
J. Parallel Distrib. Comput. 72 (2012) 1318–1331
Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Failure-aware resource provisioning for hybrid Cloud infrastructure
Bahman Javadi a,∗, Jemal Abawajy b, Rajkumar Buyya c

a School of Computing, Engineering and Mathematics, University of Western Sydney, Australia
b School of Information Technology, Deakin University, Geelong, Australia
c Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Department of Computing and Information Systems, University of Melbourne, Australia

a r t i c l e i n f o

Article history:
Received 27 September 2011
Received in revised form
18 June 2012
Accepted 25 June 2012
Available online 3 July 2012

Keywords:
Hybrid Cloud computing
Quality of service
Deadline
Workload model
Resource provisioning
Resource failures

a b s t r a c t

Hybrid Cloud computing is receiving increasing attention in recent days. In order to realize the full
potential of the hybrid Cloud platform, an architectural framework for efficiently coupling public and
private Clouds is necessary. As resource failures due to the increasing functionality and complexity of
hybrid Cloud computing are inevitable, a failure-aware resource provisioning algorithm that is capable of
attending to the end-users quality of service (QoS) requirements is paramount. In this paper, we propose
a scalable hybrid Cloud infrastructure aswell as resource provisioning policies to assure QoS targets of the
users. The proposed policies take into account the workloadmodel and the failure correlations to redirect
users’ requests to the appropriate Cloud providers. Using real failure traces and a workload model, we
evaluate the proposed resource provisioning policies to demonstrate their performance, cost as well as
performance–cost efficiency. Simulation results reveal that in a realisticworking conditionwhile adopting
user estimates for the requests in the provisioning policies, we are able to improve the users’ QoS about
32% in terms of deadline violation rate and 57% in terms of slowdown with a limited cost on a public
Cloud.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Cloud computing is a new computing paradigm that delivers
IT resources (computational power, storage, hardware platforms,
and applications) to businesses and users as subscription-based
virtual and dynamically scalable services in a pay-as-you-go
model. Utilization of Cloud platforms and services by the scientific
and business communities is increasing rapidly and existing
evidences demonstrate performance and monetary cost–benefits
for both scientific and business communities [25,8,39,7]. In
addition to providing massive scalability, another advantage of
Cloud computing is that the complexity of managing an IT
infrastructure is completely hidden from its users.

Generally, Cloud computing is classified into private Clouds,
public Clouds, and hybrid Clouds. Public Clouds provide shared
services through large-scale data centers that host a very large
number of servers and storage systems. The purpose of a public
Cloud is to sell IT capacity based on open market offerings.
Anyone can deploy applications from anywhere on the public
Cloud and pay only for the services used. Amazon’s EC2 [2] and
GoGrid [17] are examples of public Clouds. In contrast, the purpose

∗ Corresponding author.
E-mail addresses: b.javadi@uws.edu.au, bjavadi@gmail.com,

bahmanj@unimelb.edu.au (B. Javadi).

0743-7315/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2012.06.012
of private Clouds is to provide local users with a flexible and
agile private infrastructure to run workloads within their own
administrative domain. In other words, private Clouds are small-
scale systems compared to public Clouds and usually managed by
a single organization. Examples of private Clouds include NASA’s
Nebula [32] and GoFront’s Cloud [50].

A hybrid Cloud [44] is the integration and utilization of
services from both public and private Clouds. The hybrid Cloud
platform will help scientists and businesses to leverage the
scalability and cost effectiveness of the public Cloud by paying
only for IT resources consumed (server, connectivity, storage)
while delivering the levels of performance and control available in
private Cloud environments without changing their underlying IT
setup. As a result, hybrid Cloud computing has receiving increasing
attention recently. However, a mechanism for integrating private
and public Clouds is one of the major issues that needs to be
addressed for realizing hybrid Cloud computing infrastructure.
Also, due to the increased functionality and complexity of the
hybrid Cloud systems, resource failures are inevitable. Such failures
can result in frequent performance degradation, premature
termination of execution, data corruption and loss, violation of
Service Level Agreements (SLAs), and cause a devastating loss
of customers and revenue [14,36]. Therefore, a failure-aware
resource provisioning approach is necessary for the uptake of
hybrid Cloud computing. Although security and privacy are also
major concerns in hybrid Clouds systems,wewill not address them

http://dx.doi.org/10.1016/j.jpdc.2012.06.012
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:b.javadi@uws.edu.au
mailto:bjavadi@gmail.com
mailto:bahmanj@unimelb.edu.au
http://dx.doi.org/10.1016/j.jpdc.2012.06.012

B. Javadi et al. / J. Parallel Distrib. Comput. 72 (2012) 1318–1331 1319
in this paper and the interested reader can refer to [30,1] for more
information.

In this paper,wepropose a flexible and scalable hybrid Cloud ar-
chitecture alongwith failure-aware resource provisioning policies.
Although there are approaches that address how an organization
using a private Cloud utilizes public Cloud resources to improve the
performance of its users’ requests [7,31], existing approaches do
not take into account the workload type and the resource failures
to make a decision about the redirection of requests. In contrast,
our proposed policies take into account the workload model and
the failure correlations to redirect resource requests to the appro-
priate Cloud providers. The proposed policies also take advantage
of the knowledge-free approach, so they do not need any statisti-
cal information about the failure model (e.g., failure distribution).
This approach is in contrast to knowledge-based techniques where
we need specific characteristics of the failure events in the form
of statistical models. For instance, the authors in [23] discovered
the statistical model of failures in a large-scale volunteer comput-
ing systems and adopted these models for stochastic scheduling of
Bag-of-Task jobs. Although knowledge-based techniques could be
more efficient, they are quite complex and hard to implement.

In summary, ourmain contributions in this paper are threefold:

• We provide a flexible and scalable hybrid Cloud architecture to
solve the problem of resource provisioning for users’ requests.

• In the hybrid Cloud architecture, we propose various provision-
ing policies based on the workload model and failure corre-
lations to fulfill a common QoS requirement of users, request
deadline.

• Weevaluate the proposed policies under realistic workload and
failure traces and consider different performance metrics such
as deadline violation rate, job slowdown, and performance–cost
efficiency.

The rest of the paper is organized as follows. In Section 2,
the background and problem statement are presented. We de-
scribe related work in Section 3. In Section 4, we present the sys-
tem architecture and its implementation. We then present the
proposed resource provisioning policies in Section 5. We discuss
the performance evaluation of the proposed policies in Section 6.
Finally,we summarize our findings andpresent future directions in
Section 7.

2. Background

In this section, we will present the problem statement, the
workload and failures models considered in this paper.1

2.1. System model

In this paper, we focus on Infrastructure-as-a-Service (IaaS)
Clouds, which provide raw computing and storage in the form of
Virtual Machines (VMs) and can be customized and configured
based on application demands.

Let Npub and Nprv denote the number of resources in public
Cloud (Cpub) and private Cloud (Cprv), respectively. The hybrid
Cloud (H) of interest can be expressed as follows:

H : Cpub


Cprv

NH = Npub + Nprv. (1)

Since we focus on resource provisioning in the presence of
failures,we assume the private Cloud resource to be homogeneous.
We also assume that some public Cloud resources have a similar

1 System and hybrid Cloud are used interchangeably in this paper.
capacity in terms of memory size and CPU speed as the private
Cloud resources. As public Clouds have a diversity of resource types
(e.g., 12 instance types in Amazon’s EC2 [2]), this assumption is
easy to hold. Although we are able to utilize more resources from
the public Cloud, for this research we consider using the same
amount of resource from both providers. In case of scaling of a job
on more resources, we can estimate the duration of the given job
on the public Cloud resources using a speedup model proposed by
Downey [10]. We leave this extension for future work.

2.2. System workload

In this paper, we consider a broad range of high-performance
applications including many different jobs requiring large number
of resources over short periods of time. These jobs vary in
terms of nature (data or compute-intensive), size (small to
large), and communication pattern. Computational Fluid Dynamic
(CFD) applications are examples of such applications. Each job
could include several tasks and they might be sensitive to
communication networks in terms of delay and bandwidth. As this
type of jobs may not benefit heavily from using resources from
multiple providers in virtualized environments [47], we assume
that the jobs are tightly-coupled and will be allocated resources
from a single provider.

Users submit their requests for Cloud resources to the private
Cloud through a gateway (i.e., broker) and the gateway makes the
decision as to which Cloud to service the requests. In this paper, a
request corresponds to a job. At the time of submitting request for
Cloud resources, the user also provides the following information:

• Type of required virtual machines
• Number of virtual machines (S)
• Estimated duration of the request (R)
• Deadline of the request (D).

The type of required VM can be chosen from an existing list
which can be deployed in both private and public Clouds. To be
more precise, we can define the system workload as the set of M
requests each of them includes several tasks:

Workload = {J1, J2, . . . , JM} where Ji = {τ1, τ2, . . . , τSi}. (2)

For the sake of simplicity, we refer to Ji as request i. So, request i
has Si tasks (τi)whereDi is specified based on thedesireduser’s QoS
(i.e., deadline to return the results).2 For each accepted request, the
gateway must provide Si virtual machines for the duration of Ri
time unit such that the results must be ready before deadline Di
as expressed in the following equation:

sti + Ti ≤ Di (3)

where sti and Ti are the submission time and execution time of
request i. Note that Ri is the estimated duration of the requestwhile
Ti is the actual request duration. Therefore, user requests can be
thought of as a rectangle whose length is the request duration (Ti)
and the width to be the number of required VMs (Si) as is depicted
in Fig. 1. This can be helpful to understand how the requests get
served in the available resources.

