
Future Generation Computer Systems 97 (2019) 194–209

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

State and runtime-aware scheduling in elastic stream computing
systems
Dawei Sun a,b,∗, Shang Gao c, Xunyun Liu d, Fengyun Li e, Xinqi Zheng a,∗∗, Rajkumar Buyya d

a School of Information Engineering, China University of Geosciences, Beijing, 100083, PR China
b Key Laboratory of Geological Information Technology, Ministry of Natural Resources, PR China
c School of Information Technology, Deakin University, Victoria 3216, Australia
d Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and Information Systems, The University of
Melbourne, Australia
e School of Computer Science and Engineering, Northeastern University, Shenyang, 110819, PR China

h i g h l i g h t s

• Classify vertex into stateless vertex or stateful vertex.
• Achieve vertex parallelization by considering the state of vertex.
• State and runtime-aware schedule of stream application.
• Implement a prototype and evaluate the performance of the proposed Sra-Stream.

a r t i c l e i n f o

Article history:
Received 13 September 2018
Received in revised form 28November 2018
Accepted 22 February 2019
Available online 1 March 2019

Keywords:
State awareness
Runtime awareness
Application scheduling
Elastic stream computing
Big data system

a b s t r a c t

State and runtime-aware scheduling is one of the problems that is hard to resolve in elastic big
data stream computing systems, as the state of each vertex is different, and the arrival rate of data
streams fluctuates over time. A state and runtime-aware scheduling framework should be able to
dynamically adapt to the fluctuation of the arrival rate of data streams and be aware of vertex
states and resource availability. Currently, there is an increasing number of research work focusing
on application scheduling in stream computing systems, however, this problem is still far from
being completely solved. In this paper, we focus on the state of vertex in applications and the
runtime feature of resources in a data center, and propose a state and runtime-aware scheduling
framework (Sra-Stream) for elastic streaming computing systems, which incorporates the following
features: (1) Profiling mathematical relationships between the system response time and the arrival
rate of data streams, and identifying relevant resource constraints to meet the low response time
and high throughput objectives. (2) Classifying vertex into stateless vertex or stateful vertex from a
quantitative perspective, and achieving vertex parallelization by considering the state of the vertex.
(3) Demonstrating a proposed stream application scheduling scheme consisting of a modified first-fit
based runtime-aware data tuple scheduling strategy at the initial stage, and a maximum latency-
sensitive based runtime-aware data stream scheduling strategy at the online stage, by considering
the current scheduling status of the application. (4) Evaluating the achievement levels of low response
time and high throughput objectives in a real-world elastic stream computing system. Experimental
results conclusively demonstrate that the proposed Sra-Stream provides significant performance
improvements on achieving the low system response time and high system throughput.

© 2019 Elsevier B.V. All rights reserved.

∗ Corresponding author at: School of Information Engineering, China
University of Geosciences, Beijing, 100083, PR China.
∗∗ Corresponding author.

E-mail addresses: sundaweicn@cugb.edu.cn (D. Sun),
shang.gao@deakin.edu.au (S. Gao), xunyunliu@gmail.com (X. Liu),
lifengyun@mail.neu.edu.cn (F. Li), zhengxq@cugb.edu.cn (X. Zheng),
rbuyya@unimelb.edu.au (R. Buyya).

1. Introduction

In Big Data Era, an increasing number of application scenarios
rely heavily on real-time processing of high-volume continuous
data streams, such as social networks, telecommunications, emer-
gency response, fraud detection, system monitoring, smart cities,
etc. [1]. In real time computing environments, data streams must
be immediately processed to get timely results. To respond to this

https://doi.org/10.1016/j.future.2019.02.053
0167-739X/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2019.02.053
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2019.02.053&domain=pdf
mailto:sundaweicn@cugb.edu.cn
mailto:shang.gao@deakin.edu.au
mailto:xunyunliu@gmail.com
mailto:lifengyun@mail.neu.edu.cn
mailto:zhengxq@cugb.edu.cn
mailto:rbuyya@unimelb.edu.au
https://doi.org/10.1016/j.future.2019.02.053


D. Sun, S. Gao, X. Liu et al. / Future Generation Computer Systems 97 (2019) 194–209 195

need, big data stream computing systems can be employed to
process heterogeneous, real-time, fast, fluctuating over time, and
unbounded data streams in a distributed, scalable, and reliable
computing manner. A new generation of big data stream comput-
ing system has been developed and deployed. Notable examples
include Storm [2], Spark Streaming [3], Flink [4], and Samza [5].
Storm, one of the most popular open source big data stream
computing systems, has been widely used in many well-known
companies and organizations [6,7], such as Twitter, Alibaba, etc.
Storm provides an on-the-fly computing paradigm, where data
is directly processed by a running topology in memory without
the need for storage. It can reduce the response time to a range
of milliseconds or sub-seconds, overcoming the problem of long
response times (which may vary from minutes to weeks) faced
by many big data batch computing systems, such as Hadoop [8],
which adopts a store-then-process computing paradigm.

Stream applications are commonly modeled as a set of sub-
tasks interconnected via data dependencies described by a corre-
sponding DAG (Directed Acyclic Graph). Vertices in a DAG rep-
resent sub-tasks as well as computations, and edges in a DAG
represent data dependencies as well as communications between
those vertices. Each DAG is submitted to a big data stream com-
puting platform and scheduled to run on one or more computing
nodes. Take Storm as an example, once a DAG is running in
Storm system, its execution is continuous unless explicitly killed
by the administrator. The goal of a stream scheduling strategy
is typically related to scheduling inter-dependent sub-tasks onto
currently available computing nodes so that a DAG can complete
its execution within specified constraints, such as throughput and
response time. It is beneficial if some vertices of the running DAG
be rescheduled online according to the fluctuating arrival rate of
streams and available computing resources.

Low system response time and high system throughput are
two critical performance requirements for a stream computing
system [9]. It is necessary to take advantage of distributed data
centers and their multiple instances to achieve high throughputs,
as well as using runtime scheduling to lower response time.
Application scheduling is the key to achieve these goals, which
focuses on scheduling tasks to computing nodes in a way that
a set of objective constraints are satisfied. Application schedul-
ing problem is also one of the most thought-provoking NP-hard
problems in general cases [10]. Data streams arrive in real time
and should be processed immediately. More importantly, a data
stream is composed of continuous, ordered, unbounded stream
of data tuples and its volume can fluctuate over time. An elastic
stream computing system always needs elastic adjustment of
computing resources and vertex parallelism. All of these require-
ments make the application scheduling problem important and
challenging.

The arrival rate of a data stream fluctuates over time in an
unpredictable manner. To effectively utilize resources and meet
user’s specified SLA (Service Level Agreement) constraints such
as response time, a fundamental solution is to propose an elas-
tic adaptive scheduling strategy to allow for stream application
adaptation with regard to the data stream fluctuations. There is
an increasing number of research work [11,12] focusing on elastic
strategies in stream computing systems. An elastic steam com-
puting system can be achieved by dynamically adjusting instance
parallelism of vertex to enable dynamical adaptation to chang-
ing arrival rates of data streams. [13] proposed a system called
Elastic-PPQ to process spatial preference queries over dynamic
data streams. [14] and [15] focus on elasticity in data stream
processing systems. The authors used Model Predictive Control to
predict the system behavior and a set of energy-aware proactive
strategies were employed to make a better adjustment decision.
However, elastic scheduling strategy does not always work. Once

an application is submitted to a computing system, it will keep
running until being explicitly terminated. Therefore, an inappro-
priate scheduling strategy will cause the system imbalance for a
long time, which is not acceptable in steam computing environ-
ments. There are also some works [11] [16] on static scheduling.
Storm is a popular big data stream computing platform with large
communities in both academia and industry. It adopts a static ap-
plication model, which includes a static definition of the number
of instances for each vertex, and a deployment of a DAG on a
fixed number of computing nodes. However, the static strategies
either require permanent peak-load resource provision to remain
low latency in face of varying and busty data streams, which
may cause poor resource utilization, or are unable to handle the
unexpected fluctuation [17].

In this paper, we investigate a state and runtime-aware
scheduling strategy for handling fluctuating and continuous data
streams. The scheduling strategy is built into an elastic steam
computing system, which minimizes system response time and
maximizes system throughput. In order to mitigate the sys-
tem imbalance in the scheduling process, we also provide a
lightweight scheduling strategy in the online scheduling process.
The state and runtime-aware scheduling strategy should be able
to determine when and how the running vertices of a DAG should
be re-scheduled according to the fluctuating arrival rate of data
streams. To achieve this goal, we need to know the state of each
vertex in each DAG, obtain a clear picture of the changing status
of data streams and system resources, and at runtime reschedule
critical vertices of the DAG to provide a lightweight and effective
scheduling strategy.

A. Key contributions

Our contributions are summarized as follows:
(1) Profile mathematical relationships between the system

response time and the arrival rate of data streams, and indicate
resource constraints to meet the low response time and high
throughput objectives for common stream computing environ-
ments.

(2) Classify vertex into stateless vertex or stateful vertex from
a quantitative perspective, and achieve vertex parallelization by
considering the state of the vertex.

