IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 4, OCTOBER-DECEMBER 2021

1305

An Energy and Performance Aware
Consolidation Technique for
Containerized Datacenters

Ayaz Ali Khan
Rahim Khan

, Muhammad Zakarya
, Mukhtaj Khan

, Rajkumar Buyya™, Fellow, IEEE,
, and Omer Rana

Abstract—Cloud datacenters have become a backbone for today’s business and economy, which are the fastest-growing electricity
consumers, globally. Numerous studies suggest that ~30% of the US datacenters are comatose and the others are grossly
less-utilized, which make it possible to save energy through resource consolidation techniques. However, consolidation comprises
migrations that are expensive in terms of energy consumption and performance degradation, which is mostly not accounted for in many
existing models, and, possibly, it could be more energy and performance efficient not to consolidate. In this paper, we investigate how
migration decisions should be taken so that the migration cost is recovered, as only when migration cost has been recovered and
performance is guaranteed, will energy start to be saved. We demonstrate through several experiments, using the Google workload
data for 12,583 hosts and approximately one million tasks that belong to three different kinds of workload, how different allocation
policies, combined with various migration approaches, will impact on datacenter’s energy and performance efficiencies. Using several
plausible assumptions for containerised datacenter set-up, we suggest, that a combination of the proposed energy-performance-aware
allocation (Erc-Fu) and migration (Crer) techniques, and migrating relatively long-running containers only, offers for ideal energy and

performance efficiencies.

Index Terms—Clouds, datacenters, containers, energy efficiency, performance, consolidation with migrations

1 INTRODUCTION

NATIONAL energy supply complications, rising fuel
costs, and global warming, altogether bring the need
for energy efficient computing into sharp focus. Reduction
in coal-based power plants, particularly, in the UK, offering
a projected energy safety margin of only 0.1 percent in 2017,
and the closure of nuclear power plants in France and
Germany, carry the very real danger of power outages and
load shedding in near future [1]. If we assume comparable
consumption rates to the US of approximately 1.8 percent
of overall energy consumption [2], a 6 percent growth
in datacenter energy efficiency might represent two times
increase in such an energy safety margin. Furthermore, [2]
also suggests that, due to migration from internal systems
to the cloud, datacenter energy consumption will remain
constant until 2020. These kinds of problems can be
addressed, in part, through approaches such as efficient

o A.A. Khan, M. Zakarya, R. Khan, and M. Khan are with the Department of
Computer Science, Abdul Wali Khan University, Mardan, Khyber Pak-
htunkhwa 23200, Pakistan.

E-mail: {ayazali, mohd .zakarya, rahimkhan, mukhtaj khan|@awkum .edu.pk.

e R. Buyya and O. Rana are with the University of Melbourne, Parkville,
VIC 3010, Australia, and also with the Department of Computer Science,
Cardiff University, Cardiff CF10 3AT, United Kingdom.

E-mail: rbuyya@unimelb.edu.au, ranaof@cardiff.ac.uk.

Manuscript received 14 Oct. 2018; revised 6 Apr. 2019; accepted 1 June 2019.
Date of publication 5 June 2019; date of current version 6 Dec. 2021.
(Corresponding author: Muhammad Zakarya.)

Recommended for acceptance by C. De Rose.

Digital Object Identifier no. 10.1109/TCC.2019.2920914

resource management—resource allocation, scheduling and
consolidation [3]. Resource management techniques are
dependent on the technology (virtualisation and/or con-
tainer-based virtualisation—containerization) that the ser-
vice providers uses to provide resources to customers.
Virtualisation brings the notion of a Virtual Machine (VM)
and containerization has replaced the VM with a container;
both run on virtualised hardware (servers).

Virtualisation is extensively used in cloud infrastructures,
particularly, the state-of-the-art in Infrastructure as a Service
(IaaS) is largely familiar with the notion of VMs. Cloud service
providers such as Amazon EC2, Microsoft Azure and Google
make VMs available to users and also run applications
(workload /services) inside VMs. Many Software as a Service
(SaaS) and Platform as a Service (PaaS) providers are built on
top of IaaS with all their applications running inside VMs.
Containerization presents an alternative to VMs in the cloud;
which are lightweight as they share a single OS kernel.
Moreover, containers could be deployed very quickly
compared to VMs. Interest in containerization is increasing
rapidly, as evidenced by the viral implementation of the
Docker engine. In reality, even before the rise of Docker'
engine, Google [4] has been using containers to run applica-
tions for several years [5]. From a customer point of view,
the question whether to deploy applications on VMs or con-
tainers is application dependant. For example, if it is desirable

1. https:/ /www.docker.com/

2168-7161 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2021 at 01:09:39 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2793-858X
https://orcid.org/0000-0002-2793-858X
https://orcid.org/0000-0002-2793-858X
https://orcid.org/0000-0002-2793-858X
https://orcid.org/0000-0002-2793-858X
https://orcid.org/0000-0001-7070-6699
https://orcid.org/0000-0001-7070-6699
https://orcid.org/0000-0001-7070-6699
https://orcid.org/0000-0001-7070-6699
https://orcid.org/0000-0001-7070-6699
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0003-1631-6483
https://orcid.org/0000-0003-1631-6483
https://orcid.org/0000-0003-1631-6483
https://orcid.org/0000-0003-1631-6483
https://orcid.org/0000-0003-1631-6483
https://orcid.org/0000-0002-4933-6192
https://orcid.org/0000-0002-4933-6192
https://orcid.org/0000-0002-4933-6192
https://orcid.org/0000-0002-4933-6192
https://orcid.org/0000-0002-4933-6192
mailto:
mailto:
mailto:
https://www.docker.com/

1306

to run large number of applications on a single host
(virtualised), or the applications are portable, then deploying
them on containers is more suitable than VMs.

Once applications are launched, customers are billed based
on the runtime of their applications and resource demand
(quantity).” However, resources are largely under-utilised in
datacenters; and significant energy could be saved through
resource management techniques [6], [7]. Felter et al. [8] have
investigated resource management in containers, VMs and
compared the performance of different kinds of workloads
(applications) in both platforms to that of natively runn-
ing the applications on bare-metal (hardware). However,
resource management i.e., consolidation of VMs and contain-
ers both involves migrations that can be expensive in terms
of additional energy consumption, performance loss (hence
cost), and this is largely not accounted for in many published
models—it can be more energy and performance (cost)
efficient not to consolidate [6], [9].

In this paper, we investigate how migration decisions can
be made such that the energy and performance costs
involved with the migration are recoverable, after which
energy is saved and performance is maintained (improved
or at least not degraded). We explore the impact on energy
and performance efficiencies of allocation heuristics such as
Round Robin (RR), Random (R), Best Resource Selection
(BRS) [10], Minimum Power Difference (MPD) [11], First Fit
(FF), FiLLUp (Fu) and Erc-Fu when combined with different
approaches to migration (no migration (No)—migrate all
(ALL) or Dynamic Consolidation (Dc)—migrate relatively
long-running VMs (Cmcr) [6]—migrate relatively long-
running containers (Cper)). Key to this exploration is the
recovery of costs (in terms of energy and performance)
incurred by a migration. This exploration is conducted
through extensive simulations that use the Google workload
traces for 12,583 hosts and approximately a million tasks
(three different application types) [12] in combination with
CloudSim [13].

The rest of the paper is organized as follows. Major con-
tributions of the work presented in this paper are stated in
Section 2. In Section 3, we discuss server consolidation as
a bin-packing problem. In Section 4, we explain container
migration, its energy overhead, and how to measure a
containerised host energy and performance efficiencies. In
Section 5, we propose an Energy and Performance Cost
Recovery Consolidation (Crer) technique that avoids
migrating containers which would not be able to: (i) recover
the energy used in migration; and/or (ii) performs worse
on the target host after the migration. Section 6 models
resource heterogeneities in Google cluster from a large and
real workload dataset perfective. We validate Cper using
real workload traces from Google cluster in Section 7 and
show that CPER can reduce the migration energy overhead
with reduced numbers of migrations, increased or at least
maintained performance (expected level), and that the
majority of migrated containers now recover their migration
cost and continue to perform better, save energy and there-
fore cost. We offer an overview of the related work in
Section 8. Finally, Section 9 concludes the paper with future
research directions.

2. https:/ /aws.amazon.com/ec2/pricing/

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 4, OCTOBER-DECEMBER 2021

2 CONTRIBUTIONS

Following are the major contributions of our research.

e anew algorithm for container allocation that accounts
for host efficiencies (energy and performance), where
efficient hosts are utilized first, which decreases
datacenter’s total energy consumption and increases
reliability;

e a mathematical model to estimate the energy
consumption of a container, running inside a VM
(containerised platform);

e a novel host energy efficiency and a migration
approach that migrates containers only if migration
cost (in terms of energy and performance) can be
recovered, and ideally then save energy and perform
better;

e extensive simulations on a real dataset have been
performed to demonstrate that migrating relatively
long-running containers are more energy and
performance efficient; and

e evaluation of the proposed techniques using three
different dynamic workload types—where dynamic
means varying demand for resources.

3 PROBLEM DESCRIPTION

Resource allocation and consolidation with migration can be
considered as multidimensional bin-packing problems where
bins are hosts/VMs and items are containers, for container
placement. The objective is to minimize the number of hosts
needed to accommodate a set of containers [14]. Rich
literature has formulated the placement and consolidation
problems as bin-packing optimisation problems [14], [15].
However, when hosts are heterogeneous, then the problem
becomes more complex due to the number of resource types
(CPU, memory) needed to accommodate VMs or containers.
In that case, the allocation problem can still be formulated
as multi-type bin-packing issue; and the objective would be to
minimize the sum of bin costs. Such NP-complete problems
are typically solved using Linear Programming (LP) or
heuristics. Dynamic consolidation is typically suggested
being an improvement on doing nothing, allowing: (a)
to switch off the underutilized host if the accommodated
containers can be relocated to other hosts; (b) to withdraw
hosts from an overloaded state if the sum of accommodated
containers becomes larger than its capacity; and (c) migrate
the workload to a better performing host to increase service
reliability [16]. Besides the trade-off involved between
migrating containers among heterogeneous hosts and
decreasing the number of hosts to accommodate containers,
live container migration can be completed without needing
downtime, and ideally without impacting performance
(and, specifically, SLAs).

In production clouds (e.g., Amazon EC2 and Google) users
are charged for the amount of provisioned resources and the
duration of the service (i.e., job execution time (that absolutely
depends on the performance level of the container) — con-
tainer runtime). As a consequence of increased container
runtime that may occur either: (i) due to the poor perform-
ance levels of the hosts; or (ii) resource contention (i.e., co-
located containers compete for similar resources), the energy

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2021 at 01:09:39 UTC from IEEE Xplore. Restrictions apply.

https://aws.amazon.com/ec2/pricing/

KHAN ET AL.: AN ENERGY AND PERFORMANCE AWARE CONSOLIDATION TECHNIQUE FOR CONTAINERIZED DATACENTERS

c
A

Two
servers set
to sleep
mode

D
B
AlBf|c|oD
-
I
s1 S2 S3 s4 s1 s2 s3 s4

Fig. 1. Energy and performance (runtime) costs change due to consoli-
dation [left - 4 containers are placed on individual servers/VMs; right -
containers are consolidated on two servers/VMs]. For each vertical bar
(server), the darker area denotes server’s idle energy use; the lighted
area labelled with container name denotes dynamic energy use [17].
Both shaded areas, as a whole, denote the server's total energy
consumption for a specific runtime [bars height].

Energy cost over running time

consumption of the host itself will rise (albeit the host may
be more energy efficient than the others), as shown in Fig. 1.
Greenberg et al. [18] suggest that performance directly
impacts providers’ revenue. Therefore, it is essential to
ensure that a particular container meets its expected level
of performance (i.e., achieves a service level), and if not, it
might be migrated to a host where it may perform either
better or, at least, not reducing its current performance
(on the source host) if it is beneficial to do so. Furthermore,
the migration decision will be necessary if the recently
allocated host is performing better and, also, is more
energy efficient than the previous one. Considering these
diverse opportunities (i.e., increased runtime, decreased
performance and increased energy consumption), our
work is aimed at developing a consolidation model to:
(i) predict the energy and performance of a container;
(ii) derive a correlation among the predicted quantities to
decide migration; and (iii) finally migrate the container to
achieve better results in terms of the energy consumption
and performance. Note that, it is realistic to recoup the
performance cost for certain applications such as HPC.