2.3. Failure model

We define a failure as an event in which the system fails to
operate according to its specifications. A system failure occurs
when the system deviates from fulfilling its normal system

2 For instance, a given request x in cluster fs1 in DAS-2 systems [26] requires 4
VMs for one hour (Sx = 4, Rx = 1 h).

1320 B. Javadi et al. / J. Parallel Distrib. Comput. 72 (2012) 1318–1331
Fig. 1. Serving a request in the presence of resource failures.

function, the latter being what the system is aimed at. An error is
that part of the system state which is liable to lead to subsequent
failure: an error affecting the service is an indication that a failure
occurs or has occurred. The adjudged or hypothesized cause of an
error is a fault. In this paper, we consider resource failures that
refer to any anomaly caused by hardware or software faults that
make unavailability in service. We term the continuous period of
a service outage due to a failure as an unavailability interval. A
continuous period of availability is called an availability interval.

The public Cloud providers adopt carefully engineeredmodules
that include redundant components to cope with resource
failures [49,19]. We assume that this design style is too expensive
to consider for private Clouds which make them less reliable as
compared to the public Clouds. Thus, we concentrate on resource
failures in the private Cloud.

Suppose we have some failure events (Fi) in compute nodes
while a request is getting served. In the presence of a failure, hosted
VMs on the compute node stop working. Let Ts(.) and Te(.) be the
functions that return the start and end time of a failure event.
Te(.) is the time when a resource recovers form a failure event
and starts its normal operation again. So, the unavailability interval
(i.e., recovery time) of a given VM in the presence of failure Fi is
Te(Fi)− Ts(Fi). As a given request i needs all VMs to be available for
the whole required duration, any failure event in any of Si virtual
machines would stop the execution of the whole request i. The
request can be started again, if and only if all VMs become available
again. For instance, in Fig. 1, the given request can be started at
the end of failure event F1 or F2, but cannot be resumed at the end
of failure event F3 and have to wait until the end of event F5. We
analyze the effect of failure events on the requests in Section 4.3.

Furthermore, it has been shown that in distributed systems
there are spatial and temporal correlations in failure events as
well as dependency of workload type and intensity on the failure
rate [16,15,52]. Spatial correlation means multiple failures occur
on different nodes within a short time interval, while temporal
correlation in failures refers to the skewness of the failure
distribution over time. To be more precise about the temporal
correlation of failures, we can define the time distance between
two failure events as Lij = ∥Fi−Fj∥ = |Ts(Fi)−Ts(Fj)|. To determine
the temporal failure correlation, a spherical covariance model is
proposed in [15] as follows:

Ct(L) = 1 − α
L
θ

+ β


L
θ

3

(4)

where θ is a timescale to quantify the temporal relation of two
failure events, and α and β are positive constants with α = β + 1.
In this analysis, if L > θ there is no temporal correlation (i.e.,
Ct(L) = 0). Moreover, we can consider the failure events as a time
series and use the Autocorrelation function (ACF) to determine
the temporal correlation. In this case, temporal correlation means
failure events exhibit considerable autocorrelation at small time
lags, so the failure rate changes over time [52].

In addition to temporal failure correlation, the occurrence of
a failure in a component can trigger a sequence of failures in
other components of the system within a short period [16]. Let us
consider A as the set of failure events according to increasing the
start time of events as follows:

A = {Fi | Ts(Fi) < Ts(Fi+1), i > 0}. (5)

So, we can define the space-correlated failures as follows:

Ec = {Fi | Ts(Fi) ≤ Ts(Fj) + △, Fi, Fj ∈ A} (6)

where △ is a time window and we can quantify the space-
correlated failures by changing this parameter.3

These failure characteristics are essentially prominent for our
case where we are dealing with workload of parallel requests and
any failure event could violate the users’ QoS. To deal with these
failure properties, in Section 5 we propose different strategies
which are based on the workload model for the general failure
events.

2.4. Problem statement

The resource provisioning problem can be formulated as
follows: Given a set of requests (e.g., parallel jobs) and a hybrid
Cloud system with a failure-prone private Cloud, the problem is
how to decide if a request should be executed in a public Cloud
or in a private Cloud such that the end-user QoS requirements are
satisfied.

3. Related work

The related work can be classified in two groups: load sharing
in the distributed systems and solutions utilizing Cloud computing
resources to extend the capacity of existing infrastructure.We also
present a brief overview on QoS-based scheduling algorithms to
complete this section.

Iosup et al. [21] proposed a matchmaking mechanism for en-
abling resource sharing across computational Grids. In the pro-
posed mechanism, whenever the current system load exceeds the
delegation threshold, the delegation algorithm will be run to bor-
row a resource from a remote site to execute the request. They
showed that by using this delegation mechanism, the number of
finished jobs will be considerably increased. In contrast, we utilize
the workload model in provisioning policies to borrow resources
from a public Cloud provider to improve the users’ QoS of an orga-
nization in the presence of resource failures.

VioCluster [43] is a system in which a broker is responsible for
dynamically managing a virtual domain by borrowing and lending
machines between clusters. The authors proposed a heuristic
brokering technique based on the information provided by PBS
scheduler. Given the current load and available machines in a
cluster, they calculate the number of machines needed to run the
input jobs. They did not consider the workload characteristics and
resource failures in their proposed policy. Moreover, our proposed
policies do not rely on any information from the local schedulers.

Rubio-Montero et al. [42] introduced GridWay architecture to
deploy virtual machines on a Globus Grid. They also proposed
the GridGateWay [20] to enable Grid interoperability of Globus
Grids. They provided a basic brokering strategy based on the

3 It has been shown that value of △ is between 100 and 250 s for several parallel
and distributed systems [16].

B. Javadi et al. / J. Parallel Distrib. Comput. 72 (2012) 1318–1331 1321
load of the local resources. In contrast, we develop the InterGrid
environment that is based on virtual machine technology and can
be connected to different types of distributed systems through
Virtual Machine Manager (VMM). Moreover, we consider a new
type of platform which is commonly called hybrid Cloud and
propose some provisioning policies, which are part of the InterGrid
Gateway (IGG), to utilize the public Cloud resources.

The applicability of public Cloud services for scientific comput-
ing has been demonstrated in existing work. Kondo et al. [25], pro-
vided a cost–benefit analysis between desktop grids and Amazon’s
elastic model. They tried to answer several questions pertaining
to these two platforms. One of the issues they addressed is the
cost–benefit of combining desktop grids with Cloud platform to
solve large scale computationally intensive applications. They con-
cluded that hosting a desktop grid on a Cloud would be cheaper
than running on stand alone desktop grids if bandwidth and stor-
age requirements are less than 100 Mbps and 10 TB, respectively.
In contrast to this work, we study the cost–benefit analysis of a
private Cloud augmented with public Cloud and also propose dif-
ferent provisioning policies for scheduling requests between these
two platforms under resource failures.

In [29], the authors proposed a model that elastically extends
the physical site cluster with Cloud resources to adapt to the
dynamic demands of the application. The central component
of this model is an elastic site manager that handles resource
provisioning. The authors provided extensive implementation, but
evaluate their system under non-realistic workloads. In this paper,
we take into account the workload model and failure correlation
to borrow the public Cloud resources. Moreover, we evaluate the
performance of the systemunder the realistic workload and failure
traces.

Dias de Assunção et al. [7] proposed scheduling strategies to
integrate resources fromapublic Cloudprovider and a local cluster.
In their work, the requests are first instantiated on a cluster and
in the event more resources are needed to serve user requests,
IaaS Cloud provider virtual machines are added to the cluster. This
is done to reduce users’ response time. Their strategies, however,
do not take into consideration the workload characteristics when
making decisions on the redirection of requests between local
cluster and public Cloud. Furthermore, the authors do not consider
the tradeoff between cost and performance in case of resource
failures on the local cluster.

Recently, Moschakis and Karatza [33] have evaluated the
performance of applyingGang scheduling algorithmsonCloud. The
authors addressed tasks that require frequent communication for
which Gang scheduling algorithms are suitable. They compared
two gang scheduling policies, Adaptive First Come First Serve
(AFCFS) and Largest Job First Served (LJFS) on a Cloud computing
environment. Their study is restricted to a single public Cloud
which consists of a cluster of VMs on which parallel jobs are
dispatched. In contrast, we develop our scheduling strategies on
a hybrid Cloud computing environment.

There are several research works that investigated the QoS-
based scheduling in the parallel and distributed systems. QoPS [22]
is a scheduler that provides completion time guarantee for
parallel jobs through job reservation to meet the deadlines. He
et al. [18] used the Genetic algorithm for scheduling of parallel
jobs with QoS constraints (e.g., deadline). In addition, admission
control policies have been applied to provide QoS guarantees
to parallel applications in resource sharing environments [51].
On the contrary, we utilize the selective and aggressive (EASY)
backfilling with checkpointing as the fault-tolerant scheduling
algorithms, due to their sub-optimal performance and popularity
in the production systems [45,48,46].
Fig. 2. The hybrid Cloud architecture.

4. The hybrid Cloud system

In this section, we present a flexible and scalable hybrid Cloud
architecture which is designed and implemented by the Cloudbus
research group4 In the following, an overview of the hybrid Cloud
architecture of interest and its implementation is presented.