(3) Schedule a stream application with a modified first-fit
based runtime-aware data tuple scheduling strategy at the initial
stage, and reschedule the application with a maximum latency-
sensitive based runtime-aware data stream scheduling strategy at
the online stage, by considering the current scheduling status of
the application.

(4) Evaluate achievement levels of low response time and high
throughput objectives in a real-world elastic stream computing
system.

(5) Implement a prototype and evaluate the performance of
the proposed Sra-Stream, which is capable of balancing between
the low system response time and the high system throughput
objectives efficiently and effectively.

B. Paper organization

The rest the paper is organized as follows. We discuss the
background of stream computing system in Section 2, cover-
ing the logical graph, instance graph, and scheduling scheme of
TOP_N in Apache Storm. Section 3 formalizes the data stream, ap-
plication DAG model, and DAG makespan from a quantitative per-
spective in elastic stream computing systems. Section 4 presents a
DAG scheduling model from a theoretical point of view. Section 5
focuses on the system architecture, vertex state, vertex paral-
lelization, initial DAG scheduling, and online DAG rescheduling



196 D. Sun, S. Gao, X. Liu et al. / Future Generation Computer Systems 97 (2019) 194–209

Fig. 1. Source code of TOP_N in Storm.

with runtime-awareness in the proposed Sra-Stream framework.
Section 6 provides detailed information regarding the experi-
mental environment, parameter setup and the performance eval-
uation of Sra-Stream. Section 7 reviews the related work on
state management of stream computing system, runtime-aware
scheduling in distributed systems, and application scheduling on
Storm platform. Finally, conclusions and future work are given in
Section 8.

2. Background

Storm is a popular big data stream computing platform both
in academia and industry. On Storm platform, an application can
be described by a DAG, which is also called a topology. There
are two types of vertices in a DAG: spout vertex and bolt vertex.
Spout vertex is a vertex of data source, and it sends data tuples
(a data tuple is a key–value pair) to bolt vertices continuously. A
bolt vertex is a vertex to process data tuples in the custom way
implemented by users. There are two types of bolts: stateless bolt
and stateful bolt. In a stateless bolt, bolt result is only related to an
input data tuple, however, in a stateful bolt, bolt result is always
related to a set of input data tuples. Both instance numbers of
spout and bolt vertex can be set by user to increase parallelism.

The DAG of an application can be further divided into two
types: logic graph in function, and instance graph in runtime. As
shown in Fig. 1, the source code snippet is the main part of a
streaming application on the Storm platform to achieve TOP_N
computing function [18], which finds the most popular words
from the input data streams over a period of time.

In Storm, a data stream is abstracted as a series of data tuples,
with each data tuple being processed by a corresponding vertex,
and transferred to a downstream vertex. There are eight data
tuples partition strategies [18] provided by Storm to transfer
data tuples from upstream vertex to downstream vertex, and
to partition them among multiple instances of the downstream
vertex. These strategies include shuffle grouping strategy, fields
grouping strategy, partial key grouping strategy, all grouping
strategy, global grouping strategy, none grouping strategy, direct
grouping strategy, and local or shuffle grouping strategy. A cus-
tom stream grouping can also be employed by implementing the
CustomStreamGrouping interface.

The logic graph of TOP_N is a linear pipeline (as shown
in Fig. 2), where each vertex only has one upstream and one
downstream vertex, f represents the fieldsGrouping strategy that
transfers tuples from upstream vertex to downstream vertex, and
g represents the globalGrouping strategy.

An instance graph of TOP_N is a precedence constraint based
directed acyclic graph (as shown in Fig. 3), where vertex va is
mapped into one parallel instance, vertex vb is mapped into
four parallel instances, and vertex vc is mapped into one parallel
instance. In Storm, the number of instances of each vertex can be
set by the user.

A scheduling scheme [19] for instance graph of TOP_N is
shown in Fig. 4. The data stream graph is submitted to Nimbus,

Fig. 2. Logical graph of TOP_N in Storm.

Fig. 3. Instance graph of TOP_N in Storm.

Fig. 4. A scheduling scheme for instance graph of TOP_N in Storm.

to be executed in a Storm cluster. A Nimbus in the cluster is
used to receive and manage the topology of the running data
stream graph. One or more Supervisors in the cluster are used to
coordinate work nodes, to monitor states of tasks in the topology,
and to inform state changes to Nimbus. One or multiple tasks
(in executor) are running on each work node. Zookeeper [20]
is a centralized service for maintaining configuration informa-
tion, as well as providing distributed synchronization and group
services. There could be one or more Zookeepers in the cluster
to manage states for Supervisors and Nimbus, such as storing
heartbeat states. Nimbus can monitor and coordinate the work
of Supervisors and Nimbus, quickly restarting any failed workers
in Supervisor. Zookeepers can also be used to submit and monitor
stream applications. Supervisors and Nimbus are stateless, and
Zookeepers is stateful. To avoid a single point of failure, a copy
of Zookeeper is necessary.

Precedence-constraint based directed acyclic graph scheduling
is a process of mapping inter-dependent sub-tasks onto avail-
able computing nodes so that an application can complete its



D. Sun, S. Gao, X. Liu et al. / Future Generation Computer Systems 97 (2019) 194–209 197

execution within user’s specified SLA (Service Level Agreement)
constraints such as deadline. In Storm, the available resources
of a computing node are called ‘‘Slots’’. When an application
is submitted to Storm system, the scheduling strategy sched-
ules the vertices of the instance DAG to free slots in computing
nodes within the user’s specified SLA. However, finding an opti-
mal scheduling for precedence-constraint based directed acyclic
graph has been studied for years, which is proved to be NP-
hard [21]. Heuristics can be used to obtain a sub-optimal schedul-
ing rather than parsing all the possible schedules [22].

The scheduling strategy of instance DAG plays a key role in im-
proving system performance. In Storm 1.1.0, there are four kinds
of built-in schedulers, which are namely DefaultScheduler, Isola-
tionScheduler, MultitenantScheduler, and ResourceAwareSched-
uler. DefaultScheduler tries to schedule an instance DAG to all
computing nodes with a round-robin strategy. IsolationScheduler
supports setting custom priorities on the computing nodes to
achieve isolation of resource usages among instance DAGs and
to avoid competition. MultitenantScheduler tries to schedule in-
stance DAGs to the computing nodes in a multiple tenant model.
ResourceAwareScheduler considers both the available memory
and CPU of a computing node in a cluster, with rack awareness
being considered in the scheduling process. However, these exist-
ing schedulers cannot adaptively adjust a running instance DAG.
State and runtime-aware factors are not considered. A state and
runtime-aware adaptive scheduling strategy is needed to bridge
this gap.

3. Overview of data stream computing

In this section, we formalize data stream, application DAG
model, and DAG makespan from a quantitative perspective in
elastic stream computing systems.

A. Data stream

A data stream S is a continuous, unbounded, bursty, and
fluctuating-over-time sequence of data tuples, S = {(K1, V1, ts1) ,
(K2, V2, ts2) , . . . , (Ki, Vi, tsi) , . . .}. For the ith data tuple dti =

(Ki, Vi, tsi), Ki, Vi, and tsi represent the key, value, timestamp of
the ith data tuple, respectively. For a data stream S, each data
tuple is a key–value pair. The data size of each data tuple is
different and independent of each other. All those data tuples are
relatively ordered by timestamp.

Each vertex can set a dedicated sliding window [23], which
is used to temporary storage the most recent data tuples if the
relevant vertex is processing another data tuple. Usually, a sliding
window can reduce the loss rate of data tuples and improve
the system throughput of a data stream in distributed stream
computing systems. As shown in Fig. 5, a sliding window with
the length of lsw is employed. At ti, the sliding window is empty,
and no data tuple is stored in it; At tj, some data tuples are stored
in the sliding window, but there is still some available space that
can be used to store the newly arrived data tuples. However, at
tk, the sliding window is full of data tuples, and there is no space
available. In this situation, we need to selectively discard some of
the data tuples. We can discard the data tuples from the existing
tuple set that is stored in the corresponding sliding window, or
discard the data tuples from the latest incoming tuples. For the
sake of simplicity, we directly discard the latest incoming data
tuples. Therefore, if a new data tuple arrived at tk, it would be
discarded directly.

Each vertex should employ a sliding window to store the most
recent data tuples. For stateless nodes, sliding windows can be
used to store the newly arrived tuples that are not yet ready for
processing. For stateful nodes, the sliding window can be further
used to maintain a part of the processed tuples to complete the
dependency calculation of neighboring tuple states.

Fig. 5. Sliding window for a data stream.

Fig. 6. A logical DAG of a stream application.

B. Application DAG model

The logic of each stream application in stream computing
system is usually described by a Directed Acyclic Graph [24],
which is composed of a vertex set and a directed edge set. Such a
logical DAG can be denoted as DAG = (V (DAG) , E (DAG)), where
V (DAG) = {v1, v2, . . . , vn} is a finite set of n vertices. E (DAG) ={
e1,2, e1,3, . . . , en−i,n

}
, i ∈ {1, 2, . . . , n} is a finite set of directed

edges. The weight associated with a vertex or an edge represents
its computation cost or communication cost, respectively.

