined as: It can be
assume κ ′ is a HLSA-based neighbor of κ , ψ ′

j1
∪ψ ′

j2
= ψj1 ∪ψj2 =

Vτ1 , Vτ2 , . . .
}

and ξτi ≥ ξτi+1 where ξτi = w(l) ·
(
Yτ j1 − Yτ j2

)
.

f Vτi ∈ argminψ ′

(∑
Vτk∈ψ ′

1
w(l) · Yτ j1 ,

∑
Vτk∈ψ ′

2
w(l) · Yτ j1

)
where

k < i for ∀Vτi ∈ ψ ′

j1
∪ ψ ′

j2
, then κ ′ can be called the modified

LSPT-based neighbor of κ . While by contraries κ may not be that
of κ ′. Then, the modified LSPT-based local search algorithm is
presented in Algorithm 3. In order to minimize the maximum
utilization of all heterogeneous nodes, modified LSPT requires
sorting the VMs in two nodes according to ξτi (i.e., the difference
of the weighted utilization of a VM in two nodes) and ψ ={
Vτ1 , Vτ2 , . . .

}
is an ascending set. In the process of putting VMs

into nodes one by one: if the sum of weighted utilization of Pj1
is smaller than that of Pj2 , put the leftmost of the remaining ψ
into ψ ′

j1
; otherwise, put the rightmost of the remaining ψ into

ψ ′

j2
. Then, update ψ by removing the currently selected VM from

ψ . The process of modified LSPT combines the characteristics
of LPT and SPT so as to well solve the VMs allocation in two
heterogeneous nodes.

4.3. Growable genetic algorithm based on growth strategies

As is known, the local search algorithm may converge to a
non-global optimal solution. Thus, we consider using a genetic
algorithm to increase the search scope and to improve the proba-
bility of jumping out of the local optimum. A feasible combination
of local search and genetic algorithm is to use the local search
algorithm as the growth route of the individuals of the genetic
algorithm (i.e., GGA-HLSA).

Inspired by the existing research, we consider different in-
dividuals in the genetic algorithm to grow according to various
growth strategies so as to increase the diversity of the population.
This strategy can improve the global searchability of the genetic
algorithm. The different growth processes of individuals can be
regarded as the optimization process of individuals’ ability to
9

Algorithm 3: Modified LSPT-based local search algorithm
for heterogeneous nodes

Input : Tasks in ψ = ψj1 ∪ ψj2 of two server nodes Pj1
and Pj2

Output : ψ ′

j1
and ψ ′

j2
1 Initialize Markj1 = 0, Markj2 = 0, ψ ′

j1
= ∅ = ψ ′

j2
2 while ψ ̸= ∅ do
3 if Markj1 ≤ Markj2 then
4 α = j1, β = j2
5 else
6 α = j2, β = j1
7 Collect tasks Vτ ∈ ψ s.t.

w(l) ·
(
Yτα − Yτβ

)
= min

Vi∈ψ
w(l) ·

(
Yiα − Yiβ

)
to obtain a

set of
⟨
Vτ1 , Vτ2 , . . . , Vτs

⟩
8 if s ≥ 2 then
9 Choose Vτ s.t. w(l) · Yτα = max

1≤p≤s
w(l) · Yτpα

0 Markα+ = w(l) · Yτα , ψ ′
α+ = {Vτ } and ψ− ={Vτ }

different weights. Additionally, if the individuals always inherit
the ability weights of their parents, they may also fall into the
local optimum. Therefore, we apply random multi-weights as the
difference in the growth process of individuals. Due to the flex-
ibility of the GGA framework, the solutions of HLSA can be used
as mature individuals to participate in subsequent mature stage
and genetic stage. Finally, we obtain our proposed GGA-HLSA-RW
(GHW). The process of GHW has been shown in Fig. 5 and its
algorithm is presented in Algorithm 4. The loops in Algorithm 3
and Algorithm 4 can be manipulated with matrices operations so
as to utilize GPU for acceleration.

Algorithm 4: GGA-HLSA-RW (GHW)
Input : Tasks and VMs Vi and their parameters Cijk, server

nodes Pj, the limited capacities Ljk and the
optimization problems ω

Output: Pareto solution set K
1 Set number of individuals in each generation as Np, the

number of generations as Ng

2 Generate initial individuals
⟨
κ
(0)
1 , κ

(0)
2 , . . . , κ

(0)
Np

⟩
with

random genes and obtain initial Pareto solution set K
3 for l in range(Ng) do
4 Generate a random weight vector w(l)

q for each
individual in the lth generation

5 Obtain the problem after dimensionality reduction of
each individual in the lth generation as Algorithm 1

6 Using HLSA as Algorithm 2 (instantiated by Algorithm
3 in paper) to solve the problem after dimensionality
reduction, obtain mature individuals as⟨
κ̄
(l)
1 , κ̄

(l)
2 , . . . , κ̄

(l)
Np

⟩
, and update the solution set K

7 Select and Pair the better mature individuals with
specific sort strategies such as non-dominated sorting
[55,56], congestion degree sorting [56] and ordering of
subproblems corresponding to reference vectors [62]

8 Generate the l + 1th infancy individuals⟨
κ
(l+1)
1 , κ

(l+1)
2 , . . . , κ

(l+1)
Np

⟩
with specific strategies such

as elitist strategy
9 Update the Pareto solution set K

G. Zhou, W. Tian, R. Buyya et al. Applied Soft Computing 136 (2023) 110027

4

g
m
m
N
o
a
H
M
M
a
(

a
r

F
(

O

i
g
ζ
G

ζ

a
c
m
c
m
p
o
w
p
G

.4. Instantiation of GHW: GHW-NSGA II and GHW-MOEA/D

GGA-HLSA-RW (GHW) can be considered as a family of al-
orithms, which can incorporate various existing genetic opti-
ization strategies to produce specific algorithm variants. This
eans that the strategies such as NSGA [55], NSGA II [13,56],
SGA III [31], MOEA/D [62], et al. can be applied in GHW to
btain new, well-performing algorithms. Specifically, this paper
pplies the NSGA II strategy [13] in GHW to obtain the GGA-
LSA-RW-NSGA II (GHW-NSGA II) algorithm and also applies the
OEA/D strategy [62] to obtain GGA-HLSA-RW-MOEA/D (GHW-
OEA/D) algorithm . Referring to the existing terms of genetic
lgorithms [56,72], the base components of GHW are defined as:
1) Gene and Individual (Chromosome): we regard the allocated

node index of each VM (or task) as a gene, where the ith
gene can be written as a vector λi = ⟨xi1, xi2, . . . , xim⟩ where
1 ≤ i ≤ n and xij ∈ {0, 1}. If Vi ∈ ψj, then xij = 1, otherwise
xij = 0. A vector I = ⟨λ1, λ2, . . . , λn⟩ with n genes constructs
an individual (also chromosome) corresponding to a solution
of the optimization problem. Obviously, the vector I and the
set of κ are interchangeable.

(2) Individual selector: GHW-NSGA II sorts the individuals in
the mature stage by non-dominated ordering and congestion
ordering, then selects better part of individuals to participate
in pairing and crossover. GHW-MOEA/D initialize a group of
vectors as reference vectors, selects part of individuals with
the best solution under each reference vector and randomly
selects two individuals of each reference vector to participate
in pairing and crossover.

(3) Crossover: It can be assumed two individuals as Iα = ⟨λα1,

λα2, . . . , λαn⟩ and Iβ = ⟨λβ1, λβ2, . . . , λβn⟩. Their crossover is
defined as separately extracting a part of genes from them
to gain a new vector as the children individual, such as
⟨λα1, λβ2, λβ3, . . . , λαn⟩. In this paper, we randomly select the
number of genes of Iβ participating in crossover according to
the uniform distribution, and then randomly select the corre-
sponding number of genes from Iβ with the same probability
to replace the genes at the corresponding position of Iα .

(4) Mutation: Mutation is defined as that replacing some ele-
ments of an individual Iα = ⟨λα1, λα2, . . . , λαn⟩ by randomly
generated genes.

(5) Population regeneration mechanism: Both GHW-NSGA II
and GHW-MOEA/D apply elitist strategy [56] to combine the
parent individuals with their children individuals to jointly
compete to produce the next generation.
Unlike MOEA/D whose individual respectively corresponds to

a fixed reference line (or a vector), GHW-MOEA/D is only to select
the optimal part of mature individuals corresponding to each pre-
set reference line in the individual selector, and randomly select
two of them for crossover to generate a new child. This means
the individuals in GHW-MOEA/D will no longer be constrained
by given fixed reference lines.

In order to intuitively demonstrate the process of GHW fam-
ily, we take a visualized example of GHW-NSGA II for problem
minω(2) with two-dimensional resources (CPU and RAM for the
sake of observation). Then, we draw its solution process in Fig. 6.
In the example of Fig. 6, n = 10, m = 4, Np = 10, Gstep = 10
nd the parameters uijk of VMs and the genes of individuals are
andomly initialized.

As shown in Fig. 6 which is corresponding to each stage in
ig. 5:
1) Infancy Stage: At the 1st generation, the initialized individ-

uals are input as the infancy individuals whose solutions are
as Fig. 6(a);
 a

10
(2) Growth Stage: The infancy individuals are input in the growth
stage and are improved by HLSA growth to generate mature
individuals as Fig. 6(b). The vectors directed from circles to
diamonds represent the growth process with HLSA;

(3) Mature Stage: After growth stage, mature individuals are
screened by non-dominated sorting and congestion degree
sorting to obtain some selected individuals as Fig. 6(c) for the
subsequent crossover and mutation;

(4) Genetic Stage: The selected individuals participate in the
crossover and mutation to generate children individuals as
Fig. 6(d). Then, children individuals and mature individuals
participate in screening together to generate the next infancy
individuals as 6(f). At the same time, the Pareto solutions set
is updated as Fig. 6(e);

(5) Repeat Infancy Stage → Genetic Stage.

