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ABSTRACT

The numerous advantages of cloud computing environments, including scalability, high availability, and
cost effectiveness have encouraged service providers to adopt the available cloud models to offer solutions.
This rise in cloud adoption, in return encourages platform providers to increase the underlying capacity
of their data centers so that they can accommodate the increasing demand of new customers. Increasing
the capacity and building large-scale data centers has caused a drastic growth in energy consumption
of cloud environments. The energy consumption not only affects the Total Cost of Ownership but also
increases the environmental footprint of data centers as CO2 emissions increases. Hence, energy and
power efficiency of the data centers has become an important research area in distributed systems. In
order to identify the challenges in this domain, this chapter surveys and classifies the energy efficient
resource management techniques specifically focused on the PaaS cloud service models.

BACKGROUND

The numerous advantages of cloud computing environments, including cost effectiveness, on-demand
scalability, and ease of management, encourage service providers to adopt them and offer solutions via
cloud service models. In return, it encourages platform providers to increase the underlying capacity of
their data centers to accommodate the increasing demand of new customers. One of the main drawbacks
of the growth in capacity of cloud data centers is the need for more energy to power these large-scale
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infrastructures. This drastic growth in energy consumption of cloud data centers is a major concern of
cloud providers.

An average data center consumes as much energy as 25,000 households, as reported by Kaplan et al.
(Kaplan, Forrest, & Kindler, 2008). This energy consumption results in increased Total Cost of Owner-
ship (TCO) and consequently decreases the Return of Investment (ROI) of the cloud infrastructure. Apart
from low ROI, energy consumption has a great impact on carbon dioxide (CO2) emissions, which are
estimated to be 2% of global emissions (Buyya, Beloglazov, & Abawajy, 2010).

The energy wastage in data centers are caused by various reasons such as inefficiency in data center
cooling system (S. Greenberg, Mills, Tschudi, Rumsey, & Myatt, 2006), network equipment (Heller et
al., 2010), and server utilization (A. Greenberg, Hamilton, Maltz, & Patel, 2008). However, servers are
still the main power consumers in a data center (A. Greenberg et al., 2008). Both the amount of work
and the efficiency with which the work is performed affects the power consumption of servers (Krioukov
et al., 2010). Therefore, for improving the power efficiency of data centers, the energy consumption of
servers should be made more proportional to their workload.

The power proportionality is defined as the proportion of the amount of power consumed comparing
to the actual workload. The power proportionality can be achieved by either decreasing the servers idle
power at hardware level (Barroso & Holzle, 2007) or efficient provisioning of servers through power
aware resource management policies at software level. In this chapter, we solely focus on software level
and the resource management techniques utilized for decreasing energy consumption in Cloud data
centers considering four different service models (depicted in Figure 1):

e Infrastructure as a Service (IaaS): In this service a consumer has the ability to provision the
required resources while running and deploying arbitrary software such as operating systems and
applications. Using this model consumers do not need to worry about the underlying hardware.

e  Platform as a Service (PaaS): This model has a higher level of abstraction in comparison to the
TaaS model. By offering the application-hosting environment, the consumers do not need to have
any control over the underlying infrastructure including storage, processing and network.

° Software as a Service (SaaS): Using this service model, a consumer is able to use the provider’s
applications which are hosted on the Cloud. Applications are accessible through web portals. This
model has also made development and testing easy for providers via having access to the software.

e  Containers as a Service (CaaS): This service is recently introduced and lies between IaaS and
PaaS. While IaaS provides virtualized compute resources and PaaS provides application specific
runtime services, CaaS is the missing layer that glues these two layers together.

Among the above-mentioned service models, this chapter mostly focuses on energy efficient resource
management techniques for PaaS and CaaS.

PaaS POWER-AWARE RESOURCE MANAGEMENT

There is a large body of literature investigating energy management techniques for PaaS cloud service
model that provides a platform for cloud customers to develop, run, and manage their applications with-
out worrying about the underlying infrastructure and the required software. Both kinds of virtualization
namely, OS level and System level virtualization, are considered and the newly introduced CaaS model
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Figure 1. The container as a service cloud service model links the PaaS and laaS$ layers
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can be viewed as a form of OS level virtualization service. Since CaaS cloud model has been newly
introduced, we grouped all the research with the focus on containerized (OS-level virtualized) cloud
environments under the PaaS category.

The work in this area, as demonstrated Figure 2, is grouped in two major categories namely “Bare
Metal, non-virtualized”, and “Virtualized”. The Bare Metal group contains the techniques in which the
applications/tasks are mapped to the servers without considering virtualization technology, whereas the
work investigating energy efficient techniques in a virtualized environment are all included in Virtual-
ized group.

Bare Metal Environments
Servers are one of the most power-hungry elements in data centers, with CPU and memory as their main
power consumers. The average power consumption of CPU and memory is reported to be 33% (Meisner,

Gold, & Wenisch, 2009) and 23% (David, Fallin, Gorbatov, Hanebutte, & Mutlu, 2011) of the server’s
total power consumption respectively. Therefore, any improvement on processor and memory-level power
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Figure 2. Power-aware PaaS resource management research breakdown
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consumption would definitely reduce the total power consumption of the server, which also improves
the energy efficiency of data center.

Dynamic Voltage and Frequency Scaling (DVFES) is an effective system level technique utilized both
for memory and CPU in Bare Metal environments and it is demonstrated to improve the power con-
sumption of these two elements considerably (Charles, Jassi, Ananth, Sadat, & Fedorova, 2009; David
etal., 2011; Deng, Meisner, Ramos, Wenisch, & Bianchini, 2011; von Laszewski, Wang, Younge, & He,
2009). DVEFS enables dynamic power management through varying the supply voltage or the operating
frequencies of the processor and/or memory. Research in this area are summarized in Tables 2- 3.

Dynamic Voltage and Frequency Scaling of CPU

The technologies present in the market are AMD Turbo Core (AMD, 2016), Intel Turbo Boost (Charles
etal., 2009), and Intel Enhanced Speed Stepping Technology (Intel, 2016), which dynamically adjust the
CPU frequency and voltage according to the workload. Kim et al. (K. H. Kim, Buyya, & Kim, 2007),
harnessed the DVFS capability of CPU in the proposed scheduling algorithm. DVS scheduling scheme
considers the deadline of the Bag-of-Tasks applications as a constraint and the CPU frequency is adjusted
so that the sub-tasks are finished by the deadline. An application made of a group of independent and
identical tasks is an example of Bag-of-Task applications. DVS scheduling algorithms are provided for
both time-shared and space-shared resource sharing policies. Proposed algorithm is validated through
simulation and is shown to be more energy efficient when compared to the static voltage schemes.

Pietri et al. (Pietri & Sakellariou, 2014) also proposed an energy efficient scheduling algorithm utiliz-
ing the DVES capability of CPU. The frequency of the CPU is adjusted with the objective of reducing the
total energy consumption for the execution of tasks while meeting a user-specified deadline. Decreasing
the overall energy consumption is considered as the objective of the algorithms, since DVFS is not always
energy efficient, as scaling the CPU frequency may increase the execution time. Hence, it escalates the
processors idle time. Based on the aforementioned objective, it is demonstrated that the lowest possible
frequency is not always the most energy-efficient option. Therefore, the proposed approach only scales
the frequency if the overall energy consumption can be minimized.
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Table 2. Energy efficient research considering bare metal environment

intensive work- loads

Authors Workload SLA Energy Saving Energy Model
Real-system
David et al. SPEC CPU2006 benchmark | Application slow | DY > on Memory measurements along with
(David et al., 2011) workload down component for CPU an analytically power

reduction model for
memory.

considered as a
backup to ensure the
data availability.

Deng et al.(Deng et al., Merr}ory Intenswei CPU User dehn?d DVES on memory A pox&ier mer} is
2011) Intensive, and balanced performance component proposed to include the
Workloads degradation limit. effect of the memory
Memory and CPU intensive System total enerey model
and a combination of these Application DVES on both >y £y
Deng et al.(Deng et al., is proposed containing
workloads, The workload performance CPU and memory
2012) L. L both CPU and memory
characteristics are known degradation limit component
frequency
beforehand
. . . E= =
dynamic static
Kim et al. (K. H. Kim et Bag-of-Tasks T ask Execution DVES on CPU KIV2L _)|_ KOKIVIL) =
al., 2007) time component
aV2L
Powering down idle
nodes which are not
Leverich et al. (Leverich & | Hadoop’s MapReduce Throughput :C;is(s)zi(r;i?:rrg’ Linear Power Model.
Kozyrakis, 2010) workload £hp S (CPU only)

Lang et al. (Lang & Patel,
2010)

Workload Characteristics
such as the expected
resource consumption and
performance goals of jobs
are studied and considered as
abstract meta-models

Response Time

Power down/up MR
nodes to save energy
in periods of low
utilization.

An energy model

is presented which
incorporates the power
drawn by both online and
offline nodes during the
workload execution.

Kaushik
et al.(Kaushik et al., 2010)

One-month of Yahoo
Hadoop’s HDFS logs in

a multi-tenant cluster are
grouped according creation
date and access rate.

Two main categories are
considered namely hot and
cold zones.

Response Time

Energy-efficient
data-placement
through dividing
servers into two

major groups namely
Hot and Cold zones.
Energy can be saved
through harnessing the
idleness in the Cold
zone.

Power models are used
for the power levels,
transitions times of power
states and the subsystems
access time including the
disk, the processor and the
DRAM.

Dynamic Voltage and Frequency Scaling of Memory
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In addition to CPU, memory of servers also consumes a considerable amount of energy that is not pro-
portional to the load (David et al., 2011). For memory-intensive workloads, system’s memory speed
is well tuned and optimized according to the peak computing power. However, there is still a place for
improvement for other kinds of workloads that are less sensitive to the memory speed. For these kinds
of workload, running at lower memory speed would result in less performance degradation and reduce
the power consumption via running memory at a lower frequency.

David et al. (David et al., 2011) presented an approach utilizing the memory DVES capability to
tune the system’s memory frequency based on the workload and consequently minimize the energy
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Table 3. Energy efficient research considering bare metal environment

Authors Workload SLA Energy Saving Energy Model
BEEMR (Berkeley
Energy Efficient
Chen MapReduce with interactive MapReduce) as an energy

analysis (MIA) style efficient MapReduce

:{ alz.élYZ.)Chen o workloads is classified using Response time workload manager which Linear Power Model (CPU only).
v k-means clustering algorithm. is inspired by studying
the Facebook Hadoop
workload
. Had9op benchmarks Achieved through
including three micro- L
benchmarks namely TeraGen L considering the resource . .
Feller et al.(Feller TeraSort, and Wikipedia data’ Application’s boundness of the Energy metered environment is
etal., 2015) ’ completion time. | tasks along with the utilized (Grid5000).

processing are studied and the
approach is applicable for both
Bare metal and System level.

differences between the
map and reduce tasks.

