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a b s t r a c t 

To reduce the price of pay-as-you-go style cloud applications, an increasing number of cloud service 

providers offer resource reservation-based services that allow tenants to customize their virtual machines 

(VMs) with specific time windows and physical resources. However, due to the lack of efficient man- 

agement of reserved services, the energy efficiency of host physical machines cannot be guaranteed. In 

today’s highly competitive cloud computing market, such low energy efficiency will significantly reduce 

the profit margin of cloud service providers. Therefore, how to explore energy efficient VM allocation 

solutions for reserved services to achieve maximum profit is becoming a key issue for the operation 

and maintenance of cloud computing. To address this problem, this paper proposes a novel and effec- 

tive evolutionary approach for VM allocation that can maximize the energy efficiency of a cloud data 

center while incorporating more reserved VMs. Aiming at accurate energy consumption estimation, our 

approach needs to simulate all the VM allocation updates, which is time-consuming using traditional 

cloud simulators. To overcome this, we have designed a simplified simulation engine for CloudSim that 

can accelerate the process of our evolutionary approach. Comprehensive experimental results obtained 

from both simulation on CloudSim and real cloud environments show that our approach not only can 

quickly achieve an optimized allocation solution for a batch of reserved VMs, but also can consolidate 

more VMs with fewer physical machines to achieve better energy efficiency than existing methods. To be 

specific, the overall profit improvement and energy savings achieved by our approach can be up to 24% 

and 41% as compared to state-of-the-art methods, respectively. Moreover, our approach could enable the 

cloud data center to serve more tenant requests. 

© 2018 Elsevier Inc. All rights reserved. 
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. Introduction 

Based on the virtualization of computing resources, cloud com-

uting enables on-demand service provision in a pay-as-you-go

anner, which makes the upgrades and maintenance of both soft-

are and hardware easier than before ( Buyya et al., 2009 ). There-

ore, instead of incurring high upfront costs in building their own
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rivate platforms, more and more enterprises and communities

hoose cloud computing platforms to deploy their commercial and

cientific applications. However, the proliferation of cloud comput-

ng requires the establishment of large-scale data centers that con-

ain thousands of computing nodes, which in turn results in ex-

essive energy consumption and negative environmental impacts

 Wajid et al., 2016 ). 

Although the execution of more cloud services needs more en-

rgy, the energy consumption in cloud data centers is mainly due

o the low utilization of computing resources. It has been esti-

ated that the average resource utilization in most data centers

s lower than 30% ( Barroso et al., 2013 ) and the energy consumed

y idle nodes is more than 70% of peak energy ( Fan et al., 2007a ).

n other words, most energy is wasted for doing nothing. The ris-

ng energy consumption increases the ownership cost and reduces
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Fig. 1. Workflow of reservation-based cloud computing. 
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the return on cloud infrastructure investments. Therefore, how to

fully explore the capacity of data centers to achieve high energy

efficiency is becoming a major concern of cloud service providers. 

To efficiently manage cloud resources and reduce the unit price,

an increasing number of cloud providers support the resource

reservation option, which allows tenants to customize their cloud

service requests. For example, Amazon Elastic Compute Cloud

(EC2) ( Cloud, 2016 ) has the option Reserved Instances Pricing which

allows cloud capacity reservations within specific time windows

(i.e., a fraction of a day or a week). Such a kind of comput-

ing mode is also supported by Microsoft Azure automation, Al-

ibaba Cloud Batch Compute, and other mainstream cloud plat-

forms. Fig. 1 shows how virtual machine requests are handled in

the workflow of reservation-based cloud computing. Initially, cloud

tenants submit their virtual machine reservation requests with

specific requirements (e.g., required type of resources, time win-

dows) to an IaaS (Infrastructure as a Service) provider. For example,

if one tenant wants to conduct 3D rendering using the reservation-

based cloud, he/she needs to provide the start time, CPU and GPU

requirements and the longest rendering time to the IaaS provider.

After receiving such a batch of VM reservations, the IaaS provider

needs to figure out a new Virtual Machine (VM) to Physical Ma-

chine (PM) mapping based on available resources. From the per-

spective of IaaS providers, such a mapping should achieve max-

imum profit and meet all the tenants’ requirements. Meanwhile,

the newly incorporated VMs should not degrade the performance

of other existing VMs in service. If there are not enough physi-

cal resources that can accommodate all the VMs, i.e, the Service

Level Agreement (SLA) of some VM requests cannot be ensured,

the unsatisfied requests will be rejected by their IaaS providers.

When the reservation is confirmed, at the beginning of the next

VM reservation cycle, all the accepted VMs will be dispatched to

their designated PMs. 

The VM-to-PM mapping plays an important role in determining

the utilization of data centers ( Pietri and Sakellariou, 2016; Chen

et al., 2018 ). To achieve more profits in the very competitive cloud

computing market, IaaS providers need to explore efficient VM-to-

PM mappings that can achieve the highest energy efficiency while

consolidating as much VM workload as possible. Since the VM al-

location problem is an NP-hard problem, various energy-aware VM

mapping approaches have been investigated ( Kim et al., 2011; Cal-

heiros and Buyya, 2014; Hwang and Pedram, 2013 ). However, most

of them are based on the trade-off between energy consumption

and system performance assuming that there are unlimited physi-

cal resources. This is not suitable for reservation-based cloud com-
uting. In order to fully utilize the PMs and facilitate the manage-

ent of reserved VMs, IaaS providers usually offer VM reservation

n a limited number of exclusive PMs without mixing reserved and

on-reserved VMs together. Consequently, VM rejection should be

onsidered during the mapping generation. Moreover, due to the

ncreasing new VM requests, the reservation cycle time is short-

ned drastically (e.g., from one week to one day). Accordingly, the

pdate of reservation plans is becoming much more frequent. 

In order to save operating cost and quickly respond to the

ew VM requests, IaaS providers should consider the following

uestions during the derivation of mapping solutions: (i) how

o quickly achieve a VM-to-PM mapping which has the highest

nergy-efficiency? and (ii) how to incorporate more new VM re-

uests to achieve the highest PM utilization without violating ten-

nts’ requirements? To address these two questions, this paper

akes the following three major contributions : 

• We propose a novel fitness function based on our defined term

instruction-energy ratio, which can effectively reduce the over-

all energy consumption and maximize the resource utilization

of reservation-based cloud data centers. 
• Based on the evolutionary algorithm, we introduce a compre-

hensive VM allocation approach that can efficiently converge to

a VM-to-PM mapping with best possible energy efficiency. 
• To further accelerate the exploration of optimal VM allocation

solutions, we develop an efficient simulation engine and in-

tegrate it into the cloud simulator CloudSim ( Calheiros et al.,

2011 ), which can drastically reduce the evaluation time of VM

allocation solutions in each evolutionary iteration. 

The rest of the paper is organized as follows. Section 2 presents

elated work on energy-aware VM allocation. After an introduc-

ion to the modeling and problem definition of energy-aware

eservation-based VM allocation in Section 3 , Section 4 details our

volutionary VM allocation approach. Section 5 evaluates our ap-

roach using both simulation-based and real-world examples. Fi-

ally, Section 6 concludes the paper. 