As shown in Fig. 6, the logical DAG consists of 6 vertices, and
7 edges. V (DAG) = {v1, v2, v3, v4, v5, v6}, E (DAG) = {e1,2, e1,3,
e1,4, e2,6, e3,5, e4,5, e5,6}. For vertex v2, input data stream Iv2 comes
from edge e1,2, output data stream Ov2 is placed on edge e2,6,
function of vertex v2 is Fv2, which is used to process output data
stream Ov2.

Assuming vertex vi is running on computing node cnj with
available resources Rcnj , weight wvi of vertex vi is determined by
Fvi and available resources Rcnj on computing node cnj, which can
be described by (1).

wvi = fvi
(
Fvi , Rcnj

)
. (1)

For edge ei,k, it transfers output data stream Ovi from vertex vi to
vk. Weight wei,k of edge ei,k is determined by Ovi and the network
link Iei,k between vertex vi and vk, which can be described by (2).

wei,k = fei,k
(
Ovi , lei,k

)
. (2)

An application starts running when its logical DAG is submitted
to the data center, in which the corresponding instances for each
vertex in the instance DAG are created. Some vertices the instance
DAG may have more than one instances. As shown in Fig. 7,
instance number of vertex v2 is 3, including v2,1, v2,2, and v2,3.
Instance number of vertex v5 is 2, including v5,1 and v5,2. Instance
number of vertex v1 is 1, which is v1,1.

Functions of all instances of a vertex are the same, and they
are always scheduled for different computing nodes. For exam-
ple, vertex vi is composed of n instances at t1, that is vi ={
vi,1, vi,2, . . . , vi,n

}
. The input data stream ISvi and the output data

stream OSvi are the sum of input data stream and output data



198 D. Sun, S. Gao, X. Liu et al. / Future Generation Computer Systems 97 (2019) 194–209

Fig. 7. Instance number of vertex in an instance DAG.

stream of all n instances of vi, which can be calculated by (3) and
(4), respectively.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ISvi,k = ωi,k · ISvi , ωi,k ∈ [0, 1] ,
n∑

k=1

ωi,k = 1,

ISvi =

n∑
k=1

ISvi,k =

n∑
k=1

(
ωi,k · ISvi

)
,

(3)

where ISvi,k and ωi,k are the input data stream and the weight of
the kth instance of vi, respectively. Weight ωi,k of the kth instance
of vi is determined by tuples partition strategies from upstream
vertex to vertex vi.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

OSvi,k = wi,k · OSvi , wi,k ∈ [0, 1] ,
n∑

k=1

wi,k = 1,

OSvi =

n∑
k=1

OSvi,k =

n∑
k=1

(
wi,k · OSvi

)
,

(4)

where OSvi,k and wi,k are the output data stream and the weight of
the kth instance of vi, respectively. Weight wi,k of the kth instance
of vi is determined by the particular tuple partition strategy from
vertex vi to downstream vertex vd.

C. DAG makespan

Makespan [25] MDAG of an instance DAG is the average elapsed
time required to process each data tuple in [ts, te] on the instance
DAG, where ts is the time that a data tuple enters the instance
DAG, and te is the time that a data tuple leaves the instance
DAG. All of these time measurements are obtained through the
monitoring module. As shown in Fig. 8. For the ith data tuple dti,
the makespan MDAG (i) of the instance DAG for the ith data tuple
dti is the total elapsed time required to execute the ith data tuple
dti on the instance DAG, which can be calculated by (5).

MDAG (i) = tei − tsi, (5)

where tsi and tei are the start time and end time of the instance
DAG to process the ith data tuple dti, respectively.

As the processing time of each data tuple is not the same, the
makespan of each data tuple in an instance DAG is different. Even
if the processing time of some tuples is the same, the makespan of
each data tuple may also be dynamically affected by other factors,
such as available computing nodes in data center, arrival rate of
a data stream at a time.

Fig. 8. Makespan of an instance DAG at different time.

Makespan MDAG of an instance DAG for all n data tuples during
[ts, te] is the average makespan of the instance DAG for all n data
tuples, which can be calculated by (6).

MDAG =
1
n

n∑
i=1

MDAG (i)

=
1
n

n∑
i=1

(tei − tsi) .

(6)

The makespan Msys of all m instance DAGs in a distributed
stream computing system during [ts, te] can be calculated by (7).

Msys =
1
m

m∑
k=1

MDAGk

=
1
m

m∑
k=1

(
1
nk

nk∑
i=1

MDAG (i)

)
,

(7)

where nk is the number of data tuples of the kth instance DAG in
[ts, te].

Makespan Msys is one of the key factors to evaluate the per-
formance of a distributed stream computing system.

4. Scheduling model

In a data center,the resources on one computing node cn can
be measured in different dimensions, including CPU, Memory,
and I/O, etc. [26]. In this paper, we consider CPU and memory
resources.

For an instance vi,j of a vertex vi running on computing node
cnk, the CPU consumption Cvi,j can be calculated by (8).

Cvi,j = cvi,j,p + cvi,j,it · αvi,j,vi,j−pre + cvi,j,ot · βvi,j,vi,j−suc , (8)

where cvi,j,p, cvi,j,it , and cvi,j,ot denote the CPU consumption of
processing, input, and output of a data tuple, respectively. The
parameter αvi,j,vi,j−pre and βvi,j,vi,j−suc can be calculated by (9) and
(10), respectively.

αvi,j,vi,j−pre =

⎧⎨⎩0, if vi,j and vi,j−pre are run on cnk,

1, otherwise,
(9)

βvi,j,vi,j−suc =

⎧⎨⎩0, if vi,j and vi,j−suc are run on cnk,

1, otherwise,
(10)

where vi,j−pre is the direct predecessor node of vi,j, and vi,j−suc is
the direct successor node vi,j.

At time t, a computing node cnk with ncnk

(
ncnk ≥ 0

)
instances,

is denoted as Vcnk,t , with each instance needs to process at most



D. Sun, S. Gao, X. Liu et al. / Future Generation Computer Systems 97 (2019) 194–209 199

one tuple at a time. Therefore, the CPU consumption Ccnk,t of all
nk instances at time t can be calculated by (11).

Ccnk,t =

∑
vij∈Vcnk,t

(
Cvij · xvij,t

)
, (11)

where parameter xvi,j,t can be calculated by (12).

xvi,j,t =

⎧⎨⎩1, one tuple is being processed on vi,j at t,

0, otherwise,
(12)

To keep the CPU resources of computing node cnk in a ser-
viceable state, CPU consumption Ccnk,t must be less than the total
available CPU resources Ccnk,tal of computing node cnk at time t.
It can be described by (13).

Ccnk,t ≤ δmax(CPU) · Ccnk,tal, δmax(CPU) ∈ (0, 1] , (13)

where δmax(CPU) is an upper limit adjustment parameter for CPU
resources. The larger the adjustment parameter δmax(CPU) is, the
less the CPU resources will be reserved without allocation.

To avoid continuous inefficient utilization of CPU resources of
computing node cnk, CPU consumption Ccnk,t at time t should be
greater than the total CPU resources Ccnk,tal of computing node
cnk. It can be described by (14).⎧⎨⎩Ccnk,t ≥ δmin(CPU) · Ccnk,tal, ∈ (0, 1] ,

δmin(CPU) < δmax(CPU),

(14)

where δmin(CPU) is a lower limit adjustment parameter for CPU
resources.

If Ccnk,t < δmin(CPU) · Ccnk,tal, all those nk instances running on
computing node cnk should be rescheduled, and computing node
cnk will be shut down.

The available CPU resources Ccnk,avat of computing node cnk at
time t can be calculated by (15).

Ccnk,avat = δmax(CPU) · Ccnk,tal − Ccnk,t , (15)

The maximum available CPU resources is Ccnk,avat = δmax(CPU) ·

Ccnk,tal. In this situation, Ccnk,t = 0, and there are no task instances
running on cnk at time t. The minimum available CPU resources
is Ccnk,avat = 0, which is δmax(CPU) · Ccnk,tal = Ccnk,t , and there are
no more task instances that can be allocated on cnk at time t. If
and only if Ccnk,avat > 0, new instances can be allocated on cnk at
time t.

Similarly, available resources measured in other resource di-
mensions on computing node cnk at time t also need to meet sim-
ilarly constraints, which includes memory consumption Memcnk,t .
It should be less than the total memory resource Memcnk,tal.
δmax(M) is an upper limit adjustment parameter for memory re-
sources, and δmin(M) is a lower limit adjustment parameter for
memory resources. The available memory resources Memcnk,avat
should meet the following constraint: 0 ≤ Memcnk,avat ≤ δmax(M) ·

Memcnk,tal.
Let DC =

{
cn1, cn2, . . . , cnncn

}
be a data center composed of

ncn computing nodes, and U =
{
u1, u2, . . . , umu

}
be a user set

composed of mu users. The DAG scheduling problem of all mu
instance DAGs in the data center can be formalized as follows:

minMsys (16)

subject to
ncn∑
l=0

mu∑
k=0

∑
vi(k)∈DAGk

∑
vi,j(k)∈vi(k)

xl,k,i,j = 1, (17)

Fig. 9. Sra-Stream architecture.