Bare Metal and System
level Workflow applications

Lee et al.(Lee et Workload. Workload Makespan

Improved the resource NA

al., 2015) Characteristics is assumed to utilization.
be a prior knowledge
Energy consumption pf is
estimated considering each
processors operating frequency
Pietri et al.(Pietri L f through a cubic model derived
& Sakellariou, Smepnﬁc Workflow Makespan DVES on CPU in [] Pfg= Pbase + Pdif * (f —
2014) applications component fbase/fbase)3 and the total power
consumption is estimated adding
Pf to the power consumed when
the processor is idle.
Energy consumption of task A
running on multi core systems is
estimated through: c.E, +E, .
. Here, c is the number of active
Durillo et Efficient Resource cores and E_ is the energy
al.(Durillo et al., | Workflow applications Makespan . Leore .
2014) Allocation consumed in active cores while

executing task A. £, is the
energy consumption of all the
shared subsystems which are

active during the task execution.

consumption. Additionally, a detailed power model is presented which quantifies dependency portions
of memory power to the frequency and further proves the possibility of considerable power deduction
through memory DVES. Also, a control algorithm is proposed to tune frequency/voltage of memory
considering its bandwidth utilization with the objective of minimizing performance degradation. The
approach is evaluated through implementation on real hardware while SPEC CPU2006 is used to gener-
ate the workload. This work can further be extended for different types of workloads considering DVFS
application for both CPU and memory components.

Deng et al. (Deng et al., 2011) introduces active lower-power modes (MemScale) for main memory
to make it more energy proportional. In this respect, DVFS and dynamic frequency scaling (DFS) are
applied on the memory controller and its channels and DRAM devices, respectively. MemScale is
implemented as an operating system policy and, like David et al. (David et al., 2011) it identifies the
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Table 1. Hardware virtualization taxononty

Virtualization Component O it Available Technologies
Hardware
OS Container LXC, OpenVZ, Lmu;f
. . VServer, FreeBSD Jails,
Operating System (OS) (Lightweight VM) System Standard Calls Solaris zones
Application Container Docker, Rocket
System Virtual Machine (VM) Hypervisor KVM, VMWare

DVFS/DFS mode for the memory subsystem according to the bandwidth utilization of memory. The
objective of the research is also similar to the work by David et al. (David et al., 2011), which improves
the energy consumption of the memory subsystem. This is important because it can reach up to 40% of
the system’s energy utilization (Hoelzle & Barroso, 2009). MemScale is evaluated through simulation
considering a large set of workloads with less than 10% performance degradation while in (David et al.,
2011) only one workload is studied.

Coordinated CPU and Memory DVFS

Deng et al. (Deng, Meisner, Bhattacharjee, Wenisch, & Bianchini, 2012) introduced CoScale, which
jointly applies DVES on memory and CPU subsystems with the objective of minimizing the systems total
power consumption. CoScale is the first work in this area that coordinates DVFS on CPU and memory
considering performance constraints. The frequency of each core and the memory bus is selected in a
way that energy saving of the whole system is maximized. Therefore, the selected frequencies are not
always the lowest ones.

As observed by Dhimsan et al. (Dhiman, Pusukuri, & Rosing, 2008), lowering the frequency some-
times results in more energy consumption. So CoScale always balances the system and component
power utilization. It efficiently searches the space of available frequency settings of CPU and memory
and sets the components voltage according to the selected frequencies. In this respect, the algorithm
should consider m * n * ¢ possibilities in which m and ¢ are the number of available frequency setting
for memory and CPU respectively and n is the number of CPU cores. In order to accelerate the search
process, a gradient-descent heuristic is proposed that iteratively estimates the frequencies of the com-
ponents through the presented online models. Memory-intensive (MEM), compute-intensive (ILP),
compute-memory balanced (MID), and a combination of workloads are applied as the input of the sys-
tem. The results of CoScale is further compared with four different algorithms, namely MemScale (Deng
etal., 2011), CPU DVFS, a fully uncoordinated, and a semi-coordinated algorithm. In the fully uncoor-
dinated algorithm, both memory and CPU frequency are decided by their managers independently. In
semi-coordinated policy, the CPU manager is aware of the degradation caused by the memory manager
decision in the previous cycle through accessing overall performance slack. CoScale satisfies the per-
formance target while being robust-across the search space parameter.
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Table 4. Energy efficient research considering os-level virtualization

Mohan
et al. (Mohan Raj
& Shriram, 2011)

servers that follows Poisson
distribution (Application
Container)

requests for each
application in
the dispatcher
queue

NA

Authors Workload SLA Energy Saving Energy Model

Dong .
et al. (Dong et al Google Cluster Data (OS NA DVES, Container Proposed a power model named
201 "‘) g ” | Container) Placement as VPC
Pandit . Container placement,
et al. (Pandit et (S:}(;I:It:;ie::;)w orkload (OS NA Simulated Annealing is NA
al., 2014) applied.
Hindman . Resource sharing
et al. (Hindman et Syntht_etlc workload (0S Response Time between various NA

Container) .
al., 2011) programming models

. . Primary Big Data application .

Sf’:;“g“a workloads (Shark [1, YARN fgg;;;?;‘:“i ver
s ic.:u lia et al [1), and the background Throughput constraint forprunnin Linear Power Model (CPU only)
2011 5) & - applications computing 7. applications.) &

(Application Container) PP h
Anselmi . L
et.al Three Tier Ap p1'10at.10n . Efficient allocation of

. workload (Application Response Time NA
(Anselmi et al., . resources
2008) Container)
Rolia Enterprise application ﬁi&g;iz;?léZ:::in\;tth
et al. (Roliaetal., | workload (Application NA LT L NA
2003) Container) fast migration ability is
used
Allowable
Request arrival for web pending

Power Consumption of servers
based on the number of VMS

Virtualized Environments

Virtualization technology is one of the key features in cloud data centers that can improve the efficiency
of hardware utilization through resource sharing, migration, and consolidation of workloads. The tech-
nology was introduced in the 1960’s (Goldberg, 1974; Graziano, 2011) and exists in many levels. Of
interested in this chapter, is virtualization at operating system level and at system level (Table 1).

Insystem-level virtualization, there exists the emulated hardware referred as “virtual machines” (VMs)
that have their own operating system (OS) running on top of the host’s hypervisor with independent
kernels. However, on the operating system level, there exists the so called container that shares the same
kernel with the host and is defined as lightweight virtual environment that provides a layer of isolation
between workloads without the overhead of the hypervisor-based virtualization.

Considering these two virtualization types, techniques investigating power-aware resource man-
agement are divided into three main categories namely “Lightweight Container”, “Virtual Machine”,
and “Hybrid”. These groups are formed according to the environment in which applications execute.
Therefore, the Lightweight container category contains techniques that assume that tasks/applications
execute inside containers. In the Virfual Machine group, applications execute inside virtual machines.
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Figure 3. Containerized virtual environment
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Finally in the Hybrid category, applications execute inside the containers while containers are mapped
on virtual machines instead of servers.

Next, we discuss these three groups with more details and explore techniques that are applied to
minimize the data center energy consumption considering the characteristics of each virtualized envi-
ronment. The research in this area is summarized in Table 4.

Operating System (OS) Level Virtualization (Containers)

The Platform as a Service (PaaS) model has accelerated application development and eliminated the
need for administration of the underlying infrastructure. In this service model, application isolation is
achieved through the utilization of containers that can run both on PMs and VMs.

Containers are the building blocks of OS-level virtualization that offer isolated virtual environments
without the need for intermediate monitoring media such as hypervisors, as shown in Figure 3.The
container technology of the Linux Kernel are developed separately by four different resources includ-
ing OpenVZ (OpenVZ, 2016) from Parallels, Google’s cgroups (control groups), IBM’s Dpar, and
namespaces (Rosen, 2013). Among those, cgroups and namespaces presented solutions for resource
management and per process isolation respectively and except for the Dpar, the other three are currently
used (Bottomley, 2013).

Containerization technology has been implemented on large scale by cloud companies such as Google
and Facebook. Containers are beneficial for cloud providers since they can be more densely packed
when compared to VMs. The other benefit of containers is that they all share the host kernel. Therefore,

Figure 4. Energy management techniques which are applied to the OS level virtualization environments
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Figure 5. The differences between the Application container and the OS container for a three tier ap-
plication. Application containers are implemented to run a single service and by default has layered

Filesystems
Source: Nagy, 2015
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the communication between containers and the hardware is performed through standard systems calls,
which is much faster than hypervisor-based communication.

Operating System level virtualization or the containerization itself is categorized in two different
types including OS containers and application containers and the energy management techniques which
are applied to these environments are depicted in Figure 4.

OS containers can be taught of VMs that share the kernel of the host’s operating system while provid-
ing isolated user space. Various OS containers with identical or different distributions can run together
on top of the host operating system as long as they are compatible with the host kernel. The shared
kernel improves the utilization of resources by the containers and decreases the overhead of container’s
startup and shutdown. OS containers are built up on the cgroups and namespaces, whereas application
containers are built upon the existing container technologies. Application containers are specifically
designed for running one process per container. Therefore, one container is assigned for each component
of the application. Application containers, as demonstrated in Figure 5, are specifically beneficial for
microservice architecture in which the objective is having a distributed and multi component system
that is easier to manage if anything goes wrong.

Operating System (OS) Containers

OS containers based on cgroups and namespaces provide user space isolation while sharing the kernel
of the host operating system. The development in OS containers is like VMs and one can install and run
applications in these containers as he runs it on a VM. Like VMs, containers are created from templates
that identify the contents (Nagy, 2015). Google cluster is an example of such systems that runs all its
services in containers. As stated on Google open source blog (Brewer, 2016), Google launches more
than 2 billion containers per week considering all of its data centers. The container technologies that
support OS containers are LXC (Container, 2016), OpenVZ, Linux VServer (VServer, 2016), FreeBSD
Jails and Oracle’s Solaris zones (Price & Tucker, 2004).

Energy efficient resource management techniques applied for OS container systems mostly focus on
the algorithms for initial placement of the OS containers. In this respect, Dong et al. (Dong, Zhuang, &
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Figure 6. The difference between the original bin packing problem and its variation for the resource

allocation
Source: Pandit et al., 2014
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Rojas-Cessa, 2014) proposed a greedy OS container placement scheme, the most efficient server first
or MESF, that allocates containers to the most energy efficient machines first. For each container, the
most energy efficient machine is the server that shows the least rise in its energy consumption while
hosting the container. Simulation results using an actual set of Google cluster data as task input and
machine set show that the proposed MESF scheme can significantly improve the energy consumption
as compared to the Least Allocated Server First (LASF) and random scheduling schemes. In addition,
a new perspective on evaluating the energy consumption of a cloud data center is provided considering
resource requirement of tasks along with task deadlines and servers’ energy profiles.