4.5. Analysis of computational complexity of GHW

The computational complexity (denoted as ζ) of GHW mainly
consists of two parts: the computational complexity of HLSA
(ζ (H)) and that of genetic algorithm (ζ (G)).

The computational complexity of HLSA for one step search
of one individual in one generation can be deduced as ζ (h) =

O (mn log n). Thus, for Np individuals and Ng generations, the
computational complexity of HLSA is ζ (H)

= O
(
Gstep · Np · Ng ·

mn log n) where Gstep is the max number of steps for HLSA search
of each individual in each generation. Following, we demonstrate
the proof of ζ (H).

Proof. The computational complexity ζ (h) corresponds to finding
two nodes to execute Algorithm 3. The computational complex-
ity of Algorithm 3 is card

(
ψj1 ∪ ψj2

)
log card

(
ψj1 ∪ ψj2

)
which

mainly derives from the complexity of sorting. Thus the total
computational complexity of enumerating the combinations of
any two nodes is

∑m
j=1
∑m

l=j+1 card
(
ψj ∪ ψl

)
log card

(
ψj ∪ ψl

)
.

The second derivative of xlogx is (xlogx)′′ =
1
x > 0 and

∑m
j=1 card(

ψj
)

= n, thus substitution into Jensen inequality can obtain:

ζ (h) ≥ O
(
m (m − 1)

2

(n
m

log
n
m

))
= O (nm log n) (19)

In addition, x1 log x1+x2 log x2 < (x1 + x2) log (x1 + x2) assuming
x1, x2 > 0. Therefore:

ζ (h) ≤ O ((n(m − 1) log n(m − 1))) = O (nm log n) (20)

Combining the above equations, ζ (h) = O (nm log n). Thus, ζ (H)
=(

Gstep · Np · Ng · mn log n
)
.

For the computational complexity of the genetic algorithm,
f using NSGA II strategies to select mature individuals and to
enerate the new generations, the computational complexity is
(G)

= O
(
N3

p · Ng · d
)
[56]. Then, the computational complexity of

HW-NSGA II can be obtained as:

= ζ (H)
+ ζ (G) = O

(
Np · Ng ·

(
Gstep · mn log n + N2

p · d
))
. (21)

GGA-HLSA is essentially a multi-route search algorithm by
dding a search route (HLSA) to the genetic algorithm. The local
onvergence points of various routes are usually different, so
ultiple routes can help each other to jump out of the local
onvergence points of other routes so as to improve the opti-
ality of solutions. Generally, the relationship between multiple
erformances (such as optimality and computational complexity)
f the algorithms are varying with the change of parameters,
hich may not have an explicit expression. However, from the
erspective of qualitative analysis based on information theory,
HW receives more effective information from GA-based route
nd HLSA-based route. This helps GHW spend less time finding

G. Zhou, W. Tian, R. Buyya et al. Applied Soft Computing 136 (2023) 110027

a
f
(
(

(

(

Fig. 6. The visualized example of GHW-NSGA II with actual results in each stage.
Table 4
Different Strategies of GGA.
Category Strategy Description

Growth
Strategies

HLSA growth Using HLSA as growth route of
individuals in GGA

Random
growth

Using randomization as growth route of
individuals

Non growth Direct genetic without growth

Dimension
Reduction

RW Random multi-weights for each
individual

EW Enumeration weights for each individual
RD Random dimensions for each individual
RRD Round-robin dimensions for each

individual
TRD Taboo round-robin dimensions for each

individual
RWS Random dimensionality reduction

strategies for each individual

better solutions than the existing algorithms such as NSGA II and
MOEA/D. Thus, the algorithms of the GHW family theoretically
have certain advantages in terms of convergence performance.

5. Performance evaluation

5.1. Experiments setting

For the sake of the comprehensive evaluations to the proposed
lgorithms, this section carries out four groups of experiments
rom various aspects including:
1) EX1: comparison of growth strategies for GGA;
2) EX2: comparison of dimensionality reduction strategies for

GGA-HLSA;
3) EX3: evaluation of practicability on a real public trace-driven

dataset (AzureTraceforPacking2020 [17]);
4) EX4: verification on the advantages of proposed algorithms in

convergence and optimality by comparing with state-of-the-

art.

11
All these experiments are based on the control variable
method. Because this paper mainly focuses on discussing the
influence of adding a directed growth in the GGA instead of
that of the type of algorithms for the growth stage, we select
modified LSPT-based HLSA as the growth route of GGA. Fixing
the algorithm process as GGA and regarding the growth strat-
egy as the variable, EX1 presents the performance of adding
HLSA growth, random growth (non-directed growth) and no
growth respectively as shown in Table 4. Except for random
multi-weights, other strategies for dimensionality reduction in-
clude Enumeration Weights (EW), Random Dimensions (RD),
Round-Robin Dimensions (RRD), Taboo Round-robin Dimensions
(TRD) and Random dimensionality and Weights Strategies (RWS)
as shown in Table 4. For example, Random Dimensions (RD)
means randomly choosing one dimension to generate the single-
dimensional optimization problem of each individual in each
generation and using HLSA to solve the problem of the chosen di-
mension. Other compared strategies for dimensionality reduction
are similar to RD and RW. EX2 fixes the algorithm process as GGA-
HLSA and regards the dimensionality reduction strategy as the
variable. To validate the applicability of our proposed algorithms
in realistic, EX3 is a group of trace-driven experiments based
on AzureTraceforPacking2020 [17]. EX4 presents some indicators
over time to validate the superiority of our proposed algorithms
of GHW family compared with the state-of-the-art.

With the exception of EX3, which is performed on the trace-
based dataset, other groups of experiments are executed on the
random simulation dataset, which is conducive to generating
adequate data for comprehensive verification. The descriptions
and operations of the datasets used in experiments are as follows.
(1) Random Simulation Dataset: is generated randomly by a

Python-based simulation environment. In the simulation en-
vironment, we set up the server nodes to be heterogeneous
and the parameters of VMs obey a uniform distribution.

(2) AzureTraceforPacking2020 [17]: represents part of the work-
load on Microsoft’s Azure Compute. AzureTraceforPack-
ing2020 provides the required CUP, RAM, SSD (Solid-State

G. Zhou, W. Tian, R. Buyya et al. Applied Soft Computing 136 (2023) 110027
Table 5
Setup of experiments.
Groups Comparison Dataset Objectives Scenarios (servers, VMs)

EX1
Growth
Strategies

Simulation
Dataset

minω(2) (8, 80)
minω(4) (16, 20-200), (20, 20-200)

EX2
Dimensionality
Reduction

Simulation
Dataset

minω(2) (20, 200)
minω(4) (16, 20-200), (20, 20-200)

EX3 Generations AzureTracefor
Packing2020

minω(2) (400, 1000), (700, 2000)
minω(4) (400, 1000), (700, 2000)

EX4
SOTA: NSGA
II MOEA/D

Simulation
Dataset minω(2) Large Scale

Small Scale
(
w
V
a

Drive) and NIC (Network Bandwidth) allocation for 487 types
of VMs on 35 types of machines. Since AzureTraceforPack-
ing2020 provides the utilization of MDRs by VMs on het-
erogeneous machines, it is very suitable to verify the perfor-
mance of the proposed methods. If a certain dimension of a
VM occupies too much utilization on all types of machines,
it will directly cause this VM to occupy one machine alone,
which has no impact on the optimization of other VMs and
machines. Thus we choose to ignore some types of VMs with
large utilization. In the experiments of this paper, we screen
out some types of VMs with a minimum resource utiliza-
tion of CPU, RAM and SSD greater than 0.3 on all types of
machines, and finally retain 338 types of VMs, which means
minm

j=1 uijk ≤ 30% for ∀i, k. Then, we randomly select the given
numbers of VMs and machines from the 338 types of VMs and
35 types of machines.
EX1 to EX3 are executed for two problems, i.e. minω(2) (mini-

mizing the maximum utilization rate of resources for each dimen-
sion under all nodes) and minω(4) (minimizing energy consump-
tion for total cloud system), while EX4 is performed only for the
minω(2) problem. For the sake of presenting the Pareto solution
in the same figure simultaneously, we choose three dimensions of
resources, that is CPU, RAM and DS, to execute the experiments.
Since the results from various setups of clouds allowed us to draw
the same conclusions, we only present results for parts of them
corresponding to specific scenarios. The experimental setup is
shown in Table 5.

We use the Mxnet framework to enable the program to run
in GPU. Then, the experiments are launched on a GPU desktop
computer with configurations as:

• CPU: Intel(R) Core(TM) i5-8400 CPU @ 2.8 GHZ;
• SSD: KINGSTON SA400S37 240 GB;
• GPU: NVIDIA GeForce GTX 1060 6 GB;
• Program version: Python 3.6 + mxnet-cu90 1.5.0.

5.2. EX1: Comparison of the growth strategies for GGA

EX1 is carried out to evaluate the performance of different
growth strategies in the genetic algorithm including non-growth,
random growth and HLSA growth shown as Table 4. In EX1, we
set Ng = 100, Np = 50, mutation rate is 0.2, Gstep = 10 as well as
the individual selector and regeneration mechanism of Fig. 5 are
conducted with random screening with equal probability rather
than using survival of the fittest.

5.2.1. Minimizing the maximum utilization of resources
For the problem of minω(2) (i.e., minimizing the maximum

utilization rate of resources for each dimension under all nodes),
we present the experiment results under the scenarios with 8
nodes and 80 VMs. And the utilization of VMs obeys the uniform
distribution:

u ∼ U 0, 12 % (22)
ijk ()

12
where U (0, 12) means the uniform distribution in [0, 12] gen-
erated by calling the function of mxnet as mxnet.nd.random.
randint(low = 0, high = 121, shape = (n, d,m)/1000.