∀cnk ∈
{
cn1, cn2, . . . , cnncn

}
,

0 ≤ Ccnk,avat ≤ δmax(CPU) · Ccnk,tal,
(18)

δmin(CPU) · Ccnk,tal ≤ Ccnk,t ≤ δmax(CPU) · Ccnk,tal, (19)

0 ≤ Memcnk,avat ≤ δmax(M) · Memcnk,tal, (20)

δmin(M) · Memcnk,tal ≤ Memcnk,t ≤ δmax(M) · Memcnk,tal. (21)

If an instance vi,j (k) of a vertex vi (k) in the kth instance DAGk
running on computing node cnl, then xl,k,i,j = 1, otherwise,
xl,k,i,j = 0.

5. Sra-Stream overview

Based on the above theoretical analysis, we have proposed
and developed Sra-Stream, a state and runtime-aware schedul-
ing framework. To provide an overview of the framework, in
this section, we discuss its overall structure, including system
architecture, vertex state, vertex parallelization, initial stage DAG
scheduling, and online stage DAG rescheduling with runtime
awareness.

A. System architecture

The system architecture of Sra-Stream is composed of four
spaces, which are scheduling space, instance graph space, logical
graph space, and application space, as shown in Fig. 9.

In the scheduling space, a data center DC consists of n com-
puting nodes. Some computing nodes have some instances of
vertex assigned to them according to a designated scheduling



200 D. Sun, S. Gao, X. Liu et al. / Future Generation Computer Systems 97 (2019) 194–209

Fig. 10. Sra-Stream topology.

strategy. Resources on each computing node should be utilized
in an efficient way without affecting node serviceability. Mean-
while, continuously inefficient utilization should be avoided. In
this case, the instances running on one computing node will
have to be rescheduled to other available computing nodes, and
the current computing node will be shut down. On Storm plat-
form, the scheduling strategy can be employed by implementing
the IScheduler interface [5] in order to achieve runtime-aware
scheduling objectives. The CPU and memory consumption of the
computing nodes are obtained through the monitoring module,
which provides the basis for subsequent optimization.

In the instance graph space, one or many instances of an
instance DAG are created according to the function of the vertex,
the available resources of the computing node, the number of
running vertex, and the throughput of data tuples. The number of
instances for each vertex is also dynamically adjusted as needed.

In the logical graph space, one or many logical DAGs are
created according to the function of the user’s application. The
function of each application is described by a logical DAG, which
has a specific structure and function, consisting of a vertex set
and an edge set.

In the user space, each user can design and submit applications
to Storm platform according to their needs. Once an application is
submitted, it will run forever unless being terminated manually
or interrupted due to failure.

As shown in Fig. 10, the topology of Sra-Stream system con-
sists of a Nimbus subsystem, a Zookeeper subsystem, and a Super-
visor subsystem. Each logical DAG is scheduled to an appropriate
Supervisor subsystem by the Nimbus subsystem. Any specific
scheduling strategy can be achieved through the implementation
of the IScheduler interface, and the configurations in Storm.yaml
(the configuration file of Storm platform) can be customized to
specify which scheduling strategy is employed. A monitor module
is added to the Supervisor subsystem and the Nimbus subsystem.
All monitoring data is stored in the database and used for online
scheduling and rescheduling.

B. Vertex state

The state of a vertex for a logical DAG can be stateless or
stateful [27] in distributed stream computing systems.

For a stateless vertex vk, all the input data streams ISvk =

{dt1, dt2, . . .} of vk are processed by vk independently. Each out-
put data tuple is only related to the corresponding input data
tuple, but to other input data tuples. That is odti = fvk (vk, dti),
where odti, fvk , and dti are the ith output data tuple, the function
of vk, and the ith input data tuple, respectively. The number of
output data tuple is not always equal to the number of input
data tuple.∀dti, dtj ∈ ISvk , i ̸= j, if ∃odti, odtj ∈ OSvk,1, i ̸=

j, then ∃odti, odtj ∈ OSvk,2, and processing results of differ-
ent ordered input data tuples will be the same. As shown in
Fig. 11, the order of dtiand dtj is interchangeable, but the re-
sult sets OSvk,1 =

{
odt1, . . . , odti, . . . , odtj · · ·

}
and OSvk,2 ={

odt1, . . . , odtj, . . . , odti · · ·
}

are identical. As well, the order of
odtiand odtj is interchangeable.

In a distributed stream computing system, stateless vertices
can be adjusted online (such as the number of vertex instances,
the scheduling of vertex instances) at any time, regardless of their
historical status.

For a stateful vertex vt , all those input data tuples ISvt =

{dt1, dt2, . . .} of vt are processed by vt sequentially. Each output
data tuple is not only related to the corresponding input data
tuple, but also related to other input data tuples that have been
processed. It can be described as odti = fvt (vt , dti, . . . , dtl, . . .),
where odti, fvt , dti, and · · · , dtl, . . . are the ith output data tuple,
the function of vt , the ith input data tuple, and other input
data tuples of vt , respectively. Different input data tuples or
different ordered input data tuples would result in different
processing results. As shown in Fig. 12, in a vertex vsum with a
function of calculating the sum of the data tuples in the least
sliding window, the results of output data tuple set OSvsum,1 =

{odt1, . . . , odtk′ , . . .} and OSvsum,2 = {odt1′ , . . . , odtk′ , . . .} are
independent of each other.

In a distributed stream computing system, it is required to
consider the historical status when a stateful vertex is to be
adjusted online. For example, to reschedule a stateful vertex vt
from computing node cna to computing node cnb, the historical
status of vt is to be synchronized from cna to cnb. Adjusting state-
ful nodes is costlier and more complex than adjusting stateless
nodes. The historical status of vt is also stored in the sliding
window belonging to vt .

C. Vertex parallelization

Parallelism degree [9,28] pdvi,ti of vertex vi at ti is determined
by the function of vertex, the available resource of computing
node, and the input rate of data tuples for the vertex at time t.
All pdvi instances of vertex vi run on pdvi computing nodes at the
same time.

For an instance DAG, the parallelism degree of each vertex in
the instance DAG should meet the following constraints (22).

pdvi : pdvj : · · · pdve =
Tvi

Ccnvi

:
Tvj

Ccnvj

: · · ·
Tve

Ccnve

, (22)

where vi, vj, . . . , vi ∈ V (DAG). Tvi , Tvj , . . . , Tve are the aver-
age time to process each data tuple of vi, vj, . . . , vi, respec-
tively. Ccnvi

, Ccnvj
, . . . , Ccnve are the average CPU consumption to

process each data tuple of vi, vj, . . . , vi on computing nodes
cnvi , cnvj , . . . , cnve , respectively.



D. Sun, S. Gao, X. Liu et al. / Future Generation Computer Systems 97 (2019) 194–209 201

Fig. 11. Stateless vertex semantic.

Fig. 12. Stateful vertex semantic.

In the scheduling state, the input rate of data tuples for a
vertex is directly determined by the input rate of source data
stream. The input rate change ∆irs of source data stream at a
different time can be described by (23).

∆irs = irs,ti − irs,tj , (23)

where irs,ti and irs,tj are the input rate of source data stream at
time ti, and tj, respectively, and ti > tj.

If ∆irs > 0 and ∆irs > α · irs,ti , α ∈ [0, 1], then the parallelism
degree pdvi,ti of vertex vi at ti needs to be increased according to
(24).

pdvi,tj = (1 + α) · pdvi,ti (24)

where α is the adjustment parameter, which can be set according
to the system needs.

If ∆irs < 0 and ∆irs < α · irs,ti , then the parallelism degree
pdvi,ti of vertex vi at ti needs to be decreased according to (25).

pdvi,tj = (1 − α) · pdvi,ti (25)

When an instance DAG is submitted to the data center, paral-
lelism degree pdvs,ts of sources vertex vs at the submission time
ts is set to k · pdvs,ts , k ∈ {1, 2, . . .}, where k can be calculated
by (26), and pdvs,ts = k · pdvs,ts . The parallelism degree of other
vertices at submission time ts can be determined according to the
constraints in (22).

k = max

⎛⎜⎜⎜⎜⎝1,

⎢⎢⎢⎢⎢⎢⎢⎣
n∑

i=0

num
(
ccni
)

∑
vj∈set(DAG)

pdvj

⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ , (26)

Fig. 13. Stateless vertex parallelization.

where num
(
ccni
)
is the number of CUP resources available on the

ith computing node cni.
For a stateless vertex vk, all the task instances of vk process

data tuples independently, as shown in Fig. 13. The state of each
instance does not need to be shared among the siblings.

However, for stateful vertex vt , all the task instances of vt

process data tuples dependently [29], as shown in Fig. 14. In order
to get global and dependency information of a data stream over
a period of time, the state of each instance belonging to the same
stateful vertex vt needs to be summarized. In this scenario, a new
vertex vt ′ for summarizing those states of all instances ofvt also
needs to be created.

D. Initial DAG scheduling with runtime-awareness

In the initial DAG scheduling phase, a modified first-fit [30]
based runtime-aware data tuple scheduling strategy (FFRA) is
proposed, which is described in Algorithm 1.