Pandit et al. (Pandit, Chattopadhyay, Chattopadhyay, & Chaki, 2014) also explored the problem of
efficient resource allocation focusing on the initial placement of containers. The problem is modeled
utilizing a variation of multi-dimensional bin packing. CPU, memory, network and storage of PMs are
all considered as each dimension of the problem. In a general n-dimensional bin-packing problem, there
exist n sub-bins of different sizes that must be filled with objects. The resource allocation problem is
different from the general form, since if any sub-bin of a bin reaches its capacity (e.g. CPU), then the bin
is considered full while in the original problem this is not the case. Figure 6 demonstrates this difference.
In order to design an efficient resource allocation algorithm, Pandit et al. (Pandit et al., 2014) applied
Simulated annealing (SA). SA is a technique used to find optimal or sub-optimal solution for NP Hard
problems such as the bin packing problem and it is often applied for discrete search space. The proposed
resource allocation algorithm is demonstrated to be more efficient in terms of resource utilization when
compared to the commonly used First Come First Serve (FCFS) allocation policy.

OS containers are also utilized in Mesos (Hindman et al., 2011) to provide the required isolation for
workload. Mesos platform enables sharing commodity clusters between cluster computing frameworks
with different programming models. The main objective of Mesos is efficient utilization of resources
through sharing and also avoiding data replication for each framework. Hindman et al. (Hindman et al.,
2011) proposed a two-level scheduling for the Mesos platform called resource offers. For the first level
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of the scheduling, Mesos identifies the amount of required resources for each framework. The second
level scheduling is performed by the scheduler of each framework, therefore the scheduler has the abil-
ity to accept or reject the resources while deciding about the placement of the tasks. Mesos used Linux
Containers and Solaris technologies for the workload isolation. The framework is tested through applying
both CPU and IO-intensive workloads derived from the statistics of Facebook cloud backend traces. The
studied workloads are derived from the applications that are developed utilizing both Hadoop and MPI
programming model. Results show that Mesos is highly scalable and fault tolerant and can improve the
resource utilization with less than 4% overhead.

Application Containers

Contrary to OS containers that run multiple processes and services, application containers are dedicated
to a single process and are built upon OS containers. The single process in each container is the process
that runs the residing application (Nagy, 2015). Application containers can be considered a new revolu-
tion in the cloud era since containers are lightweight, easier to configure and manage, and can decrease
the start-up time considerably. Docker(Merkel, 2014) and Rocket (Rocket, 2016) are examples of ap-
plication containers. These containers are the building block of modern PaaS. Regular provisioning and
de-provisioning of these containers, this happens during the auto-scaling, along with their unpredictable
workloads results in cloud resource wastage and consequently more energy consumption. Therefore,
like OS containers, designing optimal placement algorithms is the major challenge for container-based
cloud providers.

Containers are fast to deploy because of their low overhead. Therefore, to simplify the development
of applications, Spicuglia et al. (Spicuglia, Chen, Birke, & Binder, 2015) proposed OptiCA in which
applications execute inside containers. The aim of the proposed approach is to achieve the desired
performance for any given power and capacity constraints of each processor core. Although the focus
in OptiCA is mainly on effective resource sharing across containers under resource constraints, it still
reduces power consumption through considering energy as one of the constraints.

Anselmi et.al (Anselmi, Amaldi, & Cremonesi, 2008) investigated the Service Consolidation Problem
(SCP) for multi-tier applications with the objective of minimizing the number of required servers while
satisfying the Quality of Service defined by applications’ response time. For modeling the data center,
queueing networks theory is utilized since it is capable of capturing the performance behavior of service
systems. A number of linear and non-linear optimization server consolidation problems are defined and
solved through a number of heuristics. Heuristics are chosen as they solve the optimization problems in
a shorter amount of time with a considerable accuracy when compared to the standard Integer Linear
Programming (ILP) techniques. This work solves SCP and finds the best data-center configuration with
the least cost while satisfying the required end-to-end response time of applications.

In the same direction, Rolia et al. (Rolia, Andrzejak, & Arlitt, 2003) investigated the SCP problem
with the objective of minimizing the number of required servers through application consolidation.
Enterprise applications are studied and their resource utilization is characterized. Like Anselmi et al.
(Anselmi et al., 2008), linear integer programming is considered as one of the solutions and ILP is further
compared with the genetic algorithms. The techniques are validated through a case study considering
the workload of 41 servers. Results show that the linear integer programming model outperforms the
genetic algorithm in terms of the required computation with a satisfactory accuracy in estimating the
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Figure 7. System level virtualization energy efficient management techniques
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resource utilization. However, the proposed technique is not evaluated for large-scale data centers con-
taining thousands of servers.

Mohan Raj et al. (Mohan Raj & Shriram, 2011) also focused on minimizing the energy consump-
tion of the data center through consolidation of applications on physical machines (PM). An end-to-end
Service-Level Agreement (SLA)-aware energy efficient strategy is presented in (Mohan Raj & Shri-
ram, 2011) and the main objective is having an strategic workload scheduling for maximizing energy
efficiency of the data center. Tasks are consolidated on virtual machines so that the number of active
servers is reduced. Contrary to the previous discussed works (Anselmi et al., 2008; Rolia et al., 2003)
synthetic workloads following the Poisson distribution are applied for the simulations to model the web
server workloads. Containers are placed on the PMs that utilize the least energy rise. SLA is maintained
through a control theoretic method and the requests of applications are accepted considering the SLA
along with the data center capacity. The presented model is a queue-based routing approach and Holt-
Winters forecasting formula is utilized for improving the SLA through decreasing the cost incurred by
the times system waits for a PM to startup or to shut down. The proposed algorithm is also applicable
in virtualized environments, where applications execute on virtual machines instead of directly on PMs.

System-Level Virtualization (Virtual Machines)

The virtual machine’s idea originated from simulated environments offered for software development
when testing on real hardware was unfeasible (Goldberg, 1974). In this respect, a specific environment
was simulated considering the required processor, memory, and I/O devices. Later, this idea was im-
proved to develop efficient simulators to provide copies of a server on itself. The improvement is done
so that the program running on each copy can be executed directly on the hardware without requiring
any software interpretation. These copies (simulated environments) are referred to as virtual machine
systems, and the simulated software is referred as the virtual machine monitor (manager) (VMM) or
the hypervisor (Goldberg, 1974). This kind of virtualization is referred as system-level virtualization.
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Figure 8. System-level virtualization energy efficient management techniques
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In system-level virtualization, the VM communications happens through the hypervisor with more
overhead than the OS standard calls for containers. However, communicating through VMM offers a
stronger layer of isolation and is more secure than containers (Nagy, 2015). In addition, system-level
virtualization enables VMs with any type of OS to be installed on a host (Figure 7). Moreover, this
technology enables consolidating virtual machines (VM) on physical machines (PMs) to reach higher
and efficient utilization levels of PMs. The virtualization technology also improves the deployment time,
and the operating costs.

As depicted in Figure 8, energy management technique applied for system-level virtualization are
categorized into five groups namely virtual machine consolidation, overbooking, VM placement, VM
sizing, and DVFS. The research in this area is summarized in Table 5 - 7. In the rest of this section, we
discuss these techniques with more details.

VM CONSOLIDATION

The hypervisor technology enables consolidation of virtual machines on physical servers. There is a vast
body of literature investigating VM consolidation algorithms that can improve the energy consumption of
data centers. The consolidation problem can be divided into three main sub-problems which are depicted
in Figure 9. The techniques are grouped according to the sub problem it investigates.

Techniques Investigating Migration Triggers (When to Migrate?)

Virtual machine consolidation is shown to be an effective way to minimize the energy consumption of
cloud data centers. However, identifying the right time to trigger migration is crucial especially when
the host is overloaded. This ensures a certain level of Quality of Service (QoS).

Gmach et al. (Gmach, Rolia, Cherkasova, & Kemper, 2009) proposed an energy-efficient reactive
migration controller thatidentifies situations in which the hosts are determined overloaded or underloaded.
The overload and underload detection is defined when the server’s CPU and memory utilization goes
beyond or under a given fix threshold respectively. The same approach is applied in (A. Beloglazov, 2010)
and the effect of these two thresholds on the overall data center energy consumption and SLA violations
is studied. 30% and 70% is shown to be the efficient underload and overload threshold considering the
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Table 5. Energy efficient research considering system-level virtualization

Authors Workload SLA Energy Saving Energy Model
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follow a uniform random
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2010) ” | prediction and its statistics (on CPU component) PH=P +af—f

as it uses the queueing min Smin
information to learn and adapt
to unpredictable changes in the
workload pattern
Enterprise application
Gmach workloads analysis is utilized VM Consolidation
et al.(Gmach et for estimating the under-load Response Time . Linear Power Model (CPU only)
al., 2009) and over-load situations for (When to migrate)

hosts

The time during

VM Consolidation

Beloglazov et al. which host (What triggers migration
(A. Beloglazov & | PlanetLab Worklaod experience e Linear Power Model (CPU only)
R. Buyya, 2010) is identified with fixed Under-load
: ? and Over-load thresholds)
overloaded
VM Consolidation
Beloglazov The time during | (What triggers migration
et al. (Anton which host with automatic under-
Beloglazov & PlanetLab Workload experience load and overload Linear Power Model (CPU only)
Rajkumar Buyya, is identified detection algorithms
2010) overloaded along with two VM
selection approaches)
VM Consolidation
Beloglazov PlanetLab Workload, The A QoS goal (What triggers migration
et al. (Anton approach is independent of as an input of with optimally adjustin .
Beloglazov & v&fg‘kload includﬁ)g stationary consoligation the ové)rload t}lllresjhold ® | Linear Power Model (CPU only)
Buyya, 2012) and non-stationary workloads | algorithm and selecting the right
VM to migrate)
Response time VM Consolidation

Meng et.al (Meng
et al., 2010)

VM workloads of a
commercial data center

(Considering
a performance
constraint for
each VM)

(Where to migrate
considering the Statistical
Multiplexing approach)

NA

total energy consumption and average SLA violations. Contrary to Gmach et al. (Gmach et al., 2009),
the proposed approach (A. Beloglazov, 2010) is not dependent on the type of workload.