For sake of observation, Fig. 7 plots the Pareto solutions of
two-dimensional resources (the boundary of projection on each
coordinate plane of 3D Pareto solution) for 8 server nodes with
80 VMs.

In Fig. 7, the Pareto set of HLSA growth strategy outperforms
random growth and non-growth. That means for each solution of
non-growth and random growth strategies, there is still at least
one solution of HLSA growth strategy dominating it. The compari-
son between random-growth and non-growth illustrates that the
GGA can optimize the result of the non-growth genetic algorithm
although only using randomization as the growth route. The com-
parison between HLSA-growth and random growth illustrates
that directional growth (i.e., using the HLSA as the growth route
of the GA) can obtain better Pareto solutions than that of the
random-growth route. Further, the HLSA-growth can eliminate
the instability of the random growth strategy.

5.2.2. Minimizing energy consumption
Next, we carry out the experiments in the scenarios of minω(4)

i.e., minimizing energy consumption for the total cloud system)
ith 16 and 20 server nodes respectively and set the numbers of
Ms from 20 to 200 where the capacities requested of each VMs
re Cijk ∼ U(75, 150). In the simulated experiments, we randomly

generate the coefficients of Eq. (11) as integers according to
uniform distribution that:{
ajk ∼ U(1, 10), bjk ∼ U(0, 100),
cjk ∼ U(100, 200), djk ∼ U(500, 1000).

(23)

Then, we plot the results of each growth strategy in Fig. 8.
Fig. 8(a) plots the minimum energy consumption from three

strategies for 16 server nodes and Fig. 8(b) plots that for 20
server nodes of the 100th generations. From Fig. 8, the HLSA-
Growth strategy achieves the lowest energy consumptions com-
pared with random-growth and non-growth for all the sets of
(n,m). In addition, random-growth achieves lower energy con-
sumption than non-growth. The sorting of the performance of
these three strategies in Fig. 8(b) demonstrates GGA outperforms
non-growable one and the directional growth outperforms the
random growth. For all experimental combinations, HLSA re-
duces energy consumption on average by 95.21% and 333.7% than
random-growth and non-growth respectively.

Overall, EX1 verifies that adding a growth stage in the pro-
cess of the genetic algorithm solving MDRSPs can significantly
improve solutions. This may be because GGA actually applies a
multi-route, which usually has better local optimal solutions than
the single-route search.

5.3. EX2: Comparison of dimensionality reduction strategies for GGA-
HLSA

To evaluate the performance of different dimensionality re-
duction strategies, we carry out experiments respectively using:

G. Zhou, W. Tian, R. Buyya et al. Applied Soft Computing 136 (2023) 110027

w
a
c

5

Fig. 7. 2D Pareto solution of minimizing the maximum utilization of each dimensional resources under non-growth, random growth and HLSA growth strategies of
GGA with random crossover and regeneration for 8 server nodes and 80 VMs.
Fig. 8. Energy consumption under non-growth, random growth and HLSA growth strategies of GGA with random crossover and regeneration.
RW, EW, RD, RRD, TRD and RWS as shown in Table 4. Same as EX1,
e set Ng = 100, Np = 50, mutation rate is 0.2, Gstep = 10, as well
s the individual selector and regeneration mechanism, are also
onducted with random screening with equal probability.

.3.1. Minimizing the maximum utilization of resources
For the problem of minω(2), we only plot the experiment

results under the scenarios with 20 server nodes and 200 VMs,
as similar conclusions can also be obtained under other combi-
nations of (n,m). The parameters of VMs also obey Eq. (22). After
100 generations, the Pareto solution sets of each dimensionality
reduction strategy are plotted in Fig. 9. In each subfigure of Fig. 9,
the Pareto solutions of RWS, EW and RW are obviously better
than that of RD, RRD and TRD, which shows that the strategy
only by switching a single-dimension is far from finding a better
solution hence weighted solutions are necessary. For RWS, EW
and RWwith relatively close Pareto solutions, the solutions of EW
and RW are better than that of RWS, which demonstrates RWS
has more uncertainty resulting worse solution set. The Pareto
boundaries of EW and RW almost coincide, which demonstrates
that RW is sufficient to search the Pareto solutions set. The
computational complexities of EW are too large because each
generation in the genetic algorithm needs to enumerate as many
weights as possible. However, the Pareto solutions corresponding
to different weights may be the same, so EW costs extra compu-
tation, but may miss some solutions as it cannot really enumerate
all weights.

To more quantitatively evaluate the performance of EW and
RW, we combine the three-dimensional Pareto solution sets of
EW and RW for 20 server nodes and 200 VMs into a new Pareto
solution set to calculate the proportion of EW and RW in the new
solution set. The new Pareto solutions set has 621 solutions in
total where 474 solutions originate from RW and 149 solutions
from EW. That means RW solutions account for 76.08% and EW
for 23.92% in the combined Pareto solutions set. These results
13
illustrate that the RW strategy has a higher probability of obtain-
ing a better Pareto solution set than EW. It means the usage of
RW can not only reduce the computational complexity but also
improve the Pareto solution set.

5.3.2. Minimizing energy consumption
To further verify the performance of different dimensional-

ity reduction strategies, we carry out the experiments in the
scenarios of minimizing energy consumption (minω(4)) with 16
and 20 server nodes respectively. We set the numbers of VMs
from 20 to 200 where the capacities requested of each VMs are
Cijk ∼ U(75, 150). Then, the minimum energy consumptions of
each dimensionality reduction strategy are plotted in Fig. 10.

In Fig. 10, EW, RW and RWS obtain far lower energy con-
sumptions than RD, RRD and TRD, which shows the strategies on
weights are still better than that on a single resource dimension
in the MDRSP of minimizing energy consumption. RW achieves
the best performance among all the strategies, followed by RWS
and EW. Although EW has better Pareto solutions than RWS
in minω(2), EW has larger energy consumption than RWS in
minω(4). This is because the objective of minω(4) has nonlinear
terms as Eq. (11), which makes balancing the utilization of dimen-
sional resources not equal to the minimum energy consumption.
This phenomenon shows again EW cannot really enumerate all
weight combinations. Overall, RW reduces the energy consump-
tion on average by 29.63%, 35.30%, 122.8%, 129.3%, and 129.2%
respectively than RWS, EW, RD, RRD and TRD.

The results of EX2 can conclude that using random weight in
GGA-HLSA can gain better solutions than other dimensionality
reduction strategies through the same generations for MDRSPs.

Firstly, when using dimension reduction strategies based on
resource dimensions, including random dimensions, round-robin
dimensions, and taboo round-robin dimensions, GGA-HLSA
evolves each individual in only one dimension at a time. In fact,
RD, RRD and TRD are unable to balance the utilization rates
of resources in multiple dimensions. Thus, they cannot obtain

G. Zhou, W. Tian, R. Buyya et al. Applied Soft Computing 136 (2023) 110027

V

Fig. 9. 2D Pareto solution using different dimensionality reduction strategies of GGA-HLSA with random crossover and regeneration for 20 server nodes and 200
Ms.
Fig. 10. Energy consumption using different dimensionality reduction strategies of GGA-HLSA with random crossover and regeneration.
Fig. 11. Heat-map of the CPU utilization required by our selected 338 types of VMs on 35 types of machines, where the gray represents the VM of the specified
type cannot run on the corresponding machine.
good solutions with the same optimization level as RW when
multiple dimensions all have a certain weight proportion. Con-
sequently, in Fig. 9, the Pareto solutions of RD, RRD, and TRD
in the middle are far worse than that of RW. The same reason
works in the experiments of Fig. 10. That is, the optimization
of resources in a single-dimension often cannot reduce the total
energy consumption of the cloud system.

Then, RW, EW and RWS in GGA-HLSA can obtain a close solu-
tion set, but that of EW and RWS are worse than RW. This may be
because: in RWS, poor strategies have shared the running time;
and in EW, some close weights actually get repeated solutions.
Both RWS and EW make GGA-HLSA not fully utilized to obtain
more information in the process of searching for solution space.
14
Similarly, they failed to obtain the solution with lower energy
consumption than RW.

5.4. EX3: Evaluation of practicability on azure trace

To further evaluate the practicality and the convergence of
our proposed GHW in solving MDRSP, we carry out a group
of trace-driven experiments EX3 based on AzureTraceforPack-
ing2020 [17]. As mentioned above, we select 338 types of VMs
with minm

j=1 uijk ≤ 30% for ∀i, k, and renumber these types of VMs.
Then we can draw a heat-map of the CPU utilization required by
our selected 338 types of VMs on 35 types of machines as shown

G. Zhou, W. Tian, R. Buyya et al. Applied Soft Computing 136 (2023) 110027
Fig. 12. Pipeline of Pareto solution sets within 60 Generations for minω(2) of Azure Trace.
in Fig. 11. The heat maps of their RAM and SSD are similar to that
of the CPU.

In EX3, we set each generation to have 20 individuals to
observe the pipeline of Pareto solutions in minω(2) and that of
energy consumptions in minω(4) within 60 generations. We also
set the mutation rate is 0.2, Gstep = 10, as well as the individual
selector strategies and regeneration mechanism of Fig. 5 are
based on NSGA II. We conducted extensive experiments under
different numbers of VMs and machines. Since each experiment
can lead to the same qualitative conclusion, we only present the
results under two sets of parameters (400 machines, 1000 VMs)
and (700 machines, 2000 VMs).