Furthermore, if each container can recover its migration
cost first, and then lasts to run until its execution on the energy
and performance efficient host, then its migration is more
effective for achieving its expected level of performance,
energy savings and, therefore, in cost reduction. Dynamic con-
solidation can be assumed as a multi-objective optimization
problem to minimize the amount of energy consumed and
increase performance level through avoiding unnecessarily or
costly migrations. We describe the problem as Crer—Energy
and Performance Cost Recovery in Consolidation, further
explained in Section 5.1, and address it through exploration of
the impact of container runtimes. However, in an on-demand
public cloud platforms, container runtimes are usually
unknown, therefore, we consider the container past runtime
R,.s in order to decide its migration.

We can express the container migration as a multi-
objective optimization problem which comprises two
nominal cost types namely energy consumption cost (Ecc)
and container performance cost (Cpc). The objectives of
our bi-objective optimization problem is to minimize
both energy (£) and runtime (R) [as R is inversely pro-
portional to performance]. Mathematically, this can be
expressed as Eq. (1):

1307

hosts

min(E) where E = Z E;
i=1

-f - :;;ntaincrs (1)
min(R) where R = Runtime;.
=1

The constraints are: (a) at a time, each container (VM) can
only be mapped to a single VM (host); and (b) the total
number of containers on a particular host cannot exceed
the host’s overall resource capacity [14].

Multi-objective optimisation problems could be solved eas-
ily if a single objective could be defined. For example, Gupta
et al. [19] suggested and used ERP (Energy Response-time
Product) in order to capture the existing trade-off between
energy and performance, therefore, cost; which is a largely
acceptable and suitable metric to capture similar trade-offs
[20]. ERP minimization can be seen as maximization of the
“performance-per-watt” ratio—where performance is defined
as the inverse of response time (mean). In this paper, we deter-
mine performance through runtime R that can be considered
comparable to response time (based on time factor). Hence,
we revise the given name of this metric to the Energy Runtime
Product (ERP). The ERP is given by Eq. (2):

ERP =FE x R. (2)

We assume both E and R are of a comparable magnitude.
However, in more complex scenarios, if one dominates the
other, then ERP can be expressed as ERP =a.E x B.R
(where a and B are the domination factors for £ and R
respectively) [19], [20]. Theoretically, the objective of
the above bi-objective optimization problem is to minimize
and evaluate the ERP behaviour for various resource
scheduling and consolidation policies, as given by Eq. (3):

min(ERP). (3)

From the implementation point of view, as predicting R is
difficult, hence we use R' ie. the previous runtime of
container, in order to calculate the ERP. Various techniques
can be used to predict the execution time of the container,
but this is not within the scope of current work.

4 BACKGROUND

From a cloud service perspective, applications are often
encapsulated into pre-configured platforms such as the
well-known hypervisor-based VMs, or the relatively new
technique, containers; for easy distribution [21]. Virtualisation
technology (VMs) create and run several isolated guest
OSs on top of a host OS; and containerisation technology
(containers) share a single host OS. Moreover, both technolo-
gies differ as VMs completely emulate the OS kernel and
hardware, whereas containers directly share the hardware
and kernel with their host machines. Therefore, containers
have lower virtualisation overhead and occupy much less
resources than VMs, but are less adaptable; a Linux container
(LXC) cannot run on a Windows server. Containers are
becoming a compute instance of choice in large-scale cloud
platforms [22]. A recent survey of 576 IT leaders [23], which
benchmarks the container adoption, conducted by Diamanti,’

3. https:/ /diamanti.com/

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2021 at 01:09:39 UTC from IEEE Xplore. Restrictions apply.

1308

suggests that approximately 44 percent of IT leaders
(respondent in the survey) plan to replace VMs with contain-
ers. Moreover, approximately 71 percent of respondents have
deployed containers on VMs including both public and
private clouds. However, this is not favoured by several
organisations as suggested in Diamanti’s white paper [24]—
instead they suggest running containers on bare-metal.
Obviously, this does not suggest VMs disappearance
overnight, however, a sudden change in applications
deployment can be seen, clearly. VMs and containers both
could help to significantly increase the resource utilisation
levels in datacenters using consolidation techniques—VMs
or containers migration [10].

Like VM migration, container migration may also occur
for several reasons within a datacenter, such as host mainte-
nance, user mobility, electricity price and load balancing.
Migrations can still be beneficial where renewable energy
is used to decrease datacenter energy costs and CO;
footprint [25]. Furthermore, if a certain workload performs
the worst on a specific host due to co-location or resource
heterogeneity, then migrating it to another host could be
performance and hence cost efficient. During container live
migration, the running container is moved from one host to
another. This means migrating data on disk, depending on
the underlying method to storage, and memory pages. This
leads to two kinds of migration: (i) shared file system, where
a container image is run from shared storage such as NFS,
GlusterFS, and only memory is copied; and (ii) over-
Ethernet migrations, where a container image is run from a
local drive (disk), and both memory and disk are copied.
Since the container image may itself be large, this latter
form of migration may take rather longer. A third kind
of migration, particularly for container, is record and replay
[26]. Certain tools, such as CRIU and P.Haul [as explained
in Section 8], are widely used to checkpoint and restore
the container on a target host.

In practice, container migration is not for energy savings
only. Other factors such as electricity price, renewable
energy generation, user mobility and new system such
as cloudlets, edge/fog computing also trigger the need for
container migration [9]. If we perform live migrations in
order to achieve energy and performance efficiencies, then
for the duration of migration, there will be an energy cost,
as well as loss in performance level, in the additional
container running on the source host. The energy cost will
depend on the host’s power profile P while the performance
cost will be subject to several factors such as available
bandwidth. We assume P a linear function of host’s utilisa-
tion level—the more it is utilised, the more energy it will
consume [27], [28]. The relationship between power
consumption and CPU utilisation can be described as given
in Eq. 4)

P('U,) = Pidle + (Pmax - Pidle) X u, (4)

where P(u) is the estimated power consumption at utilisa-
tion level u, P;q. is the static power consumed when the host
is 0 percent utilised, and P,,,,, is the power consumed when
the host is 100 percent utilised. The part (Ppue — Piaie) X
is known as dynamic power consumption, and is treated as
a linear function of w. This simplified model estimates

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 4, OCTOBER-DECEMBER 2021

the power consumption of a non-virtualised host with less
than 5 percent error, however, it needs modification
to account for virtualisation and containerization [28]. More-
over, we assume ~10% performance degradation due
to migration [11]. In the first part of this section, we extend
this power model to address containerised hosts; in the
second part we discuss measuring the migration energy and
performance costs.

4.1 Comparing Hosts Efficiencies

In this paper, we investigate migration cost recovery in
terms of both energy and performance, which is possible
only if two terms are satisfied: (a) the container is migrated
to a more energy and performance efficient target host; and
(b) after the migration, the container runs on the target host
for a sufficient length of time. In this section, we discuss
measuring the energy and performance efficiencies of hosts
to address conditions (a) and (b).

4.1.1 Energy Efficiency

In non-virtualised systems, if one host performs better and
consumes less power than another to execute a particular
application/workload, then the former one is more energy
and performance efficient than the latter. However, this is
possible that certain workloads may run less efficiently on
the former host, therefore, efficiency should be addressed
across a range of workloads [29]. The well-known TOP500*
supercomputer benchmarking organization uses the model
in Eq. (5) to compare hosts efficiencies, however, perfor-
mance is not taken into account. Furthermore, in [10], using
empirical evaluation of the proposed metric, the authors
suggest its inability and non-suitability to decide energy
efficient host in a virtualised or containerised platform

Ch ost
E = . 5
Fhost Pmaw ()

In the above equation, E; denotes host’s energy efficiency and
C'is the host’s capacity in terms of total number of instructions
that it can execute in one second (MIPS). In containerised
environments, several containers on multiple VMs can
be running different workloads on a single host, therefore
several factors must be considered in order to compare energy
and performance efficiency of the host. To keep it simple, we
characterise, first, distribution of the physical host resources
to several containers (not VMs) and, hence, the overall energy
consumption of a containerised host is denoted by

Phast _ Pidle + Z P;:Untainer’ (6)
=1

1

where P is the host’s total power consumption [measured in
Watts (W)], n is the total number of accommodated contain-
ers on the host, P;q. is the static or idle power consumption
of the host and P¢”"*""" is the dynamic power consumption
of the ith container that could be estimated, roughly [28],
using the above linear power model, as described in
Section 4 [Eq. (4)]

4. http:/ /www.top500.0org

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2021 at 01:09:39 UTC from IEEE Xplore. Restrictions apply.

http://www.top500.org

KHAN ET AL.: AN ENERGY AND PERFORMANCE AWARE CONSOLIDATION TECHNIQUE FOR CONTAINERIZED DATACENTERS

P(iuntainc’r = Wcontainer X denamicv (7)

where Weontginer 1S the fraction of host’s resources (e.g., CPU,
memory) that are allocated to a particular container. This
permits us to streamline concerns by assuming every con-
tainer as equal to a real physical host; further, like VM sizes,
container sizes may also be divided equally, in an IaaS
cloud, by the amount of allocated CPU cores (hyper-
threaded) out of m cores on a particular host, or by alloca-
tion of a specific amount of memory. To keep it simple, we
only consider the number of cores (hyper-threaded)

COT€Scontainer

®)

Wmnminer =
m

To consider complete heterogeneity and divide the host’s
energy consumption amongst accommodated containers
(n) more fairly, the m (number of cores or vCPUs) is given
by Eq. (9)

n
m = E COT€container; + 9
i=0

Including static power, the total power consumed by a sin-
gle container will be given by:

Pidie
Pconminer - <T + Wmntainer X (Pnzaz - Pidle) X u,

(10)
where n is the total number of containers running on host, u
is the utilisation level of container. Hence, host’s efficiency
can be related to the number of containers that are running
on it and, more specifically, to their individual efficiencies.
Note that, to fairly divide host’s P;q. amongst all running
containers, }—L should be replaced by W stqiner, as given by
Eq. (11), which is the exact amount of resources (cores) allo-
cated to the container

Pcontaim’,r = (Wcontainer-Pidle) + Wcontainer~(Pnlam - Pidle) XU

1n

Pcontainﬁr = Wcontuincr’ X (Pidle + ((Pmar - Pidlﬁ) X u))
(12)

Eq. (12) describes a simplified model to estimate the energy
consumption of a container running on bare-metal (.e.,
directly on hardware). However, if containers are running
inside VMs, then Eq. (12) can be modified, as Eq. (13), to
estimate the energy consumption of a single VM

Pvm = va X (Pidle + ((Pm(zm -

Pidle) X u)) (13)

Therefore, the energy consumption of a container running
inside a VM can be estimated as given in Eq. (14):

- Pidlﬁwn) U’))
(14)

Pcontainerwn - WaorLtai7Lerm“~ ,Pidleum + ((,Pmuan

where Pjqe,,, and Pz, are the idle and maximum power
consumption of the vm, when it is 0 and 100 percent uti-
lized, respectively. Similarly, W oniainer,,, i the fraction
of vm resources allocated to the container and wu is the

1309

container utilization. The total energy consumption of
a containerized host with n number of containers and m
VMs is given by Eq. (15):

m n
Phrost = Pidare + E fme(g ”P;-"“"t‘”””).
=1

J=1

(15)

In our simulations, we use the above model to estimate the
container energy consumption before it is being migrated to
other hosts. Furthermore, using the above model, the energy
consumed by a particular host to run a single container will
be at maximum, due to host’s P;.. Similarly, the more num-
ber of containers run on the host, the more energy efficient
each container and, therefore, host will be. Similar to VM
density [29], we also define the notion of container density,
which is used somewhere else, to address both: (i) the num-
ber of containers running on a host; and (ii) the maximum
number that possibly will be run whereas evading resource
starvation; we merge these to understand container density
as the current fraction of the maximum for a host [10].

Limitations. The above model has two shortcomings.
(I) Cloud datacenters run heterogeneous applications with
diverse resource usage, including not only the CPU,
but also the memory, the disk, and the network. Those
subsystems apart from the processor have been also
reported to make up a noticeable part of the total power
consumption depending on the workload [30]. In order
to avoid models that are specific for CPU-intensive applica-
tions, the impact on the power consumption of the rest
of subsystems should be also considered. (II) Moreover,
when containers run on Virtual Machines (VMs), the VM
CPU utilization is used to characterize the VM workload
and to correlate the processor usage with the power
consumption. However, the utilization is not the best
indicator of the processor usage regarding its correlation
with energy consumption, because applications with the
same utilization can have different processor energy
consumption depending on what instructions they are
executing, as reported by Kansal et al. [31].