Beloglazov et al. (Anton Beloglazov & Rajkumar Buyya, 2010) improved the aforementioned ap-
proach (A. Beloglazov, 2010) so that the under-load and over-load thresholds are automatically adjusted.
The previous approach for triggering the migration is modified since fixed values for thresholds are not
suitable for cloud environments in which the workload’s behavior is unknown and dynamic. The automa-
tion is performed through statistical analysis of the historical data from virtual machines workload. CPU
utilization of the host is assumed to follow the t-distribution so that the sample mean and the standard
deviation of the distribution can be used for determining the overload thresholds of each host. However,
only one underload threshold is defined for the whole system. The adoptive approach shows a consider-
able improvement in terms of the QoS when compared to the fixed thresholds while it still saves energy.
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Figure 9. The consolidation sub problems which need to be answered for a general consolidation problem
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Cloud providers should be able to ensure the Quality of Service (QoS) that they have promised to
costumers. In the consolidation process, this QoS might be degraded because of the hosts being over-
loaded. In this respect, Beloglazov et al. (Anton Beloglazov & Buyya, 2012) proposed a technique for
host overload detection that ensures QoS while saving energy. The proposed approach can find the opti-
mal solution for the overload detection problem considering any known stationary workload. The main
objective is maximizing the intermigration time considering a given QoS goal based on a Markov chain
model. In order to handle the nonstationary workloads which are unknown, a heuristic-based approach is
presented that utilizes the Multisize Sliding Window technique for workload estimation. The algorithm
is validated through simulations considering PlanetLab VMs traces as the input workload. The technique
is proven to provide up to 88% of the performance of the optimal offline algorithm.

Techniques for Choosing VMs to Migrate (What to Migrate?)

When migration is triggered, the second step is selecting the appropriate virtual machine to migrate.
For under-load hosts, it is clear that all the VMs should be migrated so that the host can be shut down
or put in a lower power state. For overloaded hosts only a couple of VMs are needed to be migrated so
that the host is no longer overloaded.

Beloglazov et al. (Anton Beloglazov & Buyya, 2012), investigated the problem of VM selection poli-
cies in the consolidation process. Three different VM selection algorithms are studied namely random
selection (RS), maximum correlation (MC), and the Minimum Migration Time (MMT) policies. The
RS policy chooses VMs randomly until the host is not overloaded anymore. The MC policy chooses the
VM with the maximum correlated workload with the other co-located VMs. The MMT policy selects
the VM with the least migration time.

The performance of these policies are validated through simulation and the VM types are derived
from Amazon EC2 instance Types (AWS, 2016). PlanetLab’s workload (PlanetLab, 2016) is used as
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Table 6. Energy efficient research considering system-level virtualization
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the CPU utilization of the VMs. Since the applied workload is for single core VMs, the VM types are
all assumed to be single-core and the other resources are normalized accordingly.

The performance of the algorithms is compared considering the total energy consumption by the
physical servers of the data center and the SLA violations. Considering the results, the MMT selection
policy outperforms the MC and RS policies in terms of the total joint power consumption and the SLA
violations. Minimization of the VM migration time is proven to be more important than the correlation
between the VMs allocated to a host.

Beloglazov et al. (Anton Beloglazov & Rajkumar Buyya, 2010) also compared two other VM selec-
tion policies including Minimization of Migrations (MM) and Highest Potential Growth (HPG) with
the RS. The MM algorithm selects the least number of VMs to migrate with the objective of decreasing

426



A Surveyand Taxonomy of Energy Efficient Resource Management Techniques in Platform as a Service Cloud

Table 7. Energy efficient research considering system-level virtualization

Authors Workload SLA Energy Saving Energy Model
Kiein Response time and
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Assuncao 747 VM request workloads Makes sure that most of Efficient allocation of resources
et al. (Assuncao feques 4% 1 the workloads can fit into Decreasing the number of required | NA

are classified.
etal., 2012) selected templates templates

the migration overhead. HPG chooses VMs with the lowest CPU usage compared to their requested
amount, aiming at reducing the SLA violations through avoiding the total potential increase. It is shown
that MM, which reduces the number of migrations, outperforms the other two algorithms in terms of
the SLA violations and data center energy consumption.

TECHNIQUES INVESTIGATING MIGRATION
DESTINATION (WHERE TO MIGRATE?)

When the migration is triggered and the virtual machines are selected for migration, it is the time to
find a new destination for the selected VMs. Here, we describe techniques considered for finding new
placement/destination for migrating virtual machines.

Interference-Aware VM Placement Algorithms

Virtualization improves resource utilization efficiency and consequently the energy consumption of cloud
data centers by enabling multi-tenant environments in which diverse workload types can exist together.
VM consolidation and resource overbooking improve energy savings in cloud environments. However,
overbooking might affect the performance of virtual machines that are co-located on each server VM
(Nathuji, Kansal, & Ghaffarkhah, 2010). The high-competitions for resource incurred between co-hosted
VMs and the resource sharing nature of virtualized environment might cause performance degradation
and more energy consumption. The degradation effect of co-located VMs on the performance of each
other’s applications on the same VM is known as performance interference phenomenon.

Moreno et al. (Moreno, Yang, Xu, & Wo, 2013) investigated the impact of this phenomena on the
energy efficiency in cloud data centers. The problem is formulated for the virtual machine placement
and is modeled utilizing the Google cloud backend traces to leverage cloud workload heterogeneity.
Google tasks are grouped according to their CPU, memory and length. Three types referred as small,
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medium and large are extracted through applying K-means clustering algorithm on the 18th day of the
trace that has the highest submission rate. The VM placement decision is made considering the current
performance interference level of each server. The interference aware VM placement algorithm is com-
pared, via simulation, with the Google FCFES algorithm and shown to reduce the interference by almost
27.5% while saving around 15% of energy consumption.

As mentioned previously, the performance interference might degrade the QoS for real time cloud
applications and consequently result in SLA violations and the placement/packing of VMs play an
important role on the performance interference, since it is dependent on the workload of the co-located
VMs. In this respect, Caglar et al. (Caglar, Shekhar, & Gokhale, 2013) presented an online VM placement
technique included in the hALT (harmony of Living Together) middleware. hALT takes into account
workload characteristics of the VMs along with the performance interference for finding placement for
each VM. Machine Learning techniques are used for the online placement and the system is trained
utilizing the results from an offline workload characterization. The presented framework contains three
main parts, namely Virtual machine classifier, neural networks, and the decision making placement. A
brief analysis of the Google cloud backend traces is presented. The analysis of the 3 days of the traces
is utilized for training the classifier.

Each task in the Google traces is considered as a VM. CPU utilization, memory, and the CPI of tasks
are used for the classification purpose. CPI attribute shows the “Cycle Per Instruction’ metric and is used
as a performance metric since it can well present the response time for compute-intensive applications
(Zhang et al., 2013). Therefore, tasks that utilize more than 25% of the CPU and are compute intensive
are considered for evaluation of the framework. Decrease CPI results in better performance, a result that
had been demonstrated by the previous study.

Back propagation-based artificial neural networks (ANN) (Hecht-Nielsen, 1992) is used as the clas-
sifier that predicts the performance interference level. This is used to determine the best placement of
the VM. The ANN is trained using the VM utilization patterns of each class of VMs, which is defined
by the k-means clustering algorithm. The number of VM classes is estimated based on the maximum
Silhouette value (Kaufman & Rousseeuw, 2009; Rousseeuw, 1987) and is determined to be 6 for the
studied data set. The effect of the performance interference on the energy consumption is not investi-
gated. The other drawback of the work is when the VM migration is triggered the ANN should run for
every server in the data center, which may cause delays and overhead for large data centers. This can be
avoided through new techniques in the search process.

Multiplexing Placement Algorithms

The other technique that is widely applied to find the new placement for selected VMs is Statistical
Multiplexing. Multiplexing means sharing a resource between users with the objective of increasing the
bandwidth utilization. This method has been applied to a variety of concepts including MPEG transport
stream for digital TV (Haskell, Puri, & Netravali, 1997), UDP and TCP (Forouzan, 2002) protocols.
Meng et.al (Meng et al., 2010) applied the Statistical Multiplexing concept to VM placement in
the server resources are multiplexed to host more VMs. In the proposed approach, called joint-VM
provisioning, multiple VMs are consolidated together according to their workload patterns. Statistical
multiplexing enables the VM to borrow resources from its co-allocated VMs while it is experiencing
its workload spikes. In order to satisfy QoS requirements, a performance constraint is defined for each
VM. This constraint ensures the required capacity for a VM to satisfy a specific level of performance
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for its hosted application. Three different policies are proposed for defining the performance constraint,
selecting the co-located VMs, and estimating the aggregated resource demand of multiplexed VMs with
complementary workloads. The VM workloads of a commercial data center are applied for evaluation
purposes and the results show that the joint-VM provisioning is considerably efficient in terms of the
energy consumption.

Chen et al. (M. Chen et al., 2011) investigated the problem of VM placement with the focus on con-
solidating more VMs on servers. The VM placement is formulated as a stochastic bin packing problem
and VMs are packed according to their effective size (ES), which is defined considering Statistical Mul-
tiplexing principles. This principle takes into account the factors that might affect the servers aggregated
resource demand on which the VM is placed. The effective size is originated from the idea of effective
bandwidth; however it is extended to consider the correlation of VM workloads. In this respect, the ES
of a VM is affected by its own demand and its co-located VMs considering the correlation coefficient.
The proposed VM placement algorithm with the order of O (1) is applied to find the best destination
for VMs. Poisson and normal distributions are considered for the VM workloads. The system is also
validated through simulation applying a real cloud workload trace. The effective sizing technique adds
around 10% to 23% more energy saving than a generic consolidation algorithm. The optimization is
performed considering only one dimension, which is CPU demand of VMs.

Correlation Aware VM Placement

Verma et al. (Verma, Dasgupta, Nayak, De, & Kothari, 2009) are among the first researchers to take into
account correlation between workloads of co-allocated VMs in the proposed consolidation approach.
The idea is initiated from a detail study of an enterprise server workload, the distribution of the utiliza-
tion and spikes of the workload while considering workloads statistic metrics including the percentiles
and average. According to the analysis, average is not a suitable candidate for sizing the applications
since the tail of the distribution of the utilization does not decay quickly for most of the studied servers.
Therefore, if the sizing is performed based on the average, it might result in QoS degradation. However,
the 90-percentile and the cross correlation is shown to be fairly stable and consequently are the best
metrics for application sizing purpose. Two correlation-aware placement algorithms, Correlation Based
Placement (CBP) and Peak Clustering based Placement (PCP), are proposed considering the insights from
the workload characterization. The placement algorithms are implemented as a part of a consolidation
planning tool and further evaluated utilizing traces from a live production data center. PCP achieves more
energy savings than PCB and also improves the QoS through an extra metric to ensure that co-allocated
workloads’ peak do not lead to violations.

Similarly, Meng et al. (Meng et al., 2010) also utilized correlation of VMs in their proposed joint-VM
provisioning approach. In this approach, multiple VMs are consolidated in a way that the underutilized
resources of one VM can be used by the co-located VM at its peak.