Using GGA-HLSA-RD-NSGA II (GHD-NSGA II), GGA-HLSA-RWS-
NSGA II (GHWS-NSGA II) and NSGA II as baselines, the pipelines
of Pareto solution sets of minω(2) on the plane of (CPU, RAM) are
plotted in Fig. 12. Fig. 12(a) is for 1000 VMs and 400 machines,
as well as Fig. 12(b) for 2000 VMs and 700 machines. Because
most types of VMs in AzureTraceforPacking2020 [17] cannot be
allocated on many types of machines, the Pareto solution sets of
the trace-driven experiments are not as regular as that on the
simulation dataset (EX1 and EX2) which approximately form the
continuous curves. However, both in Figs. 12(a) and 12(b), GHW-
NSGA II not only still obtains better Pareto solution set at the 60th
generation, but also achieves convergence faster in minω(2) than
baselines.

To continually evaluate the performance of GHW-NSGA II in
other objectives, we plot the pipeline of energy consumption
within 60 generations of the problem minω(4) in Fig. 13. For this
problem, we also assume energy consumption satisfies Eq. (24)
by replacing C (capacity) with u (utilization) and the coefficients
also satisfy Eq. (23) considering AzureTraceforPacking2020 [17]
did not provide energy consumption data of resources.

E =

m∑
j=1

d∑
k=1

⎛⎝ajk

(
n∑

i=1

xijuijk

)2

+ bjk

(
n∑

i=1

xijuijk

)⎞⎠
+

m∑
j=1

d∑
k=1

(
cjk
)
+

m∑
j=1

(
n

max
i=1

(
xij
) d∑

k=1

djk

) (24)

As shown in Fig. 13, GHW-NSGA II obtains lower solutions of
energy consumption than the baselines since the first generation.
In the iteration of 60 generations, the curve of GHW-NSGA II is
still the lowest compared with the baselines. At the end of the
60th generation for the two scenarios, the energy consumptions
of GHW-NSGA II are (844633, 1545821), which are respectively
reduced by (1.14, 1.68)%, (1.03, 1.11)% and (1.71, 2.43)% respec-
tively compared with the baselines GHD-NSGA II, GHWS-NSGA II

and NSGA II.

15
EX3 on AzureTraceforPacking2020 verifies our proposed GGA-
HLSA-RW not only has fast convergence but also applies to the
MDRSP in realistic cloud computing.

5.5. EX4: Comparison with the state-of-the-art

To further evaluate the advantages of our proposed algo-
rithms, we execute a group of experiments EX4 to compare the
proposed GHW family with the state-of-the-art in the terms
of convergence and optimality. The state-of-the-art participating
in comparison are NSGA II and MOEA/D which are two well-
performed and frequent baselines in MOPs. For the algorithms
of the GHW family, we verify three algorithms including GHW-
RCE (GGA-HLSA-RW with Random Crossover and rEgeneration
mechanism), GHW-NSGA II and GHW-MOEA/D.

The previous subsections have fully verified the practicability
of our proposed algorithms in both the simulation dataset and
public trace-driven dataset for both the problems of minω(2) and
minω(4). Therefore, we only evaluate their performance in the
simulation dataset for the problem of minω(2) (minimizing the
maximum utilization rate of resources for each dimension under
all nodes) in EX4, which does not lose generality.

In addition, we select different parameters from those in the
EX1, EX2 and EX3 to increase the diversity of experimental results.
The distribution of the utilization is:

uijk ∼ U (5, 12) %, (25)

generated by mxnet.nd.random.randint(low = 50, high = 121,
shape
= (n, d,m)/1000.

For the sake of quantitative analysis of convergence, we apply
HVs-over-time [57,58] as the evaluation indicator. Considering to
observe the HyperVolume (HV) of each algorithm into the range
[0, 1], the experiments call the function pymoo.indicators.hv.
Hypervolume [73] with the following settings:
(1) ref_points = (1, 1, 1),
(2) norm_ref_point = False,
(3) zero_to_one = True,
(4) ideal =

(
minj Uj1,minj Uj2,minj Uj3

)
,

(5) nadir =
(
maxj Uj1,maxj Uj2,maxj Uj3

)
.

According to the calculation time of each algorithm, we convert
the generation number into the corresponding running time to
obtain the HVs-over-time of each algorithm.

We present four groups of experiments respectively as (n =

100,m = 40), (n = 200,m = 40), (n = 500,m = 100)
and (n = 1000,m = 100), which are sufficient to illustrate the

convergence of the algorithms. Since GHW adds a growth stage

G. Zhou, W. Tian, R. Buyya et al. Applied Soft Computing 136 (2023) 110027

i
b
t
t
t
f
G
i

a
M
o
i
e
w
o
f
R

Fig. 13. Pipeline of Energy Consumption within 10 Generations for minω(4) of Azure Trace.
Fig. 14. HVs-over-time of proposed GHW family, NSGA II and MOEA/D for the problem minω(2) in simulation dataset.
n each generation, the time consumption of each generation will
e longer than that of NSGA II and MOEA/D. In order to balance
he running time of algorithms so as to facilitate comparison at
he approximate time point, we set the Ng = 20, Np = 100 for
he algorithms of GHW family, as well as Ng = 400, Np = 500
or NSGA II and MOEA/D. The mutation rate is set as 0.2 and
step = 10. Then, we plot the HVs-over-time of each algorithm
n Fig. 14.

Comparing GHW-RCE with NSGA II and MOEA/D in Figs. 14(a)
nd 14(b), GHW-RCE reaches higher HVs than NSGA II and
OEA/D in each same time point. Concretely in Fig. 14(a), the HV
f GHW-RCE at the 20th generation (corresponding to 311.41 s)
s 0.079. Correspondingly, NSGA II and MOEA/D at the 90th gen-
ration obtain lower HVs both as 0.056. In Figs. 14(c) and 14(d)
ith larger scale of VMs and server nodes, NSGA II and MOEA/D
btain higher HVs than GHW-RCE. Changes in comparison results
rom Figs. 14(a) to 14(d) show that the performance of GHW-
CE degrades faster than that of NSGA II and MOEA/D with the
16
increasing number of VMs and nodes. This is because random
crossover and population regeneration counterproductively make
GHW-RCE fail to inherit the excellent solutions found before.
In fact, GHW plays the role of optimizing solutions, as well as
random crossover and regeneration play the role of degrading so-
lutions. Even so, GHW-RCE still maintains advantages to a certain
extent in Fig. 14(a) and Fig. 14(b), which reversely demonstrates
the powerful advantages of GHW.

Comparing GHW-NSGA II and GHW-MOEA/D with NSGA II and
MOEA/D in Fig. 14, the results obviously and solidly demonstrate
the superiorities of GHW family. In Fig. 14, the HVs of GHW-
NSGA II and GHW-MOEA/D are far higher than that of compared
algorithms. Concretely in Fig. 14(a), GHW-NSGA II and GHW-
MOEA/D only take 48.20 s and 67.16 s to obtain the HVs as 0.070
and 0.099 respectively, which are higher than that of NSGA II and
MOEA/D got in 320 s. This illustrates GHW-NSGA II and GHW-
MOEA/D have much faster convergence rates. At 11th generation,
GHW-NSGA II (at 176.73 s) and GHW-MOEA/D (at 184.67 s)

G. Zhou, W. Tian, R. Buyya et al. Applied Soft Computing 136 (2023) 110027

G
w
T
t
G

t
T
o
M
m
p
A
t
t
i
s
t
a
t
H
r
i
t

t
a

Table 6
The HVs and corresponding time compared the algorithms of GHW family with state-of-the-art.
Algorithms Final HV When one achieves HV ≥ 0.5

Gen. Time HV ϵ1 ϵ2 Gen. Time HV

Fig. 14(a): (n,m) = (100, 40)

NSGA II 90 335.3 0.056 48.2 67.1 50 186.3 0.000
MOEA/D 90 349.4 0.056 48.2 67.1 45 174.7 0.021
GHW-RCE 20 311.4 0.079 64.2 67.1 11 171.2 0.033
GHW-NSGA II 20 321.3 0.796 – – 11 176.7 0.516
GHW-MOEA/D 20 335.7 0.837 – – 11 184.6 0.532
Fig. 14(b): (n,m) = (200, 40)

NSGA II 80 331.2 0.043 64.7 66.7 43 178.0 0.002
MOEA/D 80 308.6 0.041 64.7 66.7 45 173.5 0.022
GHW-RCE 20 315.2 0.086 80.8 83.4 11 173.3 0.025
GHW-NSGA II 20 323.5 0.802 – – 11 177.9 0.463
GHW-MOEA/D 20 333.8 0.853 – – 11 183.6 0.514
Fig. 14(c): (n,m) = (500, 100)

NSGA II 120 403.8 0.169 143.0 122.2 66 222.1 0.017
MOEA/D 120 349.4 0.119 122.5 101.8 60 226.8 0.089
GHW-RCE 20 395.0 0.068 102.1 81.4 11 217.2 0.027
GHW-NSGA II 20 408.6 0.945 – – 11 224.7 0.475
GHW-MOEA/D 20 407.3 0.970 – – 11 224.0 0.506
Fig. 14(d): (n,m) = (1000, 200)

NSGA II 200 674.3 0.357 363.6 303.4 120 404.6 0.296
MOEA/D 200 727.9 0.151 231.4 202.2 110 400.3 0.114
GHW-RCE 20 648.6 0.077 165.3 134.8 12 389.2 0.034
GHW-NSGA II 20 661.2 0.871 – – 12 396.7 0.437
GHW-MOEA/D 20 674.2 0.959 – – 12 404.5 0.581