4.1. System architecture

Fig. 2 shows the system architecture used in this paper. We
use the concepts developed for interconnecting Grids [6] to
establish a hybrid Cloud computing infrastructure that enables an
organization which wants to supply its users’ requests with local
infrastructure (i.e., private Cloud) as well as computing capacity
from a public Cloud provider. The system has several components
that include InterGrid Gateways (IGGs), the Virtual Infrastructure
Engine (VIE) and Distributed Virtual Environment (DVE) manager
for creating a virtual environment to help users deploy their
applications [9].

Peering arrangements between the public and private Clouds
is established through an IGG. An IGG is aware of the peering
terms between resource providers and selects a suitable one that
can provide the required resources for an incoming request. The
provisioning policies are also part of the IGG which include the
scheduling algorithms of the private and the public Cloud as well
as brokering strategies to share the incoming workload with the
public Cloud provider.

The Virtual Infrastructure Engine (VIE) is the resource manager
for the private Cloud and can start, pause, resume, and stop VMs
on the physical resources. A three-step scenario in which an IGG
allocates resources from a private Cloud in an organization to
deploy applications, is indicated in Fig. 2. In some circumstances,
this IGG interacts with another IGG that can provision resources
from a public Cloud to fulfill the users’ requirements (see Fig. 3).
Since we have a system that creates a virtual environment to help
users deploy their applications, a Distributed Virtual Environment
(DVE) manager has the responsibility of allocating and managing
resources on behalf of applications.

As many organizations intend to provide the best possible
services to their customers, they usually instrument their system’s
middleware (e.g., VIE) to monitor and measure the system
workload. This information in short-term can be used by system
administrators to overcome the possible bottlenecks in the system.
Furthermore, characterization of the system workload based on
a long-term measurement can lead us to improve the system

4 http://www.Cloudbus.org/.

http://www.Cloudbus.org/

1322 B. Javadi et al. / J. Parallel Distrib. Comput. 72 (2012) 1318–1331
Fig. 3. Resource provisioning through IGG.
Fig. 4. IGG components.

performance [11]. In this study, we assume that the organization
has such a workload characterization, so we can adopt it in
the resource provisioning policies. However, in Section 5 we
also investigate a case where we do not have a comprehensive
workload model.

4.2. Systems implementation

The IGG has been implemented in Java and a layered view of
its components is depicted in Fig. 4. The core component of the
IGG is the Scheduler, which implements provisioning policies and
peering with other IGGs. The scheduler maintains the resource
availability information as well as creating, starting and stopping
the VMs through the Virtual Machine Manager (VMM). VMM
implementation is generic, so different VIEs can be connected
and make a flexible architecture. Currently, VIE can connect to
OpenNebula [13], Eucalyptus [35], or Aneka [50] to manage the
local resources as a private Cloud. In addition, two interfaces
to connect to a Grid middleware (i.e., Grid’5000) and an IaaS
provider (i.e., Amazon’s EC2 [2]) have been developed. Moreover,
an emulated VIE for testing and debugging has been implemented
for VMM.

The persistence database is used for storing information of
the gateway such as VM templates and peering arrangements. In
this work, we assume the case where the public Cloud provider
has a matching VM template for each available template at the
database. The Management and Monitoring enables the gateway
to manage and monitor resources such as Java applications.
The Communication Module provides an asynchronous message-
passingmechanism, and receivedmessages are handled in parallel
by a thread-pool. That makes gateway loosely coupled and allows
for more failure-tolerant communication protocols.

Fig. 3 shows the main interactions in the system when the user
sends a request to the DVE manager. The local IGG tries to obtain
resources from the underlying VIEs. This is the pointwhere the IGG
mustmake a decision about selecting a resource provider to supply
the user’s request, so the resource provisioning policies come into
the picture. As it can be seen in Fig. 3, the request is redirected to
the remote IGG to get the resource from the public Cloud provider
(i.e., Amazon’s EC2). Once the IGG has allocated the requested VMs,
itmakes them available and the DVEmanagerwill be able to access
the VMs and finally deploy the user’s application.

4.3. Fault-tolerant scheduling algorithms

As depicted in Fig. 4, we need an algorithm for scheduling the
requests for the private and public Clouds. For this purpose, we
utilize a well-known scheduling algorithm for parallel requests,
which is called selective backfilling [45]. Backfilling is a dynamic
mechanism to identify the best place to fit the requests in the
scheduler queue. In other words, backfilling works by identifying
holes in the processor-time space and moving forward smaller
requests that fit those holes. Selective backfilling grants a
reservation to a request when its expected slowdown exceeds a
threshold. That means, the request has waited long enough in the
queue. The expected slowdown of a given request is also called the
eXpansion Factor (XFactor) and is given by the following equation:

XFactor =
Wi + Ti

Ti
(7)

where Wi and Ti is the waiting time and the run time of request
i, respectively. We use the Selective-Differential-Adaptive scheme
proposed in [45], which lets the XFactor threshold be the average
slowdown of previously completed requests. It has been shown
that selective backfilling outperforms other types of backfilling
algorithms [45].

We used another scheduling algorithm, aggressive backfill-
ing [27], in our experiments as the base algorithm. In the aggressive
backfilling (EASY), only the request at the head of the queue, called

B. Javadi et al. / J. Parallel Distrib. Comput. 72 (2012) 1318–1331 1323
the pivot, is granted a reservation. Other requests are allowed to
move ahead in the queue as long as they do not delay the pivot. The
reasonwe choose EASY backfilling as the base policy is its popular-
ity in the production systems [44,48].

After submitting requests to the scheduler, eachVMruns on one
available node. In the case of resource failure during the execution,
we assume checkpointing so that the request is started fromwhere
it left off when the VM becomes available again. To this end, we
argue that having an optimal fault-tolerant scheduling in a failure-
prone private Cloud is not good enough to meet the users’ QoS and
utilizing public Cloud resources is required.

In case of k failure events, let Es and Eo be the set of singular
and overlapped failure events respectively ordered in ascending
manner by the start time. These sets can be defined as follows:

Es = {Fi | Te(Fi) < Ts(Fj), 1 ≤ i < j ≤ k} (8)

Eo = {Xi | Xi = (F1, . . . , Fn), Ts(Fi+1) ≤ Te(Fi), 1 ≤ i ≤ n − 1}. (9)

The union of these two sets is a series of failure eventswhich causes
the service unavailability for a given request (i.e., E = Es ∪ Eo).
It is worth noting that since failures are numbered based on their
occurrence, n-tuples in Eo are time ordered. For each member of
E, the service unavailability time can be obtained by the following
equations:

ds =


∀Fi∈Es

[Te(Fi) − Ts(Fi)] (10)

do =


∀Xi∈Eo

[max{Te(Xi)} − min{Ts(Xi)}] (11)

where ds applies for singular failures and do applies for overlapped
failures. As mentioned earlier, all VMs must be available for the
whole requested duration, so any failure event in any of Si virtual
machines would stop the execution of the whole request i.

For instance, E = {F1, F2, (F3, F4, F5)} is the failure set for
Fig. 1. So, ds = [(Te(F1) − Ts(F1)) + (Te(F2) − Ts(F2))] and do =

[Te(F5) − Ts(F3)] would be the service unavailability time for
singular failures and overlapped failures, respectively.

The above analyses reveal that even in the presence of an
optimal fault-tolerant mechanism (e.g., perfect checkpointing) in
the private Cloud, a given request is faced with ds + do time unit
of delay which may consequently breach the request’s deadline. In
other words, if the request only has been stalled for the duration
of singular and overlapped failures (i.e., ds + do), without need to
restart from the beginning or the last checkpoint, still we suffer
a long delay due to service unavailability. This is the justification
of utilizing highly reliable services from a public IaaS Cloud
provider.

To complete these analyses, we consider a case of independent
tasks in the requests, so VMs can fail/recover independently. In this
scenario, we only take into accounts the singular failures. In other
words, a single failure just stops a single task and not the whole
request. Therefore, the service unavailability time can be obtained
by Eq. (10) for all failures events (i.e., ∀Fi). Comparing to the
previous scenario, a request with independent tasks encounters
less delay when getting service and consequently less likely to
breach the deadline. In this paper, we focus on the former scenario
and investigate requests with tightly-coupled tasks. We leave the
details of mixed workloads as the future work.

We modified the backfilling scheduling algorithms to support
the perfect checkpointing mechanism and provide a fault tolerant
environment for serving requests in the private Cloud. The
checkpointing issues are not in the scope of this research and
interested readers can refer to [3] to see how checkpoint overhead
and period can be computed based on the failure model.
5. The proposed resource provisioning policies

In this section, we propose a set of provisioning policies that
include the scheduling algorithms of private and public Clouds as
well as brokering strategies to share the incoming workload with
the public Cloud provider. The scheduling algorithms are discussed
in Section 4.3, so in the following we present some brokering
strategies to complete provisioning policies.

The proposed strategies are based on the workload model as
well as the failure correlations and aim to fulfill the deadline of
users’ requests. They also take advantage of the knowledge-free
approach, so they do not need any statistical information about
the failure model (e.g., failure distribution) which subsequently
makes the implementation of these policies easier in the IGG (see
Section 4.2).