4.1.2 Performance Efficiency

Theoretically, a host would perform better if it can execute
more number of instructions per unit time than the other.
For example, in the notion of MIPS or GHz, higher ratios
are better than the lowers. However, empirical evaluation
in [29] demonstrates that various platforms might perform
differently for similar kinds of application workloads, as
shown in Fig. 2. Largely, this is possible due to co-location
when containers allocated on same host compete for similar
resources. It is difficult to predict, in a real cloud, how
a containerised application would perform on a specific
host. However, using a real dataset from Google’s cluster
[12], we can derive hosts performance parameters (such as
mean p and standard deviation o of variations in execution
times). For a particular workload, if puy, < uy, then H;
is more performance efficient that Hs.

As shown in Fig. 2, AMD performs worst for Bzir2 while
E5430 performs better. Therefore, migrating the Bzir2
application from E5430 to AMD is not performance efficient.
Moreover, these kinds of migrations could also be less energy
efficient even if the target host is more energy efficient than the

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2021 at 01:09:39 UTC from IEEE Xplore. Restrictions apply.

1310

Histogram of GNUGO Execution Times for m1.small Histogram of POV-Ray Execution Times for m1.small

— E5430 89
— E5.2651
€5.2650

E5.2650 & E5-2651

Frequency
a0

5.2650 & E5.2651

160 180 200 220 240 450 500 550 600 650

Execution Times (s) Sample 2 Execution Times (s) Sample 2
L L

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 4, OCTOBER-DECEMBER 2021

Histogram of NAMD Execution Times for m1.small Histogram of Single Threaded bzip2 Execution Times for m1.small

70

—E5430
— E52651
E5.2650

—E5430
— E5.2651
E5.2650

E5430 & E5507 [£5.2650 & E5.2651

2 - E526518E52650

Execution Times (s) Sample 2 Execution Times (s) Sample 2
L L

Fig. 2. Performance variations for Gnugo, Pov-Ray, Namp and Bzip2 benchmark workloads on m1.smallinstances [AMD performs *best’ for Gnugo but
‘worst’ for Namp, E5-2650 & E5-2651 perform ’best’ for Namp but are 'worst’ for Gnuao] [29].

source. Note that, performance and energy are related to each
other. For example, if a containerised application is migrated
to a lower performance but more energy efficient host, the
increase in runtime can still decrease the energy efficiency.
Therefore, the performance costs in terms of increased runtime
and energy consumption must be taken into account while
consolidating the workload onto fewer heterogeneous hosts.

4.1.3 Dilemma

Suppose there are n containers allocated to host H; and m con-
tainers allocated to host H,. The performance parameters
of H, and H, are p Hys Ol and @ Hyr Ol respectively. Each
container is utilizing 100 percent of its proportional resources
allocated. The per container power consumption of each
container on H; and H, are Pg;mnm:m and Pfo%ztainerj:]:m

respectively according to above equation. The total power
consumption of each host H; and H, is given by
PHl — Z;;l fp;}[)’”t(li’n(’,l' and PHQ — Z;N:l P?OILtai?LEJ7' respectively.
For a container container;, selected for migration from Hj,
with sufficient space to allocate on H,, and provided that

H H,
,P(tohtainerk > ,P(toituinf%rk

power and performance efficient than [{; with a factor of I

given by:
Ey = <7PH1 * K,)
Pu, X g,

and Ky, < I, then H, is more

(16)

E¢ could be used to compare two hosts for efficiencies: (i)
if £y =1 then both hosts are similar; (ii) if £y < 1 then H,
is less energy and performance efficient than H;; and (iii)
if £y > 1then H, is more energy and performance efficient
than H;. In Eq. (16), Py, X g, can be seen as an equivalent
metric to Energy Response time Product (ERP) proposed in
[10]; as response time is the reciprocal of runtime. ERP rep-
resents the overall energy and performance efficiency of a
host; a lower value denotes larger efficiency and vice versa.
Note that, the above dilemma does not take into account
the difference between price of electricity at the source and
target hosts. When the price of electricity in target host
is considerably less than the price of electricity in the source
host, it may be economical to migrate containers; even
if the source is more energy efficient than the target
host. However, performance would again play a role of
trade-off with electricity price. The current trends of ser-
vice providers towards using renewables which may oper-
ate intermittently, and therefore necessitate falling back

to the energy grid, also implies a need for consolidation
policies to be able to effectively switch between the
available energy sources. In that case, the electricity price
M can be considered as a third objective in the above
formulation [as described in Section 3]; and a multiple of
E¢, given by Py x gy x My, for both hosts. However,
this would be more beneficial if migrations are performed
among datacenters located in different geographical areas
[intra-datacenters]. This work focus on migrations inside
a single datacenter [inter-datacenters]; where electricity
price would be same.

4.2 The Migration Energy and Performance Model
The memory of a container can be copied to the target host
in two ways: (i) pre-copy; and (ii) post-copy. In the former
case, memory is transferred repetitively first and processor
state afterwards, whereas in the latter case, memory is
transferred after the processor state is sent to the target host
[26]. In both cases, an extra container is created on the target
host and is synchronized progressively. After the synchro-
nization, the container is started on the target and its copy
is destroyed on the source. Therefore, for the duration of
migration, the migration costs roughly double the resour-
ces. Moreover, the migration effort could be wasted, if the
container terminates during the migration process, or before
this resource cost is recouped back. Moreover, [11] suggests
approximately 10 percent performance degradation due
to migration. The 10 percent performance degradation
is analogues to ~10% increase in runtime, and thus increase
in energy consumption.

Several works including [8], [11], [14] discuss container
consolidation but appear to ignore the cost that is due to the
migration energy and performance overheads, and with the
notable exception of [32] this is rarely addressed. The migra-
tion cost is dictated by the cost of the most expensive con-
tainer (at source host) running for the duration of
migration, plus any associated performance and network
costs during migration. The performance cost is suggested
to be approximately 10 percent loss, and subsequently
increase in runtime [11], [33], [34]. The migration cost also
includes some marginal migration cost MCj,, in case, the
migration procedure needs changes in the power states
[on/off] of either one or both hosts [27]. Furthermore, we
assume that containers are running inside VMs, so MCj,st
also include the cost of starting a new VM or terminating a
VM if needed during migration. For heterogeneous hosts,
the duration (time) needed for a migration is

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2021 at 01:09:39 UTC from IEEE Xplore. Restrictions apply.

KHAN ET AL.: AN ENERGY AND PERFORMANCE AWARE CONSOLIDATION TECHNIQUE FOR CONTAINERIZED DATACENTERS

ijg _ (Cmﬁm + Cdisk > ’ (17)

B

where 7,,, is reliant on the memory size C,., of the
container, ephemeral disk image Cg (for block-live
migration) and the network bandwidth g which is available
to transmit the migration data [Cy.em + Caisi]. For (shared-
disk) live migration, Cg;s is 0 and Cpe,, can be calculated
using the current memory size of the container (active state)
and the amount of dirty pages which are copied, continu-
ously, in several rounds n, throughout the migration
process/duration 7, In case of an idle container,
the amount of dirty pages (memory) is 0 and, therefore, the
network traffic (i.e., data to transfer) is only equal to C,,cp,
(measured in MB), otherwise

Cmem = ch (18)
i=0
Ci =D X Ti—h (19)

where ¢ represents the round number, D is the rate at which
the container’s memory pages are being dirtied (measured in
MB/s), T is the duration of the round (in seconds) and C
denotes the size of the dirty pages (measured in MB). We also
assume that the container load is dynamic and changes
according to the Google’s cluster dataset [12], therefore D is
not constant. As suggested in [6]. if D varies for a container, it
may be more realistic to simulate using: (i) a distribution
around a mean; or (ii) with reference to historical usage data.
Therefore, we estimate the container migratable memory C,c.,
and migration time 7 ,,;, using the container historical usage
data—gathered for one hour (at 5 minute intervals). If we
assume 10 percent loss in container performance due to migra-
tion i.e., (10% X 7), this will become part of the: (i) m/igra-
tion energy overhead; and (i) remaining runtime (r,) of
the container on target host [as described in Section 5.1].
The migration energy overhead Cost,,;, is given by:

T'n g
COStmig = Tm’ig X (,Psmn'r‘s + Pnel,) + (1—OLU X Pl,m'gel,> + Mchoslm

(20)

where MCj,s C [14.3,60.0,110.0] denotes the marginal
migration cost (in Joules) needed to change the states of
hosts [ON-STANDBY|ON-HIBERNATE|ON-OFF] respec-
tively, Pr.: is the network power consumption, and Psoyyce
is the cost of the most expensive container running at source
host [10]. Note that the marginal cost MCj,, relates to the
server’ states transitions delays of a typical compute server
and the corresponding amount of energy consumed [27],
[35]. However, various works report variations in transition
delays for various servers and operating systems [36], [37].
Further, due to the complexity involved in measuring the
Pet, we assume this as zero; because networks are not
within scope of our current work. Moreover, this also
includes the cost of starting a new VM or switching off
a VM; as containers are running inside VMs. Based on
the host state (switch on/off, standby, hibernate) that is
performed due to the migrated container and the amount
of energy consumed correspondingly; the MC,,, address
as part of the overall energy consumption.

1311

5 PROPOSED SOLUTION

We deliberate migrations for consolidating the workload
onto the fewest hosts to minimize energy consumption
whereas ensuring the probable level of performance. The
cost of migration (both in terms of energy consumption and
performance) together with the marginal migration cost
(host status due to migration—switch on/off) should be
accounted as part of the actual migration decision. Based on
the total number of accommodated containers, if the target
host is identical or less energy and performance efficient
than the source host, then it is impossible to recoup the
migration cost. Otherwise, the migration cost could be
earned back, eventually. Using the container runtime and
efficiency factor of both source and target hosts, we can esti-
mate a time point ¢,/ at the target host where the container
will be able to earn back its migration cost Cost,,;, and
would, essentially, be saving energy, performing better if it
lasts to run. The longer it will run, the more savings would
be achieved. We call this consolidation technique with
migration energy and performance costs recovery (CPER),
which is, in next section, described in more detail.

5.1 CPER

Consider a container C' that runs within a particular VM
at source host H;. A migration of C has been decided to
target host H, at time t. Let’'s assume that H, is more
energy and performance efficient than H; with an energy
efficiency factor of E;. In case, if there is no other contai-
ner running on H; and H; except C, then the host which
either consumes less power in idle state P,q. and/or has
higher MIPS rating is considered as more energy and per-
formance efficient than the other. However, if there are
other containers running on H; and H,, along with C, then
the efficiency of each host could be associated to the total
number of running containers (e.g., n containers on H; and
m containers on Hs). The E; of target host can be com-
puted as given in Eq. (21) below:

_ Pcs(mrrrf‘ X M Csource
Ey=| ———2=).

(21)
Pctar_r]et X Mctm'gézf

If Ey is equal to 1, it denotes that the multiple of power profile
and performance rating of both hosts are identical and,
therefore, we cannot earn back the migration cost. If E/; is less
than 1, then the target host is less energy and performance
efficient than the source host. The offset of migration cost and
additional savings are only possible if £ is greater than 1.

The cost of migration Cost,,;, is measured in Watts per
hour (Wh). The difference between the power consumption
and performance values (efficiencies) of both source and
target hosts is given by:

,PCS()H’V'(‘F’ X I"L 1 e
AJ} — PCSOW(.E % /JLCSOU,.CC o (sou = Csource , (22)
't
or
AI = (’Pcsouroe x /“LC.sU'zu‘(:f;) - (Pctm{qet X /’LCt(Lrg/ct)7 (23)

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2021 at 01:09:39 UTC from IEEE Xplore. Restrictions apply.