202 D. Sun, S. Gao, X. Liu et al. / Future Generation Computer Systems 97 (2019) 194–209

The Input of this algorithm includes an application logical
DAG, a data tuple dtk in a data stream, and a matrix Cvn×m that
denotes the current available capacity of the computing nodes
in the data center. The output is the modified First-Fit based
Runtime-Aware data tuple scheduling. Step 6–step 11 determine
the state of each vertex in the logical DAG, and create a new
vertex for sharing the states of all instances of the stateful vertex.
Step 12–step 14 determine the parallelism degree of each vertex.
Step 18–step 29 schedule the instance DAG to the data center
based on the modified first-fit based runtime-aware data tuple
scheduling strategy.

The main stage of the initial DAG scheduling with data tuple
runtime-awareness is shown in Fig. 15. At stage 1, a logical DAG

Fig. 14. Stateful vertex parallelization.

Fig. 15. Main stages of initial DAG scheduling with data tuple runtime-
awareness.

consists of vs, vi, vj, and ve, which is submitted to the data center.
The state and parallelism degree of each vertex in the logical DAG
is analyzed and determined. For vj, two instances are created,
which are vj,1 and vj,2. For other vertices, only one instance is
created. At stage 2, a data tuple dt1 is to be processed by the
instantiated instance DAG. At stage 3, the in-degree of vs is 0,
so vs is scheduled to a computing node. Data tuple dt1 is being
processed by vs. At stage 4, two new data tuples dt2 and dt3 are
created by vs, and sent to vi and vj,2, respectively. As usual, if a
vertex has more than one instances, only one instance is selected
to process the data tuple at one time. In order to schedule the
successor vertex of vs, the in-degree of vi, vj,1, and vj,2 are updated
(changing from the solid line to the dotted line), as shown at stage
5. At stage 6, a new data tuple dt5 is created by ve, and all vertices
of the instance DAG are scheduled to the compute nodes properly.



D. Sun, S. Gao, X. Liu et al. / Future Generation Computer Systems 97 (2019) 194–209 203

E. Online DAG rescheduling with runtime-awareness

If the response time is higher or the throughput is lower
than the users’ expectation, some vertices of the running in-
stance DAG need to be rescheduled online to improve the system
performance.

In the online DAG rescheduling phase, a maximum latency-
sensitive [31] based runtime-aware data stream scheduling strat-
egy (MSRA) is employed, which is described in Algorithm 2.

The input of this algorithm includes the scheduling state of
online instance DAGs, the current available capacity matrix Cvn×m
of computing nodes in the data center, and the input rate of a
data stream. The output is the maximum latency-sensitive based
runtime-aware data stream scheduling. Step 7–step 23 monitor
the real-time arrival rate of a data stream and the makespan
of each online instance DAG, and reschedule all those instance
DAGs by the maximum latency-sensitive based runtime-aware
data stream scheduling strategy.

In this algorithm, all the online instance DAGs are rescheduled
as a whole. For a vertex, its runtime latency is considered instead

Table 1
Hardware configuration of the cluster.
Computing
node

CPU Memory Bandwidth

Storm Nimbus,
Storm UI

Intel core (TM)
i7-4790,
3.6 GHz, 6-core

8GB DDR4
3000 MHz

1 Gbps

Zookeeper
1∼3

Intel core (TM)
i7-4790,
3.6 GHz, 6-core

4GB DDR3
1600 MHz

1 Gbps

Supervisor
1∼8

Intel core (TM)
i5-8400,
2.8 GHz, 6-core

4GB DDR3
1600 MHz

1 Gbps

Supervisor
9∼16

Intel core (TM)
i5-8400,
2.8 GHz, 6-core

4GB DDR3
1600 MHz

1 Gbps

Supervisor
17∼24

Intel core (TM)
i3-8100,
3.6 GHz, 4-core

2GB DDR3
1600 MHz

1 Gbps

Supervisor
24∼32

Intel core (TM)
i3-8100,
3.6 GHz, 4-core

2GB DDR3
1600 MHz

1 Gbps

Table 2
Software configuration of the Sra-Stream platform.
Software Version

OS CentOS 6.3 64 bit
Storm Apache-storm-1.0.2
JDK Jdk1.7 64 bit
Zookeeper Zookeeper-3.4.6
Python Python 2.7.2
Zeromq Zeromq-2.1.7

of its location in an instance DAG. This greatly reduces the system
decision-making time and therefore guarantees the performance.
In most cases, the rescheduled vertex is the best choice, however,
it is possible that a ‘‘wrong’’ vertex is selected. In the latter case,
such ‘‘mistake’’ is temporary. In the long run, the chosen vertex
is still able to contribute to performance improvement. It makes
this algorithm simple and efficient.

6. Performance evaluation

This section evaluates the performance of the proposed Sra-
Stream in a distributed computing environment. We firstly dis-
cuss the experimental environment and its parameter settings,
then provide a detailed analysis of performance evaluation re-
sults.

A. Experimental environment and parameter setup

The proposed Sra-Stream system is developed as an extension
on Storm 1.0.2 [18] [32], and installed on top of CentOS 6.3. Ex-
tensive experiments have been conducted on a computing cluster
located at computer architecture laboratory in China University of
Geosciences, Beijing. The cluster consists of 36 machines, with 1
designated machine serving as the master node, running Storm
Nimbus, 3 designated as Zookeeper node, and the rest 32 ma-
chines working as Supervisor nodes. The hardware configuration
of the cluster is shown in Table 1.

The software configuration of Sra-Stream platform is shown in
Table 2.

We submit three types of logical DAGs — TOP_N, WordCount,
and real-time user portrait to the computing cluster. The logic
graph of TOP_N is shown in Fig. 2. The logic graph of WordCount
is shown in Fig. 16, where the function of vertex vr is a word
reader, the function of vertex vn is a word normalizer, and the
function of vertex vc is a word counter. The logic graph of real-
time user portrait is shown in Fig. 17, where the function of each



204 D. Sun, S. Gao, X. Liu et al. / Future Generation Computer Systems 97 (2019) 194–209

Fig. 16. Logical graph of WordCount in Sra-Stream.

Fig. 17. Logical graph of real-time user portrait in Sra-Stream.

Table 3
Function of each vertex in logic graph of real-time user
portrait.
Vertex Function

vr Reader of search keyword
vs Word segmentation
vf g Feature extraction of user’s gender
vf a Feature extraction of user’s age
vf o Feature extraction of user’s occupation
vu Construction of user portraits

vertex is shown in Table 3. The number of instance DAGs for each
type is initialized to 10. The size of sliding window for spout
vertices is set to 10,000 tuples and for bolt vertices it is set to
5000 tuples.

There are two types of data sets. The first type is text data col-
lected from a book, so its input rate can be effectively controlled
to observe the system response time, system throughput, and CPU
utilization under different testing scenarios. Another type is the
result of a real-time keyword searching on a social networking
site, where the time span of the search is set to 24 h, and each
data tuple is organized in chronological order. The first data set is
used for TOP_N and WordCount and the second data set is used
for the application of real-time user portrait.

B. Performance results

The experimental setting contains three evaluation parame-
ters: system response time RT, system throughput ST, and average
CPU utilization uavg (CPU).

(1) Response time. System response time RT or makespan Msys
of an elastic stream computing system is defined by (8), which is
considered to be acceptable by users if it stays at a millisecond
level. On Storm platform, RT can be obtained through the Storm
UI. The shorter the system response time is, the better the real-
time performance of the elastic stream computing system would
be.

When the input rate of data is stable, Sra-Stream has a better
system response time as compared to the default scheduling
strategy on Storm platform. As shown in Fig. 18, with the rate
set at 1000 tuples/s, the average response time of Sra-Stream and
that of the default Storm scheduling strategy at the stable stage

Fig. 18. System response time with data rates 1000 tuples/s.

Fig. 19. System response time with data rates changing from 1000 tuples/s to
2000 tuples/s at 400.

are gauged at 32 ms and 61 ms, respectively. It is obvious that the
average response time by Sra-Stream is significantly shorter than
that of the default Storm scheduling strategy when the input rate
is stable.

When the input rate of data is fluctuating over time, Sra-
Stream has a better system response time as compared to the
default strategy on Storm platform. As shown in Fig. 19, as data
rates change from 1000 tuples/s to 2000 tuples/s at 400 s, that is,
the data rate is 1000 tuples/s in [0, 400] s, and the data rate is
2000 tuples/s in [400, 800] s, the average response time by Sra-
Stream is changing from 32 ms to 63 ms, whereas the average
response time by default Storm scheduling strategy is changing
from 61 ms to 253 ms. The average response time by Sra-Stream
is significantly shorter than that of the default Storm scheduling
strategy when the input rate is fluctuating over time.

When we select the real-time keyword searching data set, the
input rate of data is fluctuating over time. Sra-Stream has a better
system response time as compared to the default strategy on
Storm platform. As shown in Fig. 20, at different points in time,
the system response time is fluctuating along with the input rate.
But at every point in time, the response time of Sra-Stream is
shorter than that of Storm platform. The variances of response
time fluctuation are also smaller.