. Related work 

Due to the proliferation of cloud computing and escalation of

nergy consumption and operational cost, sustainable computing

as become a major concern of cloud service providers. To re-

uce the energy consumption, various energy-aware approaches

ave been studied ( Pietri and Sakellariou, 2016; Berl et al., 2010;

eloglazov et al., 2012; Goudarzi and Pedram, 2016; Paya and

arinescu, 2017 ). For example, by formulating the VM consoli-

ation problem as a multi-capacity stochastic bin packing prob-

em, Hwang and Pedram (2013) proposed a hierarchical and scal-

ble approach that can maximize the energy-efficiency consid-

ring both the correlation and resource type of VMs. Lee and

omaya (2012) presented two energy-conscious task consolidation

euristics that can maximize resource utilization considering both

ctive and idle energy consumption. Corradi et al. (2014) presented

 cloud management platform which can optimize VM consolida-

ion along three main dimensions (i.e., power consumption, host

esources, and networking). Xu et al. (2016) introduced an energy

onsumption model for applications across cloud computing plat-

orms and proposed an efficient approach that can conduct scien-

ific workflow executions in an energy-aware manner. By formulat-

ng the VM placement problem as an integer programming prob-

em, Dai et al. (2016) investigated multiple greedy approximation

euristics that can reduce the energy while satisfying the tenants’

ervice level agreements. 

As an alternative of application migration and consolida-

ion, Dynamic Voltage and Frequency Scaling (DVFS)-based ap-

roaches are gaining more and more popularity in reducing en-
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rgy consumption of data centers. For example, Calheiros and

uyya (2014) presented an approach for CPU-intensive Bag-of-

asks applications on cloud infrastructures. Based on both intelli-

ent scheduling and DVFS, the proposed method can keep the CPU

perating at the minimum voltage level that enables the applica-

ion to complete before a user-defined deadline. Although all the

bove approaches can effectively minimize the energy waste, none

f them were designed for reservation-based clouds. 

In order to offer better service price and quality to ten-

nts, reservation-based computing paradigm is becoming popular

mong IaaS providers. To achieve best cost performance and re-

iability for reservation-based cloud services, various resource al-

ocation optimization methods have been developed. For exam-

le, Wang et al. (2013) introduced a new cloud brokerage ser-

ice that can optimally exploit both pricing benefits of long-term

nstance reservations and multiplexing gains. Based on dynamic

rogramming and approximate algorithms, they proposed multi-

le dynamic strategies that can rapidly handle large volumes of

emands. To provide a better Internet service by using cloud re-

ources, Hwang et al. (2014) presented a two-phase algorithm for

ervice operators that can make an effective trade-off between the

mount of long-term reserved resources and that of on-demand

ubscribed resources, thus minimizing the service provision cost.

uerst et al. (2016) designed a system prototype called KRAKEN.

t allows tenants to dynamically modify their resource reservation

t runtime through an online resource reservation scheme which

omes with provable optimality guarantees. Zhang et al. (2016) de-

eloped a novel server consolidation algorithm. By reserving a cer-

ain amount of extra resources on each PM to avoid live migra-

ions, their approach can cope with the heterogeneous burstiness

uring the server consolidation. Although all these approaches are

romising in improving the quality and price of services, few of

hem took energy consumption into account. 

Since most cloud scheduling and allocation problems are

P-hard, to efficiently achieve a near-optimal solution, a wide

pectrum of AI-based heuristics (e.g., evolutionary algorithms

han et al., 2015 , genetic algorithms) have been proposed. Based

n genetic algorithm, Zhao et al. (2009) proposed an optimized al-

orithm that can schedule independent and divisible tasks in or-

er to adapt to the memory constraints and high request of per-

ormance in cloud computing. Their approach can be applied to

eterogeneous system with dynamic scheduling, where resources

re of computational and communication heterogeneity. To simul-

aneously minimize total resource wastage and power consump-

ion, Gao et al. (2013) developed a multi-objective ant colony sys-

em algorithm for the virtual machine placement problem, which

an efficiently obtain a set of non-dominated solutions (i.e., the

areto set). Experimental results show that their approach can im-

rove both power efficiency and resource utilization in a cloud

omputing environment. Tsai et al. (2013) presented an improved

ifferential evolution algorithm based on their proposed cost and

ime models on cloud computing environment, which can be used

o optimize task scheduling and resource allocation and find the

areto front of total cost and makespan. However, so far, few of

xisting approaches considered the efficient multi-objective opti-

ization of reservation-based VM allocation problems. 

Similar to our work, Hung et al. (2013) presented a genetic al-

orithm for the static VM allocation problem to minimize the en-

rgy consumption of private clouds and maximize the fulfilment

f requirements of VMs. However, they assume that there are suffi-

ient PMs for the computation and do not consider the rejection of

M requests which is common in practice. Moreover, the work in

ung et al. (2013) does not take the frequent updates of reserved

Ms into consideration, while our approach is optimized to enable

he quick search of optimal VM allocation solutions with highest

nstruction-energy ratio. To the best of our knowledge, our work is
he first attempt that can optimize VM allocation for reservation-

ased clouds considering both energy consumption and service re-

uest acceptance ratio. Based on our proposed evolutionary heuris-

ic, our approach can help IaaS providers to quickly search for a

M-to-PM mapping with near-optimal instruction-energy ratio, so

s to minimize the overall operating cost. 

. System models and problem definition 

We aim to maximize the energy efficiency (i.e., profit) of cloud

ata centers while minimizing the overall energy consumption

ith reserved VM requests. This section models the components

f cloud data centers including PMs and tenant requests, and de-

nes the problem that we are trying to solve. 

.1. Modeling of physical machines and VM requests 

Consider a cloud data center that is composed of M PMs (i.e.,

ervers), denoted by S = { S 1 , S 2 , . . . , S M 

} . The server S i (1 ≤ i ≤ M ) is

haracterized by its clock frequency F i , CPU utilization U i , process-

ng capacity C i , and power consumption P i . The processing capacity

 i of server S i is measured and denoted by the number of Million

nstructions Per Second (MIPS), which is proportional to the sys-

em clock frequency of S i . For example, the processing capacity of

P ProLiant ML110 G4 server is 3720 MIPS when its CPU operates

t a frequency of 1860 MHz , since the server completes two in-

tructions per clock cycle on average ( Calheiros et al., 2011 ). 

In the reservation-based cloud system, tenants need to submit

heir VM requests to a resource reservation system to apply for

loud resources. Since all the VM requests in this paper are reser-

ation based, we assume that they are computation-intensive and

ndependent. In other words, our approach only takes the CPU uti-

ization of VMs into account without considering the communi-

ations between VMs. Let τ = { τ1 , τ2 , . . . , τN } denote the set of N

ubmitted VM requests during a reservation cycle. Each VM request

j (1 ≤ j ≤ N ) can be characterized using a triplet ( a j , e j , c j ), where

 j indicates the request arrival time (i.e., VM start time), e j denotes

he request execution time, and c j represents the desired process-

ng resources (i.e., the CPU utilization) required by τ j . When all the

M requests are collected, the broker of the resource reservation

ystem will try to figure out whether there are enough PMs to ac-

ommodate all these requests. If available cloud resources cannot

eet the requirement of a VM request, the request will be rejected

y the reservation system. 