1312 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 4, OCTOBER-DECEMBER 2021
Rpast t/ \| tmig F‘ﬁa‘"e'

container E

L Roﬁset

o [

s _
tsavings
T K toff = toffp"' toffe
= I CoStmig I Riotal

Fig. 3. Crer technique description (an extended version of Cucr [6], [9] that accounts for energy consumption and performance loss) — ¢, and ¢y,
are the offset points at which the container has recouped back its migration energy and performance costs, respectively.

and, therefore, ¢, is expressed as:

T nig % Costyig

Az 24)

lofr =

For a particular container C' having R, (past runtime) on
source host, and its migration was started at time ¢ to the
target host and completes in time ¢,,,, as shown in Fig. 3,
the total runtime of C on the source host can be expressed
as r; = Ryus + tmig, and its remaining runtime on the target
host can be expressed as Ty = Rypyy — (t = tmig) = Ry — 71
[where R, ,, represents the estimated runtime]. Note that
R, and, hence, r, will vary due to differences in per-
formance of both hosts as well as the performance degra-
dation due to migration. Assuming the performance
distribution Dy, of the target host, the remaining time
r, can be written as
T'mig)
10)

where 79 = Rip1y — 71 and % is the increase in container
remaining runtime due to performance degradation during
migration. Furthermore, this can also be modelled using the
z-score normalization; if the runtimes follows a normal or

a log-normal distribution
Tmi,g
+ M Ctargst + 10 :

(26)

(25)

/
Ty = DMCWW X 19 + (

/ log(r2) — ey,
7,,2 — exp (T(jmr o X source
o GCSOUT(‘E

If 7"2 > tofs, then it means that C' has earned back Cost,,;,
and subsequently runs more efficiently to save energy and
performs better. The remaining runtime of C' on the target
host after the ¢,y, is given by:

ts = 7“/2 — toff- 27)
The overall savings Puings achievable through an energy
and performance efficient migration are given by:

Psaz:mgs =ts X Aw. (28)

Hence, the least value for r; + r; (as shown in Fig. 3) which
is enough to offset Cost,,;, at time ¢ can be expressed as
Rofset = tmig + togr. Therefore, for every container running
for Rpq, its R,fsser can be expressed as

Roffset = Rpast + T'mig + toff (29)

In case Ryfpser > tofr, it means that the migration is
energy and performance efficient. If container C' got ter-
minated prior to ¢,7;, the cost of migration is not recov-
ered. Moreover, if R, is not enough to earn back
Cost,, then, using Eqgs. (30) and (31), ¢t and R,. can be
estimated to make a migration energy and performance
efficient

(30)
(31

t=1t—tosf
Rpa.st = Rpast - toff-

In order to trigger appropriate migration decisions for
energy efficiency, cost and improved application perfor-
mance, the above method can be extended, easily, with a
runtime prediction technique. For example, as a future
work, we might consider runtime prediction methods
which are based on historical workload patterns retrieved
from a knowledge database [38], [39]. However, the pre-
diction seems depending on the container/physical host;
therefore, historical workload patterns on each host are
needed, which could be a tedious job, particularly if the
datacenter has large number of heterogeneous contain-
ers/hosts. Moreover, searching these databases would
create significant scheduling delays; however, we bias for
allocation speed and implementation simplicity over an
absolute optimality.

In the above formulation, both R,;u and R;otal
represent the time for which a particular container will
run, which might be unknown, particularly, in public
clouds. To make the scenario applicable and realistic for
such on-demand cloud platforms, we assume the past
runtimes of containers (R,,y) instead of predicting
their future runtimes (R;.,); in order to determine if a
particular container is a right candidate for energy-
performance efficient migration or not (i.e., a probabilis-
tic approach). Jobs previous runtimes can be used as a
way of finding similarities or likelihood of long runs.
This assumption is justifiable as described in [39]. More-
over, cloud jobs that run for 30 minutes or longer are
likely to be run for hour(s); and those which run for
hour(s) are likely to be run for day(s) or even weeks [7],
[12]. Therefore, it is reasonable to assume containers’
Ry,us as a clue for their longer or shorter runtimes.
However, we are aware that this may reduce the appli-
cability of the proposal, as it require the container to
be known to the provider; but this is not the case,
for instance, with typical IaaS providers (e.g., Google,
Amazon EC2). The steps involved in CpPEr approach are
described in Algorithm 1.

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2021 at 01:09:39 UTC from IEEE Xplore. Restrictions apply.

KHAN ET AL.: AN ENERGY AND PERFORMANCE AWARE CONSOLIDATION TECHNIQUE FOR CONTAINERIZED DATACENTERS

Algorithm 1. CPER TECHNIQUE

Input: The list migratable containers L, Cost g, t, tynig, source
and target hosts
Output: Return t¢,5, the time point where the Cost,,;, is
recovered

1 for each container € L do

2 Ef+— (P(‘*) [as explained in Section 5.1];
Ctarget *PCtarget
3 if Ef > 1then
4 Ar — Pcsnurw X M Cpuree — (W)/
5 if Az > 0then
6 tos «— currentTime (£) + ;g + [%] ;
7 else
8 Cost iy is not recoverable;
9 remove container from L;
10 end if
11 else
12 target is not more energy and performance efficient
than the source;
13 remove container from L;
14 endif
15 end for

16 return t,¢|L

6 GOOGLE CLUSTER DATASET

One of the Google’s computing clusters workload dataset is
publicly available on-line [12]. The dataset traces the activity
of a production cluster that consists of 12,583 heterogeneous
hosts for a duration of 29 days. Moreover, in [7], these hosts
have been classified into three different classes and 10
different architectures, grounded on the number of available
CPUs and memory capacity, as described in Table 1.
Although, the dataset does not suggest or identify various
types of hosts, nevertheless, we are doubtful that these might
relate to those three types of hosts that Google describes on-
line—Sandy Bridge (2.6 GHz Intel Xeon E5), Ivy Bridge
(2.5 GHz Intel Xeon E5 v2), and Haswell (2.3 GHz Intel Xeon
E5 v3). The dataset comprises of approximately 672,074 jobs,
and each job is created by a single user out of 925 users (total).
Every job consists of one or more tasks that combine
to approximately 24,281,242 unique tasks. Moreover, the data
comprises other information such as task’s requirements
(CPU and memory) that are helpful to schedule it for execu-
tion. The dataset demonstrates that majority of tasks only run
for short durations and use a very slight volume of the host’s
resources that even cannot be assumed as a single unit of CPU
or memory. Nevertheless, there are certain long-running tasks
that might take week(s) to finish their execution. Existing liter-
ature regarding the analysis of the Google’s dataset illustrates
that, although, there is no identified statistical distribution
that fits well the task durations; yet the resources appear to
produce a long-tailed distribution [10]. This behaviour might
be due to either: (i) human behaviour (irregularity in user’s
application); and/or (ii) large volume of heterogeneous data
(economics of scale).

Moreover, host volumes are normalized to the maximum
cores” host within the Google’s cluster, whereas disregarding
the CPU speed, as described in [12]. For instance, if there
are three types of hosts installed with 3.0 GHz with 8 cores,

5. https://cloud.google.com/compute/docs/machine-types

1313

TABLE 1
Machines Types and Number in Google’s Cluster [12]—we
Assume Machine Class A, B and C as Equivalent to Sandy
Bridge, Ivy Bridge and Haswell Platforms, Respectively
[CPU Values are Normalized w.r.t the Highest CPU
Server Available in Google’s Cluster]

Class Number CPU Memory (GB) Platform
A (Sandy Bridge) 126 0.25 0.25 a
B (Ivy Bridge) 5 0.5 0.03 b
1 0.5 0.06 c
52 0.5 0.12 d
3,863 0.5 0.25 e
6,732 0.5 0.5 f
1,001 0.5 0.75 g
5 0.5 0.97 h
C (Haswell) 3 1.0 0.5 i
795 1.0 1.0 j

2.6 GHz with 3 cores and 2.3 GHz with 2 cores, then the nor-
malized volumes for these three hosts will be 1, 0.375 and
0.25[8:3:2], correspondingly. Google does not deliver precise
particulars of their hosts (machines) due to safety and
confidentiality reasons. Nevertheless, we can make several
plausible and realistic assumptions about host characteristics
and architectures from the period when the data was logged
in May 2011. Note that if we can extract such details, then the
demand for resources (in terms of CPU and memory) will
be clearer for simulation purposes.

Google does not offer precise information about the cluster
usage, however, several researchers suggest from the task
usage data that the cluster is only 20-40 percent utilized [7].
Likewise, Sheng et al. [40] projected that the resource demand
(in terms of CPU and memory) is sometime larger than the
offered peak capacity [80-120 percent utilised—possibly
when cluster resources are oversubscribed], however, the
cluster is mostly utilized within the range of 2040 percent.®
Empirical evaluation of Google workload traces in [41]
suggests that resource usage could be accurately modelled
simply using the mean of task usage i.e., “mean usage model”.
This shows that resource usage for CPU are relatively stable
over time for majority of the tasks. The data itself is
anonymized that makes it hard to distinguish if the applica-
tion were running on a real host (bare metal), in a virtual
machine (VM) or inside a container. Several Google’s
researchers endorse that a container-based virtualisation
(containerization) can be supposed. Each job comprises
of several tasks (might be more than thousands) that possi-
bly will or will not run on the same host. A task is a Linux
program, undoubtedly holding numerous processes,
nonetheless, still run on a single host. Thus, it is also practical
and realistic to accept each task as a container. Using
container runtimes, we further identify and illustrate hosts
heterogeneities and their performance parameters inside
the Google’s cluster.

6.1 Modelling Heterogeneity in Google’s Cluster
The tasks information does not reveal to what kind of
applications, they belong to. Unfortunately, the dataset

6. http:/ /blog.stillwell.me/blog /2013 /07 /15/ first-steps-exploring-
the-google-cluster-dataset-with-ipython/

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2021 at 01:09:39 UTC from IEEE Xplore. Restrictions apply.

https://cloud.google.com/compute/docs/machine-types

1314

3000

2500

2000

1500

1000

500

2 4 6 8 10 12 14 2 4 6

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 4, OCTOBER-DECEMBER 2021

14000

12000 |

10000

8000

6000

4000

2000

Fig. 4. Performance variations of various applications on machine class A (left), B (middle) and C (right) [priority O workload performs better on class
B compared to A and C; priority 4 workload performs better on class C compared to A and B — x-axis denotes containers runtimes (in log) and y-axis

denotes the number of containers].

does not deliver precise facts of the host specifications
and heterogeneity. Nevertheless, we suppose that such
heterogeneity will directly interpret into dissimilarities in
energy consumption and performance. We use containers
runtime as an evaluation metric to characterize perform-
ance variations amongst various host types; lower run-
times represent good performance and vice versa. Still, the
dataset does not have what we want (i.e., various kinds
of workload); however, every task has a certain priority
(0-11) and we can use this as a representation for workload
types. As, the dataset providers indicate that priority of
every task affects billing [7], therefore, we trust that it will
reflect the workload type, accurately.

Each task inside a particular workload type can be
assumed a container which runs on one of the aforesaid host
types [Table 1]. In Google data, the machine and platform
ID’s of each task (container) can be used to extract the host’s
type where resources were provisioned for the container.
We further assume the runtime (execution time) of each
container as an evaluation metric for performance as it is
more beneficial to an IaaS customer. We selected ~21,200,338
tasks after discounting those tasks where machine details
were absent. Upon visual inspection, the runtime (log) distri-
bution seems to follow a multi-modal lognormal distribution,
essentially. The multi-modality might indicate that analogous
applications perform in a different way on various machines.
Itis advised in [29] that multi-modality narrates to CPU archi-
tectures and performance is principally determined by the
CPU model and the available amount of memory.As shown
in Fig. 4, the priority 0 workload performs better on class B
machines compared to class A and class C machines.
Similarly, priority 4 workload performs better on class C
machines compared to class A and class B machines. There-
fore, migration of 0 priority workload from class A and class
C machines to class B machines is performance efficient; and
may be energy efficient as well. Furthermore, avoiding migra-
tions to less performance efficient machines and those that
could not recover their migration cost, may lead to energy
and performance efficiencies. To investigate the affect of this,
we consider three kinds of workloads (i.e., priority 0, 4 and 9);
and calculate machines heterogeneities in terms of perfor-
mance parameters (mean - u and standard deviation - o).
“We do not rule out the existence of natural computational
variations, however, as the data fits to prior findings on
performance, so we can relate these data to heterogeneous
infrastructure clouds” [10]. The machines’ heterogeneity
performance parameters are described in Table 2.

We use these performance parameters to calculate
the overall energy and performance efficiency (Ey) of a
particular host, as explained in Section 5.1. Note that,
o have a key role and would affect the efficiency level
(due to overlapping histograms). However, for simp-
licity, we assume that with given mean values (u)
for source and target hosts, we can differentiate betw-
een their performance levels. Moreover, increase and
decrease in containers performance is characterised as
increase and decrease in containers runtime, using z-
score normalization.