5.1. Size-based brokering strategy

There are several studies that found the spatial correlation
in failure events in distributed systems [16,15]. That means, one
failure event could trigger multiple failures on different nodes
within a short time interval. In otherwords, resource failures occur
often in bursts. For instance, a single power supply fault in a rack
server can creates a series of failure events in the nodes within
the rack server. This property is very detrimental for our case
where each request needs all VMs to be available for the whole
required duration. Moreover, as it is mentioned in Eqs. (10) and
(11), the service unavailability is dependent on the spatial behavior
of the failures in the system (i.e., number of elements in Fs and Fo).
Therefore, the more requested VMs, the more likely the request to
be affected by nearly simultaneous failures.

To cope with this situation, we propose a redirecting strategy
that sends wider requests (i.e., larger Si) to the highly reliable
public Cloud resources, while serving the narrow requests in
the failure-prone private Cloud. This strategy needs a value to
distinguish between wide and narrow requests and we specify it
as the mean number of VMs per request.

To find the mean number of VMs per request, we need the
probability of a different number of VMs in the incoming requests.
Without loss of generality, we assume that Pone and Ppow2 are
probabilities of request with one VM and the power of two VMs
in the workload, respectively. So, the mean number of virtual
machines required by requests is given as follows:

S = Pone + 2⌈r⌉(Ppow2) + 2r 
1 − (Pone + Ppow2)


(12)

where r is the mean value of requests in form of power of
two. Based on the parallel workload models, the size of each
request follows a two-stage uniform distribution with parameters
(l,m, h, q) [26,28]. This distribution consists of two uniform
distributionswhere the first distributionwould be in the interval of
[l,m] with probability of q and the second one with the probability
of 1−qwould be in the interval of [m, h]. So,m is the middle point
of possible values between l and h. Intuitively, this means that the
size of requests in the real parallelworkloads tend to be in a specific
range. For instance, in a systemwith 64 nodes, the parallel requests
would be in the range of [21 . . . 26

]. In this case, l = 1 and h = 6
where m and q are determined based on the tendency of parallel
requests. For a two-stage uniform distribution, the mean value is
(l+m)/2 with probability q and (m+ h)/2 with probability 1− q.
Hence, r in Eq. (12) can be found as themean value of the two-stage
uniform distribution as follows:

r =
ql + m + (1 − q)h

2
. (13)

The redirection strategy submits requests to the public Cloud
provider if the number of requested VMs is greater than S,
otherwise the request is served by the private Cloud resources.

1324 B. Javadi et al. / J. Parallel Distrib. Comput. 72 (2012) 1318–1331
Fig. 5. Mass-count of the request duration in a typical parallel workload (cluster
fs3 in DAS-2 system).

5.2. Time-based brokering strategy

In addition to spatial correlation, failure events are correlated
in the time domain which means the skewness of the failure
distribution over time [15]. So, the failure rate is time-dependent
and some periodic failure patterns can be observed in the different
time-scale [52]. The larger requests in terms of duration mainly
have been affected by this temporal correlation as these requests
stay longer in the system and are likely to see more failures. So,
there is a strong relation between the service unavailability and
the (estimated) request duration.

On the other hand, the requests duration (job runtime) in real
distributed systems are long-tailed [11,37]. This means that a very
small fraction of all requests are responsible for the main part
of the load. To be more precise, Fig. 5 shows the mass-count
disparity of the request duration in a typical parallel workload (i.e.,
cluster fs3 in multi-cluster DAS-2 system [26]). We can observe
that the shortest 80% of the requests contribute only the 20% of the
total load. The remaining longest 20% of requests contribute about
80% of the total load. This reveals the long-tailed distribution for
request duration in such systems [11].

In the time-based brokering strategy, we propose to redirect
longer requests to the public Cloud to handle the above-mentioned
issues. For this purpose, we can adopt a single or combination
of global statistics of the request duration (e.g., mean, median,
or variance) on the basis of the desired level of QoS and system
performance. In this paper, we use the mean request duration
as the decision point for the gateway to redirect the incoming
requests to the Cloud providers.

In this strategy, if the request duration is less than or equal
to the mean request duration, the request will be redirected
to the private Cloud. By this technique, the majority of short
requests could meet their deadlines as they are less likely to
encounter many failures. Moreover, longer requests will be served
by the public Cloud resources and can meet their deadlines
under nearly unlimited resource availability in the public Cloud
provider. However, some short requests which are affected by the
long failures in the private Cloud, or the requests with a long
waiting time in the public Cloud provider, may not meet their
deadlines.

Global statistics of the request duration can be obtained from
the fitted distribution provided by the workload model. For
instance, the request duration of the DAS-2 multi-cluster system
is the Lognormal distribution with parametersµ and σ [26], so the
mean value is given as follows:

T = eµ+
σ2
2 . (14)
Fig. 6. Cumulative distribution function of the estimated and actual request
duration in a typical parallel workload (cluster fs4 in DAS-2 system).

Another advantage of this strategy is better utilization of the
allocated public Cloud resources. For example in Amazon’s EC2, if
a request uses a VM for less than one hour, the cost of one hour
must be paid. So, when we redirect longer requests to the public
Cloud, themoney paidwill beworth it for the service received. This
advantage is explored in detail in Section 6.4.

5.3. Area-based brokering strategy

The two aforementioned strategies are based on only one aspect
of the request i: the number of VMs (Si) or duration (Ti). The third
proposed strategy is aimed to make a compromise between the
size-based and the time-based strategies. Hence, we utilize the
area of a request which is the area of the rectangle with length
Ti and width Si as the decision point for the gateway (see Fig. 1).
We are able to calculate the mean request area by multiplying the
mean number of VMs by the mean request duration, as follows:

A = T · S. (15)

The redirection strategy submits requests to the public Cloud
provider if the area of the request is greater than A, otherwise
it is served in the private Cloud. This strategy sends long and
wide requests to the public Cloud provider, so it would be more
conservative than the size-based strategy and less conservative
than the time-based strategy.

5.4. Estimated time-based brokering strategy

All three proposed strategies are based on the workload model,
which must be known beforehand. However, in the absence of
such a workload model we should be able to adopt an alternative
strategy for a typical hybrid Cloud system. As mentioned in
Section 2.2, users provide an estimated duration at the submission
time of the request i (i.e., Ri). There are several studies about
utilizing user estimates in the scheduling of parallel workloads
[34,48,46]. It has been shown that users do not provide an accurate
estimate for the duration of requests where they are usuallymodal
(i.e., users tend to provide round values). However, it has been
shown that there is a strong correlation between the estimated
duration and actual duration of a request [26]. Thatmeans requests
with a larger estimated duration generally run longer. Therefore,
we can leverage this correlation to determine longer requests and
redirect them to the public Cloud.

For instance, Fig. 6 shows the cumulative distribution function
(CDF) of the estimated and actual duration of requests in a typical
parallel workload (i.e., cluster fs4 in DAS-2 multi-cluster system).
We can easily observe the positive correlation in this figure.

B. Javadi et al. / J. Parallel Distrib. Comput. 72 (2012) 1318–1331 1325
Besides, since the CDF of the estimated request duration is below
the CDF of the actual request duration, we can conclude that
users usually overestimate the request duration. This fact has been
observed in distributed-memory parallel systems as well [34].

The modality of the estimated request durations can help us to
find a decision point for the brokering strategy. As it is depicted
in Fig. 6, requests with estimation bigger than 2 × 105 s are good
candidates to redirect to the public Cloud as they are the longest
30% of the requests. In Section 6.2, we illustrate the simulation
results of this strategy with a real workload trace.

6. Performance evaluation

In order to evaluate the performance of the proposed policies,
we implemented a discrete event simulator using CloudSim [4].
We used simulation as experiments are reproducible and control-
lable.

The performance metrics that are considered in all simulation
scenarios are the deadline violation rate and the bounded
slowdown [12]. The violation rate is the fraction of requests that
do not meet their deadlines. The bounded slowdown is response
time normalized by running time and can be defined as follows:

Slowdown =
1
M

M
i=1

Wi + max(Ti, bound)
max(Ti, bound)

(16)

where Wi and Ti is the waiting time and the run time of request i,
respectively. Also, bound is set to 10 s to eliminate the effect of very
short requests [12].

To show the efficiency of public Cloud resource provisioning
to reduce the violation rate, we define the Performance–Cost
Efficiency (PCE) as follows:

PCE =
Vbase − Vpo

CloudCostpo
(17)

where Vbase and Vpo are the number of deadline violations using a
base policy and po policy, respectively. The CloudCostpo is the price
to be paid to utilize the public Cloud resources for the po policy.
We consider, the base policy as the EASY backfilling in the Earliest
Deadline First (EDF) manner on the private Cloud without using
the public Cloud resources. It should be noted that a bigger value
of PCE means a higher efficiency in terms of spending money to
decrease the violation rate.

To compute the cost of using resources from a public Cloud
provider, we use the amounts charged by Amazon to run basic
virtual machines and network usage at EC2. The cost of using EC2
for policy po can be calculated as follows:

CloudCostpo =

Upo + Mpo · Us


Cn +


Mpo · Bin


Cx (18)

where Upo is the public Cloud usage per hour for the policy po. That
means, if a request uses a VM for 40 min for example, the cost
of one hour is considered. Mpo is the fraction of requests which
are redirected to the public Cloud. Also, Us is the startup time for
initialization of operating system on a virtual machine which is set
to 80 s [38].We take into account this value as Amazon commences
charging users when the VM process starts. Bin is the amount of
data which transfers to Amazon’s EC2 for each request. The cost of
one specific instance on EC2 is determined as Cn and considered as
0.085 USD per virtual machine per hour for a small instance (in us-
east). The cost of data transfer to Amazon’s EC2 is also considered
as Cx which is 0.1 USD per GB.5 It should be noted that we consider
a casewhere requests’ output are very small and can be transferred
to the private Cloud for free [2].