Note: ϵ1 (s) and ϵ2 (s) respectively express the time when GHW-NSGA II and GHW-MOEA/D achieve corresponding
HV.
t
F
M
o
G
t
b
n
o

achieve 0.516 and 0.532 HV respectively more than 0.5. And
at 20th generation, the HVs of GHW-NSGA II (at 321.33 s) and
HW-MOEA/D (at 335.78 s) achieve 0.796 and 0.837 respectively,
hich are both ten times more than that of NSGA II and MOEA/D.
he other figures in Fig. 14 also have similar phenomena. With
he increase in the number of VMs and nodes, GHW-NSGA II and
HW-MOEA/D still maintain obvious advantages steadily.
For quantitative description, we list the values of HVs and

he corresponding time of each group of experiments in Table 6.
he quantitative comparison of Table 6 shows that the HVs of
ur proposed algorithms keep higher than compared algorithms.
oreover, our proposed GHW-NSGA II and GHW-MOEA/D reduce
ore than 200 s to achieve the approximate HV that the com-
arison algorithms achieve at the end of each figure in Fig. 14.
nd, our proposed algorithms only spend about 11 generations
o achieve the HVs close to 0.5 in each scenario of Fig. 14. With
he expansion of the scale, the HVs of all algorithms show an
ncreasing trend continuously. This is because we normalize the
olutions to [0, 1] by setting zero_to_one = True when calculating
he HV, thus raising the value of the comparison algorithm. This
lso leads to the narrowing of the gap between our algorithm and
he comparison algorithm. Different settings when computing
V will cause different numerical trends, but their qualitative
esults will not change. Thus, the results of Table 6 can at least
ntuitively prove our proposed algorithms are significantly better
han compared algorithms.

In fact, the advantages of our algorithm are expanding with
he increase of the scale of (n,m). To verify it, we compute the
bsolute HV of the three scales of VMs and nodes (200, 40),

(500, 100), (1000, 200) by setting zero_to_one=False. Then, we
plot the absolute HVs in Fig. 15(a) and the ratio of absolute HV
between compared algorithms and GHW-NSGA II in Fig. 15(b).
In Fig. 15, the numbers of VMs are all 5 times of nodes. Under
the same proportion between VMs and nodes, large scale has
more feasible solutions and smaller scheduling granularity. Thus,
the theoretical optimal absolute HVs will increase with scale.
However, in Fig. 15(a), the absolute HVs of all algorithms decrease
17
with the increase of scale. This is because the search space of the
solution set of the NP-hard problem increases exponentially with
the increase of scale, so that the optimality of the algorithms’
solution set will decline in the exponential increase of search
time. To measure the decline amplitude of different algorithms,
Fig. 15(b) computes the ratio of absolute HVs between com-
pared algorithms and GHW-NSGA II under each combination of
(n,m). In Fig. 15(b), the ratios are decreasing with the increase
of VMs, which means the optimality of compared algorithms
decreases more than that of GHW-NSGA II. This may be because
the searchability of NSGA II and MOEA/D cannot keep up with the
exponential increase of solution space with the increase of VMs
and nodes.

Additionally Fig. 16 plots the results with a larger time range
of Fig. 14(c) and Fig. 14(d). From Fig. 16, increasing the time
range cannot make the HVs of NSGA II and MOEA/D reach the
level of GHW-NSGA II and GHW-MOEA/D. This demonstrates our
proposed GHW-NSGA II and GHW-MOEA/D have advantages not
only in convergence rate but also in optimality.

In order to further illustrate the performance of our pro-
posed algorithms in the theoretical optimal solution, we carry
out several groups of experiments in small scales. We use an
enumerative algorithm (marked as EnA) to obtain the theoretical
optimal Pareto solutions further to obtain theoretical optimal
HVs as reference. Considering multi groups of experiments have
similar conclusion, we only present two groups of experiments
respectively under (n,m) = (10, 3) and (n,m) = (10, 4). Then,
he HVs-over-time are shown in Fig. 17. In the experiments of
ig. 17, we set Np = 100 for GHW-RCE, GHW-NSGA II and GHW-
OEA/D, as well as set Np = 500 for NSGA II and MOEA/D. The Ng
f all the algorithms is 20 and the mutation rate is 0.2. In Fig. 17,
HW-NSGA II and GHW-MOEA/D are the two fastest algorithms
o approach or even reach the theoretical optimal HV followed
y GHW-RCE, while the state-of-the-art NSGA II and MOEA/D do
ot reach the theoretical optimum in Fig. 17. This shows that
ur proposed GHW family of algorithms is more likely to find

G. Zhou, W. Tian, R. Buyya et al. Applied Soft Computing 136 (2023) 110027
Fig. 15. Absolute HVs and ratio over number of VMs where (200, 40), (500, 100), (1000, 200) and zero_to_one=False.
Fig. 16. Extended results of Fig. 14 with larger time range.
Fig. 17. HVs-over-time of proposed GHW family, NSGA II and MOEA/D for the problem minω(2) with enumerative algorithm as reference in small scale simulation
dataset.
the theoretical optimal solution in the small-scale dataset than
compared algorithms.

To further comprehensively validate this conclusion, we con-
duct 100 instances under each combination of parameters (n,m)
= (10, 3) and (n,m) = (10, 4) respectively, record the proportion
of each algorithm finding the theoretical optimal solution at the
corresponding time, and compute the average proportion corre-
sponding to each time as the Average Probability-over-time of
each algorithm Finding the Theoretical Optimal Pareto Solutions
(denoted as APFTOPS). Then, we plot the results in Fig. 18.
18
In Fig. 18, the curves of GHW-NSGA II and GHW-MOEA/D
are higher than that of the compared algorithms. Concretely,
in Fig. 18(a), the APFTOPSs of GHW-RCE (0.754), GHW-NSGA
II (0.866) and GHW-MOEA/D (0.802) reach more than 0.75 at
about 80 s (20th generation), while that of NSGA II (0.711) and
MOEA/D (0.623) are less than 0.72; in Fig. 18(b), that of GHW-RCE
(0.701), GHW-NSGA II (0.765) and GHW-MOEA/D (0.671) reach
more than 0.65 at about 100 s (20th generation), while that of
NSGA II (0.446) and MOEA/D (0.310) are less than 0.45. The sta-
tistical significance of Fig. 18 shows that our proposed algorithms
have higher probabilities to find the theoretical Pareto solutions,

G. Zhou, W. Tian, R. Buyya et al. Applied Soft Computing 136 (2023) 110027

d

w
t

c
t
t
g
u

5

s
f
d
t
•

•

Fig. 18. APFTOPS of the proposed GHW family, NSGA II and MOEA/D for the problem minω(2) with enumerative algorithm as reference in small scale simulation
ataset where each combination of (n,m) has 100 instances.
6

(
p
s
M
s
d

g
f
u
t
S
d
i
g
R
b
r
r
n
h
f
f
t
G
a

r
A
o

hich means our proposed algorithms have better optimality
han compared algorithms in solving the problem minω(2).

These results in EX4 prove that the advantages of GHW are
omprehensive in the aspects of faster convergence rate and bet-
er optimality. This is consistent with the analysis in Section 4.5
hat the combination of two search routes (i.e., HLSA route and
enetic route) has more diverse information and can make full
se of effective information to find better optimization solutions.

.6. Summary of experiments

Through the multiple groups of experiments from various
ights in this section, we can observe that GHW, as a novel
amily of genetic algorithms, has significant advantages in ad-
ressing the MDRSP that is usually NP-hard problem. Among
hese experiments:
EX1 evaluates the effect of different growth routes on GGA. It
demonstrates adding a growth stage can significantly improve
the performance of the genetic algorithm in solving MDRSPs.
It also demonstrates a directional growth route using HLSA
has better solutions than compared random growth and non-
growth. The order of algorithms by performance is: GGA-HLSA
> GGA-RandomGrowth > GA (GGA-Non Growth), where GGA-
HLSA > GGA-RandomGrowth means GGA-HLSA outperforms
GGA-RandomGrowth;
EX2 evaluates the effect of different dimensionality reduction
strategies on GGA-HLSA. It demonstrates using RW (Random
Weight) in GGA-HLSA can obtain more comprehensively better
solutions than compared dimensionality reduction strategies
including EW (Enumeration Weights), RD (Random Dimen-
sions), RRD (Round-Robin Dimensions), TRD (Taboo Round-
robin Dimensions) and RWS (Random dimensionality and
Weights Strategies). The order by performance is: GGA-HLSA-
RW > (GGA-HLSA-EW, GGA-HLSA-RWS) > (GGA-HLSA-RD,
GGA-HLSA-RRD, GGA-HLSA-TRD). (GGA-HLSA-EW, GGA-HLSA-
RWS) means GGA-HLSA-EW and GGA-HLSA-RWS have per-
formance with approximate level, or GGA-HLSA-EW is not
obviously superior to GGA-HLSA-RWS;

• Based on the previous experimental conclusions, EX3 validates
the feasibility of the algorithm we proposed to solve the MDRSP
in realistic cloud computing. In addition, it demonstrates that
combining the strategies of NSGA II with GHW can obtain
better solutions than compared algorithms. The order by per-
formance is: GHW-NSGA II > (GHD-NSGA II, GHWS-NSGA II)

> NSGA II; s

19
• Finally, EX4 compares the GHW family (GHW-NSGA II and
GHW-MOEA/D) with the state-of-the-art NSGA II and MOEA/D
by observing the HVs-over-time in some large-scale dataset
and observing the average probability to find theoretical op-
timal Pareto solutions over time in some small scale dataset.
EX4 demonstrates that the GHW family algorithms we propose
have a faster convergence rate and better optimality than NSGA
II and MOEA/D, that is (GHW-NSGA II, GHW-MOEA/D)> (NSGA
II, MOEA/D). The results of EX4 show that the algorithms we
propose provide a comprehensive and significant improvement
compared to the reference algorithms.