Let M (i, j) denote a VM-to-PM mapping indicating whether the

M request τ j is allocated to the server S i , i.e., 

 (i, j) = 

{
1 τ j is allocated to S i 
0 otherwise 

. (1) 

e use W (M ) to denote the total number of VM requests ac-

epted by the cloud data center, where 

 (M ) = 

M ∑ 

i =1 

N ∑ 

j=1 

M (i, j) . (2)

As aforementioned, a VM request will be rejected by the reser-

ation system if sufficient physical resources are not available to

erve the request. We use the request acceptance ratio (RAR) to

enote the proportion of VMs accepted by the resource reservation

ystem, which is represented by 

AR (M ) = 

W (M ) 

N 

. (3) 

.2. Modeling of energy consumption 

Our approach adopts the linear interpolation power model pro-

osed in Beloglazov and Buyya (2012) and Fan et al. (2007b) to
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approximate the overall server power consumption (including CPU,

memory, disk, and etc.), which assumes that the power consump-

tion P i of server S i is linearly correlated to the CPU utilization

U i . Let U i = { U i, 0 , U i, 1 , . . . , U i,h } be a set of h + 1 discrete CPU uti-

lization levels for the server S i , where U i, 0 = 0% , U i,h = 100% 

1 , and

 i, j < U i, j+1 (0 ≤ j < h ). We use the power consumption set P i =
{ P i, 0 , P i, 1 , . . . , P i,h } to denote the real measured power consumption

of the server S i with different CPU utilizations, where P i,j indicates

the power consumption of the server S i with a CPU utilization of

U i,j . Let u i ( t ) denote the CPU utilization of S i at time t . We use p i,j ( t )

to represent the power of S i at time t when U i, j < u i (t) ≤ U i, j+1 

(0 ≤ j < h ). It can be formulated as follows: 

p i, j (t) = 

{
(u i (t) −U i, j ) ×(P i, j+1 −P i, j ) 

(U i, j+1 −U i, j ) 
+ P i, j U i, j < u i ( t) ≤ U i, j+1 

0 otherwise 
. (4)

Note that when u i ( t ) equals U i,j ( j ∈ N 

+ ), we can get p i, j (t) = P i, j .

When j equals 0, we can get p i, 0 (t) = 0 . This is because that if

there is no VM assigned to S i , we can place it to the sleep mode,

where the servers switch off unneeded subsystems and put the

RAM into a minimum power state. For example, IBM is develop-

ing a mode named deep-sleep for its new Power processors that

will allow them to consume almost no power when they are idle.

Moreover, our approach neglects the on/off switching overhead of

servers, since the overhead of switching modern processors from

sleep mode to active mode is only about 300 ms ( Meisner et al.,

2009 ). Comparing with the long execution time of VMs, such over-

head is negligible. 

Assume that one reservation cycle needs a time of T , the energy

consumption of the server S i within a time interval [0, T ] can be

calculated using 

∫ T 

0 

h −1 ∑ 

j=0 

p i, j (t ) dt . (5)

The total energy consumption of PMs can be calculated using 

M ∑ 

i =1 

∫ T 

0 

h −1 ∑ 

j=0 

p i, j (t ) dt . (6)

Since in the triplet of a VM request τ k we assume that c k 
is constant, we can partition the reservation cycle interval [0, T ]

into a sequence of � time segments in the form of (t φ, t φ+1 ] ( φ ∈
{ 0 , 1 , . . . , � − 1 } ), where the overall cloud power does not change

in this segment. The overall energy consumed by the cloud PMs

denoted by Eq. (6) can be approximated by 

E(M ) = 

M ∑ 

i =1 

�−1 ∑ 

φ=0 

h −1 ∑ 

j=0 

p i, j (t φ+1 ) × (t φ+1 − t φ ) . (7)

When calculating E(M ) using Eq. (7) , instead of explicitly figur-

ing out all the � time segments, we adopt the modified CloudSim

with an event-driven engine (see details in Section 4.3 ) which can

accurately simulate all the VM allocation updates. 

To check the energy efficiency of a VM-to-PM mapping, we use

the instruction-energy ratio (IER) to denote the average number of

executed instructions for a given amount of energy, which is for-

mulated as 

IER (M ) = 

∑ M 

i =1 

∑ N 
j=1 M (i, j) × c j × e j 

E( M ) 
. (8)

3.3. Problem definition 

In this paper, we consider the problem of assigning N

reservation-based VMs to M PMs. We aim to generate a VM-to-
1 U i,h is the CPU resource constraint, which means that the utilization rate of 

CPUs cannot be larger than 100%. 

 

o  

p  

fi  
M mapping M with highest profit such that the overall energy

onsumption can be minimized and more VM requests can be

erved by the cloud data center. To achieve the highest profit,

ur approach tries to figure out a VM-to-PM mapping with maxi-

ized energy efficiency. The optimization problem can be formu-

ated as: 

aximize α ×
M ∑ 

i =1 

N ∑ 

j=1 

c j × e j × M (i, j) − β × E(M ) (9)

ubject to u i (t) ≤ 100% ∀ i ∈ { 1 , . . . , M} & t ∈ [0 , T ] (10)

here α indicates the unit price of VM execution and β indicates

he unit price of energy consumption of PMs. In other words, the

ormula presented in the optimization target indicates the profit

arned by IaaS providers. Here we assume that the price of the VM

equest τ j is proportional to the size of its workload (i.e., c j × e j ).

o maximize the profit, IaaS providers need to consider two cases

s follows: 

1. When all the tenant requests can be accepted by the resource

reservation system, only the overall energy consumption needs

to be optimized. 

2. When not all the tenant requests can be accepted by the re-

source reservation system, both the RAR and the overall energy

consumption need to be considered. 

For accurate estimation of energy consumptions, the above

odel involves extensive CloudSim simulations (e.g., for comput-

ng E(M ) in Eq. 7 ). This makes the classical heuristics for the bin

acking problems ( Martello and Toth, 1990 ) not applicable. Thus,

e propose an evolutionary heuristic which can quickly find an

ptimized solution that makes a good tradeoff between the overall

nergy consumption and VM consolidation. 

. Our evolutionary approach 

Aiming at maximizing energy efficiency and serving more VMs

n reservation-based cloud data centers, we detail our evolution-

ry approach with an illustrative example. To reduce the evalua-

ion time of VM-to-PM mappings, we developed a new simulation

ngine on top of CloudSim, which can be used to drastically reduce

he evaluation time of VM-to-PM mappings. 

.1. An illustrative example 

Recent studies have shown that the overall power consumed by

Ms in cloud data centers can be accurately modeled by the lin-

ar relationship between CPU utilization and power consumption.

ased on the observation from Beloglazov and Buyya (2012) and

an et al. (2007b) , we can find that even when a PM is running

dle (i.e., U i, 0 = 0% ) without sleeping, its power consumption (i.e.,

 i , 0 ) can still be quite large. Moreover, when running at full capac-

ty (i.e., U i, 0 = 100% ), the highest power (i.e., P i,h ) of a PM generally

s less than two times of P i , 0 . In other words, low CPU utilizations

f PMs will lead to low energy efficiency, since P i ,0 cannot be ap-

ortioned by many VMs. Therefore, to save the overall power con-

umption, it is better to fully utilize the PMs. In addition to con-

olidating more VMs on a PM, the dynamic power management

DPM) method can be used to put PMs in sleep mode when they

re idle. Since the sleep mode requires far less energy than P i , 0 ,

he overall energy consumption of a cloud data center within a

eservation cycle can be reduced. 

To make the above observation clear, let us consider an example

f allocating six VM requests (i.e., VM 1–6) to two PMs. Table 1 (a)

resents the VM settings of this example in terms of the triplet de-

ned in Section 3.1 . Table 1 (b) shows the power step information
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Table 1 

VM and PM settings of the illustrative example. 