5 All prices obtained at the time of writing this paper.
6.1. Experimental setup

For evaluation of the proposed policies under realistic and
various working conditions, we choose two different workloads.
First, we use two different real workload traces of DAS-2 multi-
cluster system (i.e., fs4 and fs1 cluster) obtained from Parallel
Workload Archive [41]. Second, we use the workload model of
the DAS-2 system [26], as a typical parallel workload to analyze
performance of the proposed policies while input workload
changes. The aim of the first experiment is to validate our policies
and show their ability to perform in a real hybrid Cloud system.
However, as we want to explore the system performance with
various workloads, we run extensive simulations in the second
experiment with some synthetic workload traces.

Table 1 illustrates the parameters for two different traces for
the first experiment. The parameters for the second experiments
are listed in Table 2. Based on the workload characterization,
the inter-arrival time, request size, and request duration follow
Weibull, two-stage Loguniform and Lognormal distributions,
respectively [26]. In the trace experiment, we only used the
workload distributions in the brokering strategies, while in the
second experiment, the syntheticworkload is also generated by the
corresponding distributions.

In order to generate different workloads for the second exper-
iment, we modified three parameters of the workload model, one
at a time (see Table 2). To change the inter-arrival time, we mod-
ified the second parameter of the Weibull distribution (the shape
parameter β). Also, to have requests with different duration, we
changed the first parameter of the Lognormal distribution between
4.0 and 5.0 which is mentioned in Table 2. Moreover, we vary the
middle point of the Loguniform distribution (i.e., m) to generate
the workload with different number of VMs per request where
m = h − ω and h = log2 Nprv, where Nprv is the number of re-
sources in the private Cloud. We modified the value of ω between
2.0 and 3.0, where the larger value ofω, the narrower the requests.
It should be noted that when we change one parameter in the
workload model, other parameters are fixed and set to be in the
middle of their interval. For instance, when we change the arrival
rate (β), we setω = 2.5 andµ = 4.5. These values have been cho-
sen in away that the generated synthetic workloads can reflect the
realistic parallel workloads [26].

For each simulation experiment, statistics were gathered for
a two-month period of the DAS-2 workloads. For the workload
traces, we choose eight months of the traces in four two-month
partitions. The first week of workloads during the warm-up phase
was ignored to avoid bias before the system reached steady-state.
For the second experiment, each data point is the average of
50 simulation rounds with the number of jobs varying between
3,000 and 25,000 (depends on the workload parameters). In
our experiments, the results of simulations are accurate with a
confidence level of 95%.

The number of resources in the private and the public Cloud
is equal to Nprv = Npub = 64 with a homogeneous computing
speed of 1000 MIPS.6 The time to transfer the application (e.g.,
configuration file or input file(s)) for the private Cloud is negligible
as the local infrastructures are interconnected by a high-speed
network, so Lprv = 0. However, to execute the application on the
public Cloud we must send the configuration file as well as input
file(s). So, we consider the network transfer time as Lpub = 64 s,
which is the time to transfer 80 MB of data7 on a 10Mbps network
connection.8 So, Bin is equal to 80 MB in Eq. (18).

6 This assumption is made just to focus on performance degradation due to
failures.
7 This is the maximum amount of data for a real scientific workflow

application [40].
8 The network latency is negligible as it is less than a second for public Cloud

environments [5].

1326 B. Javadi et al. / J. Parallel Distrib. Comput. 72 (2012) 1318–1331
Table 1
Input parameters for the workload traces.

Input parameters Distribution/value (fs4) Distribution/value (fs1)

Inter-arrival time Trace-based Trace-based
No. of VMs Loguniform (l = 0.8,m = 3.5, h, q = 0.9) Loguniform (l = 0.8,m = 3.0, h, q = 0.6)
Request duration Lognormal (µ = 5.3, σ = 2.5) Lognormal (α = 4.4, β = 1.7)
Pone 0.009 0.024
Ppow2 0.976 0.605
R 2 × 105 3 × 103
Table 2
Input parameters for the workload model.

Input parameters Distribution/value

Inter-arrival time Weibull (α = 23.375, 0.2 ≤ β ≤ 0.3)
No. of VMs Loguniform (l = 0.8,m, h, q = 0.9)
Request duration Lognormal (4.0 ≤ µ ≤ 5.0, σ = 2.0)
Pone 0.024
Ppow2 0.788

The failure trace for the experiments is obtained from the
Failure Trace Archive [24]. We analyzed 9 different failure traces
from the Failure Trace Archive to choose the suitable failure trace.
Grid’5000 traces have ‘‘medium’’ volatility, availability and scale
over the period of 18 months (see [24] for more details). So, we
use the failure trace of a cluster in the Grid’5000 with 64 nodes for
duration of 18 months, which includes on average 800 events per
node. The average availability and unavailability time in this trace
is 22.26 h and 10.22 h, respectively. Nevertheless, the proposed
strategies are based on the general characteristics of failure events
in distributed systems and can be utilized with any failure pattern.

To generate the deadline of requests, we utilize the same
technique described in [22], which provides a feasible schedule for
the jobs. To obtain the deadlines, we conduct the experiments by
scheduling requests on the private Cloud without failure events
using EASY backfilling. Then we used the following equations to
calculate the deadline di for request i:

Di =


sti + (f · tai) if [sti + (f · tai)] < cti
cti otherwise (19)

where sti is the request’s submission time, cti is its completion
time, tai is the request’s turn around time (i.e., tai = cti −

sti). We define f as a stringency factor that indicates how urgent
the deadlines are. If f = 1.0, then the request’s deadline is
the completion under the EASY backfilling scenario. We evaluate
the strategies with different stringency factors where f is 1.0,
1.3 and 1.7, termed tight, normal and relaxed deadline scenarios,
respectively. This assumption generates a realistic deadline for
each request and has been applied by similar studies such as [7].

6.2. Validation through trace-based simulations

In this section,wepresent the results of simulation experiments
where the input workload is a real trace. The violation rate, Cloud
cost per month, and slowdown for different brokering strategies
are reported in Tables 3 and 4 for fs4 and fs1 traces, respectively. In
these tables, Size, Time, Area, and EsTime refer to size-based, time-
based, area-based, and estimated time-based brokering strategies,
respectively. SB stands for Selective Backfilling. For the EsTime-SB
strategy, we adopt Ri > R to redirect requests to the public Cloud.
The last rowof each table, EASY, is the casewhenwedonot redirect
the requests to the public Cloud and the private Cloud serves all
incoming requests while using the EASY backfilling algorithm.

The results, at first, confirm the validity and functionality
of the proposed strategies under realistic working conditions.
As it is illustrated in Tables 3 and 4, our brokering strategies
are able to improve the slowdown in any circumstance where
the improvement on the violation rate is mainly for the tight
deadlines.Moreover, the proposed strategy based on the estimated
request duration (EsTime-SB) yields comparable performance to
other strategies in terms of the violation rate and slowdown. For
instance, using EsTime-SB strategy with fs4 trace, an organization
can improve its services to the users’ requests by about 32% in
terms of violation rate for the tight deadlines and 57% in terms of
slowdown by only paying 135 USD per month. This indicates that
we are able to use the user estimates for requests to improve the
system performance.

The results in these tables express that the performance of
the area-based strategy is between size-based and time-based
strategies while the size-based strategy outperforms others in
terms of violation rate as well as slowdown. However, the
difference between the performance of size-based and area-based
strategies is marginal for fs1 trace, while the size-based strategy is
much better than the area-based for fs4 trace. The reason for this
difference is the correlation between request duration and request
size in theseworkload traces,which can be positive or negative [26,
28]. The positive correlation means requests with longer duration
have a larger number of VMs.

To bemore precise, cumulative distribution functions of request
duration and request size for fs1 and fs4 traces are depicted in
Fig. 7. We observe that fs1 has a much wider request size with
respect to fs4, while fs4 has a marginally longer request duration
compared to fs1. Focusing on Fig. 7(a) and (b) reveal that fs4 has
a negative correlation between request duration and request size,
while this correlation is positive for fs1 trace. This observation
is quantitatively confirmed through Spearman’s rank correlation
coefficient [26]. In this circumstance, we find that the performance
of the size-based and area-based strategies gets closer when there
is a positive correlation between request duration and request size.
It should be noted thatwe conducted some experimentswith other
real traces and the same behavior has been observed.

As these trace-based experiments only reveal a few possible
points from the state space, so they are not sufficient to conclude
about the performance of our brokering strategies. In the following
section, we present the simulation results for the workload model
to analyze the performance of the provisioning policies under
various working conditions. It is worth noting that as we do not
have any model for the estimated duration of requests, we are not
able to explore the performance of EsTime-SB for the workload
model simulations.

6.3. Performance analysis through model-based simulations

The results of workloadmodel simulations for the violation rate
versus various workloads are depicted in Figs. 8–10 for different
provisioning policies and tight, normal and relaxed deadline
scenarios, respectively. As it can be seen in Fig. 8, the size-based
strategyhas the lowest violation ratewhile the other two strategies
have about the same violation rates for the tight deadlines. Based
on Figs. 9 and 10, by increasing the workload intensity (i.e., arrival
rate, duration or size9 of requests), we observe an increase in the
violation rate for all provisioning policies.