Quality of Service (QoS) is important in a cloud environment especially for scale-out applications
(Ferdman et al., 2012) such as MapReduce (Dean & Ghemawat, 2008) and web searches. Therefore,
Kim et.al (Jungsoo Kim, Ruggiero, Atienza, & Lederberger, 2013) investigated the VM consolidation
problem concentrating on the aforementioned applications. Scale-out applications are different from
HPC workloads in terms of the workload variance resulted from their user-interactive nature. This high
variance is caused by external factors such as number of users and makes these workloads less predict-
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Figure 10. VM sizing techniques categorized in two major groups including static and dynamic sizing
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able. The other difference is that scale-out applications are latency sensitive and should maintain users
expectations and consequently satisfy the SLA.

In order to save power consumption, DVFS is considered in conjunction with the VM consolidation.
The voltage and the frequency are defined considering the correlation between the VMs’ workloads
which ensures that the expected QoS is achieved. The approach is verified through real implementation
of distributed web search applications. The approach is also validated for large scale cloud workloads
and compared with a correlation aware placement approach (Verma et al., 2009). The comparison shows
that this approach outperforms the aforementioned technique by 13.7% and 15.6% in terms of the energy
saving and QoS improvements.

Overbooking

Overbooking is an admission control method to improve resource utilization in cloud data centers. In
general, cloud users overestimate the VM size they need to avoid risk of resource shortage. This provides
the opportunity for providers to include an overbooking strategy (Tomas, Klein, Tordsson, & Hernandez-
Rodriguez, 2014) in their admission control system to accept a new user based on anticipated resource
utilization and not on the requested amount. Overbooking strategies mostly rely on load prediction tech-
niques and manage the tradeoff between maximizing resource utilization and minimizing performance
degradation and SLA violation.

Based on the resources considered for overbooking, research works can be classified into two main
categories. The first category (He, Ye, Fu, & Elnikety, 2012; Jinhan Kim, Elnikety, He, Hwang, & Ren,
2013) only considers CPU and the second category (Tomas et al., 2014; Tomas & Tordsson, 2014)
considers I/O and memory along with CPU. Commonly, after the overbooking phase, the majority of
approaches (Hu et al., 2013; Svird, Hudzia, Tordsson, & Elmroth, 2011) mitigate the risk of overbook-
ing by dealing with overload of VMs on a limited number of servers. However, when the data center is
overloaded, such techniques are no longer effective.

One way to deal with such challenges (which is of interest for PaaS provider) is to collect the statis-
tics regarding application performance metrics and then, based on the priority of application and users,
degrade user experience and reduce utilization of resources. There are a number of application-aware
approaches proposed in the literature (He et al., 2012; Jinhan Kim et al., 2013). However, they are
application-specific and only consider CPU. To this end, Klein et al. proposed brownout (Klein, Maggio,
& Hernandez-Rodriguez, 2014), a programming paradigm that suits cloud environments and considers
CPU, 10 and memory. In a PaaS environment, brownout is integrated to an application in three phases.
In the first phase, the application owner (with the incentive of receiving discount on service cost) reveals
which part of the hosted application can be considered non-compulsory. This part of application can
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be discarded to decrease the resource requirements. In the second phase, brownout decides how often
the non-compulsory computation can be discarded. Finally, in the last stage, when there is not enough
capacity, brownout lessens the number of requests served with the non-compulsory part.

VM Placement

Among resource management policies, the initial placement of VMs plays an important role in the overall
data center performance and energy consumption. A strategic placement of VMs can further improve
the system overhead through decreasing the required number of migrations. Kabir et al. (Kabir, Shoja,
& Ganti, 2014) investigated the issue assuming a hierarchical structure as a favoured deployment model
for cloud service provider that consists of cloud, cluster, and hosts. This model helps in appropriately
managing the geographical distributed infrastructure to achieve scalability. This hierarchical structure
needs a VM placement approach that smartly provides cloud cluster, and node selection mechanisms to
minimize resource fragmentation and improve energy efficiency.

In general, the placement strategies can be categorized into two classes, namely centralized and
hierarchical. Khosravi et al. (Khosravi, Garg, & Buyya, 2013) proposed a centralized VM placement
algorithm for distributed cloud data centers with the objective of minimizing both power consumption
and carbon footprint. An information system that has the updated status regarding cloud, cluster, and
host utilization is considered that enables centralized decision making and resource optimization. They
considered distributed data centers with diverse carbon footprint rates and PUE values and provided a
comprehensive comparison on energy efficiency of different combinations of bin-packing heuristics.
They concluded that the proposed approach called energy and carbon-efficient (ECE) VM placement
saves up to 45% carbon footprint and 20% of power consumption in data centers.

Similarly, Forestiero et al. (Forestiero, Mastroianni, Meo, Papuzzo, & Sheikhalishahi, 2014) proposed
EcoMultiCloud, a hierarchical approach for workload management that offers an energy efficient VM
placement in a multi-site data center. Their proposed architecture consists of two main layers. The upper
layer is responsible for the assignment of workload (virtual machine requests) among remote sites and
lower layer places virtual machines to hosts in each site. The proposed hierarchical approach achieves
same energy efficiency as ECE (centralized solution), and offers more flexibility. This is because, as
a hierarchical approach, it allows single data centers to select their internal VM placement algorithms.

VM Sizing

Virtualization technology provides the opportunity for applications to share the underlying hardware
with secure isolation (Meng et al., 2010). Virtual machines configuration, in terms of the amount of
resources (CPU, memory and I/O), are pre-defined by the cloud provider in most of the cloud service
models. VM configuration is important for the resource allocation process where a host with enough
resources need to be chosen to host the VM. Such VM placement process may ultimately affect the
energy consumption of the data center.

Therefore, the efficiency of VM placement can be achieved by three different approaches. In the
first approach, VMs are assigned to hosts according to their fix sizes and consolidated to less number of
servers without change of configuration. This approach is discussed with details in the VM consolida-
tion section (A. Beloglazov, 2010; Gmach et al., 2009)beloglazov_adaptive_2010 (Anton Beloglazov
& Buyya, 2012) Morenolnference:2013 (Moreno, Yang, et al., 2013) . The second approach is tailoring
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Figure 11. Hybrid virtual environment
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virtual machine configuration to the workload, which can be achieved through characterization of the
applications workload. These two approaches are considered as Static VM Sizing (Figure 10). Finally,
the third approach is adjusting the VM’s configuration to match its workload in runtime (Meng et al.,
2010) and is known as Dynamic VM Sizing (As shown in Figure 10).

Static VM Sizing

Assuncao et al. (Assuncao et al., 2012) proposed CloudAffinity, a framework to match physical servers to
VM instances called as CloudMates. This framework enables organizations to move their workloads to
the cloud while choosing optimal number of available VM templates considering their budget constraint.
CloudAffinity considers CPU, memory, and disk requirement of each server and chooses the optimal
number of VM templates minimizing the user’s cost based on the predefined Quality of Service (QoS).
The QoS is defined as the percentage of the requests which are satisfied by each VM template. The ef-
fectiveness of the VM template matching is investigated through three metrics including cost, Euclidean
distance, and Matching factor. The cost metric shows the amount of money that the user should pay to
maintain a cloud instance and this cost differs from one instance to the other. The Euclidean distance
metric is the distance between the cloud provider’s template and the user’s requirement in terms of the
resources including CPU, memory and disk. The Matching factor metric shows the percentage of the
difference between customer’s requirement and what the template offers for each VM.

Piraghaj et al.(S.F. Piraghaj et al., 2015) also investigated the effect of virtual machine configurations
on the total energy consumption of the data center. However, Piraghaj et al.(S.F. Piraghaj et al., 2015)
tailored the VM configurations to the workload, instead of choosing from the available configurations
which is the case of CloudAffinity (Assuncao et al., 2012).
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Table 8. Energy efficient research considering hybrid virtual environment

Authors Workload SLA Energy Saving Energy Model
Dhyani . .
et al. (Dhyani et Synthetic Workload NA Efficient allocation of NA
al., 2010) resources
Bichler Traces from 30 dedicated Zﬁggﬁgﬂl—e;;gzzsm the
et al. (Bichler et servers hosting different types | NA . . < NA
L R number of required servers
al., 2006) of application services . L.
for hosting applications
Tehana An enterprise Internet Service degradation
application benchmark threshold defined at -
et al. (Tchana et . . Software Consolidation NA
al. 2015) (SPECjms2007 benchmark start time for each
v http://www.spec.org/jms2007/) | application
SLA violation
(SLAV) is modeled
Yaqub High variability datasets from Z:t;lg;: E(());l:i(cilerin
q Google are characterized for g Software Consolidation, Linear Power Model
et al. (Yaqub et . . performance . -
OpenShift cloud which can . Container migration (CPU only)
al., 2014) span multi-domain TaaS degradation due to both
P ’ migration (PDM) and
contention on machine’s
resources (PDC)
Almeida Transactional web services
et al. (Almeida et Workload is classified .1nto Response time Efficient resource allocation | NA
al., 2006) independent Web service (WS)
” classes.

In order to have efficient configurations, VM sizes are tailored to the workload. In this respect, an
analysis of the system workload is inevitable. The work is carried out in three major steps, firstly the
usage patterns of tasks are studied and the similarities in these patterns initiated the idea of grouping
the tasks according to their utilization in terms of CPU and memory. In the second step, the clustering
output is used for identifying the VM configuration for each group of tasks separately and in the third
step, each group of tasks is mapped to a corresponding VM size. The presented approach is validated
through simulation and Google backend data is utilized as the input workload. The efficiency of the
identified VM sizes through the proposed technique is further compared with some of the Amazon EC2
instances. It is also provided that workload characterization and the utilized feature-set play an important
role on the efficiency of the identified VM sizes. In this respect, two different feature sets are selected
for clustering the tasks. The first set contains the scheduling class', submission rate and the length of the
task along with the average resource utilization including memory and CPU, and disk. While the second
feature set only contains the average CPU and memory utilization of tasks during the studied period (1
day of the trace). The second clustering feature set is shown to identify more efficient VM sizes in terms
of the required number of servers and the number of instantiated VMs.

Dynamic VM Sizing
In dynamic VM sizing, the approach estimates the amount of the resources that should be allocated

to a VM with the objective of matching the VMs resources to its workload. The VM sizing should be
carried out in a way that to avoid SLA violations resulted from under-provisioning of resources. Meng
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et al. (Meng et al., 2010), present a provisioning approach in which the less correlated VMs are packed
together and an estimate of their aggregate capacity requirements is predicted. This approach applies
statistical multiplexing considering dynamic VM resource utilization and it makes sure that the utiliza-
tion peaks of one VM do not necessarily coincide with the co-allocated VMs. Hence, the amount of
resources allocated to each VM varies according to its workload.