(a) Settings of the six VM requests 

VM requests 1 2 3 4 5 6 

Arrival time 0 2 4 7 9 10 

Execution time (in hours) 8 8 5 6 7 8 

Processing capacity (MIPS) 1280 1300 10 0 0 1020 960 10 0 0 

(b) Power consumption information of PMs (in Watts) Beloglazov and Buyya (2012) 

CPU Utilization (%) 0 10 20 30 40 50 60 70 80 90 100 

PM A (HP G4) 86 89.4 92.6 96 99.5 102 106 108 112 114 117 

PM B (HP G5) 93.7 97 101 105 110 116 121 125 129 133 135 

Fig. 2. An example of assigning six VMs to two PMs using MBFD approach (with an energy consumption of 3157.125 Watt-hours) 

Fig. 3. An optimized VM allocation solution for the example presented in Fig. 2 (with an energy consumption of 2271.891 Watt-hours) 
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VM allocation in reservation-based cloud data centers. 
f the two PMs (HP ProLiant G4 and HP ProLiant G5) which are ob-

ained from Beloglazov and Buyya (2012) . Fig. 2 shows VM-to-PM

llocation results using the Modified Best Fit Decreasing heuristic

MBFD) approach ( Beloglazov et al., 2012 ). In this figure, we use u A 
nd u B to denote the CPU utilization of the two PMs, respectively.

e use red polylines to indicate the power consumptions of the

Ms, which are calculated using Eq. (4) . In this example, we adopt

he DPM approach to put a PM to sleep mode when there is no

M running on it. In this case, the power consumption of the PM

s 0. Based on the MBFD heuristic, we can complete all the VMs

ith an overall energy consumption of 3157.125 Watt-hours and

n IER of 14.72 MIPJ. 2 From this figure, we can find that the CPU

tilization of PM B is quite low (18% ∼ 24.1%). In this scenario, PM

 requires around 100 Watts for the execution, while PM B in idle

tate needs a power of 93.7 Watts. Therefore, considerable energy

s wasted by PM B due to the low CPU utilization and small power

ifference. 
Fig. 3 shows the results of an optimized VM-to-PM allocation

or the same problem as the one presented in Fig. 2 . In this figure,

M 4 and VM 6 are moved from PM A to PM B, and VM 1 is moved

rom PM B to PM A. Based on this adjustment, we can find obvious

mproved CPU utilizations for both PMs A and B, e.g., from 61.8%

o 96.2% within time interval [4,7] for PM A, and from 18% to 56%

ithin time interval [10,13] for PM B. Moreover, we can find that

M A is put to sleep mode within the time interval [10,19], and

M B is put to sleep mode within the time interval [0,7], which

re much longer than the ones shown in Fig. 2 . Therefore, the VM-

o-PM allocation solution in Fig. 3 is much better than the one pre-

ented in Fig. 2 , since the VM execution only needs a total energy

f 2271.891 Watt-hours with an IER of 20.46 MIPJ. From this exam-

le, we can find that even MBFD is a near-optimal VM allocation

pproach, we can still further exploit the energy potential for the
2 MIPJ stands for Million Instructions Per Joule. 
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Fig. 4. The workflow of our evolutionary approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1: Optimization of VM-to-PM Mappings. 

Input : i) M , an initial VM-to-PM mapping; 

ii) S, the set of PMs in the cloud data center; 

iii) T , the set of VM requests submitted by tenants; 

iv) n , the number of searches in an evolution; 

v) η, the number of evolution iterations; 

vi) r, the number of iterations in a search; 

Output : An optimized VM-to-PM mapping 

1 genOptMapping (M , S, T , n, η, r) begin 

2 iter = 0 ; 

3 while iter < η do 

4 initialize an array ES [ n ] representing n searches; 

5 for � =0 to n-1 do 

// search for a better solution based on M 

6 ES [ � ] .m = e v olutionSearch (M , S, T , r) ; 
7 end 

8 maxF itness = −1 , sid = 0 ; 

9 for � =0 to n-1 do 

// select the best solution with the highest fitness 

10 if maxF itness < ES [ � ] .getF itness () then 

11 maxF itness = ES [ � ] .getF itness () ; 

12 sid = � ; // the evolution search ID 

13 end 

14 end 

15 M = ES [ sid] .m ; // update the mapping M 

16 iter++; 

17 end 

18 return M ; 

19 end 

i  

i  

e  

n  

i  

1  

f

4.2. Our evolutionary VM allocation approach 

Fig. 4 presents an overview of our VM-to-PM allocation ap-

proach. The input of our approach is an initial VM-to-PM map-

ping that can be obtained using the classical methods, e.g., First

Fit heuristic (FF) and MBFD. Base on the initial VM-to-PM map-

ping, our approach iteratively searches for an optimal VM-to-PM

mapping guided by our defined fitness function (see details in

Section 4.2.1 ). 

Our approach separates the optimal solution search into mul-

tiple evolutions where each evolution consists of n searches (i.e.,

search 1, . . . , search n ) to explore best possible VM-to-PM map-

pings. During the execution of an iteration within an evolution

search, we firstly group PMs into random pairs for the follow-

ing crossover operations. For the crossover operation, our approach

tries to exchange VMs between PMs in the same pair, where the

exchanged VMs have the smallest execution overlap with the other

VMs on the same PM (see details in Section 4.2.3 ). After r inter-

nal iterations of a search, the evolved VM-to-PM mapping may im-

prove the utilization of some PMs. If there exist rejected VMs due

to the CPU resource constraints, at the end of a search our ap-

proach will try to accommodate more VMs by reallocating the re-

jected VMs to PMs in a First Fit manner. When all the n evolution

searches finish, our approach will try to evaluate all the obtained n

evolved VM-to-PM mappings and select the best one based on our

defined fitness function as the new initial mapping for the next

round of evolution iteration. Our approach will terminate when η
evolutions complete, and the last survived mapping will be used

as the optimized solution for the real VM deployment. 

Algorithm 1 describes the workflow details of our approach,

which has been illustrated in Fig. 4 . Among the six inputs, the

parameter M is an initial VM-to-PM mapping generated by exist-

ing heuristics (e.g., FF, MBFD). The parameters n, r, η are speci-

fied by IaaS providers indicating the number of evolution searches,

search iterations, and evolution iterations, respectively. In this al-

gorithm, after the initialization of evolution index in line 2, lines

3–17 conduct the evolutions iteratively. In each iteration, we use

an array ES [ n ] to represent the n searches (lines 5–7) within an

evolution, where ES [ i ] contains all the data structures used in the

i th search. In the search iteration, line 6 uses evolutionSearch (see

details in Algorithm 3 ) to search for a better solution than M us-
ng our proposed grouping and crossover methods. Note that the

nputs of evolutionSearch is passed by value rather than by refer-

nce. After identifying the search which achieves the highest fit-

ess value in lines 8–14, the obtained mapping will be used as the

nitial mapping for the next evolution iteration as indicated in line

5. Finally, line 18 reports an optimized VM-to-PM mapping. The

ollowing subsections detail the important steps of our approach. 



X. Zhang et al. / The Journal of Systems and Software 147 (2019) 147–161 153 

4

 

g  

t  

p  

m  

t  

c  

o  

(  

m  

v  

a  

a  

f

 

w  

t  

m  

c  

V  

W  

o  

t  

p  

r

4

 

e  

v

 

n  

M  

V  

s  

s  

s  

P  

p  

b  

p  

e  

s

 

o  

p  

e  

P  

s  

o  

c  

V  

V  

t  

s  

P  

s  

n  

c  

m  

c  

m  

Fig. 5. An example of crossover operation. 
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.2.1. Fitness function 

Fitness function plays an important role in the evolutionary al-

orithm as it determines the quality of solutions in the evolu-

ion process. As described in Section 3.3 , to achieve the highest

rofit as defined in Formula (9) , IaaS providers expect to serve

ore VM requests while minimizing the overall energy consump-

ion. Therefore, we take both the energy efficiency and request ac-

eptance ratio into account when defining the fitness function of

ur approach. When PMs can accommodate all the VM requests

i.e., RAR equals to 100%), to achieve the optimal value for For-

ula (9) , we only need to reduce the part of β × E(M ) , since the

alue of α ×
M ∑ 

i =1 

N ∑ 

j=1 

c j × e j × M (i, j) is fixed. Otherwise, we need to

chieve a VM-to-PM mapping with both the highest PM workload

nd instruction-energy ratio. In our approach, we define the fitness

unction as 

f itness (M ) = IER (M ) × RAR 

θ (M ) , (11)

here IER (M ) is used to achieve a VM-to-PM mapping with op-

imal instruction-energy ratio, RAR (M ) is adopted to incorporate

ore VMs, and θ ∈ N is used to tune the weight of request ac-

eptance ratio during allocation solution evaluation. When all the

Ms can be accommodated, the fitness function equals to IER (M ) .

hen there exists space for rejected VMs, if we increase the value

f θ , the chance of incorporating more VMs will increase. Note

hat IER (M ) and RAR (M ) are two conflicting factors, since IER (M )

refers VM requests with large e i and c i but RAR (M ) prefers VM

equests with small e i and c i . 