7 PERFORMANCE EVALUATION

Bin-packing problems are usually solved using various
heuristics that might not guarantee optimal results, however,
they are enough fast to address large-scale problems [14]. It is
possible to assume a comparable container packing problem
as moving from a given (initial) state of the datacenter to an
ideal state, which should run the current demand on fewer
hosts. We realise a datacenter state through implementing
various scheduling techniques (such as RR, FF, FiLLUp (Fu),
EPC-aware FiLLUp (Epc-Fu) as initially stated in Section 1),
with container packing then needing to guarantee energy
and performance efficiencies are assured (as explained in
Section 4.1) and the cost of migration (both in terms of
energy and performance) can be recouped (earned back).
To demonstrate the impact of this, we consider (a) no
migration; (b) all possible migrations (dynamic consolida-
tion); and (c) runtime-based migration (Crer). Moreover,
we also compare CPEr (containers migration) technique to
CMcR technique (VMs migration) [6]. The steps involved in
Erc-Fu container allocation and migration policies are
described in Algorithms 2 and 3, respectively.

TABLE 2
Parameters for Hosts Performance (Suggesting Different
CPU Architectures) in Google Cluster [12] — Lognormal
Distribution of Containers Runtime

Workload type
Machine priority 0 priority 4 priority 9
class “w o “w o " o
A (Sandy Bridge) 7.79 219 653 131 437 1.63
B (Ivy Bridge) 716 21 643 14 439 155
C (Haswell) 728 211 656 14 519 208

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2021 at 01:09:39 UTC from IEEE Xplore. Restrictions apply.

KHAN ET AL.: AN ENERGY AND PERFORMANCE AWARE CONSOLIDATION TECHNIQUE FOR CONTAINERIZED DATACENTERS

Algorithm 2. Epc-AwarRe FiLUr (Epc-Fu) CONTAINER
ALLOCATION

Input: List of hosts (H), wait queue (W), List of container
requests (C)
Output: Energy and performance efficient container
placement

1 sort H in decreasing order of (it.P.ptainer) [as described in
Section 5.1];

2 for each container € Cdo

3 foreach h € H [H is sorted with respect to the available slots] do

4 if h is active and has enough resources to run the container

then

5 allocate container to h;
6 break the loop and pick the next container € C;
7 end if
8 end for
9 if container cannot be allocated to any active h € H [in case
DCP is assumed] then
10 start a new b’ € H and assign container to h';
11 else
12 “container can not be allocated”;
13 “push the container request into W”;
14 end if
15 end for

Algorithm 3. Epc-AwARE CONTAINER CONSOLIDATION

Input: List of migratable containers L, Container c (that is to
be migrated), Hyource and Hiqpget
Note: [(Rremainimg = R;otal - Rpasl)_we use Rpast instead of
Ry emaining: Which are known. Algorithm 4 prioritises con-
tainers based on their R, for migration.]
Output: Return migration decision d
1 for each container ¢ € L do
2 d < FALSE;
3 estimate R, cmqining Of ¢ [assuming it is possible];
4 ERPsourcc = M Hypurce ~P;-Y[.wm,ﬁ X Rremaming [E}if,smn'ne is the power
consumed by ¢ on host Hypyrcel;
5 ERPLargeL = MH,,G,.W‘P;[‘M’M X Rremaming [E;[WW(,” and E?Immct
are calculated using the power model presented in [6]];
if ERPygyget < ERPgypce then
7 d «— TRUE [i.e., migrate c using the migration model in [6]]
[note that the migration model in [6] accounts for
migration costs in terms of energy consumption,
migration duration and performance degradation];
8 endif
9 end for
10 return d|L

(@)}

We assume the consolidation (migration) process as
an optimization problem with the objective to decrease
the number of hosts in use. Every 5 minutes’ interval, the
optimization module is run grounded on the present utiliza-
tion level of all hosts, in 3 steps; (1) containers selection: Every
host is monitored and if its present utilization level is less
than a pre-defined Threshold,,, (lower threshold value e.g.,
20 percent), all accommodated containers on this particular
host are chosen for migration. If there are several containers
suitable for migration, then the suggested container selec-
tion policy [Algorithm 4] gives priority to the container that
runs for longer duration i.e., R,,,—(migrate one container

1315

at a time from a single host to minimize performance loss);
(2) hosts selection: The migration policy chooses the most
suitable host from all available hosts that could run these
containers. Nevertheless, to decrease the number of active
hosts, it avoids allocation to: (i) switched off hosts (if it is
possible); and (ii) hosts that intend to go into idle|switched
off state (switched on but with no work on theml|idle); and
(3) placement: The list of selected containers is sorted in
decreasing order of their R,y (past runtimes) that favours
to migrate long-running containers first. Finally, a particular
container allocation algorithm is used to reallocate all
containers, as container placement is a sub problem of the
consolidation with migration process.

Algorithm 4. CONTAINER SELECTION POLICY

Input: List of migratable containers (C)
Output: Select a suitable container for migration

1 containergyape <— NULL;
2 foreach container in C do
3 access Ry, [from containers history];
4 end for
5 sort C'in decreasing order of past runtimes R,,;
6 containergyitape — C[FIRST]
[FIRST denotes the 1st container in C' — C[0]];
7 return containergtabie

Metrics. The metrics used to evaluate the energy and
performance efficiency of the proposed container allocation
and migration policies are: (i) total number of container
migrations; (ii) total energy consumed (E) in KWh; (iii)
execution time (T) in seconds—as application’s performance
is inversely proportional to T; (iv) Energy Runtime
(performance) Product (ERP), as explained in Section 3; and
(v) electricity bill in dollars ($)[10]. For (v), we assume
a PUE’ of 1.10 and energy price of 0.88% per KWh® that
mimic a Google datacenter located in Oklahoma, USA.

7.1 Experimental Set-Up

A cluster (simulated using CloudSim) of 12,583 heteroge-
neous hosts, which comprises of various architecture types
(with respect to varying performance) and hardware speci-
fications—as given in Table 3 - is available to run various
kinds of benchmark workload. Moreover, the hosts are
subdivided by architecture ground on the type of workload
they run, as described in Section 4.1. The simulated hosts
are configured based on several reasonable assumptions
that Google had certain kinds of commonly available
servers in their IaaS cloud, when the dataset [12] was traced.
The specification (of hardware) and energy consumption
values for the hosts were collected from the well-known
SPECpower’ benchmarks.

Our simulation comprises of 6 VM types which resemble to
Amazon’s instance classes as given in Table 4. The VM types
are further ranked (in terms of resource capacities and perfor-
mance) according to Amazon’s description of their VM
performance rating—ECU (the EC2 Compute Unit), which
is described as: “equivalent CPU capacity of a 1.0—1.2 GHz

7. https:/ /www.google.co.uk/about/datacenters/ efficiency /
8. https:/ /www.eia.gov/electricity /monthly /
9. https:/ /www.spec.org/power_ssj2008/

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2021 at 01:09:39 UTC from IEEE Xplore. Restrictions apply.

https://www.google.co.uk/about/datacenters/efficiency/
https://www.eia.gov/electricity/monthly/
https://www.spec.org/power_ssj2008/

1316 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 4, OCTOBER-DECEMBER 2021
TABLE 3
Host Characteristics for Google’s Cloud [the Idle (P;4.) and Maximum Power Consumption (P,,..)
of Hosts are Taken from SPECpower Benchmarks]

CPU model Speed (GHz) Noofcores Noof ECUs Memory (GB) Pg. (W) Py, (W) Total amount
Sandy Bridge (Xeon 2670) 2.6 8 20.8 384 55 105

Ivy Bridge (Xeon 2670) 2.5 10 25 768 65 115 12,583
Haswell (Xeon 2695) 2.3 14 32.2 768 70 120

2007 Opteron or 2007 Xeon processor”; and its variations
in performance is suggested approximately 20 percent (1.0—
1.2 GHz) in [42]. Since, the ECU rating is per core, therefore,
the total rating of a particular host can be calculated by
multiplying its total number of cores and ECU rating [29].

We assume that these hosts are comparable by a single
measure that permits for performance ranking, for which
we assume the CloudSim’s notion of “Million of Instruc-
tions Per Second (MIPS)” as a proxy; however, we do not
endorse this as a good performance metric for real systems
due to several reasons including workload comparability
and CPU architecture. One technique to VM sizing is
to assign a VM as a single core for the maximum value 1,
half a core (hyperthread) for 0.5, and consider that higher
VM gearing leads to a quarter of a core for 0.25. But
to address allocation more flexibly, along lines with particu-
lar TaaS providers, we map CPU frequency for the hosts
given to Amazon’s ECUs as: 1 GHz CPU, 1.7 GB RAM,
giving numerous instance types.'® Further, the ECU maps
MIPS for consistency with the CloudSim simulator (Table 4),
and we consider that each instance requires, at least, 1 ECU
and 1 vCPU (core) or more, as given in Table 4. The speed
of every instance type (MIPS rating) is the multiple of
number of ECUs (1 ECU = 1GHz) and vCPUs (cores). For
instance, the speed of the ml.medium instance, as shown
in Table 4, is 2 (ECUs) x 1 (vCPU) =2 (GHz).

To address a cloud context such as Amazon Lambda,
each Google’s task is assigned a single, notional, container,
as shown in Table 5, that corresponds to Google machine
types with the only exception that all the containers are
single core. Similar to VM sizing, containers are also sized
(MIPS) and each VM can accommodate more than
container. For example, a m3.medium instance can accommo-
date three containers of type A, while two containers of type
C and so on. Each task utilizes its allocated resources
according to task statistics and usage in Google data [12].

Each container is assumed to run three workload types
that belong to Google’s cluster dataset. The utilization
of each workload type is modelled as a normal distribution
function over the mean CPU usage in the trace, at 5 minute
intervals. Furthermore, the total execution time of each
application is the sum of its each task’s execution time.

7.2 Experimental Results

The simulated infrastructure is composed of 12,583 hosts,
3,800 VMs with configuration shown in Table 3, Table 4 and
three kinds of workloads that belong to priority 0, 4 and 9,
respectively. When a container request is received, a
container is created from a list of available flavours as
shown in Table 5, and is placed on a suitable VM already

10. http:/ /www.ec2instances.info

running on a particular host. If there is no suitable VM to
accommodate the container, then a new VM is created from
a list of available instance types as shown in Table 4.
Various container types are described in Table 5. We
assume that the container workload is heterogeneous and,
therefore, changes when a container is migrated from one
host to another. After each 5 minute interval, the CPEr
technique checks for consolidation opportunities, and
selects container running for longer times from a list of
migration possibilities. Each experiment was performed
with five different values for past container runtime given
in hours [0, 0.25, 0.5, 0.75, and 1], where 0 means migrate
all—dynamic consolidation—and 0.25 means migrate only
those containers which are running for 15 minutes or lon-
ger, 0.5 means running for 30 minutes or longer, and so on.

7.3 Results Discussion

Fig. 5 presents the results obtained from running three
kinds of workloads, with error bars of standard deviations,
using various scheduling and consolidation heuristics.
Below, in various sections, we describe and analyse our
obtained results with respect to various aspects.

7.3.1 Energy Consumption

We observed that the energy consumption of various appli-
cations varies significantly from 1.75 to 43.31 percent, across
various policies and hardware platforms. The results show
that EPC-aware scheduling techniques would be more
economical than consolidation techniques (particularly
PrioriTy 9 workload). For example, without migration a

TABLE 4
Amazon Different Instance Types and their
Characteristics — Mem Means Memory (RAM)

Instance Noof No of Speed Mem Storage
type vCPUs ECUs (GHz)MIPS (GB) (GB)
t2.nano 1 1 1.0 0.5 1
tl.micro 1 1.0 0.613 1
t2.micro 1 1 1.0 1 1
m1.small 1 1 1.0 1.7 160
ml.medium 1 2 2.0 3.75 410
m3.medium 1 3 3.0 3.75 4
TABLE 5

Container Types and their Characteristics [33]

Container type Speed (MHz) Cores ECU’s Memory (MB)

A 1,000 1 1 128
B 1,225 1 1.23 256
C 1,500 1 1.5 512

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2021 at 01:09:39 UTC from IEEE Xplore. Restrictions apply.

http://www.ec2instances.info

KHAN ET AL.: AN ENERGY AND PERFORMANCE AWARE CONSOLIDATION TECHNIQUE FOR CONTAINERIZED DATACENTERS

4 4
x10 *x10°
5.6 1 1
ENo

— WAL 10
<54 [Ficmcr <
H H

3 [TlcPER 3 9

552 Standard 58

4 Deviation 4 7
E S5 £
2 2

£, §°

348 S
> >
2 2

546 s 4
& &

a4 3

2

RR R BRS MPD FF FU EPC-FU RR R

BRS MPD FF

1317
4
6710
HNo HNo
WALL - WALL
[Hemer ; 6.6 [Flcmer
[IcPEr g [lcPER
Standard §65- Standard
Deviation 4 Deviation
Eea
0
c
3
263
2
2
Se2

o

FU EPC-FU RR R

BRS MPD FF

FU EPC-FU

Fig. 5. Energy consumption in KWh for three kinds of workloads [priority 0, 4 and 9 from left to right — minimum values are best; the error bars show

standard deviations with respect to mean values].