Chen et al. (M. Chen et al., 2011) also investigated the problem of VM sizing in the provisioning
process, so that more VMs can be hosted on servers. The estimated VM sizes are referred as effective
size (ES) (“OpenVZ Virtuozzo Containers Wiki,”), which is determined through Statistical Multiplexing
principles. These principles take into account the factors that might affect aggregated resource demand
of the server on which the VM is placed. The effective size of a VM is affected by both its own demand
and its co-allocated VMs considering the correlation coefficient. This effective sizing technique is
demonstrated to save more energy than a generic consolidation algorithm.

Dynamic Voltage and Frequency Scaling (DVFS)

In addition to the Bare Metal environment, Dynamic Voltage Scaling has also been applied to virtualized
environments. Laszewski et al. (von Laszewski et al., 2009) focused on the design and implementation of
energy-efficient VM scheduling in a DVFS-enabled compute clusters. Jobs are assigned to preconfigured
VMs and the VMs are shutdown when the jobs finish. The solution is proposed for high performance
cluster computing, however since they consider virtualization technology, it can be implemented in a
cloud environment as well. The scheduling algorithm operates considering two main approaches. It either
optimizes the processor power dissipating by running the CPU at lower frequencies with the minimum
effect on the overall performances of the VMs or schedules the VMs on CPUs with low voltages and
tries not to scale up the CPU voltage.

Urgaonkar et al. (Urgaonkar, Kozat, Igarashi, & Neely, 2010) investigated the problem of optimal
resource allocation and power efficiency in cloud data centers through online control decisions.

These decisions are made utilizing available queueing information in the system and the Lyapunov
optimization theory. Heterogeneous applications with volatile workloads are used to show that the presented
approach can handle unpredictable changes in the workload since it is not dependent on any prediction
or estimate of the workload. In the studied system, applications execute inside virtual machines and each
application can have multiple instances running across different VMs. Dynamic Voltage and Frequency
scaling of CPU is applied for improving the energy consumption of the data center. The frequency of
CPU is decided according to the workload by the Resource Controller, which is installed on each server.

Authors conclude that DVFS does not always result in more energy savings and operators should
also consider utilizing the low power modes available in modern processors which might provide better
energy savings with the least performance degradation.

Hybrid
The hybrid virtualization model shown in Figure 11 is a combination of system and OS-level virtualiza-
tion approaches. The containerization technology used in this model is mainly application containers

such as Docker (Merkel, 2014), which was explained previously. This new model is currently provided
by Google Container Engine and Amazon ECS as a new cloud computing service called Container as a
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Service. Running containers inside virtual machines provides an extra layer of isolation while ensuring
the required security for users. Research in this area are summarized in Table 8.

As discussed, VM consolidation can be utilized for reducing energy consumption in data centers.
However, VM consolidation is limited by the VMs memory (Tchana et al., 2015) and unlimited num-
ber of VMs can not be mapped on a physical machine (PM). Therefore, in order to save more energy,
VM’s resources should also be utilized efficiently. This problem is tackled in the hybrid model through
consolidation of containers on VMs, which further improves the utilization of VMs resources. This ap-
proach is introduced by Tchana et al. (Tchana et al., 2015) and is called Software/Service Consolidation
problem (SCP). In the SCP problem, several software/services are dynamically collocated on one VM.
The objective is reducing the number of VMs and consequently decreasing the population of PMs along
with the data center power consumption. In order to provide the required isolation, applications execute
inside Docker containers. The problem is modeled utilizing Constraint Satisfaction Programming (CSP)
and the Software Consolidation is carried out along with the VM consolidation. In order to accelerate
the software consolidation process, the search domain is reduced considering a couple of boundaries
such as containers collocation constraints. One of the limitations of this approach is the OS of the VM
hosting the container, since unlike virtual machines, containers share the OS with their host.

Yaqub et al. (Yaqub et al., 2014) also investigated SCP in PaaS Clouds. This problem is framed
leveraging the Google definition of Machine Reassignment model for the ROADEF/EURO challenge
Roadef (2016) and was extended for RedHat’s public PaaS (OpenShift (OpenShift, 2016)). Four Meta-
heuristics are applied to find solutions for (re)allocations of containers. The solutions are then compared
and ranked considering SLLA violations, energy consumption, resource contention, migrations, machine
used, and utilization metrics for four different cloud configurations. Contrary to (Tchana et al., 2015),
no boundaries are considered to reduce the search domain for the Meta-heuristics to speed up the con-
solidation process.

Almeida et al. (Almeida, Almeida, Ardagna, Francalanci, & Trubian, 2006) investigated the SCP
problem in a Service-Oriented Architecture. The problem was divided into two related sub-problems,
short-term resource allocation and long-term capacity planning. The short-term resource allocation
problem has a short-term impact on the revenue and its solution determines the optimal resource al-
location to different services while increasing the revenue obtained through SLLA contracts. However,
the answer to long-term problem determines the optimal size of the service center that maximizes the
long-term revenue from SLA contracts along with decreasing the Total Cost of Ownership (TCO). These
problems are modelled in the proposed framework and a deep analysis of effects of short-term resource
allocation is provided. A model is presented for identification of the optimal resource allocation in order
to maximize the revenues of the service provider while meeting the required QoS. Resource utilization
and the associated costs are also taken into account. The proposed optimal model is fast in terms of the
computation speed, which makes it a good candidate for online resource management. Transactional
Web services are considered as the hosted applications in the data center. The services are categorized
into sub-classes because of the volatility of the web server workloads. Each VM is responsible for one
class of web servers (WS). In order to insure the quality of service for each class of the WS, admission
control is employed on top of each VM which decides to accept or reject the requests.

Dhyani et al. (Dhyani, Gualandi, & Cremonesi, 2010), introduced a constraint programming approach
for the SCP problem. The research objective is decreasing data center cost through hosting multiple
services running in VMs on each host. The SCP is modeled as an Integer Linear Programming (ILP)
problem and compared with the presented solution through constraint programming. The constraint
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programming approach can find the solution in less than 60 seconds. However, ILP could find a better
solution if it could meet the 60 seconds deadline. Therefore, constraint programming is found as a better
solution comparing to ILP for SCP problem considering the algorithm speed.

Bichler et al. (Bichler, Setzer, & Speitkamp, 2006) also investigated the problem of capacity planning.
An IT service provider hosting services of multiple customers is investigated in a virtualized environ-
ment. Three capacity planning models are proposed for three allocation problems. These problems are
solved through multi-dimensional bin-packing approximate algorithms and the workloads of 30 services
are applied as the input of the system.

Piraghaj et al. (S. F. Piraghaj, Dastjerdi, Calheiros, & Buyya, 2015), investigated energy-efficient
resource management algorithms for container as a Service (CaaS) cloud model. A framework is pre-
sented to tackle the energy efficiency issue in the context of CaaS through container consolidation. The
CaaS environment is modeled and four sets of simulation experiments are carried out and their impact
on system performance and data center energy consumption is evaluated. Four placement algorithms
are utilized for identifying the destination host.

A container selection algorithm is responsible for selecting the containers to migrate from an over-
loaded host. Three selection algorithms including random, correlation aware, which selects the most
correlated container with the host load, and the most utilized container in terms of CPU are compared.
The algorithm which selects the most correlated container is identified the most efficient one in terms
of the energy consumption.

WORKLOAD CHARACTERIZATION AND MODELING

There is a growing body of research on resource management techniques with the focus on minimizing
the energy usage in cloud data centers (Kansal, Zhao, Liu, Kothari, & Bhattacharya, 2010; Nathuji &
Schwan, 2007). These techniques should be applicable for dynamic cloud workloads. However, because
of the competitiveness and security issues, cloud providers do not disclose their workloads, and as a
result there are not many publicly available cloud back-end traces. Therefore, most of the research lacks
the study of the dynamicity in users demand and workload variation. The availability of cloud backend
traces makes researchers able to model real cloud data center workloads. The obtained model can be
applied for proving the applicability of the proposed heuristics in real world scenarios.

In 2009, Yahoo released traces from a production MapReduce M45 cluster to a selection of univer-
sities (Yahoo, 2010). In the same year, Google made the first version of its traces publicly available
and this publicity resulted in a variety of research investigating the problems of capacity planning and
scheduling via workload characterisation and statistical analysis of the planet’s largest cloud backend
traces (Reiss, Wilkes, & Hellerstein, 2011).

Workload Definition

The performance of a system is affected not only by its hardware and software components but also
by the load it has to process (Calzarossa & Serazzi, 1993). As stated by Feitelson (Feitelson, 2015),
understanding the workload is more important than designing new scheduling algorithms. If the tested
systems do not have its input workload chosen correctly, the result of the proposed policies or algorithms
might not work as expected when applied to real world scenarios.

436

Proofing copy. Copyright IGI Global. May not be posted or distributed.



A Surveyand Taxonomy of Energy Efficient Resource Management Techniques in Platform as a Service Cloud

Figure 12. The energy efficient resource management techniques in PaaS environment are grouped based
on the approach awareness of the cloud workload and its characteristics
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The computer workload is defined as the amount of work allocated to the system that should be com-
pleted in a given time. A typical system workload consists of tasks and group of users who are submitting
the requests to the data center. For example, in Google workload tasks are the building block of a job.
In other words, a typical job consists of one or more tasks (Reiss et al., 2011). These jobs are submitted
by the users, which are in this case the Google’s engineers or its services.

Workload Modeling Techniques

In order to characterize the workload, the drive or input workload of the studied system should also be
investigated. For measuring the performance of a computer system, input workload?, should be the same
as the real one. As stated by Ferrari (Ferrari, 1972), there are three types of techniques for obtaining
the input workload:

e  Natural Technique: Natural technique utilizes real workloads obtained from the log file of the
system without any manipulation. Urgaonkar et al. (Urgaonkar et al., 2010), utilized real traces
from heterogeneous applications to investigate the problem of optimal resource allocation and
power efficiency in cloud data centers. Anselmi et.al (Anselmi et al., 2008) also applied real
workloads from 41 servers to validate their proposed approach for Service Consolidation Problem
(SCP). PlanetLab VMs traces are applied as the input workload to validate the consolidation
technique in several works (Anton Beloglazov & Buyya, 2012; Buyya et al., 2010; S. F. Piraghaj
et al., 2015).

e  Artificial Technique: Artificial technique involves the design and application of a workload that
is independent of the real one. Mohan Raj and Shriran (Mohan Raj & Shriram, 2011) apply syn-
thetic workloads following the Poisson distribution to model web server workloads.

e  Hybrid Technique: Hybrid technique involves sampling a real workload and constructing the
test workload from the parts of the real workload. Hindman et al. (Hindman et al., 2011) evaluate
Mesos the application of both CPU and IO-intensive workloads that are derived from the statistics
of Facebook cloud backend traces and running applications utilizing Hadoop and MPL

Workload Modelling
As stated by Calzarossa and Swerazzi (Calzarossa & Serazzi, 1993), the workload modeling process can

be constructed through three main steps. The first step is the formulation in which the basic components
such as submission rates for users and their descriptions are selected. In addition to this, for evaluating
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Figure 13. Application types supported in energy management systems
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the proposed model, a criteria is considered. During the second step, the required parameters for model-
ing are collected while the workload executes in the system. Finally in the last step, a statistical analysis
is performed on the collected data.