.2.2. Operations of PM grouping and VM crossover 

In our approach, an evolution process consists of n searches to

xplore superior VM-to-PM mappings with higher fitness values

ia two operations, i.e., PM grouping and VM crossover. 

Grouping : To achieve an optimized VM-to-PM mapping, one

aive way is to enumerate all the M 

N VM-to-PM mappings where

 indicates the number of PMs and N denotes the number of

Ms. However, this will be extremely time consuming and infea-

ible even for small-scale reservation-based cloud computing. In-

tead of exhaustively searching for the best solution in the whole

tate space, our approach focuses on local optimizations of small

M groups. We randomly divide the non-idle PMs into pairs, where

roper optimization can be conducted to improve the fitness value

y adjusting the VM allocations between the two PMs in the same

air. Note that due to the randomness of grouping operation, the

volution will not be stuck at local search, since different evolution

earches have different optimization directions. 

Crossover: Within an evolution search, we use the crossover

peration to locally improve the fitness value of a PM pair. Fig. 5

resents an example of how our crossover operation works. In this

xample, the input PM pair p i consists of two PMs (i.e., PM i and

M j ), where a 1 , a 2 indicate the allocations for the two PMs, re-

pectively. Our crossover operation considers four scenarios based

n three kinds of VM allocation actions: (i) clone that just dupli-

ates the original PM allocation pair; (ii) move that migrates one

M from one PM to the other; and (iii) exchange that swaps two

Ms between PM i and PM j . The reason why we adopt clone ac-

ion in a crossover operation is because we do not expect a re-

ultant pair p r which has a worse fitness value than the original

M pair p i . All the four newly-generated PM allocation pairs are

tored in an array p [ ], and the pair in p [ ] with the highest fit-

ess value will be selected as an optimized result obtained by the

rossover operation. Note that both the actions move and exchange

ay result in the violations of CPU resource constraints. Thus the

rossover operation may reject the VMs which cannot be accom-

odated in their destination PMs. For example, when adopting the
xchange action in a crossover operation, if the VM α cannot be

ccepted by its host PM j , it will be labelled as a rejected VM. 

When conducting a crossover operation, it is important to iden-

ify which VMs need to be processed between pairwise PMs. To ef-

ectively increase the fitness value of the optimized allocation pair,

e consider the time overlapping of VMs within a PM allocation.

ased on the example shown in Table 1 and Fig. 3 , we can observe

hat the more VMs are stacked at the same time to get high CPU

tilization, the better IER the PMs can achieve. In our approach,

e try to move the VM that has the minimum accumulative over-

apping time (AOT) with all the other VMs in the same PM to its

ounterpart PM in the same pair. This is because if such a VM is

ithdrawn from its host PM, the PM may have a higher chance to

ave more time in the sleep mode. Consequently, the overall en-

rgy of the paired PMs can be drastically reduced. 

Assume that there are n VM requests (i.e., τS x = { τ1 , . . . , τn } ) al-

ocated to a PM S x . The accumulative overlapping time of τ i with

ll the other VMs in the PM can be calculated using 

OT (τS x , τi ) = 

n ∑ 

j =1 , j � = i 
length ([ a j , a j + e j ] ∩ [ a i , a i + e i ]) , (12)

here a i and e i denote the arrival time and execution time of

i respectively, and length ( a, b ) indicates the intersection length

f two time intervals a and b . In our approach, the VM with

he smallest AOT will be selected as the candidate VM for the

rossover operation. As an example shown in Fig. 2 that is de-

ived from Table 1 , PM A and PM B are grouped into a pair for

nergy improvement. Since AOT (τPM A 
, τ2 ) = 8 , AOT (τPM A 

, τ3 ) = 7 ,

OT (τPM A 
, τ4 ) = 8 and AOT (τPM A 

, τ6 ) = 3 , our approach will select

M 6 from PM A for the exchange action. Similarly, our approach

ill choose VM 1 from PM B for the crossover operation, since it

s the first VM that has the smallest AOT value (i.e., 0) in PM B . 

Fig. 6 shows the optimized allocation for the PM pair after one

rossover operation. In this case, the first move action succeeds

mong all the four kinds of actions, since it has the best fitness

alue. From Fig. 6 , we can observe that although the power of

M B is increased by around 8.2 Watts within the time interval

10,16] and 100.52 Watts within the time interval [16,18], PM A is

witched to sleep mode within time interval [13,18]. Due to the

onger time staying in sleep node, the optimized allocation has

 better IER value (i.e., 15.99 MIPJ) than the allocation solution

hown in Fig. 2 . Note that when we consider the move action that

ends VM 1 from PM B to PM A , the crossover operation will reject
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Fig. 6. Optimized allocation (with an energy consumption of 2804.25 Watt-hours) for the PM pair shown in Fig. 2 using one crossover operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 3: Evolution Search. 

Input : i) m , an input VM-to-PM mapping; 

ii) S, the set of PMs; 

iii) T , the set of VM requests; 

iv) r, the number of search iterations; 

Output : An evolved mapping m 

1 evolutionSearch (m, S, T , r) begin 

2 iter = 0 ; 

3 while iter < r do 

4 S ′ = S − idle (S, m ) ; 

5 G = grouping(m, S ′ ) ; 
6 for i = 0 to G .size()-1 do 

7 m = crossover (m, G [ i ]) ; 

8 end 

9 iter++; 

10 end 

11 (T a , T r ) = classi f yV M(m, T ) ; 
12 if T r � = ∅ then 

13 T ′ r = sortV M(T r ) ; 
14 m = real l ocate (m, S, T ′ r ) ; 

15 end 

16 return m ; 

17 end 
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the VM, since PM A cannot accommodate VM 1 due to the CPU re-

source limit within the time interval [7,9]. In this case, both RAR

and fitness value will be reduced. 

Algorithm 2 presents the details of our crossover operation,

Algorithm 2: Crossover Operation. 

Input : i) M 

′ , an input VM-to-PM mapping; 

ii) p i , a PM pair for crossover operation; 

Output : An optimized mapping based on crossover on p i 
1 crossover ( M 

′ , p i ) begin 

2 (α, β) = p i .getMinAOT () ; 

3 p[0] = p i .clone () ; 

4 p[1] = p i .mov e 1(α) ; 

5 p[2] = p i .mov e 2(β) ; 

6 p[3] = p i .exchange (α, β) ; 

// select the best pair with the highest fitness value 

7 maxF itness = −1 ; 

8 for i = 0 to 3 do 

9 if maxF itness < p[ i ] .getF itness () then 

10 maxF itness = p[ i ] .getF itness () ; 

11 p r = p[ i ] ; 

12 end 

13 end 

14 return M 

′ .update (p r ) ; 

15 end 

which takes a VM-to-PM mapping M 

′ and a PM allocation pair p i 
as inputs. In this algorithm, line 2 obtains two VMs (i.e., α, β) with

the minimum AOT from p i . Lines 3–6 consider the four actions of

a crossover operation. All the four enumerated scenarios are saved

in p [ ], which is an array of VM-to-PM mappings. Note that during

the execution of an action, α or β can be rejected due to the CPU

resource constraint. Lines 7–13 try to figure out which solution has

the highest fitness value. Finally, line 14 returns a new VM-to-PM

mapping with the best fitness value. 