1.27 percent decrease in energy consumption was achi-
eved using Erc-Fu instead of RR. But using Erc-Fu, only
0.93 percent decrease in energy consumption was achieved
with dynamic consolidation. The results show an average
decrease of 1.19 percent in energy consumption for Erc-Fu
compared to R scheduler. Similarly, for Cper, Erc-Fu is on
average 0.71 percent more cost efficient as compared to FF
scheduler. We also note that no migration can be more
economical than the dynamic consolidation, CMmcr and CPErR
(Fu) for certain kinds of workload, if an EPC-aware sche-
duling approach is used. Crer beats both consolidation
techniques (ALL and CwmcR) as it allocate containers to the
most energy and performance efficient hosts first in order to
save energy and maintains the expected performance level,
minimizes the total number of migrations (runtime-based
migration) and increases the probability that a container
recovers its migration costs in terms of energy and per-
formance. For Prioriry 4 workload, the Fu scheduling
combined with CMmcr approach leads to minimum ERP;
however, a combination of Epc-FU and CpPer beats this.
Moreover, CpPER reduces the total number of container
migrations as described in Fig. 6.

7.3.2 Performance

Table 6 shows the workload performance, mean number
of hosts in use, ERP, execution time and datacenter utilization,
measured in 5 minute intervals. Note that, values in Table 6
are only shown for best approaches i.e., Fu and Epc-Fu. The
results show that in terms of scheduling approach, Erc-Fu is
effective in using minimum number of most efficient hosts:
Erc-Fu did not allocate containers to host type A which has
larger idle power consumption and is less energy and perfor-
mance efficient compared to type B and type C hosts. If we
migrate only for energy efficiency (Cmcr), then performance
of the workload might be affected. However, migration both

for energy and performance efficiency (Crer) always ensure
energy savings with expected, improved or at-least no
performance degradation.

The runtime of migrated containers depends on the
scheduling heuristics and workload type. The RR scheduler
distributes containers equally amongst the available VMs
and, therefore, hosts, keeping all the VMs|hosts running but
least utilized most of the time—creating large migration
(consolidation) opportunities. Likewise, the R scheduler
typically chooses a different host for container allocation
through randomisation, which might result in high energy
consumption and increased migration efforts—since all
hosts are active but least utilized. Therefore, the optimal
value for both, RR and R, techniques is always achieved with
CrER, with past runtime < 15 minutes. Moreover, the most
efficient heuristics such as FF, Fu and Erc-Fu, produces
optimal results by migrating containers with past runtime
<15 minutes.

7.3.3 Migration Costs Recovery

The data and migration statistics produced in Table 7, show
that combining Crer and Erc-Fu means only 1.9 percent of
containers are migratable and 61.89 percent of these were
able to recover their migration cost. For Erc-Fu with dynamic
consolidation, 2.73 percent containers were migrated with
11.2 percent of recovering migration cost. Our investigation
suggests that CMCR migration technique [6] is largely unable
to recover containers migration cost; as heterogeneities of the
resources and applications were not taken into account.
Our proposed technique CpER increases the probability of
recovering the migration cost in a containerized platform.
For three different kinds of Google trace workloads [12],
with the same simulation, we see that no-migration tech-
nique would be more economical than dynamic consolida-
tion if efficient container and VM scheduling heuristics are

WALL HALL HALL
Ecmcr Ecmcr Ecmcr
[TIcPER ["lcPER 6 [IcPER
@ o 2 @
c c c
o Standard o Standard o5 Standard
w®10 Deviation| ® Deviation ® Deviation
s o s
k=) o915 =8
= = =
- o -
]) S,
s = 4 s
o o o
o 5 -3 o
£ € E,
= 3 =
z z, z
I L 1
| J e BB- Bs- | e Bs. W0 ol | [l EEC EEc BEC
R BRS MPD FF FU EPC-FU Fl BRS MPD FF FU EPC-FU R BRS MPD FF FU EPC-FU

Fig. 6. Number of migrations for three kinds of workloads [priority 0, 4 and 9 from left to right — minimum values are best; the error bars show standard

deviations with respect to mean values].

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2021 at 01:09:39 UTC from IEEE Xplore. Restrictions apply.

1318

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 4, OCTOBER-DECEMBER 2021

TABLE 6

Experimental Mean Results for Different Approaches (5 min. Interval) — the Host in use are the Maximum Number of Host which
were Used During the Entire Experiment [Best Values are Shown in Boldface]

Workload Scheduling Consolidation Hosts in use Avg. VMs Dcenter Ex. time ERP Bill $
type approach technique A B C hosts created wutil (%) (minutes)
No 0 4,194 3,456 3,189 10,312 33.94 315.48 3.444 45,645.7
ALL 0 4,194 3,659 1,282 6,467 76.58 314.56 3.632 48,282.3
Fu CMCR 0 4,194 3,111 1,291 5,989 74.0 314.67 3.632 48,2823
CPER 0 4,194 3,061 1,282 5,981 76.6 313.87 3.39 48,268.8
PrioriTy-0
No 0 4,194 2532 3,179 9,991 34.02 315.48 3.443 45,642.0
ALL 0 4,194 3,456 1,375 7,012 77.8 314.38 3.388 45,066.1
Erc-FU CMCR 0 4194 2123 1,381 6,988 77.22 31458 3389 45,049.0
CPER 0 4,194 2,121 1,373 6,999 77.8 313.91 3.387 45,046.9
No 0 4,194 1,181 1,484 8,564 38.92 84.76 0.794 39,187.2
ALL 0 4194 798 893 5,783 63.17 84.33 0.786 38,972.8
Fu CMCR 0 4,194 512 903 5,893 61.41 84.42 0.755 38,960.9
CPER 0 4,194 610 894 5,821 63.04 83.99 0.76 38,926.1
PrioriTy-4
No 0 4194 1,392 1,503 8,766 37.67 84.76 0.794 39,190.5
ALL 0 4,194 845 925 7,970 59.94 84.3 0.786 39,173.1
Erc-FU Cmcr 0 4194 451 756 7,897 59.95 84.46 0.785 38,959.0
CPER 0 4,194 451 555 7,871 60.35 84.07 0.743 37,9194
No 1,211 4,194 4,194 1,766 8,926 4491 1,107.42 15.883 59,975.9
ALL 873 4,194 4,194 939 7,122 81.06 1,085.6 1584 61,032.9
Fu CMCR 971 4194 4,194 944 6,762 80.46 1,085.98 15.194 61,029.1
CPER 777 4,194 4,194 939 6,769 81.03 1,085.38 14912 61,027.3
PRIORITY-9
No 1,300 4,194 4,194 1,765 8,799 44.94 1,107.42 15.883 59,977.6
ALL 1,233 4,194 4,194 939 8,110 80.84 1,086.8 15.862 61,038.7
Erc-FU CMCR 742 4194 4,194 944 8082 8037 108674 15859 61,0387
CPER 878 4,194 4,194 938 8,062 80.85 1,085.93 15.858 61,036.0

used. Our second finding is that migrating relatively long
running containers to more energy and performance efficient
hosts to recover their migration cost, are more economical
and energy, performance efficient.

Furthermore, we observed that the cost recovery
approach is more beneficial to VMs migration [6] than con-
tainers migration. Possibly, this is due to: (i) large number
of container migrations triggered during each consolidation
round (5 minute intervals); and/or (ii) containers were not
running for enough time on the target hosts to recover their
migration costs. We observed an increase in cost recovery
and decrease in number of migrations for long consolida-
tion intervals. Moreover, we also observed that repeatable
migration of a particular container degrades the workload
performance. Techniques like Cmcr and Cper could
minimise the total number of migrations, however, they are
not able to avoid these repeatable migrations. A control
mechanism is needed to avoid such efforts for migrations.

For example, we can migrate a particular container only
once in a pre-defined duration such as an hour; or migrate
those containers which are being migrated less frequently,
in the past. This would certainly increase the workload
performance and infrastructure energy efficiency.

7.3.4 Generalization of Findings

As shown in Table 6, Crer produces good results for three
various workloads that correspond to three various real
datasets. Moreover, we have also checked the applicability
of Cper technique on three other workload datasets i.e., PrI-
ORITY 1, PriORITY 2 and PriorITY 5. In order to show that CPEr
is applicable and would also work in a real cloud test-bed,
we run these experiments with different datacenter set-up,
assumptions and workload sizes. In other words, we
validated Cper technique to check whether generalization of
our findings and results is correct or not. The experimental
details and results are shown in Table 8. The host types,

TABLE 7
Cost Recovery with Dynamic Consolidation (Dc - ALL), Cmcr and CPeER
Scheduling PrIORITY-0 PRIORITY-4 PRIORITY-9
approach Fu Erc-Fu Fu Erc-Fu Fu Epc-Fu

Dc Cwmcr CPER

Dc Cmcr Crer Dc Cwmcr Crer Dc Cmcr Crer Dc

Cmcr Crer Dc Cmcr CPER

(%) migratable 2.1 198 1.61
containers

221 2.09

1.89 3.78 3.04 238 373 299 29 274 208 20 3.01 287 255

(%) containers 10.89 41.08 53.87 19.56 39.87 61.89 9.8 36.76 49.88 11.2 34.1 502 11.56 37.45 472 129 41.8 59.87

recovered
Cost,,

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2021 at 01:09:39 UTC from IEEE Xplore. Restrictions apply.

KHAN ET AL.: AN ENERGY AND PERFORMANCE AWARE CONSOLIDATION TECHNIQUE FOR CONTAINERIZED DATACENTERS 1319
TABLE 8
Experimental Results Across Various Datacenter’'s Set-Up, Assumptions and Workload Sizes — the “Best” Values are
Shown in Bold Face [Readers are Advised to see [10] for Hosts Characteristics and Performance Parameters]
Datacenter set-up Results
Workload Scheduling Consolidation = Hosts Typesof =~ VMs Containers Energy Ex. time ERP Bill$
type approach technique hosts (KWh) (minutes)
No E5430 163.87 31.34 143 158.6
PrIORITY-1 Erc-FU ALL 1,500 E5507 3,200 11,390 146.8 32.67 1.33 142.1
CPER E5-2650 134.9 30.44 1.14 130.6
No E5507 487.75 59.89 8.11 4721
PRIORITY-2 Epc-FU ALL 3,200 E5645 7,600 26,300 439.4 61.99 757 4253
CPER E5-2651 440.1 59.1 7.22 426.0
No E5430 25.66 19.2 0.14 24.8
PRIORITY-5 Erc-FU ArL 400 E5645 1,200 1,600 26.21 20.26 0.15 254
CPER E5-2670 19.01 18.69 0.1 18.4

their energy consumption and performance parameters
were taken from our previous work [10], as it is. Moreover,
the number of containers correspond to the total number of
tasks in a particular workload type. A consistency of our
results and major findings, in terms of least ERP values, can
be seen across all the experiments. Since, our objectives are
minimizing energy consumption and improving perfor-
mance; however, the datacenter bills are totally estimated on
energy use only. Therefore, datacenter bills are not guaran-
teed to be optimal, for our techniques in Table 6 - PRIORITY-9.