9 The larger value of ω, the narrower the requests.

B. Javadi et al. / J. Parallel Distrib. Comput. 72 (2012) 1318–1331 1327
Table 3
Results of simulation for fs4 trace.

Strategy Violation rate (%) Cloud cost/month (USD) Slowdown
Tight Normal Relaxed

Size-SB 22.52 0.19 0.0 471.65 315.65
Time-SB 39.18 0.29 0.0 220.08 1016.55
Area-SB 38.72 0.22 0.0 253.53 761.89
EsTime-SB 36.49 0.02 0.0 134.97 1051.25
EASY 53.99 0.94 0.1 0.0 2447.76
Table 4
Results of simulation for fs1 trace.

Strategy Violation rate (%) Cloud cost/month (USD) Slowdown
Tight Normal Relaxed

Size-SB 38.14 0.0 0.0 1794.23 797.91
Time-SB 43.14 0.0 0.0 649.85 904.09
Area-SB 41.09 0.0 0.0 901.20 812.71
ESTime-SB 41.58 0.0 0.0 861.17 919.32
EASY 59.60 1.67 0.52 0.0 4427.28
(a) CDFs of request duration. (b) CDFs of request size.

Fig. 7. Cumulative distribution functions of request duration and request size for considered workload traces.
(a) Request arrival rate. (b) Request duration. (c) Request size.

Fig. 8. Violation rate for all provisioning policies versus different workloads with tight deadlines (f = 1.0).
(a) Request arrival rate. (b) Request duration. (c) Request size.

Fig. 9. Violation rate for all provisioning policies versus different workloads with normal deadlines (f = 1.3).

1328 B. Javadi et al. / J. Parallel Distrib. Comput. 72 (2012) 1318–1331
(a) Request arrival rate. (b) Request duration. (c) Request size.

Fig. 10. Violation rate for all provisioning policies versus different workloads with relaxed deadlines (f = 1.7).
(a) Request arrival rate. (b) Request duration. (c) Request size.

Fig. 11. Slowdown for all provisioning policies versus different workloads.
However, the violation rate of size-based brokering strategy, in
contrast to others, has reverse relationwith the request size where
we observe an increase in the number of fulfilled deadlines by
reducing the size of requests. This behavior is due to increasing the
number of redirected requests to the failure-prone private Cloud
in the size-based brokering strategy. This fact is more pronounced
in Fig. 8(c).

Moreover, the size-based brokering strategy yields a very low
violation rate for normal and relaxed deadlines, as illustrated in
Figs. 9 and 10. The area-based strategy also shows comparable
performance to the size-based brokering where the time-based
strategy has the worst performance, especially when the workload
intensity increases.

Based on the results of trace-based simulations, we observe a
considerable improvement in terms of violation rate mainly in the
case of tight deadlines. However, model-based simulations with
various workloads elaborate more on results. Here, for the tight
deadlines, the violation rate is improved about 39.78%, 16.61%,
and 15.11% with respect to the single private Cloud (EASY) for
the size-based, time-based, and area-based strategies, respectively.
However, for the normal and relaxed deadline scenarios, the
improvement is much higher and it is more than 90% for all cases.
This is because of higher workload intensity in the model-based
simulation with respect to the workload traces used in Section 6.2.
Therefore, the proposed policies are able to improve the users’
QoS in all circumstances, especially when we have an intensive
workload with normal deadlines.

Fig. 11 expresses the slowdown of requests for all provisioning
policies versus different workloads with the same configuration
as previous experiments. It is worth noting that the slowdown is
independent from the requests’ deadlines.

As it is illustrated in Fig. 11(a), with increasing the request
arrival rate the slowdown will be increased where size-based and
area-based strategies have a more gradual slope than the time-
based strategy.

Moreover, the slowdown versus request duration, which is
plotted in Fig. 11(b), reveals that the slowdown is decreasing
gradually by increasing the request duration. Based on the results
in Fig. 11(c), slowdown diminishes by reducing the request size
(number of VMs per request) for the time-based and area-based
strategies. In contrast, slowdown gradually increases in the size-
based strategy due to more redirection of requests to the failure-
prone private Cloud. Nevertheless, the size-based strategy has the
best slowdown in all cases with respect to other strategies for
different workload types.

Based on these results, utilizing the proposed brokering strate-
gies can improve the slowdown of requests bymore than 95% com-
pared to the single failure-prone private Cloud aswe are able to use
highly reliable resources from the public Cloud platform.

As mentioned in Section 6.2, we have a positive or negative
correlation between request duration and request size. Although
theworkloadmodel does not take into account this correlation, we
synthetically generate this correlation by changing the parameters
of the workload model. For instance, for a given request duration,
we changed the request size from a large number of VMs to a
small number of VMs. The results of this correlation are more
pronounced in the third figure of each row (Figure (c)) from Figs. 8–
11. As it can be seen in these figures, positive correlationmakes the
performance of an area-based strategy get closer to the size-based
strategy.

Fig. 12 shows the amount of money spent on EC2 per month
to respond to the incoming requests for different workload types.
Similar to the slowdown, the cost on EC2 is not dependent on the
requests’ deadlines. As it can be observed in all workload types,
the size-based strategy utilizes more resources from the public
Cloud than other strategies and this is the reason for the lower
violation rate and slowdown which were described before in this
section. Moreover, the time-based strategy has the lowest Cloud
cost on EC2 while the area-based incurs the cost between size-
based and time-based strategies. Expectedly, the Cloud cost has
a direct relation to the workload intensity, especially with the
request arrival rate as depicted in Fig. 12(a).

The validity of the presented results in this section can be
confirmed by the trace simulation in Section 6.2 where we present
the performance metrics only for two workload traces. In general,
the size-based brokering strategy surpasses other strategies in

B. Javadi et al. / J. Parallel Distrib. Comput. 72 (2012) 1318–1331 1329
(a) Request arrival rate. (b) Request duration. (c) Request size.

Fig. 12. Cloud cost on EC2 per month for all provisioning policies versus different workloads.
(a) Request arrival rate. (b) Request duration. (c) Request size.

Fig. 13. Performance–cost efficiency for all provisioning policies versus different workloads with tight deadlines (f = 1.0).
(a) Request arrival rate. (b) Request duration. (c) Request size.

Fig. 14. Performance–cost efficiency for all provisioning policies versus different workloads with normal deadlines (f = 1.3).
terms of violation rate and slowdown for all deadline scenarios,
especially when there is a negative correlation between request
duration and request size. Moreover, the time-based strategy
incurs the lowest Cloud cost while the area-based and size-based
strategies are in the next ranks, respectively.

6.4. Discussions

Selecting a suitable strategy for an organization is strongly
dependent on many issues like desired level of QoS as well
as budget constraints. In this section, to compare the different
proposed policies in terms of cost and performance under different
working conditions, we applied the Performance–Cost Efficiency
(PCE)metric. For all provisioning policies, themeasurements using
the PCE metric for tight, normal, and relaxed deadlines are shown
in Figs. 13–15, respectively.

We can infer that the time-basedbrokering strategyhas the best
PCE among all proposed strategies, which means more efficiency
in terms of fulfilled deadlines with respect to the amount spent for
the public Cloud resources. This result confirms the better resource
utilization in the time-based strategy, which is mentioned at the
end of Section 5.2.

For the tight deadlines (Fig. 13), the size-based strategy has
better PCE with respect to the area-based brokering. However, for
other deadline scenarios (Figs. 14 and 15), area-based yields the
better PCE. This reveals that to select a proper brokering strategy,
the users’ requirements in terms of slowdown and QoS must be
taken into account carefully.

One possible question about selecting the best brokering
strategy for a hybrid Cloud is the effect of failure patterns on the
system performance. For instance, if we have a highly reliable or
highly volatile private Cloud, which strategy would be the best. As
mentioned earlier, the reported results are based on a systemwith
medium reliability. However, we are able to provide some advices
for other cases as well. In case of highly reliable private Cloud, we
may need to redirect a limited number of requests to the public
Cloud, so we can adopt time-based strategy which is a low-cost
brokering strategy with reasonable performance improvement. In
contrast, if an organization has a volatile private Cloud (e.g., an old
system), the size-based strategymight be a good candidate to fulfill

1330 B. Javadi et al. / J. Parallel Distrib. Comput. 72 (2012) 1318–1331
(a) Request arrival rate. (b) Request duration. (c) Request size.

Fig. 15. Performance–cost efficiency for all provisioning policies versus different workloads with relaxed deadlines (f = 1.7).
the users’ QoS while incurs reasonable monetary cost for utilizing
the public Cloud resources.

7. Conclusions

Weconsidered the problemof QoS-based resource provisioning
in a hybrid Cloud computing system where the private Cloud
is failure-prone. Our specific contributions in this work were as
follows:

• We developed a flexible and scalable hybrid Cloud architecture
to solve the problem of resource provisioning for users’
requests. The proposed architecture utilizes the InterGrid
concepts which are based on the virtualization technology
and adopt a gateway (IGG) to interconnect different resource
providers.

• We proposed brokering strategies in the hybrid Cloud system
where an organization that operates its private Cloud aims to
improve the QoS for the users’ requests by utilizing the public
Cloud resources. Various failure-aware brokering strategies
which adopt the workload model and take into account the
failure correlations are presented. The proposed policies take
advantage of the knowledge-free approach, so they do not need
any statistical information about the failure model of the local
resources in the private Cloud.