In selecting the workload modeling technique, the considered parameters for defining the requests
play an important role (Agrawala, Mohr, & Bryant, 1976). In a distributed system, a user request is
mainly defined via three main parameters including:

1. t: The time t is when the request is submitted to the system.

2. 1: The location 1 is where the request is submitted from.

3. 1: The request vector r contains the amount of resources needed in terms of CPU, memory and
disk.

When time and spatial distribution of the user requests are ignored, e.g., only one day of the trace is
studied, requests population are likely to have similarities and can be presented in the form of relatively
homogeneous classes (Agrawala et al., 1976). Such kind of workload modeling is explored by Mishra
et al. (Mishra, Hellerstein, Cirne, & Das, 2010) and Chen et al. (Y. Chen, Ganapathi, Griffith, & Katz,
2010) on the first version of the Google cluster traces. Mishra et al. (Mishra et al., 2010) applied the
clustering algorithm K-means for forming the groups of tasks with more similarities in resource con-
sumption and duration, while Chen et al. (Y. Chen et al., 2010) classified jobs instead of tasks. In addi-
tion to these approaches, Di et al. (Di, Kondo, & Cappello, 2013) characterized applications running in
the Google cluster. Like (Y. Chen et al., 2010; Mishra et al., 2010), K-means is chosen for the cluster-
ing purpose. In our previous (Sareh Fotuhi Piraghaj, Calheiros, Chan, Dastjerdi, & Buyya, 2016), we
proposed an end-to-end architecture aiming at efficient resource allocation and energy consumption in
cloud data centers. In the presented architecture, the knowledge obtained from the analysis of the cloud
backend workload is utilized to define customized virtual machine configuration along with maximum
task capacity of each VM. Like the other aforementioned works (Moreno, Garraghan, Townend, & Xu,
2013; Solis Moreno, Garraghan, Townend, & Xu, 2014), the availability of virtualization technology
is considered and the tasks are executed on top of virtual machines instead of physical servers. Unlike
other approaches, the aim is decreasing energy by defining the virtual machines configurations along
with their maximum task capacity.

If the time and location of the requests are considered, the workload can be modeled via a stochastic
process such as Markovian model or time series models such as the technique applied by Khan et al.
(Khan, Yan, Tao, & Anerousis, 2012). Khan et al. (Khan et al., 2012) presented an approach based on
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Hidden Markov Modeling (HMM) to characterize the temporal correlations in the clusters of VMs that
are discovered and to predict the patterns of workload along with the probable spikes.

Workload-Based Energy Saving Techniques

Study of the characteristics of the workload and its fluctuations is crucial for selecting energy manage-
ment techniques. For example in Intel Enhanced Speed Stepping Technology (Intel, 2016), the CPU
frequency and voltage are dynamically adjusted according to the servers workload. From the analysis of
the workload, one can decide if a power management methodology is applicable for the system. As stated
by Dhiman et al. (Dhiman et al., 2008), DVFES does not always result in more energy savings and opera-
tors should also consider utilizing low power modes available in modern processors that might provide
better energy savings with the least performance degradation considering the workload. The workload
type is also important for DVFS on memory component because, as stated previously, in non-memory
intensive workloads running at lower memory speed would result in less performance degradation than
memory-intensive workloads. Therefore, reducing power consumption can be obtained through running
memory at a lower frequency with the least effect on the application performance (David et al., 2011).
The energy efficient resource management techniques in PaaS environments are grouped into two major
categories namely workload aware and workload agnostic as depicted in Figure 12.

Beloglazov etal. (Anton Beloglazov & Buyya, 2012) applied Markov chain model for known stationary
workloads while utilizing a heuristic-based approach for unknown and non-stationary workloads. Apart
from this work, the analysis of workloads of co-existing/co-allocated VMs motivated new algorithms and
management techniques for saving energy in cloud data centers. These techniques contain the interference-
aware (Caglar et al., 2013; Moreno, Yang, et al., 2013; Nathuji et al., 2010) and correlation-aware and
multiplexing (M. Chen et al., 2011; Ferdman et al., 2012; Meng et al., 2010; Verma et al., 2009) VM
placement algorithms, virtual machine static (Assuncao et al., 2012) and dynamic sizing techniques
(Meng et al., 2010), which were discussed previously. The workload study also motivated the idea of
overbooking resources to utilize the unused resources allocated to the VMs (Hu et al., 2013; Svird et
al., 2011; Tomas et al., 2014; Tomas & Tordsson, 2014).

APPLICATION-BASED ENERGY SAVING TECHNIQUES

The type of application (Figure 13) plays an important role in selecting the energy management tech-
nique. For scale out applications, turning on/off cores, which is called dynamic power gating, is not
practical since these applications are latency sensitive and their resource demand is volatile, therefore
the transition delay between power modes would degrade the QoS. In this respect, Kim et al. (Jungsoo
Kim et al., 2013) considered the number of cores according to the workloads peak and achieved power
efficiency through DVFS.

Web Applications
Web applications deployed in cloud data centers have highly fluctuating workloads. Wang et al. (D. Wang

et al., 2013) measured the impact of utilizing DVFS for multi-tier applications. They concluded that
response time and throughput are considerably affected as results of bottlenecks between the database
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and application servers. The main challenge is identifying the DVFS adjustment period, which is not
synchronized with workload burst cycles. Therefore, they proposed a workload-aware DVFES adjustment
method that lessens the performance impact of DVES when a cloud data center is highly utilized. VM
consolidation methods also have been used along with DVFS for power optimization of multi-tier web
applications.

Wang et al (L. Wang, Tao, von Laszewski, & Chen, 2010) proposed a performance-aware power op-
timization that combines either DVFS or VM consolidation. To achieve the maximum energy efficiency,
they integrate feedback control with optimization strategies. The proposed approach operates in two
levels: 1) at the application level, it uses a multi-input-multi-output controller to reach the performance
stated in SLA by dynamically provisioning VMs, reallocating shared resources across VMs and DVES,
2) at the data center level, it consolidates VMs onto the most energy-efficient host.

Bag of Tasks

Bag-of-Tasks (BoT) applications are defined as parallel applications whose tasks are independent (Cirne
etal., 2003). Kim et al. (K. H. Kim et al., 2007) investigated the problem of power-aware BoT scheduling
on DVS-enabled cluster systems. Applying DVFS capability of processors, the presented space-shared
and time-shared scheduling algorithms both saved a considerable energy while meeting the user-defined
deadline.

Calheiros et al. (Calheiros & Buyya, 2014) proposed an algorithm for scheduling urgent, CPU
intensive Bag of Tasks (BoT) utilizing processors DVFS with the objective of keeping the processor
at the minimum frequency possible while meeting the user-defined deadline. An urgent application is
defined as a High Performance Computing application that needs to be completed before the soft dead-
line defined by the user. Disaster management and healthcare applications are examples of this kind of
applications. DVES is applied at the middleware/Operating System level rather than at CPU level and
maximum frequency levels are supplied by the algorithm during task execution. The approach does not
require prior knowledge of the host workload for making decisions.

Big Data Applications

Asindicated by International Data Corporation (IDC) in 2011, the overall information created and copied
in the world has grown by nine times within five years reaching 1.8 zettabytes (1.8 trillion gigabytes)
(Gantz & Reinsel, 2011) and this trend would continue to at least double every two year. The exceptional
growth in the amount of produced data introduced the phenomenon named Big Data. There exist various
definitions for Big Data. However, Apache Hadoop definition is the one which is close to the concept
of this study. Apache Hadoop defines Big Data as “datasets that could not be captured, managed and
processes by general computers within an acceptable scope”. Big data analysis and processing along
with the data storage and transmission require huge data centers that would eventually consume large
amount of energy. In this respect, energy efficient power management techniques are really crucial for
Big Data processing environments. In this section, we discuss batch processing and workflows as two
examples of Big Data applications along with the techniques applied to make them more energy efficient
(See Figure 13).
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Figure 14. Two MapReduce development models studied in Feller, Ramakrishnan, and Morin
Source: Feller, Ramakrishnan & Morin, 2015
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Batch Processing

Large-scale data analysis and batch processing are enabled utilizing data center resources through paral-
lel and distributed processing frameworks such as MapReduce (Dean & Ghemawat, 2008) and Hadoop
(Hadoop, 2016). The large scale data analysis performed by these frameworks requires many servers and
this triggers the possibility of a considerable energy savings that can be obtained via resource manage-
ment heuristics that minimize the required hardware.

As stated by Leverich et al. (Leverich & Kozyrakis, 2010), MapReduce is widely used by various
cloud providers such as Yahoo and Amazon. Google executes on average one hundred thousand

MapReduce jobs every day on its clusters(“Google Open Source Blog: An update on container sup-
port on Google Cloud Platform,”).The vast usage of this programming model, along with its unique
characteristics, requires further study to explore any possibilities and techniques that can improve energy
consumption in such environments.

The energy saving in a cluster can either be made by limiting the number of active servers to the
workload requirement and shutting down the idle servers or matching the compute and storage of each
server to its workloads. Due to the special characteristics of the MapReduce frameworks, these options
are not useful in these environments. Powering down idle servers is not applicable, as in MapReduce
frameworks data is distributed and stored on the nodes to ensure reliability and availability of data. There-
fore, shutting down a node would affect the performance of the system and the data availability even if
the node is idle. Moreover, in a MapReduce environment, the mismatch between hardware and workload
characteristics might also result in energy wastage (e.g. CPU idleness for I/O workloads). Also, recovery
mechanisms applied for hardware/software failures increases energy wastage in MapReduce frameworks.

Leverich et al. (Leverich & Kozyrakis, 2010) investigated the problem of energy consumption in
Hadoop as a MapReduce style framework. Two improvements are applied to the Hadoop framework.
Firstly, an energy controller is added that can communicate with the Hadoop framework. The second
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Figure 15. The energy efficient resource management techniques for PaaS environments are categorized
in two groups, namely SLA Aware and SLA Agnostic considering SLA
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improvement is in the Hadoop data-layout and task distribution to enable more nodes to be switched
off. The data-layout is modified so that at least one replica of a data block would be placed on a set of
nodes referred as Covering Set (CS). These Covering Sets ensure the availability of the data block when
the other nodes that store the other replicas are all shutdown to save power. The number of replicas in a
Hadoop framework is specified by users and is equal to three by default.