. Conclusion and future work

The Multi-Dimensional Resources Scheduling Problem
MDRSP) in cloud computing, a multi-objective optimization
roblem, is challenging because the resources of each dimen-
ion are usually heterogeneous and coupled. The solution of
DRSP requires simultaneous consideration of multi types of re-
ources, which makes MDRSP far more complex than the single-
imensional resource scheduling problem.
In this paper, we focus on the allocation of VMs in hetero-

eneous multi-dimensional resources of cloud computing and
ormulate several MDRSPs including minimizing the maximum
tilization rate of each dimension of resources and minimizing
he energy consumption of the total system. To solve these MDR-
Ps, we firstly use the concept of stages in genetic algorithm to
ivide its processes into four stages namely initialization stage,
nfancy stage, mature stage and genetic stage; secondly add a
rowth stage to the genetic algorithm and propose GGA-HLSA-
W (GHW, i.e., Growable genetic algorithm using the Heuristic-
ased local search algorithm with random Weights as growth
oute). To concretize HLSA, we proposed a modified LSPT algo-
ithm, which can improve the solutions of MSOPs in heteroge-
eous nodes. GHW, a hybrid algorithm combining meta-heuristic,
euristic and local search, has strong adaptability and optimality
or various MDRSPs. The proposal of the GHW family allows the
lexible combinations of various algorithms. To further improve
he performance of GHW family of algorithms, we finally propose
HW-NSGA II and GHW-MOEA/D applying the sorting strategies
nd regeneration mechanism of NSGA II and MOEA/D into GHW.
To validate the performance of the GHW family, we car-

ied out extensive experiments on the simulation dataset and
zureTraceforPacking2020-driven dataset. The experiments not
nly validate the growth strategy and dimensionality reduction

trategy of GHW outperforming baselines, but also validate the

G. Zhou, W. Tian, R. Buyya et al. Applied Soft Computing 136 (2023) 110027

f
C
m
r
o

g
t
c

c
m
c
m
t
t
m
a
i
d
d

C

S
m
I

D

c
t

A

a
2
P
N
6

R

easibility and superiority of GHW in realistic cloud computing.
ompared with state-of-the-art NSGA II and MOEA/D in experi-
ents, GHW-NSGA II and GHW-MOEA/D have better convergence

ate and optimality, which shows the comprehensive advantages
f the GHW family of algorithms.
The other significance of the GHW family is that it shows the

reat potential of adding a growth stage to GA and demonstrates
hat combining with multi-search routes may be able to improve
onvergence and optimality.
On this basis, it is a worthwhile direction to explore the ar-

hitecture and theory of more stable genetic algorithms or other
ulti-search route algorithms. The processing speed and energy
onsumption of electronic components are always affected by
any factors, such as network congestion, temperature, con-

inuous working time et al. We in the future plan to explore
he variants of GHW and apply them to address MDRSPs in
ore complex scenarios considering the capacities of resources
nd conversion formula of energy consumption are time-varying
n dynamic systems. In addition, accelerating GHW through
istributed computing is also an important topic affecting the
evelopment of GHW family in the big data era.

RediT authorship contribution statement

Guangyao Zhou: Conceptualization, Methodology, Software,
Validation, Formal analysis, Investigation, Writing – original draft,
Writing – review & editing, Visualization, Funding acquisition, Su-
pervision. WenHong Tian: Resources, Writing – review & editing,
upervision, Project administration, Funding acquisition. Rajku-
ar Buyya: Investigation, Writing – review & editing. Kui Wu:

nvestigation, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This research is partially supported by National Key Research
nd Development Program of China with Grant ID
018AAA0103203, Project of Key Research and Development
rogram of Sichuan Province with Grant ID 2021YFG0325, and
ational Natural Science Foundation of China with Grant ID
1672136 and 61828202.

eferences

[1] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski, G. Lee,
D.A. Patterson, A. Rabkin, I. Stoica, M. Zaharia, A view of cloud computing,
Commun. ACM 53 (4) (2010) 50–58.

[2] X. Zhou, G. Zhang, J. Sun, J. Zhou, T. Wei, S. Hu, Minimizing cost and
makespan for workflow scheduling in cloud using fuzzy dominance sort
based HEFT, Future Gener. Comput. Syst. 93 (2019) 278–289.

[3] W. Guo, W. Tian, Y. Ye, L. Xu, K. Wu, Cloud resource scheduling with deep
reinforcement learning and imitation learning, IEEE Internet Things J. 8 (5)
(2021) 3576–3586.

[4] M. Adhikari, T. Amgoth, S.N. Srirama, A survey on scheduling strategies
for workflows in cloud environment and emerging trends, ACM Comput.
Surv. 52 (4) (2019) 68:1–68:36.

[5] Z. Tong, H. Chen, X. Deng, K. Li, K. Li, A scheduling scheme in the cloud
computing environment using deep Q -learning, Inform. Sci. 512 (2020)
1170–1191.

[6] S. Kardani-Moghaddam, R. Buyya, K. Ramamohanarao, ADRL: a hybrid
anomaly-aware deep reinforcement learning-based resource scaling in
clouds, IEEE Trans. Parallel Distrib. Syst. 32 (3) (2021) 514–526.

[7] Z. Zhan, X.F. Liu, Y. Gong, J. Zhang, H.S. Chung, Y. Li, Cloud computing
resource scheduling and a survey of its evolutionary approaches, ACM
Comput. Surv. 47 (4) (2015) 63:1–63:33.
20
[8] S.G. Domanal, R.M.R. Guddeti, R. Buyya, A hybrid bio-inspired algorithm for
scheduling and resource management in cloud environment, IEEE Trans.
Serv. Comput. 13 (1) (2020) 3–15.

[9] L. Ghalami, D. Grosu, Scheduling parallel identical machines to minimize
makespan: A parallel approximation algorithm, J. Parallel Distrib. Comput.
133 (2019) 221–231.

[10] A.L. Bolaji, F.Z. Okwonu, P.B. Shola, B.S. Balogun, O.D. Adubisi, A modi-
fied binary pigeon-inspired algorithm for solving the multi-dimensional
knapsack problem, J. Intell. Syst. 30 (1) (2021) 90–103.

[11] M. Abdel-Basset, R. Mohamed, K.M. Sallam, R.K. Chakrabortty, M.J. Ryan,
BSMA: A novel metaheuristic algorithm for multi-dimensional knapsack
problems: Method and comprehensive analysis, Comput. Ind. Eng. 159
(2021) 107469.

[12] H. Goudarzi, M. Pedram, Multi-dimensional SLA-based resource allocation
for multi-tier cloud computing systems, in: L. Liu, M. Parashar (Eds.), IEEE
International Conference on Cloud Computing, CLOUD 2011, Washington,
DC, USA, 4–9 July, 2011, IEEE Computer Society, 2011, pp. 324–331.

[13] A.S. Sofia, P. Ganeshkumar, Multi-objective task scheduling to minimize
energy consumption and makespan of cloud computing using NSGA-II, J.
Netw. Syst. Manag. 26 (2) (2018) 463–485.

[14] C. Dhaenens, L. Jourdan, Metaheuristics for Big Data, 2016, http://dx.doi.
org/10.1002/9781119347569.

[15] D. Gabi, A.S. Ismail, A. Zainal, Z. Zakaria, A. Abraham, N.M. Dankolo, Cloud
customers service selection scheme based on improved conventional cat
swarm optimization, Neural Comput. Appl. 32 (18) (2020) 14817–14838.

[16] Y. Laili, S. Lin, D. Tang, Multi-phase integrated scheduling of hybrid tasks
in cloud manufacturing environment, Robot. Comput.-Integr. Manuf. 61
(2020) 101850.

[17] O. Hadary, L. Marshall, I. Menache, A. Pan, E.E. Greeff, D. Dion, S. Dorminey,
S. Joshi, Y. Chen, M. Russinovich, T. Moscibroda, Protean: VM allocation
service at scale, in: 14th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2020, Virtual Event, November 4–6, 2020,
USENIX Association, 2020, pp. 845–861.

[18] AzurePublicDataset, https://github.com/Azure/AzurePublicDatase.
[19] A. Sudarshan Chakravarthy, C. Sudhakar, T. Ramesh, Energy efficient VM

scheduling and routing in multi-tenant cloud data center, Sustain. Comput.
Inform. Syst. 22 (2019) 139–151.

[20] A. Roy, S. Midya, K. Majumder, S. Phadikar, Distributed resource manage-
ment in dew based edge to cloud computing ecosystem: A hybrid adaptive
evolutionary approach, Trans. Emerg. Telecommun. Technol. 31 (8) (2020).

[21] Z. Guan, T. Melodia, The value of cooperation: minimizing user costs in
multi-broker mobile cloud computing networks, IEEE Trans. Cloud Comput.
5 (4) (2017) 780–791.

[22] T. Chen, A.G. Marqués, G.B. Giannakis, DGLB: distributed stochastic geo-
graphical load balancing over cloud networks, IEEE Trans. Parallel Distrib.
Syst. 28 (7) (2017) 1866–1880.

[23] W. Zhang, Y. Wen, Energy-efficient task execution for application as a
general topology in mobile cloud computing, IEEE Trans. Cloud Comput. 6
(3) (2018) 708–719.

[24] D. Ding, X. Fan, Y. Zhao, K. Kang, Q. Yin, J. Zeng, Q-learning based
dynamic task scheduling for energy-efficient cloud computing, Future
Gener. Comput. Syst. 108 (2020) 361–371.

[25] S.M.R. Nouri, H. Li, S. Venugopal, W. Guo, M. He, W. Tian, Autonomic
decentralized elasticity based on a reinforcement learning controller for
cloud applications, Future Gener. Comput. Syst. 94 (2019) 765–780.