(2) System throughput. System throughput reflects the overall
processing ability for all running instance DAGs, which is evalu-
ated by the number of output tuples per second of per instance
DAG. The greater the system throughput, the stronger the data
processing ability of the stream computing system.



D. Sun, S. Gao, X. Liu et al. / Future Generation Computer Systems 97 (2019) 194–209 205

Fig. 20. System response time of real-time user portrait with a real-world data
stream.

Fig. 21. System throughput with data rates 1000 tuples/s.

When the input rate of data is stable, Sra-Stream has a higher
system throughput as compared to the default strategy on Storm
platform. As shown in Fig. 21, with the rate set at 1000 tuples/s,
the average throughput by Sra-Stream and by default scheduling
Storm strategy at the stable stage are 537 tuples/s and 156
tuples/s, respectively. It is proved that the average throughput by
Sra-Stream is higher than that of the default Storm scheduling
strategy when the input rate is stable.

When the input rate of data is fluctuating over time, Sra-
Stream has a better system response time as compared to the
default strategy on Storm platform. As shown in Fig. 22, as the
data rate changes from 1000 tuples/s to 2000 tuples/s at 500,
that is, the data rate is 1000 tuples/s in [0, 500] s, and the data
rate is 2000 tuples/s in [500, 1000] s, the average throughput of
the instance DAGs by Sra-Stream is changing from 537 tuples/s
to 921 tuples/s, whereas the average throughput of the instance
DAGs by default Storm scheduling strategy is changing from 156
tuples/s to 262 tuples/s. The average throughput by Sra-Stream
is significant than that of the default Storm scheduling strategy
when the input rate is fluctuating over time.

Sra-Stream also has a higher system throughput as compared
to the default strategy on Storm platform. As shown in Fig. 23, at
different points in time, the input rate is fluctuating over time, so
the system throughput is also fluctuating. When the input rate
is at a lower level and the system is in a lower load state, the
difference of system throughput between the two strategies is

Fig. 22. System throughput with data rates changing from 1000 tuples/s to 2000
tuples/s at 500.

Fig. 23. System throughput of real-time user portrait with a real-world data
stream.

not particularly noticeable. When the rate is at a higher level
and the system is in a higher load state, the difference in system
throughput between the two strategies is significant.

(3) Average CPU utilization uavg (CPU). CPU utilization reflects
the effective use and overhead of the CPU of computing node
during a period of time. The average CPU utilization uavg (CPU)

in [0, t] can be calculated by (27).

uavg (CPU) =
1
n

n∑
i=0

ucni (CPU) , (27)

where ucni (CPU) is the average CPU utilization of the ith comput-
ing node cni in [0, t].

A good scheduling strategy keeps the uavg (CPU) at a high level,
and no computing node is experiencing a high CPU load or low
CPU load for a long period of time. In this experiment, we set
δmax(CPU) = 0.9, and δmax(CPU) = 0.2.

When the input rate of data is stable, with the increase of
the number of instance DAGs, the average CPU utilization in a
computing cluster also increases. Sra-Stream strategy has a more
efficient CPU utilization as compared to the default strategy on
Storm platform in the same situation. As shown in Fig. 24, when
the rate is set at 1000 tuples/s, and the number of instance DAGs
is at a low level, the average CPU utilization by Sra-Stream strat-
egy is higher than that of the default strategy on Storm platform.



206 D. Sun, S. Gao, X. Liu et al. / Future Generation Computer Systems 97 (2019) 194–209

Fig. 24. Average CPU utilization with different numbers of instance DAGs.

Fig. 25. Average CPU utilization of real-time user portrait with a real-world data
stream.

This is because some computing nodes with low CPU load were
shut down. When the number of instance DAGs is at a higher
level, the average CPU utilization by Sra-Stream strategy can be
controlled at a high and efficient level, however, the average CPU
utilization by default strategy on Storm platform is always in an
overload state, and this has directly affected the performance of
the system.

Sra-Stream also has a more efficient CPU utilization as com-
pared to the default strategy on Storm platform. As shown in
Fig. 25, when the input rate is at a higher level and the system
is in an overload state, the average CPU utilization produced by
the default strategy on Storm platform is clocked at 100%, which
causes the system performance to be unstable and degraded.
However, the average CPU utilization produced by Sra-Stream
strategy can be controlled at a reasonable level to ensure the
system performance.

7. Related work

There are three broad categories of related works: (1) state
management for stream computing systems, (2) runtime-aware
scheduling in distributed systems, and (3) application scheduling
on Storm platform.

A. State management for stream computing system

State management [12–14] plays a key role in stream comput-
ing systems as each vertex has different states at different time.
It is fully considered in many popular stream computing systems,
such as, Flink [4] which maintains data states that have been
processed over time on each stateful vertex and provides exactly-
once semantics for the stateful vertex. Samza [5] also manages
snapshotting and restoration of the state of a stateful vertex.

In [17], a mechanism that supports stateful migration of ap-
plication components is proposed. The stateful migration mech-
anism achieves the rescheduling of stateful vertices to different
computing nodes, and enables the computing system to change
the topology deployment by preserving the state of stateful ver-
tices at run-time.

In [29], the authors introduced a set of state access patterns
suitable for managing accesses to states in stream computing
systems. Two orthogonal dimensions are used to characterize
the behavior of stateful streaming computations, which are the
nature of the state — divided into partitionable state and non-
partitionable state, and the type of state access — divided into
ordered state access and relaxed state access. The definition,
implementation and performance evaluation of six state access
patterns are given, which include serial state access pattern,
all-or-none state access pattern, fully partitioned state access
pattern, separate task/state function state access pattern, accu-
mulator state access pattern, and successive approximation state
access pattern.

In [33], a scheduler for parallel state machine replication is
proposed, and a novel command handling and dependency track-
ing mechanism that favors high throughput in parallel state ma-
chine replication is present.

In [34], a lightweight state-management abstraction for big
stateful computation is proposed, and a distributed system named
ChronoStream is implemented for elastic stateful stream process-
ing in a multi-tenant environment. The internal states in each
operator are classified into computation state and configuration
state.

In [35], parallel patterns for window-based stateful vertex
are presented. Features of parallel patterns in relation to the
distribution policy are identified. An internal state and the role
of parallel executors in the window management are presented,
and four patterns for window-based stateful vertex are further
described.

To summarize, State management for stream computing sys-
tem is considered in many works. However, most of them con-
sider the state of a vertex from a qualitative perspective, in
our work, we consider the state of a vertex from a quantitative
perspective.

B. Runtime-aware scheduling in distributed systems

Runtime-aware scheduling in distributed systems is to sched-
ule long-running applications on available computing nodes in
a data center at the same time, while satisfying user’s specified
SLAs constraints. It is difficult to find an optimal schedule for
precedence constraint-based directed acyclic graph at runtime
because the arrival rate of a data stream fluctuates over time, and
the amount of available computing resources also fluctuates over
time.

In [30], a runtime-aware adaptive scheduling mechanism in
stream computing is proposed. The scheduling applies to the task
redistribution to accelerate the processing of the stage operators,
applies to the availability of resources variation, and applies to
the fluctuating data input rates. Stateless vertex is considered in
the runtime-aware scheduling mechanism, but stateful vertex is
not considered.



D. Sun, S. Gao, X. Liu et al. / Future Generation Computer Systems 97 (2019) 194–209 207

The estimate of running time for parallel jobs is an important
factor in scheduling. In [36], a set of running time adjustment
schemes are proposed, which can be directly used in production
environments. A job scheduling strategy with adjusted runtime
estimates on production supercomputers is given.

Lazy scheduling is a runtime scheduler for task-parallel codes.
It does not maintain any additional state to infer system load, and
it does not make irrevocable serialization decisions. In [37], two
alternative approaches of lazy scheduling are proposed. How they
scale on three different multicores platform is also shown.

Many devices have large demands on running real-time ap-
plications. In [38], a transition-aware runtime task scheduling
strategy for multicore processors is proposed, and an integer
linear programming model is constructed to find the optimal
solutions for off-line scheduling.

Machine learning approaches are widely used in classifica-
tion methods for data mining applications. However, the time-
consuming training process greatly limits the efficiency of ma-
chine learning approaches. In [39], a runtime data layout schedul-
ing for machine learning data set is proposed to improve the
efficiency of machine learning approaches.

To summarize, the aforementioned solutions provide a valu-
able insight into the challenges and potential solutions for
runtime-aware scheduling problem in distributed systems. How-
ever, in Big Data Era, novel approaches that address the particular
challenges and opportunities of these technologies need to be
developed, and some characteristics specific to big data stream
computing environments need to be considered when developing
online scheduling strategies.

C. Application scheduling on storm platform

The scheduling strategy of instance DAG in Strom plays a
key role in improving system performance. In Storm 1.1.0, there
are four kinds of built-in schedulers, which are namely De-
faultScheduler, IsolationScheduler, MultitenantScheduler, and Re-
sourceAwareScheduler. Some work [7,17,23] has been done to
improve the application scheduling strategy on Storm platform.

In [40], a preventive auto-parallelization approach for elastic
stream computing is proposed. The approach relys on a metric
which estimates operator activity in the future. Parallelism degree
of each operator can be increased or decreased according to the
local and global information.