4.2.3. Implementation of evolutionary search 

Unlike the crossover operation which only aims at improving

the allocations of one PM pair, the objective of an evolution search

is to improve the allocation on all PMs. Algorithm 3 presents the

details of the evolution search. In this algorithm, lines 2–10 iter-

atively search for better VM-to-PM mappings with our proposed

crossover operation. In each search iteration, line 4 figures out the

non-idle PMs based on the current mapping information. Line 5

randomly divides the non-idle PMs and groups them into pairs. For

each pair, we apply one crossover operation (lines 6–8) to obtain
 locally optimized VM-to-PM mapping. Note that when conduct-

ng a crossover operation, the selected VMs with minimum AOT

ay be rejected by their target PMs. By performing crossover op-

rations, our approach may squeeze more space out of the given

aired PMs, which can be used to accommodate the unallocated

Ms. Therefore, at the end of an evolution search, our approach

ries to reallocate such VMs to PMs to achieve higher fitness value.

n line 11, we use the function classifyVM( m, T ) to figure out the

llocated and rejected VMs which are denoted by two sets T a and

 r , respectively. If T r is not empty, line 13 will first sort the VM

n T r based on their execution time lengths in an ascending order.

hen, line 14 will try to allocate the sorted VMs in T r to PMs in a

irst Fit manner. Finally, line 16 returns a globally optimized VM-

o-PM mapping derived from an evolution search. 

.3. Simulation time reduction 

Although our evolutionary approach can derive energy-efficient

M-to-PM mappings, it is very time-consuming for complex VM

cheduling scenarios, since it requires a large quantity of repeated

imulation-based evaluation operations (i.e., getFitness() function)
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Fig. 7. State machine diagrams for different versions of CloudSim. 
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Fig. 8. Original CloudSim versus modified CloudSim. 
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n the evolution. We use the simulator CloudSim ( Calheiros et al.,

011 ) for the evaluation of cloud scheduling. Equipped with a

ime-driven engine, CloudSim periodically updates the data cen-

er statistics (e.g., energy consumption, the number of executed

nstructions) with the advance of scheduling intervals. 3 Conse-

uently, if allocated VMs have long execution time, the evaluation

ime spent by getFitness() functions will be extremely long because

f a large quantity of update operations performed by CloudSim.

ig. 7 (a) shows the implementation of the time-driven CloudSim

n the form of a state machine diagram. The Running state de-

otes that the normal execution of the cloud data center. When

n interrupt denoted by the predicate [scheduling interval finished]

s triggered, the function updateCloudletProcessing() will be invoked

o update the data center statistics. The state Updated is an instant

tate that indicates the completion of updates. In other words, only

he Running state can advance the scheduling intervals. 

Since our approach focuses on the energy consumption, when

here are no VM allocation change on a PM, calculating the up-

ates of data center statistics in each scheduling interval is a waste

f time. This is because both the consumed energy and the number

f executed instructions grow linearly. To reduce the simulation

ime, we propose a coarse-grained engine for CloudSim as shown

n Fig. 7 (b). Unlike the time-driven approach, our approach only

pdates the power and other statistics of the data center based on

he events of VM allocation changes. For example, when a VM is

reated on some PM, proper update will be conducted to calculate

he new data center statistics. Since such events happen much less

requently than the scheduling interval-based events, the overall

valuation time can be drastically reduced. 

Fig. 8 presents a comparison of simulation executions between

he original CloudSim and our modified CloudSim. In this example,

e only show the simulation of the VM executions on a PM. Since

he executions on different VMs are independent, we can have the

ame conclusion for the simulation executions of the other PMs

n a data center. From Fig. 8 (a), we can find that if we consider all

he scheduling intervals, we need to calculate 17 updates. However,

y using our simplified engine, our modified CloudSim only needs

o calculate 7 updates as shown in Fig. 8 (b), which is much more

ime-efficient than the one shown in Fig. 8 (a). Note that although

ur modified CloudSim focuses on quickly calculating the overall

nergy consumption of generated VM-to-PM mappings, it can be

asily extended to deal with other event-driven issues. 

. Performance evaluation 

To validate the performance of our approach, we conducted

xperiments on both the simulation-based platform CloudSim
3 Scheduling interval is used as a time unit during the execution of CloudSim. By 

efault, one scheduling interval represents one second of the physical time during 

he simulation. 

o  

I  

N  

(  

m  
 Calheiros et al., 2011 ) and a real cloud environment. We com-

ared our approach with two well-known baseline methods (FF

nd MBFD Beloglazov et al., 2012 ) from the perspectives of overall

rofit, energy consumption, instruction-energy ratio, and request

cceptance ratio. 

.1. Simulation-based experiment 

Since it is too expensive and time-consuming to conduct ex-

eriments on real cloud computing platforms, to carry out large

cale experiments, we adopted the cloud simulator CloudSim

 Calheiros et al., 2011 ) which supports various virtualized hard-

are resources and VM provisioning techniques. We modified the

loudSim and integrated our simplified simulation engine, which

an accelerate the simulation process. When using our approach

s presented in Algorithm 1 , we set the inputs n, η, r to 10, 5, 10,

espectively. All the simulation results are obtained from both the

riginal CloudSim and modified CloudSim on a desktop equipped

ith 3.10 GHz Intel Core i5 CPU and 10 GB RAM. 

.1.1. Modeling of physical machines 

This experiment simulates a data center consisting of 30 PMs.

mong these PMs, 15 of them are IBM x3250 servers where

ach server equips with an Intel Xeon X3470 CPU that has four

ores with a frequency of 2933 MHz. Similar to Beloglazov and

uyya (2012) , we model a multi-core PM with n cores each having

 MIPS as a single-core PM with the total capacity of n × m MIPS.

herefore, if each core only issues one instruction per clock cycle,

he overall throughput of an IBM x3250 server will be 2933 × 4 =
1732 MIPS. For the remaining 15 PMs, we adopted IBM x3550

ervers where each server has two CPUs and each CPU consists

f six cores with a frequency of 3067 MHz. In other words, each

BM x3550 server has a capacity of 2 × 6 × 3067 = 36804 MIPS.

ote that Cloudsim has built-in power models in the form of Eq.

4) for both IBM x3250 and x3550 servers. To accurately approxi-

ate the real power of such servers, Cloudsim provides the mea-
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Table 2 

Power (in Watts) settings of the two IBM servers. 

CPU Utilization (%) 0 10 20 30 40 50 60 70 80 90 100 

I BM x3250 41.6 46.7 52.3 57.9 65.4 73 80.7 89.5 99.6 105 113 

IBM x3550 58.4 98 109 118 128 140 153 170 189 205 222 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. IER and RAR trends for different θ using FF and FF-EX. 

Fig. 10. IER and RAR trends for different θ using MBFD and MBFD-EX. 
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sured system power (see Table 2 ) for 11 uniformly distributed CPU

utilization levels from 0% to 100% with an interval of 10%. Based

on Eq. (4) , we can figure out the power of the servers when

their CPU utilization rate is in between these intervals. For ex-

ample, when CPU utilization rates reach 20% and 30%, the power

of an IBM x3250 server is 52.3 Watts and 57.9 Watts, respec-

tively. When the CPU utilization of an IBM x3250 server is 24%,

according to Eq. (4) we can figure out that the server power is
24% −20% 
30% −20% × (57 . 9 − 52 . 3) + 52 . 3 = 54 . 54 Watts. 

5.1.2. Modeling of virtual machine reservations 

To objectively evaluate the effectiveness of our approach,

we conducted the simulation on the PMs modelled in

Section 5.1.1 with various VM requests made by tenants. We

investigated the arrival time, capacity, and execution time of VMs

in the experiment, since they are significant factors that strongly

affect the performance of cloud systems. Similar to the work

in Li et al. (2014) , in this experiment we generated a large set

of stochastic VM requests for the simulation. Let N be the total

number of VM requests arrived within a day. We used the Poisson

distribution to model the arrival time of VMs where λ = N/ 24

indicating the average number of arrived VM requests per hour.