7.3.5 Statistical Significance of Results

In order to demonstrate that there are, significant, statis-
tical differences among the means of the produced results
from our approaches and others, we performed the t-test
(post-hoc) statistical analysis, repeatedly [10]. This can
be achieved through calculating the probability of error
(p value) by the t-critical ratio. The difference between two
approaches (datasets) is said to be statistically significant, if
and only if p < 0.05. When p = 0.05 (i.e., confidence interval
95 percent), then the differences between means of the two
datasets have only a 5 percent probability of appearing by
chance [10]. As shown in Fig. 7, the least values for p (t-critical
= 2.447) show a clear efficiency of the proposed Epc-FU and
CrEr techniques over the combinations of No, ArL, Cmcr
and various allocation approaches.

We observed no-overlaps for the Erc-FU allocation policy
and others [Fig. 7 — left]; however, the existing overlaps
among ALL, Cmcr and Crer [Fig. 7 — right] verifies our previ-
ous discussion and, therefore, results. However, the mean
value of Cper [Fig. 7 — the red line in each bar] shows that, on
average, it outperforms the other consolidation techniques.

x10° x10°

1.19 119

118 118
147 147
116 116
115 — 115
114 == 114

1.13 113 e
112 . 112 —
111 111

RR R BRS MPD FF FU EPC-FU NO ALL CMCR CPER

Fig. 7. T-test analysis for various allocation [left] and migration [right]
policies; y-axis denotes energy use in KWh — [+] denotes significant
difference between the means of datasets.

In this Section 7.3, we demonstrated the impact of work-
load runtimes on resource allocation and migration deci-
sions, workload performance, energy efficiency, costs and
the recovery of migration costs when heterogeneous resour-
ces and applications are taken into account. Our empirical
evaluation demonstrates that energy efficiency and work-
load performance vary across different hardware platforms.
As a result, potential energy, performance and cost benefits
can be achieved, in datacenters, through energy and perfor-
mance efficient allocation and migration techniques such as
Erc-FU and Crer. We believe that energy, performance and
costs recovery, in combinations, are relatively unexplored
in the existing literature, as described in Section 8.

8 RELATED WORK

Consolidation of VMs have been largely studied in the
literature, however, containers (running on bare metal),
containers running inside VMs and their consolidation is
not investigated yet. Sareh et al. [43] have described contain-
ers and resource management in a containerized datacenter.
Various container allocation and consolidation techniques
are empirically demonstrated in [33] using an event driven
cloud simulator—ContainerCloudSim [44]. In their work,
although energy efficiency of the datacenter is explored,
however, various applications and performance of the
workload are not discussed. Furthermore, the work pre-
sented in [33], [43], consolidate either container or VMs; the
resource manager is not able to decide itself whether
a container or a VM should be migrated.

Pongsakor et al. [34] presented a container re-balancing
technique in order to increase the container schedule rate
and cluster utilization. Container migration is discussed in
the context of a large real dataset from Google. Moreover, a
comparison of VMs and containers is presented. However,
their approach is based on the assumptions that containers
run on the bare metal. Also, the model used to capture
the container migration time is rebuttal. Nider et al. [45]
have investigated the migration of containerized applica-
tions between servers inside a datacenter (heterogeneous),
in order to improve power efficiency. A post-copy container
migration technique is implemented based on the CRIU
technology. Their results demonstrate that the post-copy

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2021 at 01:09:39 UTC from IEEE Xplore. Restrictions apply.

1320

migration approach significantly reduces container’s down-
time, and potentially reduces network traffic as well.

Felter et al. [8] studied resource management of contain-
ers (Docker) and VMs (KVM), and compared the achievable
performance level of various applications (CPU, memory,
storage and network intensive) w.r.t bare-metal. The
authors have considered workload metrics such as latency
and throughput to determine virtualisation and containeri-
zation overheads. The interesting point in their experiments
is that the execution times for VMs and containers overlap
for certain kinds of workload. Moreover, their findings
show that “containers and VMs impose almost no overhead
on CPU and memory usage; they only impact I/O and OS
interaction”. Based on their research finding, the authors
reject the idea that “IaaS should be implemented on VMs
and PaaS on containers”—as there is no technical reason [8].
Unfortunately, migrations are not taken into account.

Scheepers et al. [46] suggest resource isolation as one
of the major issues in container-based virtualisation. The
authors have investigated the performance of hypervisors
(Xen) and containers (LXC) for various application types.
For a script written in PHP and which inserts randomly
generated data into a database, the authors concluded that
the same script executes in 16 seconds on a Xen platform,
while it took 335 seconds on a LXC platform. This shows
that LXC are unable to isolate resources successfully as
compared to Xen.

Chenying et al. [47] proposed a container live migration
technique i.e., longing and replay—which is similar to pre-
copy VM live migration. In the first step, a new container
is started at target host and a log file is created at the source
host to store the source container activity. Iteratively,
the log file is replayed on the target host, until the log file is
small enough. Finally, the container is started on the target
host, and its copy on the source host is terminated.
Their approach reduces the application downtime and con-
tainer migration time, significantly. Nadgowda [48] have
discussed containers live migration in more details; and
proposed Voyager—which combines CRIU-based memory
migration with data federation capabilities of union mounts
to minimize migration downtime. “With a union view
of data between the source and target hosts, Voyager
containers can resume operation instantly on the target
host, while performing disk state transfer lazily in the back-
ground” [48]. All of these techniques, with notable excep-
tion of [8], have focused on live migration of VMs and/or
containers both, hence server consolidation, but cost recov-
ery in migration, heterogeneity of datacenter resources and
applications are not addressed.

This work is different from Cmcr presented in [6] in two
different ways: (i) the host efficiency quantification
approach in [6] does not care for host performance factor;
and (ii) if we consider VM migration for other factors such
as electricity price, renewable energy generation, user
mobility and new system such as cloudlets, edge or fog
computing, then the proposed scheme in [6] may not work
in that case. CPer addresses these issues and hence could be
beneficial to migrate containerized applications. In produc-
tion clouds, containers are used instead of VMs that might
be running on either: (i) bare metal (Google); or (ii) inside
VMs (AWS EC2 container service). In respect to (i), VMs

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 4, OCTOBER-DECEMBER 2021

migration could be replaced with containers migration.
However, in respect to (ii), there are two possibilities: (a)
containers can be migrated to other VMs; and/or (b) VMs
can be migrated to other hosts.

9 CONCLUSIONS AND FUTURE WORK

Continual investigation of energy and performance effi-
cient resource management will be indispensable to sup-
port in addressing the most important issues of national
energy supply, global warming, and rising fuel costs and,
particularly, to evade the need for datacenter outages.
Improvements in energy-performance efficiency must
decrease energy consumption, and therefore energy bills,
and associated costs to energy infrastructures, along with
concomitant environmental benefits. Rich literature is
devoted to container allocation and migration; however,
they appear to ignore: (i) resource plus workload hetero-
geneities; (ii) migration cost in terms of energy, perfor-
mance and its recovery; and (iii) the impact of runtimes
on migration decisions. In this paper, we considered
combinations of several scheduling methods and consoli-
dation with migration approaches, with information of
the container past runtimes, to investigate energy saving
potentials and performance of various workload types
in containerised datacenters. In particular circumstances,
we found that not migrating containers could be more
energy-performance and, therefore, cost efficient than
using dynamic consolidation. For a million containers,
the best approach overall limits migrations to approxi-
mately 1.9 percent of containers, of which 61.89 percent
recover their migration cost.

laaS providers such as AWS EC2, possibly, will take
benefits from our suggested consolidation with migration
technique to save energy (therefore money), and improve
customer experience; that might be translated to: (a)
reinvestment in buying more infrastructure; (b) pass into
provisioning costs—reduce user monetary costs; and (c) get
reputation for the business - minimize CO, emissions. Our
evaluation suggests that migrating comparatively long-
running containers to more energy and performance
efficient hosts can be more economical and cost efficient.
Nevertheless, we did not address how container runtimes
should be estimated. In public laaS clouds, this will be
a challenging task as the service providers, usually, do not
have knowledge of the user workload. The use of machine
learning based prediction approaches and their precision
is an exciting area for further investigation and research.
Moreover, there are certain limitations, as described in
Section 4.1.1, with the mathematical models which we used
in our evaluation. We have keen interest in the implementa-
tion of the suggested model using accurate and validated
mathematical models. Moreover, our next step would be
to implement and validate the presented model on a real
cloud platform. From the applicability point of view, [10]
describes how the proposed framework will be put
in practice.

Emerging systems such as cloudlets, edge/fog comput-
ing and mobile edge clouds (MECs) also trigger the need
for migration techniques, particularly, to run user’s appli-
cation at the edge of the network. One major issue that

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2021 at 01:09:39 UTC from IEEE Xplore. Restrictions apply.

KHAN ET AL.: AN ENERGY AND PERFORMANCE AWARE CONSOLIDATION TECHNIQUE FOR CONTAINERIZED DATACENTERS

comes with proximity is how to ensure that customers
always receive good or expected level of performance as
they move across different locations. In future, we intend
to extend this work for such scenarios [21]. Moreover,
containers and VMs may perform quite differently for
various application types. Similarly, electricity prices may
vary in various geographical locations or energy sources;
that would certainly affect cloud economics when migra-
tions are performed among datacenters. Further research
is needed to investigate various applications, their perfor-
mance and resource management inside containers, VMs
and when containers are placed over VMs, in various
locations.

ACKNOWLEDGMENTS

This work is supported by Abdul Wali Khan University,
Pakistan. This is substantially extended version of a prelimi-
nary version presented at the 13th International Conference
on Economics of Grids, Clouds, Systems, and Services.

REFERENCES

[1] [Online]. Available: http://www.telegraph.co.uk/finance/
newsbysector/energy /11923465 /Blackout-risk-rises-as-UK-
energy-crisis-deepens.html, Accessed on: Jul. 21, 2016.

[2] A.Shehabi, S. Smith, N. Horner, I. Azevedo, R. Brown,]. Koomey, E.
Masanet, D. Sartor, M. Herrlin, and W. Lintner, “United states data
center energy usage report,” Lawrence Berkeley Nat. Laboratory,
Berkeley, CA, USA, Tech. Rep. LBNL-1005775, vol. 4, 2016.

[3] P.Delforge, “America’s data centers are wasting huge amounts of
energy,” Natural Resources Defense Council (NRDC), pp. 1-5, 2014.

[4] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune,
and J. Wilkes, “Large-scale cluster management at Google with
borg,” in Proc. 10th Eur. Conf. Comput. Syst., 2015, Art. no. 18.

[5] Y. Tay, K. Gaurav, and P. Karkun, “A performance comparison of
containers and virtual machines in workload migration context,”
in Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst. Workshops, 2017,
pp. 61-66.

[6] M. Zakarya and L. Gillam, “An energy aware cost recovery
approach for virtual machine migration,” in Proc. Int. Conf. Econ.
Grids Clouds Syst. Serv., 2016, pp. 175-190.

[7] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and
M. A. Kozuch, “Heterogeneity and dynamicity of clouds at scale:
Google trace analysis,” in Proc. 3rd ACM Symp. Cloud Comput.,
2012, Art. no. 7.

[8] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and Linux contain-
ers,” in Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw., 2015,
pp- 171-172.

[9] M. Zakarya, “An extended energy-aware cost recovery approach
for virtual machine migration,” IEEE Syst.]., vol. 13, no. 2,
pp- 1466-1477, Jun. 2019.

[10] M. Zakarya and L. Gillam, “Energy and performance aware
resource management in heterogeneous cloud datacenters,” PhD
dissertation, Dept. Comput. Sci., Univ. Surrey, Guildford, Surrey,
UK, 2017.

[11] A. Beloglazov and R. Buyya, “Optimal online deterministic algo-
rithms and adaptive heuristics for energy and performance
efficient dynamic consolidation of virtual machines in cloud data
centers,” Concurrency Comput.: Practice Experience, vol. 24, no. 13,
pp. 1397-1420, 2012.

[12] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage
traces: Format+ schema,” Google Inc., White Paper, pp. 1-14, 2011.

[13] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and
R. Buyya, “CloudSim: A toolkit for modeling and simulation
of cloud computing environments and evaluation of resource
provisioning algorithms,” Softw.: Practice Experience, vol. 41, no. 1,
pp- 23-50, 2011.

[14] T.C. Ferreto, M. A.S. Netto, R. N. Calheiros, and C. A. F. De Rose,
“Server consolidation with migration control for virtualized
data centers,” Future Generation Comput. Syst., vol. 27, no. §,
pp- 1027-1034, 2011.