• We evaluated the proposed policies and consider different
performance metrics such as deadline violation rate and job
slowdown. Experimental results under realistic workload and
failure events, reveal that we are able to adopt the user
estimates in the brokering strategy while using the workload
model provides the flexibility to choose the suitable strategy
based on the desired level of QoS, needed performance, and
available budget.

In futurework, we intend to implement the proposed strategies
inside the IGG and run real experiments. For this purpose,
we will investigate different checkpointing mechanisms in our
analysis and implementation as well. In addition, we are going to
investigate another type of application like loosely-coupledMany-
Task Computing (MTC) with the ability of resource co-allocation.
In this case, moving VMs between private and public Clouds will
be another approach to deal with resource failures in the local
infrastructure.

Acknowledgments

The authors would like to thank Rodrigo N. Calheiros and Prof.
Andrzej Goscinski for useful discussions. The authors also would
like to thank the reviewers for their comments that helped improve
this paper.
References

[1] J.H. Abawajy, Determining service trustworthiness in Intercloud computing
environments, in: The 10th International Symposium on Pervasive Systems,
Algorithms, and Networks, ISPAN 2009, 2009, pp. 784–788.

[2] Amazon Inc., Amazon Elastic Compute Cloud (Amazon EC2). http://aws.
amazon.com/ec2.

[3] M. Bouguerra, T. Gautier, D. Trystram, J.-M. Vincent, A flexible check-
point/restart model in distributed systems, in: Proceedings of the 9th Inter-
national Conference on Parallel Processing and Applied Mathematics, PPAM
2010, Springer-Verlag, Berlin, Torun, Poland, 2010, pp. 206–215.

[4] R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A.F. De Rose, R. Buyya, CloudSim:
a toolkit for modeling and simulation of Cloud computing environments
and evaluation of resource provisioning algorithms, Software: Practice and
Experience 41 (1) (2011) 23–50.

[5] CloudHarmony. http://cloudharmony.com/.
[6] M.D. deAssunção, R. Buyya, S. Venugopal, InterGrid: a case for Internetworking

islands of Grids, Concurrency and Computation: Practice and Experience 20 (8)
(2008) 997–1024. http://dx.doi.org/10.1002/cpe.1249.

[7] M.D. deAssunção, A. di Costanzo, R. Buyya, Evaluating the cost–benefit of using
Cloud computing to extend the capacity of clusters, in: Proceedings of the
18th International Symposium on High Performance Parallel and Distributed
Computing, HPDC 2009, ACM, New York, NY, Garching, Germany, 2009,
pp. 141–150.

[8] E. Deelman, G. Singh, M. Livny, B. Berriman, J. Good, The cost of doing science
on the Cloud: the montage example, in: Proceedings of the 19th ACM/IEEE
International Conference on Supercomputing, SC 2008, IEEE Press, Piscataway,
NJ, Austin, Texas, 2008, pp. 1–12.

[9] A. di Costanzo, M.D. de Assunção, R. Buyya, Harnessing cloud technologies for
a virtualized distributed computing infrastructure, IEEE Internet Computing
13 (5) (2009) 24–33.

[10] A. Downey, A model for speedup of parallel programs, Technical Report
UCB/CSD-97-933, Computer Science Division, UC, Berkeley, California, CA,
1997.

[11] D.G. Feitelson, Workload Modeling for Computer Systems Performance
Evaluation, e-Book. http://www.cs.huji.ac.il/~feit/wlmod/, 2009.

[12] D.G. Feitelson, L. Rudolph, U. Schwiegelshohn, K.C. Sevcik, P.Wong, Theory and
practice in parallel job scheduling, in: Proceedings of the 3rd International
Workshop on Job Scheduling Strategies for Parallel Processing, JSSPP’97,
Springer-Verlag, London, Seattle, WA, 1997, pp. 1–34.

[13] J. Fontán, T. Vázquez, L. Gonzalez, R.S. Montero, I.M. Llorente, OpenNEbula: the
open source virtual machine manager for cluster computing, in: Open Source
Grid and Cluster Software Conference, Book of Abstracts, San Francisco, CA,
2008.

[14] D. Ford, F. Labelle, F.I. Popovici,M. Stokely, V.-A. Truong, L. Barroso, C. Grimes, S.
Quinlan, Availability in globally distributed storage systems, in: Proceedings of
the 9thUSENIX Conference onOperating SystemsDesign and Implementation,
USENIX Association, Berkeley, CA, Vancouver, BC, Canada, 2010, pp. 1–7.

[15] S. Fu, C.-Z. Xu, Quantifying event correlations for proactive failure manage-
ment in networked computing systems, Journal of Parallel and Distributed
Computing 70 (2010) 1100–1109.

[16] M. Gallet, N. Yigitbasi, B. Javadi, D. Kondo, A. Iosup, D. Epema, A model for
space-correlated failures in large-scale distributed systems, in: Proceedings
of the 16th International European Conference on Parallel and Distributed
Computing, Euro-Par 2010, Springer-Verlag, Berlin, Ischia, Italy, 2010,
pp. 88–100.

[17] GoGrid Inc., GoGrid Cloud Hosting. http://www.gogrid.com/.
[18] L. He, S.A. Jarvis, D.P. Spooner, X. Chen, G.R. Nudd, Dynamic scheduling of

parallel jobs with QoS demands in multiclusters and Grids, in: Proceedings
of the 5th IEEE/ACM International Workshop on Grid Computing, Grid 2004,
IEEE Computer Society, Washington, DC, Pittsburgh, USA, 2004, pp. 402–409.

[19] U. Hoelzle, L.A. Barroso, The Datacenter as a Computer: An Introduction to the
Design of Warehouse-Scale Machines, Morgan and Claypool Publishers, San
Rafael, CA, 2009.

[20] E. Huedo, R.S. Montero, I.M. Llorente, Grid architecture from ametascheduling
perspective, IEEE Computer 43 (7) (2010) 51–56.

http://aws.amazon.com/ec2
http://aws.amazon.com/ec2
http://aws.amazon.com/ec2
http://aws.amazon.com/ec2
http://aws.amazon.com/ec2
http://cloudharmony.com/
http://dx.doi.org/doi:10.1002/cpe.1249
http://www.cs.huji.ac.il/~feit/wlmod/
http://www.gogrid.com/

B. Javadi et al. / J. Parallel Distrib. Comput. 72 (2012) 1318–1331 1331
[21] A. Iosup, D.H.J. Epema, T. Tannenbaum, M. Farrellee, M. Livny, Inter-operating
Grids through delegated matchmaking, in: Proceedings of the 18th ACM/IEEE
Conference on Supercomputing, SC 2007, ACM, New York, NY, Reno, Nevada,
2007, pp. 1–12.

[22] M. Islam, P. Balaji, P. Sadayappan, D.K. Panda, QoPS: a QoS based scheme for
parallel job scheduling, in: Proceedings of the 9th International Workshop on
Job Scheduling Strategies for Parallel Processing, JSSPP’03, Springer-Verlag,
Berlin, Seattle, WA, 2003, pp. 252–268.

[23] B. Javadi, D. Kondo, J.-M. Vincent, D.P. Anderson, Discovering statistical
models of availability in large distributed systems: an empirical study of
SETI@home, IEEE Transactions on Parallel and Distributed Systems 22 (11)
(2011) 1896–1903.

[24] D. Kondo, B. Javadi, A. Iosup, D.H.J. Epema, The failure trace archive: enabling
comparative analysis of failures in diverse distributed systems, in: Proceedings
of the 10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing, CCGrid 2010, IEEE Computer Society,Washington, DC,Melbourne,
Australia, 2010, pp. 398–407.

[25] D. Kondo, B. Javadi, P.Malecot, F. Cappello, D.P. Anderson, Cost-benefit analysis
of Cloud computing versus desktop grids, in: Proceedings of the 23rd IEEE
International Parallel and Distributed Processing Symposium, IPDPS 2009,
IEEE Computer Society, Washington, DC, Rome, Italy, 2009, pp. 1–12.

[26] H. Li, D. Groep, L. Wolters, Workload characteristics of a multi-cluster
supercomputer, in: Proceedings of the 10th International Workshop on Job
Scheduling Strategies for Parallel Processing, JSSPP’04, Springer-Verlag, Berlin,
New York, USA, 2004, pp. 176–193.

[27] D.A. Lifka, The ANL/IBM SP scheduling system, in: Proceedings of the 1st
Workshop on Job Scheduling Strategies for Parallel Processing, JSSPP’95,
Springer-Verlag, London, Santa Barbara, CA, 1995, pp. 295–303.

[28] U. Lublin, D.G. Feitelson, The workload on parallel supercomputers: modeling
the characteristics of rigid jobs, Journal of Parallel and Distributed Computing
63 (11) (2003) 1105–1122.

[29] P. Marshall, K. Keahey, T. Freeman, Elastic site: using clouds to elastically
extend site resources, in: Proceedings of the 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing, CCGrid 2010, IEEE
Computer Society, Washington, DC, Melbourne, Australia, 2010, pp. 43–52.

[30] T. Mather, S. Kumaraswamy, S. Latif, Cloud Security and Privacy: An Enterprise
Perspective on Risks and Compliance, O’Reilly Media, Inc., 2009.

[31] M. Mattess, C. Vecchiola, R. Buyya, Managing peak loads by leasing
cloud infrastructure services from a spot market, in: Proceedings of the
12th IEEE International Conference on High Performance Computing and
Communications, HPCC 2010, IEEE Press, Piscataway, NJ,Melbourne, Australia,
2010, pp. 180–188.