In [41], a slot-aware scheduling strategy for even scheduler
in Storm is designed. The scheduling strategy achieves a fine-
grained EvenScheduler using the slot-aware sorting queue and
merger factor, and evenly allocates slots for multiple applications
in a load balancing cluster.

In [42], a queue theory approach to the modeling of data
streams is proposed. The optimization problem of application is
defined to minimize the total resources required, and a corre-
sponding algorithm is also proposed to mitigate the complexity
order of the optimization problem of application

In [43], a replication-based state management system is pro-
posed. The system actively manages multiple state backups on
different computing nodes. The prototypes are built on Storm
platform by extending its monitoring and recovery modules.

To summarize, current application scheduling on Storm plat-
form is limited to one or a few aspects. It is obvious that this
problem has been studied extensively over the years, and will
continue to be the focus of research due to its theoretical signif-
icance and practical importance. In this paper, however, we also
take account of the scheduling strategy on Strom platform.

Additionally, our past work [25] focused on achieving a fair
scheduling among multiple applications and giving an elastic
online scheduling framework for multiple online applications in

stream computing systems. Different from the above work, this
work aims at shortening the gap of system throughput and input
data stream. Our primary goal is not fairness but system through-
put, considering the vertex state and runtime-aware schedul-
ing for online applications, which maximizes system throughput,
guarantees system response time, and achieves elastic stream
computing.

8. Conclusions and future work

Low system response time and high system throughput are
two critical requirements for a stream computing system. Appli-
cation scheduling is the key to achieve those goals, which focuses
on how to schedule tasks to computing nodes while satisfying
a set of objective constraints. Application scheduling problem is
also one of the most thought-provoking NP-hard problems. Data
streams arrive in real time, and demands to be processed im-
mediately. An elastic stream computing system is always needed
through the elastic adjustment of computing resources and flex-
ible adjustment of vertex parallelism.

To minimize system response time, maximize system through-
put, and effectively use resources, a fundamental requirement is a
state and runtime-aware scheduling for elastic stream computing
systems. It would be able to determine when and how to resched-
ule running vertices of a instance DAG according to a fluctuating
data stream. To achieve this goal, we first get the state of each
vertex in each instance DAG, obtain a clear picture of the changing
status of data streams and system resources, and then perform
running-aware scheduling for the critical vertices of the instance
DAG. The rescheduling of the critical vertices helps minimize
system response time and maximize system throughput.

Our future work will be focusing on the following directions:
(1) Developing a complete state and runtime-aware schedul-

ing framework based on Sra-Stream as a part of elastic stream
computing services.

(2) Deploying the Sra-Stream in a real big data stream com-
puting environment for production applications.

Acknowledgments

This work is supported by the National Natural Science Foun-
dation of China under Grant No. 61602428 and 61602106; the Key
Laboratory of Geological Information Technology, Ministry of Nat-
ural Resources of the People’s Republic of China; the Fundamen-
tal Research Funds for the Central Universities under Grant No.
2652018081; and Australian Research Council (ARC) Discovery
Project.

References

[1] S. Imai, S. Patterson, C.A. Varela, Maximum sustainable throughput pre-
diction for data stream processing over public clouds, in: Proc. 2017 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
CCGRID 2017, IEEE Press, 2017, pp. 504–513.

[2] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J.M. Patel, S. Kulkarni,
J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, D. Ryaboy,
Storm@twitter, in: Proc. 2014 ACM SIGMOD International Conference on
Management of Data, SIGMOD 2014, ACM Press, 2014, pp. 147–156.

[3] M. Zaharia, T. Das, H.Y. Li, T. Hunter, S. Shenker, I. Stoica, Discretized
streams: Fault-tolerant streaming computation at scale, in: Proc. 24th ACM
Symposium on Operating Systems Principles, SOSP 2013, ACM Press, 2013,
pp. 423–438.

[4] C. Paris, E. Stephan, F. Gyula, H. Seif, R. Stefan, T. Kostas, State management
in apache flink: R⃝ consistent stateful distributed stream processing, Proc.
VLDB Endow. 10 (12) (2017) 1718–1729.

[5] S.A. Noghabi, K. Paramasivamy, Y. Pany, N. Rameshy, J. Bringhursty,
I. Gupta, R.H. Campbell, Samza: Stateful scalable stream processing at
linkedin, Proc. VLDB Endow. 10 (12) (2017) 1634–1645.

http://refhub.elsevier.com/S0167-739X(18)32189-7/sb1
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb1
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb1
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb1
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb1
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb1
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb1
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb2
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb2
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb2
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb2
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb2
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb2
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb2
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb3
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb3
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb3
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb3
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb3
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb3
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb3
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb4
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb4
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb4
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb4
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb4
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb5
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb5
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb5
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb5
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb5


208 D. Sun, S. Gao, X. Liu et al. / Future Generation Computer Systems 97 (2019) 194–209

[6] C. Li, J. Zhang, Y. Luo, Real-time scheduling based on optimized topology
and communication traffic in distributed real-time computation platform
of storm, J. Netw. Comput. Appl. 87 (2017) 100–115.

[7] T. Li, J. Tang, J. Xu, Performance modeling and predictive scheduling for
distributed stream data processing, IEEE Trans. Big Data 2 (4) (2016)
353–364.

[8] Hadoop, http://hadoop.apache.org/.
[9] B. Gedik, S. Schneider, M. Hirzel, K.L. Wu, Elastic scaling for data stream

processing, IEEE Trans. Parallel Distrib. Syst. 25 (6) (2014) 1447–1463.
[10] Y. Xu, K. Li, L. He, L. Zhang, K. Li, A hybrid chemical reaction optimization

scheme for task scheduling on heterogeneous computing systems, IEEE
Trans. Parallel Distrib. Syst. 26 (12) (2015) 3208–3222.

[11] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, R. Grimm, A catalog of stream
processing optimizations, ACM Comput. Surv. 46 (4) (2014) 46, 1-34.

[12] V. Cardellini, F. Lo Presti, M. Nardelli, G.R. Russo, Decentralized self-
adaptation for elastic data stream processing, Future Gener. Comput. Syst.
87 (2018) 171–185.

[13] G. Mencagli, M. Torquati, M. Danelutto, Elastic-PPQ: A two-level autonomic
system for spatial preference query processing over dynamic data streams,
Future Gener. Comput. Syst. 79 (Part 3) (2018) 862–877.

[14] T. De Matteis, G. Mencagli, Proactive elasticity and energy awareness in
data stream processing, J. Syst. Softw. 127 (C) (2017) 302–319.

[15] T. De Matteis, G. Mencagli, Keep calm and react with foresight: Strategies
for low-latency and energy-efficient elastic data stream processing, in:
Proc. 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP 2016, ACM Press, 2016, p. 13.

[16] A. Shukla, Y. Simmhan, Model-driven scheduling for distributed stream
processing systems, J. Parallel Distrib. Comput. 117 (2018) 98–114.

[17] V. Cardellini, M. Nardelli, D. Luzi, Elastic stateful stream processing in
storm, in: Proc. 2016 International Conference on High Performance
Computing & Simulation, HPCS 2016, IEEE Press, 2016, pp. 583–590.

[18] Storm, http://storm.apache.org.
[19] M.A. Lopez, A.G.P. Lobato, O.C.M.B. Duarte, A performance comparison

of open-source stream processing platforms, in: Proc. 59th IEEE Global
Communications Conference, GLOBECOM 2016, IEEE Press, 2016, 7841533,
1–6.

[20] Zookeeper, https://zookeeper.apache.org/.
[21] J. Ghaderi, S. Shakkottai, R. Srikant, Scheduling storms and streams in

the cloud, in: Proc. 2015 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, SIGMETRICS 2015, ACM
Press, 2015, pp. 439–440.

[22] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, G. Buttazzo,
Schedulability analysis of conditional parallel task graphs in multicore
systems, IEEE Trans. Comput. 66 (2) (2017) 339–353.

[23] G. Lucarelli, F. Mendonca, D. Trystram, A new on-line method for
scheduling independent tasks, in: Proc. 2017 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, CCGRID 2017, IEEE
Press, 2017, pp. 140–149.

[24] R. Pathan, P. Voudouris, P. Stenstrom, Scheduling parallel real-time recur-
rent tasks on multicore platforms, IEEE Trans. Parallel Distrib. Syst. 29 (4)
(2018) 915–928.

[25] D. Sun, H. Yan, S. Gao, X. Liu, R. Buyya, Rethinking elastic online scheduling
of big data streaming applications over high-velocity continuous data
streams, J. Supercomput. 74 (2) (2018) 615–636.

[26] H. Li, J. Wu, Z. Jiang, X. Li, X. Wei, Task allocation for stream process-
ing with recovery latency guarantee, in: Proc. 2017 IEEE International
Conference on Cluster Computing, CLUSTER 2017, IEEE Press, 2017, pp.
379–383.

[27] J. Rho, T. Azumi, M. Nakagawa, K. Sato, N. Nishio, Scheduling parallel and
distributed processing for automotive data stream management system, J.
Parallel Distrib. Comput. 109 (2017) 286–300.