To model VMs with different processing capacities, we adopted

the normal distribution N ( μ, σ 2 ) where μ indicates the mean

processing capacity (i.e., MIPS) of VMs and σ denotes the standard

deviation of VM processing capacities. We used the uniform

distribution of [ e min , e max ] to model the duration of VM execu-

tions, where e min and e max indicate the minimum and maximum

execution time of the generated VMs, respectively. 

5.1.3. Baseline approaches and evaluation metrics 

In this experiment, we compared our approach with two state-

of-the-art VM allocation heuristics as follows: 

• First Fit Algorithm (FF) . From a list of sorted PMs, FF algorithm

always assigns a given VM to the first PM that meets its CPU

resource requirement. 
• Modified Best Fit Decreasing Algorithm (MBFD)

( Beloglazov et al., 2012 ). MBFD approach schedules VMs in

deceasing order of their CPU resource demands. When allocat-

ing a VM, MBFD always selects a PM that both meets the VM’s

CPU resource requirement and leads to the least increase of

overall power consumption. 

Note that the above two heuristics can be used to generate ini-

tial VM-to-PM mappings (i.e., the input M of Algorithm 1 ) for our

approach. In other words, our approach can be considered as an

extension of the above two approaches, which can further improve

the overall energy consumption of reserved VMs. We use the terms

FF-EX and MBFD-EX to denote our methods based on the initial

mappings generated by FF and MBFD, respectively. To show the ef-

fectiveness of our approach, we considered the following four per-

formance metrics: 

• Overall Profit . As an important metric for energy efficiency,

overall profit denotes the total profit achieved by a cloud data

center considering both the VM workload and energy consump-

tion, which is formulated in Eq. (9) . 
• Request Acceptance Ratio . As an important SLA metric, RAR

equals the percentage of VM requests accepted by the cloud re-

source reservation system over all the requests submitted by

tenants. 
• Energy Consumption . It indicates the total amount of energy

consumed by PMs to execute all the accepted virtual machines.
• Simulation time . It indicates the wall time of executing a given

VM-to-PM mapping on a simulated cloud platform. 

As described in Section 4.2.1 , IER and RAR are two conflicting

actors which strongly affect the profit of reservation-based cloud

ata centers. Therefore, in the fitness function we use the parame-

er θ to make the tradeoff between IER and RAR. Typically, a larger

can lead to higher acceptance ratio during the evolution itera-

ions. Figs. 9 and 10 show the impacts of the different θ on both

ER and RAR for both FF/FF-EX methods and MBFD/MBFD-EX meth-

ds, respectively. In Fig. 9 , we consider a set of 130 VMs whose

rocessing capabilities following the normal distributions N (50 0 0,

0 0 0 2 ). In Fig. 10 , we consider a set of 220 VMs whose process-

ng capabilities following the normal distributions N (30 0 0, 10 0 0 2 ).

rom these figures we can find that when θ equals to 0 both FF-

X and MBFD-EX can achieve their highest IERs and lowest RARs,

ince the fitness function only considers the effect of IER. Note that

F and MBFD approaches do not consider the impacts of θ during

heir executions. When θ ≥ 1, though the IERs of the VM alloca-

ion solutions generated by FF-EX and MBFD-EX drop, they are still

etter than their counterpart IERs of the VM allocation solutions

enerated by FF and MBFD. Although when θ ≥ 1 our approaches

FF-EX and MBFD-EX) can obtain better IERs and RARs than their

ounterparts (FF and MBFD), empirically we prefer to set θ to 1, 2

r 3. In the following experiments we set θ to 3, since it shows

he best performance in both Figs. 9 and 10 . 
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Fig. 11. A comparison of overall profit for the four VM allocation methods. 
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.1.4. Experiments for energy efficiency and consumption 

Fig. 11 presents a comparison between our approaches (i.e., FF-

X and MBFD-EX) and their counterparts in terms of overall profit

ithin one reservation cycle (i.e., one day). In this comparison, we

nvestigated reserved VMs with different settings including: (i) the

umber of VMs, (ii) VM arrival time that follows the Poisson distri-

ution, (iii) VM processing capabilities that follow the normal dis-

ributions N (30 0 0, 10 0 2 ), N (30 0 0, 50 0 2 ), N (30 0 0, 10 0 0 2 ), N (50 0 0,

0 0 2 ), N (50 0 0, 50 0 2 ), N (50 0 0, 10 0 0 2 ), respectively, and (iv) the

uration of VM executions that follows the uniform distribution

here e min = 14 h and e max = 16 h. For each subfigure of Fig. 11 ,

e evaluated a series of VM sets that are generated following the

ame distributions of VM processing capabilities (i.e., VM size) and

M execution durations (i.e., VM lengths). Note that within a sub-

gure different VM sets have different distributions for VM arrival

ime, since the size of these VM sets is different. Based on the pric-

ng information provided by Alibaba Cloud ( ECS, 2017 ), we set α
o 9 × 10 −9 which indicates that executing one million instructions

eeds 9 × 10 −9 Chinese Yuan (CNY). We set β to 1.2, which de-

otes the average industrial electricity price (1.2 CNY per kilowatt-

our) in China. 

From these six subfigures, we can find that our approaches

MBFD-EX and FF-EX) outperform their counterparts (MBFD and

F), and our MBFD-EX approach can always achieve the highest

rofits. As an example shown in Fig. 11 (6), when a set of 90 re-

erved VM requests are submitted to the cloud data center, our

F-EX approach can achieve 32.1 CNY more than FF method, which

ccounts for 21% of FF’s overall profit. In Fig. 11 (3), when there

re a set of 60 reserved VM requests investigated, our MBFD-

X approach can achieve 24% profit improvement over the MBFD

ethod. Since we only have 30 PMs, when the size of VM set

ncreases, some VM requests will be rejected. For example, in

ig. 11 (1)-(3) the approaches start to reject VM requests when the

ize of VM set is larger than 180. In Fig. 11 (4)-(6), VM rejection

tarts when the size of VM set is larger than 110. Since all the PMs

re fully-loaded, the profit differences are negligible in these cases.

Fig. 12 presents the results of energy consumption using the

ame VM sets generated in Fig. 11 . To fairly conduct the com-

arison, we do not consider the cases involving VM rejections in
his figure. From this figure, we can find that our approaches can

chieve significant energy savings compared with their counter-

arts. For example, in Fig. 12 (3), when there are 60 VM requests

n total for allocation, our MBFD-EX method can achieve 38% en-

rgy savings compared with MBFD method. Moreover, in Fig. 12 (6),

ur FF-EX method can achieve 41% energy savings compared with

ts counterpart when there are 70 VM requests used in reservation.

.1.5. Experiment for request acceptance ratio 

To show the effectiveness of our approach from the perspective

f request acceptance ratio, we adopted the same VM sets gener-

ted in Section 5.1.4 for the evaluation. In Fig. 13 , we only inves-

igated the scenarios where the PMs do not have enough space to

ost all the VM requests. From this figure, we can find that our

pproaches can accept more VM requests than their counterparts.

s an example shown in Fig. 13 (3), when there are 200 VM re-

uests reserved in total, our FF-EX method can achieve more than

.5% improvement of request acceptance ratio compared with FF

ethod. From all the other five subfigures, we can also observe the

uperiority of our approaches. The reason of this trend is mainly

ecause that during the evolutionary search iterations (see details

n Algorithm 3 ) our approach always tries to find an optimal VM

llocation solution with the highest instruction-energy ratio. Based

n our proposed fitness function, VM moves guided by our evolu-

ionary approach can explore more spare resources than existing

ethods, which can accommodate more extra VM requests. 