[32] J. McKendrick, NASA’s Nebula: a stellar example of private clouds in
government. http://nebula.nasa.gov/.

[33] I. Moschakis, H. Karatza, Evaluation of gang scheduling performance and cost
in a cloud computing system, The Journal of Supercomputing 1 (2010) 1–18.

[34] A.W. Mu’alem, D.G. Feitelson, Utilization, predictability, workloads, and
user runtime estimates in scheduling the IBM SP2 with backfilling, IEEE
Transactions on Parallel and Distributed Systems 12 (6) (2001) 529–543.

[35] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, D.
Zagorodnov, The Eucalyptus open-source cloud-computing system, in: Pro-
ceedings of the 9th IEEE/ACM International Symposium on Cluster Computing
and the Grid, CCGrid 2009, IEEE Computer Society, Washington, DC, Shanghai,
China, 2009, pp. 124–131.

[36] D. Oppenheimer, A. Ganapathi, D.A. Patterson, Why do Internet services
fail, and what can be done about it? in: Proceedings of the 4th Conference
on USENIX Symposium on Internet Technologies and Systems, USENIX
Association, Berkeley, CA, Seattle, WA, 2003, pp. 1–15.

[37] L.F. Orleans, P. Furtado, Fair load-balancing on parallel systems for QoS,
in: Proceedings of the 36th International Conference on Parallel Processing,
ICPP 2007, IEEE Computer Society, Los Alamitos, CA, XiAn, China, 2007,
pp. 22–30.

[38] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, D. Epema,
A performance analysis of EC2 Cloud computing services for scientific
computing, in: Proceedings of the 1st International Conference on Cloud
Computing, CloudComp 2009, Springer-Verlag, Berlin, Beijing, China, 2009,
pp. 115–131.

[39] M.R. Palankar, A. Iamnitchi, M. Ripeanu, S. Garfinkel, Amazon S3 for science
Grids: a viable solution? in: Proceedings of the 1st International Workshop
on Data-Aware Distributed Computing (DADC’08) in Conjunction with HPDC
2008, ACM, New York, NY, Boston, MA, 2008, pp. 55–64.

[40] S. Pandey, W. Voorsluys, M. Rahman, R. Buyya, J.E. Dobson, K. Chiu, A grid
workflow environment for brain imaging analysis on distributed systems,
Concurrency and Computation: Practice and Experience 21 (16) (2009)
2118–2139.

[41] Parallel Workload Archive. http://www.cs.huji.ac.il/labs/parallel/workload/.
[42] A.J. Rubio-Montero, E. Huedo, R.S. Montero, I.M. Llorente, Management of

virtual machines on Globus Grids using GridWay, in: Proceedings of the
21st IEEE International Parallel and Distributed Processing Symposium, IPDPS
2007, IEEE Press, Piscataway, NJ, Long Beach, USA, 2007, pp. 1–7.

[43] P. Ruth, P. McGachey, D. Xu, VioCluster: virtualization for dynamic compu-
tational domain, in: Proceedings of the 7th IEEE International Conference on
Cluster Computing, Cluster 2005, IEEE Press, Piscataway, NJ, Burlington, MA,
2005, pp. 1–10.

[44] B. Sotomayor, R.S. Montero, I.M. Llorente, I. Foster, Virtual infrastructure
management in private and hybrid clouds, IEEE Internet Computing 13 (5)
(2009) 14–22.
[45] S. Srinivasan, R. Kettimuthu, V. Subramani, P. Sadayappan, Selective reserva-
tion strategies for backfill job scheduling, in: Proceedings of the 8th Interna-
tionalWorkshop on Job Scheduling Strategies for Parallel Processing, JSSPP’02,
Springer-Verlag, London, Edinburgh, Scotland, UK, 2002, pp. 55–71.

[46] W. Tang, N. Desai, D. Buettner, Z. Lan, Analyzing and adjusting user runtime
estimates to improve job scheduling on the Blue Gene/P, in: Proceedings of
the 24th IEEE International Parallel and Distributed Processing Symposium,
IPDPS 2010, IEEE Press, Piscataway, NJ, Atlanta, USA, 2010, pp. 1–11.

[47] M. Tatezono, N. Maruyama, S. Matsuoka, Making wide-area, multi-site MPI
feasible using Xen VM, in: Proceedings of the 4th Workshop on Frontiers of
High Performance Computing and Networking in conjunction with ISPA 2006,
Springer-Verlag, Berlin, Sorrento, Italy, 2006, pp. 387–396.

[48] D. Tsafrir, Y. Etsion, D.G. Feitelson, Backfilling using system-generated
predictions rather than user runtime estimates, IEEE Transactions on Parallel
and Distributed Systems 18 (2007) 789–803.

[49] J. Varia, Best Practices in Architecting Cloud Applications in the AWS Cloud,
Wiley Press, Hoboken, NJ, 2011, pp. 459–490.

[50] C. Vecchiola, X. Chu, R. Buyya, Aneka: A Software Platform for.NET-Based Cloud
Computing, IOS Press, Amsterdam, 2009, pp. 267–295.

[51] P. Xavier, W. Cai, B.-S. Lee, A dynamic admission control scheme to manage
contention on shared computing resources, Concurrency and Computation:
Practice and Experience 21 (2) (2009) 133–158.

[52] N. Yigitbasi, M. Gallet, D. Kondo, A. Iosup, D. Epema, Analysis and modeling of
time-correlated failures in large-scale distributed systems, in: Proceedings of
the 11th IEEE/ACM International Conference on Grid Computing, Grid 2010,
IEEE Computer Society, Washington, DC, Brussels, Belgium, 2010, pp. 65–72.

Bahman Javadi is a Lecturer in Networking and Cloud
Computing at the University ofWestern Sydney, Australia.
Prior to this appointment, he was a Research Fellow at
the University of Melbourne, Australia. From 2008 to
2010, he was a Postdoctoral Fellow at the INRIA Rhone-
Alpes, France. He received his M.S. and Ph.D. degrees
in Computer Engineering from the Amirkabir University
of Technology in 2001 and 2007, respectively. He has
been a Research Scholar at the School of Engineering
and Information Technology, Deakin University, Australia
during his Ph.D. course. He is co-founder of the Failure

Trace Archive, which serves as a public repository of failure traces and algorithms
for distributed systems. He has received numerous Best Paper Awards at IEEE/ACM
conferences for his research papers. He served as a program committee of many
international conferences and workshops. His research interests include Cloud
and Grid computing, performance evaluation of large scale distributed computing
systems, and reliability and fault tolerance.

Jemal Abawajy is an Associate Professor at Deakin Uni-
versity, Australia. Dr. Abawajy is the Director of the ‘‘Per-
vasive Computing & Networks’’ research groups at Deakin
University. The research group includes 15 Ph.D. students,
several masters and honors students and other staff mem-
bers. Dr. Abawajy is actively involved in funded research in
robust, secure and reliable resource management for per-
vasive computing (mobile, clusters, enterprise/data grids,
web services) and networks (wireless and sensors) and has
published more than 200 research articles in refereed in-
ternational conferences and journals as well as a number

of technical reports. Dr. Abawajy has given keynote/invited talks at many confer-
ences. Dr. Abawajy has guest-edited several international journals and served as an
associate editor of international conference proceedings. In addition, he is on the
editorial board of several international journals. Dr. Abawajy has been a member
of the organizing committee for over 100 international conferences serving in vari-
ous capacities including chair, general co-chair, vice-chair, best paper award chair,
publication chair, session chair and program committee.

Rajkumar Buyya is Professor of Computer Science and
Software Engineering; and Director of the Cloud Comput-
ing and Distributed Systems (CLOUDS) Laboratory at the
University of Melbourne, Australia. He is also serving as
the founding CEO of Manjrasoft Pty Ltd., a spin-off com-
pany of the University, commercializing its innovations in
Grid and Cloud Computing. He has authored and published
over 300 research papers and four tex books. The books on
emerging topics that Dr. Buyya edited include, High Per-
formance Cluster Computing (Prentice Hall, USA, 1999),
Content Delivery Networks (Springer, Germany, 2008),

Market-Oriented Grid and Utility Computing (Wiley, USA, 2009), and Cloud Com-
puting: Principles and Paradigms (Wiley, USA, 2011).

Software technologies for Grid and Cloud computing developed under Dr.
Buyya’s leadership have gained rapid acceptance and are in use at several academic
institutions and commercial enterprizes in 40 countries around theworld. Dr. Buyya
has led the establishment and development of key community activities, including
serving as foundation Chair of the IEEE Technical Committee on Scalable Computing
and four IEEE conferences (CCGrid, Cluster, Grid, and e-Science). He has presented
over 250 invited talks on his vision on IT Futures and advanced computing tech-
nologies at international conferences and institutions around the world.

http://nebula.nasa.gov/
http://www.cs.huji.ac.il/labs/parallel/workload/

	Failure-aware resource provisioning for hybrid Cloud infrastructure
	Introduction
	Background
	System model
	System workload
	Failure model
	Problem statement

	Related work
	The hybrid Cloud system
	System architecture
	Systems implementation
	Fault-tolerant scheduling algorithms

	The proposed resource provisioning policies
	Size-based brokering strategy
	Time-based brokering strategy
	Area-based brokering strategy
	Estimated time-based brokering strategy

	Performance evaluation
	Experimental setup
	Validation through trace-based simulations
	Performance analysis through model-based simulations
	Discussions

	Conclusions
	Acknowledgments
	References