[28] T. Lorido-Botran, J. Miguel-Alonso, J.A. Lozano, A review of auto-scaling
techniques for elastic applications in cloud environments, J. Grid Comput.
12 (4) (2014) 559–592.

[29] M. Danelutto, P. Kilpatrick, G. Mencagli, M. Torquati, State access patterns
in stream parallel computations, Int. J. High Perform. Comput. Appl. (2017)
http://dx.doi.org/10.1177/1094342017694134.

[30] Y. Liu, X. Shi, H. Jin, Runtime-aware adaptive scheduling in stream
processing, Concurr. Comput.: Pract. Exper. 28 (14) (2016) 3830–3843.

[31] L. Yang, J. Cao, H. Cheng, Y. Ji, Multi-user computation partitioning for
latency sensitive mobile cloud applications, IEEE Trans. Comput. 64 (8)
(2015) 2253–2266.

[32] J. Zhang, C. Li, L. Zhu, Y. Liu, Yanpei 1, The real-time scheduling
strategy based on traffic and load balancing in storm, in: Proc. the
18th IEEE International Conference on High Performance Computing and
Communications, HPCC 2016, IEEE Press, 2017, pp. 372–379.

[33] O.M. Mendizabal, R.S. Moura, F.L. Dotti, Efficient and deterministic
scheduling for parallel state machine replication, in: Proc. the IEEE 31st
International Parallel and Distributed Processing Symposium, IPDPS 2017,
IEEE Press, 2017, pp. 748–757.

[34] Y. Wu, K.L. Tan, ChronoStream: Elastic stateful stream computation in
the cloud, in: Proc. 2015 IEEE 31st International Conference on Data
Engineering, ICDE 2015, IEEE Press, 2015, pp. 723–734.

[35] T. De Matteis, G. Mencagli, Parallel patterns for window-based stateful
operators on data streams: An algorithmic skeleton approach, Int. J. Parallel
Program. 45 (2) (2017) 382–401.

[36] W. Tang, N. Desai, D. Buettner, Z. Lan, Job scheduling with adjusted run-
time estimates on production supercomputers, J. Parallel Distrib. Comput.
73 (7) (2013) 926–938.

[37] A. Tzannes, G.C. Caragea, U. Vishkin, R. Barua, Lazy scheduling: A runtime
adaptive scheduler for declarative parallelism, ACM Trans. Program. Lang.
Syst. 36 (3) (2014) 10, 1–51.

[38] W.Y. Shieh, C.C. Pong, Energy and transition-aware runtime task schedul-
ing for multicore processors, J. Parallel Distrib. Comput. 73 (9) (2013)
1225–1238.

[39] Y. You, J. Demmel, Runtime data layout scheduling for machine learning
dataset, in: Proc. 46th International Conference on Parallel Processing, ICPP
2017, IEEE Press, 2017, pp. 452–461.

[40] R.K. Kombi, N. Lumineau, P. Lamarre, A preventive auto-parallelization
approach for elastic stream processing, in: Proc. IEEE 37th International
Conference on Distributed Computing Systems, ICDCS 2017, IEEE Press,
2017, pp. 1532–1542.

[41] W. Qian, Q. Shen, J. Qin, D. Yang, Y. Yang, Z. Wu, S-Storm: A slot-
aware scheduling strategy for even scheduler in Storm, in: Proc. 18th
IEEE International Conference on High Performance Computing and
Communications, HPCC 2016, IEEE Press, 2016, pp. 623–630.

[42] S. Vakilinia, X. Zhang, D. Qiu, Analysis and optimization of big-data stream
processing, in: Proc. the 59th IEEE Global Communications Conference,
GLOBECOM 2016, IEEE Press, 2016, 7841598, 1-6.

[43] X. Liu, A. Harwood, S. Karunasekera, B. Rubinstein, R. Buyya, E-storm:
Replication-based state management in distributed stream processing
systems, in: Proc. the 46th International Conference on Parallel Processing,
ICPP 2017, IEEE Press, 2019, pp. 571–580.

Dawei Sun is an associate professor at the School of In-
formation Engineering, China University of Geosciences,
Beijing, P.R. China. He received his Ph.D. degree in
computer science from Northeastern University, China
in 2012, and finished the Postdoctoral position research
at the department of computer science and technol-
ogy of Tsinghua University, China in 2015. He leads
the research group of parallel and distributed sys-
tems. His current researches interests include big data
computing, cloud computing, and distributed systems.
He has authored or co-authored over 60 journal and

conference papers in the above areas.

Shang Gao received her Ph.D. degree in computer sci-
ence from Northeastern University, Shenyang, China in
2000. She is currently a Lecturer at the School of Engi-
neering and Information Technology, Deakin University,
Geelong, Australia. Her current research interests in-
clude distributed collaboration, adaptive learning, and
cloud computing.

Xunyun Liu received the B.E. and M.E degree in
Computer Science and Technology from the National
University of Defense Technology in 2011 and 2013,
respectively. He obtained the Ph.D. degree in Computer
Science at the University of Melbourne in 2018 and
now works as a postdoc researcher at the CLOUDS lab.
His research interests include stream processing and
distributed systems.

Fengyun Li is an associate professor at the School
of Computer Science and Engineering, Northeastern
University, P.R. China. She received her Ph.D. degree
in computer architecture from Northeastern Univer-
sity, China in 2013. Her current researches interests
include distributed systems, network security, privacy
preserving, cloud computing.

http://refhub.elsevier.com/S0167-739X(18)32189-7/sb6
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb6
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb6
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb6
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb6
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb7
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb7
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb7
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb7
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb7
http://hadoop.apache.org/
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb9
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb9
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb9
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb10
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb10
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb10
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb10
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb10
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb11
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb11
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb11
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb12
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb12
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb12
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb12
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb12
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb13
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb13
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb13
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb13
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb13
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb14
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb14
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb14
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb15
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb15
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb15
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb15
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb15
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb15
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb15
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb16
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb16
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb16
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb17
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb17
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb17
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb17
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb17
http://storm.apache.org
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb19
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb19
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb19
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb19
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb19
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb19
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb19
https://zookeeper.apache.org/
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb21
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb21
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb21
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb21
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb21
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb21
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb21
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb22
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb22
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb22
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb22
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb22
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb23
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb23
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb23
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb23
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb23
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb23
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb23
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb24
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb24
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb24
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb24
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb24
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb25
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb25
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb25
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb25
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb25
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb26
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb26
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb26
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb26
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb26
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb26
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb26
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb27
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb27
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb27
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb27
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb27
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb28
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb28
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb28
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb28
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb28
http://dx.doi.org/10.1177/1094342017694134
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb30
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb30
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb30
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb31
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb31
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb31
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb31
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb31
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb32
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb32
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb32
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb32
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb32
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb32
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb32
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb33
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb33
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb33
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb33
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb33
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb33
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb33
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb34
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb34
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb34
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb34
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb34
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb35
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb35
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb35
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb35
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb35
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb36
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb36
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb36
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb36
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb36
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb37
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb37
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb37
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb37
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb37
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb38
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb38
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb38
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb38
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb38
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb39
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb39
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb39
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb39
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb39
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb40
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb40
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb40
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb40
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb40
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb40
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb40
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb41
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb41
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb41
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb41
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb41
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb41
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb41
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb42
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb42
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb42
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb42
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb42
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb43
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb43
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb43
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb43
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb43
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb43
http://refhub.elsevier.com/S0167-739X(18)32189-7/sb43


D. Sun, S. Gao, X. Liu et al. / Future Generation Computer Systems 97 (2019) 194–209 209

Xinqi Zheng is a professor at the School of Information
Engineering, China University of Geosciences, Beijing,
P.R. China, and the head of the school. His research
interests include big data and data analytics. He has au-
thored or co-authored over 200 journal and conference
papers.

Rajkumar Buyya is a Redmond Barry Distinguished
Professor and Director of the Cloud Computing and
Distributed Systems (CLOUDS) Laboratory at the Uni-
versity of Melbourne, Australia. He is also serving as the
founding CEO of Manjrasoft, a spin-off company of the
University, commercializing its innovations in Cloud
Computing. He has authored over 650 publications and
four text books. He is one of the highly cited authors in
computer science and software engineering worldwide
(h-index 121, 77,400+ citations). He has served as the
founding Editor-in-Chief (EiC) of IEEE Transactions on

Cloud Computing and now serving as EiC of Journal of Software: Practice and
Experience.


	State and runtime-aware scheduling in elastic stream computing systems
	Introduction
	A. Key contributions
	B. Paper organization

	Background
	Overview of data stream computing
	A. Data Stream
	B. Application DAG Model
	C. DAG Makespan

	Scheduling model
	Sra-Stream overview
	A. System Architecture
	B. Vertex state
	C. Vertex Parallelization
	D. Initial DAG Scheduling with Runtime-Awareness
	E. Online DAG Rescheduling with Runtime-Awareness

	Performance evaluation
	A. Experimental Environment and Parameter Setup
	B. Performance Results

	Related work
	A. State Management for Stream Computing System
	B. Runtime-aware Scheduling in Distributed Systems
	C. Application Scheduling on Storm Platform

	Conclusions and future work
	Acknowledgments
	References