[26] T. Dong, F. Xue, C. Xiao, J. Li, Task scheduling based on deep reinforcement
learning in a cloud manufacturing environment, Concurr. Comput. Pract.
Exp. 32 (11) (2020).

[27] Q. Li, H. Yao, T. Mai, C. Jiang, Y. Zhang, Reinforcement-learning- and belief-
learning-based double auction mechanism for edge computing resource
allocation, IEEE Internet Things J. 7 (7) (2020) 5976–5985.

[28] G. Ismayilov, H.R. Topcuoglu, Neural network based multi-objective evo-
lutionary algorithm for dynamic workflow scheduling in cloud computing,
Future Gener. Comput. Syst. 102 (2020) 307–322.

[29] L. Abualigah, A. Diabat, A novel hybrid antlion optimization algo-
rithm for multi-objective task scheduling problems in cloud computing
environments, Cluster Comput. (2020) 1–19.

[30] A. Belgacem, K.B. Bey, H. Nacer, S. Bouznad, Efficient dynamic resource
allocation method for cloud computing environment, Clust. Comput. 23
(4) (2020) 2871–2889.

[31] A.J. Miriam, R. Saminathan, S. Chakaravarthi, Non-dominated Sorting Ge-
netic Algorithm (NSGA-III) for effective resource allocation in cloud, Evol.
Intell. 14 (2) (2021) 759–765.

[32] H. Jiang, J. Yi, S. Chen, X. Zhu, A multi-objective algorithm for task
scheduling and resource allocation in cloud-based disassembly, J. Manuf.
Syst. 41 (2016) 239–255.

[33] H. Li, G. Zhu, Y. Zhao, Y. Dai, W. Tian, Energy-efficient and QoS-aware
model based resource consolidation in cloud data centers, Clust. Comput.

20 (3) (2017) 2793–2803.

http://refhub.elsevier.com/S1568-4946(23)00045-5/sb1
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb1
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb1
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb1
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb1
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb2
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb2
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb2
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb2
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb2
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb3
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb3
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb3
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb3
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb3
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb4
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb4
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb4
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb4
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb4
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb5
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb5
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb5
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb5
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb5
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb6
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb6
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb6
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb6
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb6
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb7
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb7
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb7
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb7
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb7
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb8
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb8
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb8
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb8
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb8
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb9
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb9
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb9
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb9
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb9
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb10
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb10
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb10
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb10
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb10
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb11
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb11
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb11
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb11
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb11
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb11
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb11
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb12
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb12
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb12
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb12
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb12
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb12
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb12
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb13
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb13
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb13
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb13
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb13
http://dx.doi.org/10.1002/9781119347569
http://dx.doi.org/10.1002/9781119347569
http://dx.doi.org/10.1002/9781119347569
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb15
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb15
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb15
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb15
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb15
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb16
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb16
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb16
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb16
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb16
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb17
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb17
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb17
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb17
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb17
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb17
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb17
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb17
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb17
https://github.com/Azure/AzurePublicDatase
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb19
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb19
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb19
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb19
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb19
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb20
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb20
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb20
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb20
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb20
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb21
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb21
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb21
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb21
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb21
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb22
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb22
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb22
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb22
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb22
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb23
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb23
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb23
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb23
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb23
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb24
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb24
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb24
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb24
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb24
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb25
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb25
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb25
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb25
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb25
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb26
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb26
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb26
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb26
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb26
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb27
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb27
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb27
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb27
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb27
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb28
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb28
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb28
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb28
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb28
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb29
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb29
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb29
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb29
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb29
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb30
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb30
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb30
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb30
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb30
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb31
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb31
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb31
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb31
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb31
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb32
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb32
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb32
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb32
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb32
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb33
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb33
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb33
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb33
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb33

G. Zhou, W. Tian, R. Buyya et al. Applied Soft Computing 136 (2023) 110027
[34] S. Midya, A. Roy, K. Majumder, S. Phadikar, Multi-objective optimization
technique for resource allocation and task scheduling in vehicular cloud
architecture: A hybrid adaptive nature inspired approach, J. Netw. Comput.
Appl. 103 (2018) 58–84.

[35] J. Li, Y. Han, A hybrid multi-objective artificial bee colony algorithm
for flexible task scheduling problems in cloud computing system, Clust.
Comput. 23 (4) (2020) 2483–2499.

[36] M. Adhikari, T. Amgoth, S.N. Srirama, Multi-objective scheduling strategy
for scientific workflows in cloud environment: A Firefly-based approach,
Appl. Soft Comput. 93 (2020) 106411.

[37] X.F. Liu, Z. Zhan, J.D. Deng, Y. Li, T. Gu, J. Zhang, An energy efficient ant
colony system for virtual machine placement in cloud computing, IEEE
Trans. Evol. Comput. 22 (1) (2018) 113–128.

[38] W. Xia, L. Shen, Joint resource allocation at edge cloud based on ant colony
optimization and genetic algorithm, Wirel. Pers. Commun. 117 (2) (2021)
355–386.

[39] A.M.S. Kumar, M. Venkatesan, Multi-objective task scheduling using hybrid
genetic-ant colony optimization algorithm in cloud environment, Wirel.
Pers. Commun. 107 (4) (2019) 1835–1848.

[40] Y. Yang, B. Yang, S. Wang, F. Liu, Y. Wang, X. Shu, A dynamic ant-colony
genetic algorithm for cloud service composition optimization, Int. J. Adv.
Manuf. Technol. 102 (1–4) (2019) 355–368.

[41] K. Xie, X. Wang, G. Xie, D. Xie, J. Cao, Y. Ji, J. Wen, Distributed multi-
dimensional pricing for efficient application offloading in mobile cloud
computing, IEEE Trans. Serv. Comput. 12 (6) (2019) 925–940.

[42] N. Bao, Y. Chai, Y. Zhang, C. Wang, D. Zhang, More space may be cheaper:
multi-dimensional resource allocation for NVM-based cloud cache, in: 38th
IEEE International Conference on Computer Design, ICCD 2020, Hartford,
CT, USA, October 18–21, 2020, IEEE, 2020, pp. 565–572.

[43] Y. Pan, L. Gao, J. Luo, T. Wang, J. Luo, A multi-dimensional resource
crowdsourcing framework for mobile edge computing, in: 2020 IEEE
International Conference on Communications, ICC 2020, Dublin, Ireland,
June 7–11, 2020, IEEE, 2020, pp. 1–7.

[44] H. Yu, Z. Zhou, Z. Jia, X. Zhao, L. Zhang, X. Wang, Multi-timescale multi-
dimension resource allocation for NOMA-edge computing-based power IoT
with massive connectivity, IEEE Trans. Green Commun. Netw. 5 (3) (2021)
1101–1113.

[45] A. Gopu, N. Venkataraman, Optimal VM placement in distributed cloud
environment using MOEA/D, Soft Comput. 23 (21) (2019) 11277–11296.

[46] T. Nurcahyadi, C. Blum, Negative learning in ant colony optimization:
application to the multi dimensional knapsack problem, in: S. Deb (Ed.),
ISMSI 2021: 2021 5th International Conference on Intelligent Systems,
Metaheuristics & Swarm Intelligence, Victoria, Seychelles, April 10-11,
2021, ACM, 2021, pp. 22–27.

[47] M. Yu, C. Wu, B. Ji, J. Liu, A sum-of-ratios multi-dimensional-knapsack
decomposition for DNN resource scheduling, in: 40th IEEE Conference on
Computer Communications, INFOCOM 2021, Vancouver, BC, Canada, May
10–13, 2021, IEEE, 2021, pp. 1–10.

[48] M.S. Aktar, M. De, S.K. Mazumder, M. Maiti, Multi-Objective Green 4-
dimensional transportation problems for breakable incompatible items
with different fixed charge payment policies, Comput. Ind. Eng. 156 (2021)
107184.

[49] J. Chen, H. Wu, F. Lyu, P. Yang, X.S. Shen, Multi-dimensional resource
allocation for diverse safety message transmissions in vehicular networks,
in: ICC 2021 - IEEE International Conference on Communications, Montreal,
QC, Canada, June 14-23, 2021, IEEE, 2021, pp. 1–6.

[50] M. Ehrgott, Multicriteria Optimization, second ed., Springer, 2005.
[51] J.K. Mandal, S. Mukhopadhyay, P. Dutta (Eds.), Multi-Objective Optimiza-

tion - Evolutionary to Hybrid Framework, Springer, 2018.
[52] J. Yang, H. Zhu, T. Liu, Secure and economical multi-cloud storage policy

with NSGA-II-C, Appl. Soft Comput. 83 (2019).
[53] K. Shang, H. Ishibuchi, A new hypervolume-based evolutionary algorithm

for many-objective optimization, IEEE Trans. Evol. Comput. 24 (5) (2020)
839–852.

[54] S.C. Maree, T. Alderliesten, P.A.N. Bosman, Uncrowded hypervolume-based
multiobjective optimization with gene-pool optimal mixing, Evol. Comput.
30 (3) (2022) 329–353.

[55] N. Srinivas, K. Deb, Multiobjective optimization using nondominated
sorting in genetic algorithms, Evol. Comput. 2 (3) (1994) 221–248.

[56] K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002)
182–197.

[57] E. Zitzler, D. Brockhoff, L. Thiele, The hypervolume indicator revisited: on
the design of pareto-compliant indicators via weighted integration, in: S.
Obayashi, K. Deb, C. Poloni, T. Hiroyasu, T. Murata (Eds.), Evolutionary
Multi-Criterion Optimization, 4th International Conference, EMO 2007,
Matsushima, Japan, March 5-8, 2007, Proceedings, in: Lecture Notes in

Computer Science, vol. 4403, Springer, 2007, pp. 862–876.