1321

[15] M. Mishra, “Towards a unified theory of VM placement,” PhD
dissertation, Indian Inst. Technol., Mumbai, India, 2015. [Online].
Available: https://www.cse itb.ac.in/, Accessed on: Jul. 2, 2017.

[16] G.Khanna, K. Beaty, G. Kar, and A. Kochut, “Application perfor-
mance management in virtualized server environments,” in
Proc. IEEEIFIP Netw. Operations Manage. Symp., 2006, pp. 373-381.
[Online]. Available: http:/ /ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=1687567

[17] A.Roytman, A.Kansal, S. Govindan, J. Liu, and S. Nath, “Algorithm

design for performance aware VM consolidation,” Microsoft Res.,

Redmond, WA, USA, Tech. Rep.: MSR-TR-2013-28, 2013.

[18] A.Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: Research problems in data center networks,” ACM SIG-
COMM Comput. Commun. Rev., vol. 39, no. 1, pp. 68-73, 2008.

[19] V. Gupta, “Stochastic models and analysis for resource manage-
ment in server farms,” PhD dissertation, Intel Corporation, 2011.
[Online]. Available: http://ra.adm.cs.cmu.edu/anon/usr/ftp/
usr0/anon/2011/CMU-CS-11-114.pdf, Accessed on: Mar. 18, 2018.

[20] A.Gandhi, V. Gupta, M. Harchol-Balter, and M. Kozuch, “Energy-
efficient dynamic capacity provisioning in server farms,” School
Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech.
Rep. CMU-CS-10-108, 2010.

[21] A.Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis, “Live
service migration in mobile edge clouds,” IEEE Wireless Commun.,
vol. 25, no. 1, pp. 140-147, Feb. 2018.

[22] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Elasticity in
cloud computing: State of the art and research challenges,” IEEE
Trans. Serv. Comput., vol. 11, no. 2, pp. 430-447, Mar./ Apr. 2018.

[23] Diamanti, “2018 container adoption benchmark survey,” 2018.
[Online]. Available: https://diamanti.com/wp-content/uploads/
2018/07/WP_Diamanti End-User Survey 072818.pdf

[24] Diamanti, “Five reasons you should run containers on bare metal,
not VMs,” 2018. [Online]. Available: https:/ /diamanti.com/wp-
content/uploads/2018/07/Diamanti_WP_Five Reasons_
You_Should Run_Containers_on_Bare Metal 071918.pdf

[25]]. Shuja, A. Gani, S. Shamshirband, R. W. Ahmad, and K. Bilal,
“Sustainable cloud data centers: A survey of enabling techniques
and technologies,” Renewable Sustainable Energy Rev., vol. 62,
pp- 195-214, 2016.

[26] P.Niroj, “Live container migration: Opportunities and challenges,”
Aalto University, 2017. [Online]. Available: https://wiki.aalto.fi/
download /attachments /116662239 /live-container-migration%20%
281%29.pdf?version=1&modificationDate=1481801946073&api=v2,
Accessed on: Mar. 18, 2018.

[27] L. A. Barroso and U. Holzle, “The case for energy-proportional
computing,” Comput., vol. 40, no. 12, pp. 33-37, 2007.

[28] M. Callau-Zori, L. Samoila, A.-C. Orgerie, and G. Pierre, “An
experiment-driven energy consumption model for virtual
machine management systems,” Sustainable Comput.: Informat.
Syst., vol. 18, pp. 163-174, 2018.

[29] J. O’Loughlin and L. Gillam, “Performance evaluation for cost-
efficient public infrastructure cloud use,” in Proc. Int. Conf. Grid
Econ. Bus. Models, 2014, pp. 133-145.

[30] W. L. Bircher and L. K. John, “Complete system power estimation
using processor performance events,” IEEE Trans. Comput.,
vol. 61, no. 4, pp. 563-577, Apr. 2012.

[31] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya,
“Virtual machine power metering and provisioning,” in Proc. 1st
ACM Symp. Cloud Comput., 2010, pp. 39-50.

[32] H. Liu, H. Jin, C.-Z. Xu, and X. Liao, “Performance and energy
modeling for live migration of virtual machines,” Cluster Comput.,
vol. 16, pp. 249-264, 2013.

[33] S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya,
“A framework and algorithm for energy efficient container
consolidation in cloud data centers,” in Proc. IEEE Int. Conf. Data
Sci. Data Intensive Syst., 2015, pp. 368-375.

[34] U. Pongsakorn, Y. Watashiba, K. Ichikawa, S. Date, H. Iida, et al.,
“Container rebalancing: Towards proactive Linux containers
placement optimization in a data center,” in Proc. IEEE 41st Annu.
Comput. Softw. Appl. Conf., 2017, pp. 788-795.

[35] M. Dabbagh, B. Hamdaoui, M. Guizani, and A. Rayes, “An
energy-efficient VM prediction and migration framework for
overcommitted clouds,” IEEE Trans. Cloud Comput., vol. 6, no. 4,
pp- 955-966, Oct.—Dec. 2018.

[36] D. Meisner, B. T. Gold, and T. F. Wenisch, “The PowerNap server
architecture,” ACM Trans. Comput. Syst., vol. 29, no. 1, 2011,
Art. no. 3.

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2021 at 01:09:39 UTC from IEEE Xplore. Restrictions apply.

http://www.telegraph.co.uk/finance/newsbysector/energy/11923465/Blackout-risk-rises-as-UK-energy-crisis-deepens.html
http://www.telegraph.co.uk/finance/newsbysector/energy/11923465/Blackout-risk-rises-as-UK-energy-crisis-deepens.html
http://www.telegraph.co.uk/finance/newsbysector/energy/11923465/Blackout-risk-rises-as-UK-energy-crisis-deepens.html
https://www.cse.iitb.ac.in/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1687567
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1687567
http://ra.adm.cs.cmu.edu/anon/usr/ftp/usr0/anon/2011/CMU-CS-11-114.pdf
http://ra.adm.cs.cmu.edu/anon/usr/ftp/usr0/anon/2011/CMU-CS-11-114.pdf
https://diamanti.com/wp-content/uploads/2018/07/WP_Diamanti_End-User_Survey_072818.pdf
https://diamanti.com/wp-content/uploads/2018/07/WP_Diamanti_End-User_Survey_072818.pdf
https://diamanti.com/wp-content/uploads/2018/07/Diamanti_WP_Five_Reasons_You_Should_Run_Containers_on_Bare_Metal_071918.pdf
https://diamanti.com/wp-content/uploads/2018/07/Diamanti_WP_Five_Reasons_You_Should_Run_Containers_on_Bare_Metal_071918.pdf
https://diamanti.com/wp-content/uploads/2018/07/Diamanti_WP_Five_Reasons_You_Should_Run_Containers_on_Bare_Metal_071918.pdf
https://wiki.aalto.fi/download/attachments/116662239/live-container-migration%20%281%29.pdf?version=1&modificationDate=1481801946073&api=v2
https://wiki.aalto.fi/download/attachments/116662239/live-container-migration%20%281%29.pdf?version=1&modificationDate=1481801946073&api=v2
https://wiki.aalto.fi/download/attachments/116662239/live-container-migration%20%281%29.pdf?version=1&modificationDate=1481801946073&api=v2

1322

[371]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 4, OCTOBER-DECEMBER 2021

E. M. Elnozahy, M. Kistler, and R. Rajamony, “Energy-efficient
server clusters,” in Proc. Int. Workshop Power-Aware Comput. Syst.,
2002, pp. 179-197.

E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and
R. Bianchini, “Resource central: Understanding and predicting
workloads for improved resource management in large cloud
platforms,” in Proc. 26th Symp. Operating Syst. Principles, 2017,
pp- 153-167.

W. Smith, I. Foster, and V. Taylor, “Predicting application run
times with historical information,”]. Parallel Distrib. Comput.,
vol. 64, no. 9, pp- 10071016, 2004.

S. Di, D. Kondo, and W. Cirne, “Characterization and comparison
of cloud versus grid workloads,” in Proc. IEEE Int. Conf. Cluster
Comput., 2012, pp. 230-238.

Q. Zhang,]. L. Hellerstein, R. Boutaba, et al., “Characterizing
task usage shapes in Google’s compute clusters,” in Proc. 5th Int.
Workshop Large Scale Distrib. Syst. Middleware, 2011, pp. 1-6.

H. Zhuang, X. Liu, Z. Ou, and K. Aberer, “Impact of instance seek-
ing strategies on resource allocation in cloud data centers,”
in Proc. IEEE 6th Int. Conf. Cloud Comput., 2013, pp. 27-34.

S. F. Piraghaj, “Energy-efficient management of resources in
container-based clouds,” PhD dissertation, Dept. Comput. Inf.
Syst., Univ. Melbourne, Parkville, Australia, 2016.

S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya,
“ContainerCloudSim: An environment for modeling and simula-
tion of containers in cloud data centers,” Softw.: Practice Experience,
vol. 47, no. 4, pp. 505-521, 2017.

J. Nider and M. Rapoport, “Cross-ISA container migration,”
in Proc. 9th ACM Int. Syst. Storage Conf., 2016, Art. no. 24.

M. J. Scheepers, “Virtualization and containerization of applica-
tion infrastructure: A comparison,” in Proc. 21st Twente Student
Conf. IT, 2014, pp. 1-7.

C. Yu and F. Huan, “Live migration of docker containers through
logging and replay,” in Proc. Int. Conf. Mechatronics Ind. Informat.,
2015, pp. 623-626.

S. Nadgowda, S. Suneja, N. Bila, and C. Isci, “Voyager: Complete
container state migration,” in Proc. IEEE 37th Int. Conf. Distrib.
Comput. Syst., 2017, pp. 2137-2142.

e Ayaz Ali Khan received the MPhil (MS) degree
in computer science from the COMSATS Institute
of Information Technology (CIIT), Islamabad,
Pakistan. He is currently working toward the PhD
degree in the Department of Computer Science,
Abdul Wali Khan University Mardan, Pakistan.
His area of research includes energy-aware and
performance-efficient scheduling, resource allo-
cation, placement and management, at datacenter
level. Moreover, he has enough knowledge of
distributed systems, optimisation, game theory,
and computer programming.

Muhammad Zakarya received the PhD degree
in computer science from the University of
Surrey, Guildford, United Kingdom. He is currently a
lecturer with the Department of Computer Science,
Abdul Wali Khan University Mardan, Pakistan. His
research interests include cloud computing, mobile
edge clouds, performance, energy efficiency, algo-
rithms, and resource management. He has deep
understanding of the theoretical computer science
and data analysis. Furthermore, he also owns deep
understanding of various statistical techniques
which are, largely, used in applied research.

Rajkumar Buyya received the PhD degree in
computer science from Monash University. He is a
professor of Computer Science and Software Engi-
neering, future fellow of the Australian Research
Council, and director of the Cloud Computing
and Distributed Systems (CLOUDS) Laboratory,
School of Computing and Information Systems,
University of Melbourne, Australia. His research
interests include cloud, grid, distributed, and paral-
lel computing. He is a fellow of the IEEE.

Rahim Khan received the PhD degree in computer
science from the Ghulam Ishag Khan Institute
(GIKI), Swabi, Pakistan. He is currently an assis-
tant professor with the Department of Computer
Science, Abdul Wali Khan University Mardan,
Pakistan. His research interests include the wire-
less sensor networks (WSNs) deployment, Internet
of Thing (loT), routing protocols, outliers detection,
techniques for congestion control, decision support
system (DSS), vehicular ad-hoc networks, data
analysis, and similarity measures.

Mukhtaj Khan received the PhD degree in
computer science from the Department of Elec-
tronic and Computer Engineering, Brunel Univer-
sity, United Kingdom. He is currently an assistant
professor with the Department of Computer
Science, Abdul Wali Khan University Mardan,
Pakistan. His research interests include big data
analytics, smart grids, cloud computing, and dis-
tributed systems. Moreover, he owns deep under-
standing over the performance modelling of
Hadoop systems.

Omer Rana received the PhD degree from Impe-
rial College. He is a professor of performance engi-
neering in the School of Computer Science &
Informatics, Cardiff University and deputy director
of the Welsh e-Science Centre. His research inter-
ests extend to three main areas within computer
science: Problem solving environments, high per-
formance agent systems and novel algorithms
for data analysis and management. Moreover, he
leads the Complex Systems Research Group,
School of Computer Science & Informatics and
is director of the “Internet of Things” Lab, Cardiff
University.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: University of Melbourne. Downloaded on December 05,2021 at 01:09:39 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