.1.6. Experiment for simulation time 

Our approach uses CloudSim as the underlying simulator to

valuate the performance of VM allocation solutions generated in

ach evolutionary iteration. Since CloudSim needs to compute the

pecified metrics (e.g., energy consumption, number of executed

nstructions) in each scheduling interval, for complex VM schedul-

ng solutions it requires a long simulation time. To reduce the over-

ll evaluation time, we adopt the simplified simulation engine in

loudSim as described in Section 4.3 , which only calculates perfor-

ance metrics when necessary. 

To show the efficacy of our modified simulation engine, Table 3

ompares the overall simulation time (with 500 evolutionary it-
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Fig. 12. A comparison of energy consumption for the four VM allocation methods. 

Fig. 13. A comparison of request acceptance ratio for the four VM allocation methods 

Table 3 

Simulation time (in minutes) of MBFD-EX approach: original 

CloudSim versus modified CloudSim. 

# V M Original Clou dSim Modified CloudSim Speedup 

60 1024.2 3.0 341 

70 1048.1 3.4 308 

80 1105.6 3.6 307 

90 1172.8 4.4 266 

100 1209.1 5.2 232 

 

 

Table 4 

CPU capacities of computing nodes in our testbed. 

Compute Node Type CPU Capacity ( in MIPS ) 

Server with Xeon CPU 2400 × 8 

Desktop with Intel Core i5 CPU 3093 × 4 

c  

i  

c  

F  

o  
erations) of MBFD-EX approach using both original CloudSim and

modified CloudSim. Due to the limitation of space, here we only
onsider the case where the settings are the same as the ones used

n Fig. 11 (3). From Table 3 , we can find that our modified CloudSim

an improve the simulation time by several orders of magnitude.

or example, when there are 60 VMs involved in the allocation,

ur modified CloudSim can achieve a speedup of 341 times over
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Table 5 

Measured power (in Watts) of servers used in the real-world experiment. 

CPU Utilization (%) 0 10 20 30 40 50 60 70 80 90 100 

Server with Xeon CPU 81.41 87.49 92.41 97.09 104.25 116.71 125.13 127.70 129.64 131.89 132.30 

Server with Core i5 CPU 43.59 44.15 44.82 45.78 46.84 49.07 53.00 55.30 59.51 64.93 71.07 

Fig. 14. Part of our OpenStack-based experiment environment. 
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Table 6 

A comparison of energy consumption (in joules) for both ex- 

periments. 

FF FF-EX Energy saving rate 

Real-w orld 273360 260114 4.84% 

Simulation 294192 285804 2.85% 

MBFD MBFD-EX Energy saving rate 

Real-world 361569 264 4 49 26.8% 

Simulation 394092 286092 27.4% 
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r  
he original CloudSim. Note that for the other VM allocation ap-

roaches (i.e., FF, FF-EX, MBFD) with different VM settings, we can

bserve the similar trend. 

.2. Real-World experiment 

For the evaluation and further validation of our approach

n real-world cloud computing environment, we constructed an

penStack-based (version 2014.1.5) testbed (part of which are

hown in Fig. 14 ) that consists of one controller node and six com-

ute nodes. These nodes use the Ubuntu operating system (version

TS 14.04). 

The controller node adopted in our test bed is a desktop

quipped with 4 GB RAM and an AMD FX-6100 CPU with six

.3 GHz cores. We used two kinds of PMs as compute nodes in our

estbed. Among the six compute nodes, one of them is a server

quipped with 32 GB RAM and a Xeon CPU with 8 cores (16

hreads) where each core has a frequency of 2.0 GHz. The remain-

ng compute nodes are desktops, each of which has 10 GB RAM

nd an Intel Core i5 CPU with four 3.10 GHz cores. Table 4 shows

he computing capacities of these two kinds of servers. 

To obtain real-time power of PMs, we adopted the HP9800

ower monitor (shown in the rightmost side of Fig. 14 ) produced

y Shenzhen HOPI electronic technology limited company. We de-

eloped a Python program that periodically (every 1 s) reads the

ower information from the USB port of the power monitor, which

an be used to calculate the overall energy consumed by the PMs.

ince the power varies during the execution of PMs in real-world

nvironment, all the experiments under this setting were carried

ut 5 times and we used the mean value for the performance com-

arison. Table 5 shows the measured real power information of

ompute nodes with different levels of CPU workload. To validate

he effectiveness of our approach, we also use such information

nd Eq. (4) to approximate the power consumption in the simula-

ion. 

In this real-world experiment, we investigated the allocation

f eighty VM requests on the six compute nodes, where all the

Ms adopted the same operating system (i.e., Ubuntu Linux LTS

4.04). We developed a program written in C programming lan-

uage which can control the MIPS usage of its host VM and its exe-

ution duration based on user inputs. Similar to the VM generation

n Section 5.1.2 , the arrival time of these VMs follows the Poisson

istribution ( λ = 3 . 3 ). The processing capacities of these VMs fol-

ow the uniform distribution where the maximum value is 1200

IPS and the minimum value is 250 MIPS. The durations of the
M executions follow the uniform distribution where e max = 648 s

nd e min = 432 s. Note that in this experiment we assumed that all

he VMs are computation-intensive and all the VM executions are

ndependent (i.e., no communications between tasks). 

Table 6 presents the energy consumption results for both real-

orld and CloudSim-based experiments. Note that for both exper-

ments the VM allocation solutions used for energy consumption

valuation were obtained by using the four approaches (FF, FF-

X, MBFD, and MBFD-EX) based on simulations. For each of the

M allocation solutions generated by FF-EX and MBFD-EX, we con-

ucted 500 evolution search iterations (with n = 10 , η = 5 , r = 10 )

o achieve a near-optimal result, which cost around 4 min. In this

xperiment, we do not consider the scenarios of VM rejection. In

ther words, all the VMs can be accommodated within the six

Ms. From this table, we can find that our FF-EX and MBFD-EX

pproaches can achieve much better energy consumption as com-

ared with their counterparts. For example, when comparing with

BFD method, our MBFD-EX approach can reduce the energy con-

umption by up to 26.8% in the real-world experiment. Although

he results of simulation are not the same as the results of the

eal-world experiment, we can observe the same trend of energy

avings by using our approaches. 

. Conclusions and future work 

Service reservation is gaining popularity in cloud computing,

ince it can not only facilitate the management of increasing ten-

nts’ requests, but also achieve lower price compared with tra-

itional pay-as-you-go cloud services. However, when more and

ore virtual machines are deployed in data centers, the utilization

ate of host PMs is becoming much more challenging to control. To

ddress this problem, we proposed an evolutionary approach that

an effectively allocate and consolidate VMs among heterogeneous

Ms. By fully exploring the capacity of reservation-based clouds,

ur approach can optimize the instruction-energy ratio of PMs to

ave their consumed energy. Moreover, to enable fast evaluation of

M allocation solutions during the search of optimal results, we

eveloped a coarse-grained simulation engine and incorporated it

nto CloudSim. Experimental results show that our approach out-

erforms existing VM allocation methods from the perspectives of

oth energy efficiency and request acceptance ratio. 

In the future, we plan to incorporate the Dynamic Voltage and

requency Scaling (DVFS) technique into our approach to further

aximize the energy efficiency for reserved cloud service requests.

ue to the varying processing capacities of heterogeneous PMs

long with the change of CPU frequencies, achieving an optimal

M schedule considering DVFS is more difficult. Meanwhile, the

eliability of VM executions is strongly affected by the supplying
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voltages of host PMs. Within a DVFS-enabled cloud data center,

how to optimize the energy consumption of reserved VM requests

while satisfying specific reliability requirements is also an interest-

ing topic that is worthy of further study. 
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