Lang et al. (Lang & Patel, 2010) proposed a solution called All-In Strategy (AIS) that utilizes the
whole cluster for executing the workload and then power down all the nodes. Results show that the ef-
fectiveness of the algorithms directly depend on both complexity of the workloads and the time it takes
for the nodes to change power states.

Kaushik et al. (Kaushik, Bhandarkar, & Nahrstedt, 2010), presented GreenHDFS, an energy efficient
and a highly scalable variant of the Hadoop Distribution File System (HDFS). GreenHDFS is based on
the idea of energy-efficient data-placement through dividing servers into two major groups namely Hot
and Cold zones. Data that are not accessed regularly are placed in the Cold zone so that a considerable
amount of energy can be saved harnessing the idleness in this zone.

Long predictable, streaming I/O and parallelization and non-interactive performance are named as
the characteristics of MapReduce workloads computations in Leverich et al. (Leverich & Kozyrakis,
2010). However, there exists MapReduce with interactive analysis (MIA) style workloads that have been
widely used by organizations (Y. Chen, Alspaugh, Borthakur, & Katz, 2012). Since MapReduce makes
storing and processing of large scale data a lot easier, data analysts are widely adopting MapReduce to
process their data.

Typical energy saving solution obtained through maximization of server utilization is not applicable
for MIA workloads because of two main reasons. Firstly, MIA workloads are dominated by human-
initiated jobs that force the cluster to be configured to the peak load so that it can satisfy SLAs. Sec-
ondly, workload spikes are unpredictable and the environment is volatile because machines are added or
removed from the cluster regularly. In this respect, Chen et al. (Y. Chen et al., 2012) proposed BEEMR
(Berkeley Energy Efficient MapReduce) as an energy efficient MapReduce workload manager inspired
by an analysis of the Facebook Hadoop workload.

Hadoop is the open source implementation of the MapReduce programming model. Apart from energy
consumption, which is studied in a number of works (Y. Chen et al., 2012; Kaushik et al., 2010; Lang
& Patel, 2010; Leverich & Kozyrakis, 2010) Hadoop performance for both collocated and separated
compute services and data models (Figure 14) is investigated by Feller et al. (Feller et al., 2015). The
separation of compute services and data is applied for virtualized environments. It is shown that the col-
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location of VMs on servers has a negative effect on the I/O throughput, which makes physical clusters
more efficient in terms of the performance when compared to the virtualized clusters. The performance
degradation is proven to be application-dependent and related to the data-to-compute ratio. There is also
a trade-off between the application’s completion time and the energy consumed in the cluster.

Workflow Applications

Workflows or precedence-constrained parallel applications are a popular paradigm for modeling large
applications that is widely used by scientists and engineers. Therefore, there has been an increasing ef-
fort to improve the performance of these applications through utilizing distributed resources of Clouds.
With the increase in the interest toward this type of applications, the energy efficiency of the proposed
approaches also comes into the picture, as performance efficiency brought by excessive use of resources
might result in extra energy consumption.

The inefficiency of provisioned resources for scientific workflows execution results in excessive
energy consumption. Lee et al. (Lee, Han, Zomaya, & Yousif, 2015) addressed this issue through a
resource-efficient workflow scheduling algorithm named MER. The proposed algorithm optimizes the
resource usage of a workflow schedule generated by other scheduling algorithms. MER consolidates tasks
that were previously scheduled and maximizes the resource utilization. Based on the trade-off between
makespan (execution time) increase and resource utilization reduction, MER identifies the near optimal
trade-off point between these two factors. Finding this point, the algorithm improves resource utilization
and consequently reduces the provisioned resources and saves energy. The proposed algorithm can be
applied to any environment in which scientific workflows of many precedence-constrained tasks are
executed. However, MER is specifically designed for the IaaS cloud model.

As discussed earlier, Dynamic Voltage and Frequency Scaling (DVFES) is an effective approach
to minimize the energy consumption of applications. As scientific workflows contain tasks with data
dependencies between them, DVFS might not always result in desirable energy saving. Depending on
system and workflow characteristics, decreasing the CPU frequency may increase the overall execution
time and the idle time of the processors, which consequently deteriorates the planned energy saving. In
addition, when the SLA violation penalty is higher than the power savings, adjusting the CPU to oper-
ate at the lowest frequency is not always energy efficient. In this situation, executing the tasks quickly
with a higher frequency might result in less energy consumption (Freeh et al., 2007). In this respect,
Pietri et al. (Pietri & Sakellariou, 2014) proposed an algorithm that identifies the best time to reduce
the frequency in a way that the overall energy consumption is decreased. In the presented approach,
the lowest possible frequency did not always result in the least energy consumption for completing the
workflow execution. The algorithm considers various task runtime and processor frequency capabilities
and it assumes an initial task placement on the available machines. Next, it determines the appropriate
CPU frequency considering the time that the task can be stretched without violating the deadline (slack
time). The proposed algorithm gradually scales down the frequency of the processor assigned for each
task iteratively by the time the overall energy savings are increased. In each iteration, the CPU frequency
is scaled down to the next available frequency mode. The algorithm performance is validated through
simulation and the results demonstrated that the system can provide a good balance between energy
consumption and makespan.
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Durillo et al. (Durillo, Nae, & Prodan, 2014) proposed MOHEFT as an extension of the Heteroge-
neous Earliest Finish Time (HEFT) algorithm (Topcuoglu, Hariri, & Wu, 2002), which is widely applied
for workflow scheduling. The proposed algorithm is able to compute a set of suboptimal solutions in a
single run without any prior knowledge of the execution time of tasks. MOHEFT policy complements
the HEFT scheduling algorithm through predicting task execution time based on the historical data
obtained from real workflow task executions.

SLA AND ENERGY MANAGEMENT TECHNIQUES

The expectations of providers and costumers of a cloud service including the penalties considered for
violations are all documented in the Service Level Agreement SLA) (Greenwood, Vitaglione, Keller, &
Calisti, 2006; Hani, Paputungan, & Hassan, 2015; Yogamangalam & Sriram, 2013). Considering SLA,
energy management techniques are categorized into two groups, namely SLA-Aware and SLA-Agnostic
approaches (as shown in Figure 15).

SLA contains service level objectives (SLOs) including the service availability and performance in
terms of the response time and throughput (W. Kim, 2013). Satisfying SLA in a cloud computing envi-
ronment is one of the key factors that builds trust between consumers and providers. There has always
been a trade-off between saving energy and meeting SLA in resource management policies, therefore it
is really crucial to make sure that energy saving does not increase SLA violations dramatically.

The metrics utilized to measure SLA can be different based on the application type, for example
SLA for workflow applications is defined in terms of the user-defined deadlines (Durillo et al., 2014;
Lee et al., 2015; Pietri & Sakellariou, 2014) while in web and scale-out applications it is defined as the
response time (Anselmi et al., 2008; Hindman et al., 2011; Lang & Patel, 2010). Anselmi et.al (Anselmi
et al., 2008) consider the application response time as their SLA metric in their proposed solution for
the Service Consolidation Problem (SCP) considering multi-tier applications.

In the studied scenario, the objective was minimizing the number of required servers while satisfying
the Quality of Service. Similarly, Mohan et al. (Mohan Raj & Shriram, 2011) considered response time
of the application as the SLA metric in their proposed energy efficient workload scheduling algorithm.
The application request is accepted considering the data center capacity along with the SLA. The SLA is
maintained through a control theoretic method. Holt-Winters forecasting formula is applied for improv-
ing the SLA through minimizing the incurred cost by the time in which the system waits for startup and
shutdown delays of a PM/VM. Caglar et al. (Caglar et al., 2013) also considered response time as their
SLA metric in the presented online VM placement technique. In a different approach, Beloglazov et al.
(A. Beloglazov, 2010) utilized a combined metric considering both SLA violation and energy consump-
tion for their optimization problem. In the presented approach, SLA is violated during the time that a
host is overloaded. This approach is application independent.

SUMMARY
According to the Refrigerating and Air Conditioning Engineers (ASHRAE) (Belady & Beaty, 2005), the

Infrastructure and Energy Cost (I&E) has increased by 75% of the cost in 2014 while IT costs are only
25%(“In the data center, power and cooling costs more than the it equipment it supports « Electronics
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Cooling Magazine — Focused on Thermal Management, TIMs, Fans, Heat Sinks, CFD Software, LEDs/
Lighting,”). This is a significant rise for I&E costs which was contributing up to 20% to the whole cost
when IT costs where only 80% in the early 90’s. This drastic rise of data center power consumption has
made energy management techniques a non-separable part of the resource management in a cloud com-
puting environment. In this respect, there is a large body of literature that consider energy management
techniques for various cloud service models. In this chapter, we mainly focused on the PaaS service
model in which the data center owner can obtain prior knowledge of the applications and their usage
patterns. Further, we discuss the energy management techniques in both bare-metal and virtualized
environments. In summary, research in this area concludes that selecting the right energy management
technique is dependent on three main factors:

e  The Environment Where the Applications Run: In this chapter, we covered various alterna-
tives for execution environments including Bare Metal, containerized, and hypervisor-based
virtualization.

e  The Workload and Application Type: Applications are mainly different in terms of their work-
load patterns, latency sensitiveness, and etc. Understanding the workload characteristics can fur-
ther improve the efficiency of the algorithms.

e  The Quality of Service: The QoS for applications is defined through the Service Level Agreements
(SLA) and the SLA metric can be different considering the applications nature. Considering SLA
is important since energy management techniques might result in SLA violations and consequent-
ly degrade the performance of the system or increase the total costs for the applications execution.

Considering these factors, for future studies on this area, the following directions can further be
developed:

e  Containerized Environment: Further studies can be done on the consolidation of containers
considering both the application and OS containers. The container migration capability can be
studied deeply and might substitute VM migrations because of their smaller overhead and shorter
startup delays.

e  Network-Aware VM/Container Consolidation: The network element can be considered as
one of the factors in the consolidation to decrease the communication overhead between VMs/
containers.

e  CaaS Environment: The newly introduced cloud service model introduces new research direc-
tions that are required to explore with more details. The research directions in this area include
joint VM-container consolidation algorithms along with new SLA metrics.
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ENDNOTES

! The scheduling class shows how sensitive a task is to latency. In Google traces the scheduling
class is an integer number between 0 and 3 and the higher the scheduling class is, the most latency
sensitive the task

2 The input or drive workload is the workload under which the performance of the system is tested.
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