21
[58] K. Shang, H. Ishibuchi, L. He, L.M. Pang, A survey on the hypervolume
indicator in evolutionary multiobjective optimization, IEEE Trans. Evol.
Comput. 25 (1) (2021) 1–20.

[59] R. Liu, R. Ren, J. Liu, J. Liu, A clustering and dimensionality reduction based
evolutionary algorithm for large-scale multi-objective problems, Appl. Soft
Comput. 89 (2020) 106120.

[60] Z. Tan, H. Wang, S. Liu, Multi-stage dimension reduction for expensive
sparse multi-objective optimization problems, Neurocomputing 440 (2021)
159–174.

[61] D. Brockhoff, E. Zitzler, Dimensionality reduction in multiobjective opti-
mization: the minimum objective subset problem, in: K. Waldmann, U.M.
Stocker (Eds.), Operations Research, Proceedings 2006, Selected Papers of
the Annual International Conference of the German Operations Research-
Society (GOR), Jointly Organized with the Austrian Society of Operations
Research (ÖGOR) and the Swiss Society of Operations Research (SVOR),
Karlsruhe, Germany, September 6–8, 2006, 2006, pp. 423–429.

[62] Q. Zhang, H. Li, MOEA/D: a multiobjective evolutionary algorithm based
on decomposition, IEEE Trans. Evol. Comput. 11 (6) (2007) 712–731.

[63] H. Xu, W. Zeng, D. Zhang, X. Zeng, MOEA/HD: a multiobjective evolutionary
algorithm based on hierarchical decomposition, IEEE Trans. Cybern. 49 (2)
(2019) 517–526.

[64] J. Cao, J. Zhang, F. Zhao, Z. Chen, A two-stage evolutionary strategy
based MOEA/D to multi-objective problems, Expert Syst. Appl. 185 (2021)
115654.

[65] H. Li, K. Deb, Q. Zhang, P.N. Suganthan, L. Chen, Comparison between
MOEA/D and NSGA-III on a set of novel many and multi-objective bench-
mark problems with challenging difficulties, Swarm Evol. Comput. 46
(2019) 104–117.

[66] H. Li, Q. Zhang, Multiobjective optimization problems with complicated
pareto sets, MOEA/D and NSGA-II, IEEE Trans. Evol. Comput. 13 (2) (2009)
284–302.

[67] L. Shao, M. Ehrgott, Discrete representation of non-dominated sets in
multi-objective linear programming, European J. Oper. Res. 255 (3) (2016)
687–698.

[68] L. Liu, T. Wang, An evolvable hardware method based on elite
Partheno-Genetic Algorithm, Appl. Soft Comput. 113 (Part) (2021) 107904.

[69] J. Yang, Y. Hu, K. Zhang, Y. Wu, An improved evolution algorithm
using population competition genetic algorithm and self-correction BP
neural network based on fitness landscape, Soft Comput. 25 (3) (2021)
1751–1776.

[70] V. Priya, C.S. Kumar, R. Kannan, Resource scheduling algorithm with load
balancing for cloud service provisioning, Appl. Soft Comput. 76 (2019)
416–424.

[71] A. Ghasemi, A.T. Haghighat, A multi-objective load balancing algorithm
for virtual machine placement in cloud data centers based on machine
learning, Computing 102 (9) (2020) 2049–2072.

[72] K.S. Pal, P.P. Wang, Genetic Algorithms for Pattern Recognition, CRC Press,
Inc., 1996.

[73] J. Blank, K. Deb, Pymoo: multi-objective optimization in python, IEEE
Access 8 (2020) 89497–89509.

Guangyao Zhou received Bachelor’s degree and Mas-
ter’s degree from School of architectural engineering,
Tianjin University, China. He is now a Ph.D. candidate
at School of information and software engineering,
University of Electronic Science and Technology of
China. His research interests include scheduling al-
gorithms in cloud Computing or Edge Computing,
image recognition especially facial expression recogni-
tion, algorithmic theory of machine learning, big data
processing, parallel training of large-scale model and
evolution algorithms especially genetic algorithms.

Wenhong Tian received a Ph.D. degree from the De-
partment of Computer Science, North Carolina State
University, Raleigh, NC, USA. He is now a professor
at the University of Electronic Science and Technol-
ogy of China (UESTC). His research interests include
scheduling in cloud computing and big data platforms,
image recognition by deep learning, algorithmic theory
of machine learning, parallel training of large-scale
model and evolution algorithms. He has more than 110
journal/conference publications and 5 books in related
areas.

http://refhub.elsevier.com/S1568-4946(23)00045-5/sb34
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb34
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb34
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb34
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb34
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb34
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb34
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb35
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb35
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb35
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb35
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb35
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb36
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb36
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb36
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb36
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb36
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb37
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb37
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb37
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb37
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb37
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb38
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb38
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb38
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb38
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb38
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb39
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb39
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb39
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb39
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb39
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb40
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb40
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb40
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb40
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb40
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb41
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb41
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb41
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb41
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb41
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb42
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb42
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb42
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb42
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb42
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb42
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb42
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb43
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb43
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb43
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb43
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb43
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb43
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb43
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb44
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb44
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb44
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb44
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb44
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb44
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb44
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb45
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb45
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb45
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb46
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb46
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb46
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb46
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb46
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb46
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb46
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb46
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb46
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb47
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb47
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb47
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb47
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb47
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb47
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb47
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb48
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb48
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb48
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb48
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb48
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb48
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb48
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb49
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb49
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb49
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb49
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb49
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb49
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb49
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb50
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb51
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb51
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb51
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb52
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb52
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb52
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb53
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb53
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb53
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb53
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb53
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb54
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb54
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb54
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb54
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb54
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb55
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb55
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb55
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb56
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb56
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb56
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb56
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb56
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb57
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb57
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb57
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb57
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb57
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb57
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb57
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb57
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb57
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb57
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb57
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb58
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb58
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb58
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb58
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb58
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb59
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb59
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb59
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb59
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb59
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb60
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb60
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb60
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb60
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb60
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb61
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb61
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb61
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb61
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb61
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb61
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb61
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb61
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb61
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb61
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb61
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb61
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb61
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb62
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb62
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb62
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb63
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb63
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb63
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb63
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb63
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb64
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb64
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb64
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb64
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb64
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb65
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb65
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb65
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb65
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb65
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb65
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb65
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb66
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb66
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb66
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb66
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb66
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb67
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb67
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb67
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb67
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb67
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb68
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb68
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb68
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb69
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb69
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb69
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb69
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb69
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb69
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb69
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb70
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb70
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb70
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb70
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb70
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb71
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb71
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb71
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb71
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb71
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb72
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb72
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb72
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb73
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb73
http://refhub.elsevier.com/S1568-4946(23)00045-5/sb73

G. Zhou, W. Tian, R. Buyya et al. Applied Soft Computing 136 (2023) 110027

p
i
d
R

Rajkumar Buyya is a Redmond Barry Distinguished
Professor and Director of the cloud Computing and
Distributed Systems (CLOUDS) Laboratory at the Uni-
versity of Melbourne, Australia. He is also serving as
the founding CEO of Manjrasoft, a spin-off company
of the University, commercializing its innovations in
cloud Computing. He served as a Future Fellow of
the Australian Research Council during 2012–2016. He
received the Ph.D. degree in Computer Science and
Software Engineering from Monash University, Mel-
bourne, Australia, in 2002. He has authored over 750

ublications and seven text books. He is one of the highly cited authors
n computer science and software engineering worldwide (h-index=154, gin-
ex=331, 125200+ citations). He is recognized as a ‘‘Web of Science Highly Cited
esearcher’’ for six consecutive years since 2016, and Scopus Researcher of the
22
Year 2017 with Excellence in Innovative Research Award by Elsevier for his
outstanding contributions to cloud Computing and distributed systems.

Kui Wu received the B.Sc. and M.Sc. degrees in com-
puter science from Wuhan University, Wuhan, China,
in 1990 and 1993, respectively, and the Ph.D. de-
gree in computing science from the University of
Alberta, Edmonton, AB, Canada, in 2002. In 2002,
he joined the Department of Computer Science, Uni-
versity of Victoria, Victoria, BC, Canada, where he
is currently a professor. His current research in-
terests include network performance analysis, online
social networks, Internet of Things, and parallel and
distributed algorithms.

	Growable Genetic Algorithm with Heuristic-based Local Search for multi-dimensional resources scheduling of cloud computing
	Introduction
	Related Work
	Scheduling Algorithms in Cloud Computing
	MDRSP in Cloud Computing
	Existing Approaches to MOP
	Analysis of Related Work

	System Model and Problem Formulation of MDRSP
	Cloud System Model with Multi-Dimensional Resources
	Problem Formulations for Resources Utilization and Energy Consumption
	Minimizing the Maximum Utilization Rate of Resources for Each Dimension under All Nodes
	Minimizing the Total Energy Consumption for System

	Methodology for MDRSP: GGA-HLSA-RW (GHW) and its Instantiations
	Random Multi-weights-based Dimensionality Reduction
	Heuristic-based Local Search Algorithm
	Growable Genetic Algorithm based on Growth Strategies
	Instantiation of GHW: GHW-NSGA II and GHW-MOEA/D
	Analysis of Computational Complexity of GHW

	Performance Evaluation
	Experiments Setting
	EX1: Comparison of the Growth Strategies for GGA
	Minimizing the Maximum Utilization of Resources
	Minimizing Energy Consumption

	EX2: Comparison of Dimensionality Reduction Strategies for GGA-HLSA
	Minimizing the Maximum Utilization of Resources
	Minimizing Energy Consumption

	EX3: Evaluation of Practicability on Azure Trace
	EX4: Comparison with the State-of-the-art
	Summary of Experiments

	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References

