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Abstract—Edge computing (EC) enables low-latency services
by pushing computing resources to the network edge. Due to the
geographic distribution and limited capacities of edge servers, EC
systems face the challenge of edge distributed denial-of-service
(DDoS) attacks. Existing systems designed to fight cloud DDoS
attacks cannot mitigate edge DDoS attacks effectively due to new
attack characteristics. In addition, those systems are typically ac-
tivated upon detected attacks, which is not always realistic in EC
systems. DDoS mitigation needs to be cohesively integrated with
workload migration at the edge to ensure timely responses to edge
DDoS attacks. In this paper, we present EdgeShield, a novel DDoS
mitigation system that leverages edge servers’ computing resources
collectively to defend against edge DDoS attacks without the need
for attack detection. Aiming to maximize system throughput over
time without causing significant service delays, EdgeShield moni-
tors service delays and migrates workloads across an EC system
with adaptive mitigation strategies. The experimental results show
that EdgeShield significantly outperforms state-of-the-art solutions
in both system throughput and service delays.
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I. INTRODUCTION

EDGE Computing (EC) offers groundbreaking opportuni-
ties for workload management, which has been intensively

studied in cloud computing [31]. Fig. 1 illustrates an EC system
comprised of four edge servers that may receive both benign and
attack workloads from nearby users in a metropolitan area, e.g.,
smart web cameras, autonomous vehicles, etc. These devices
may offload workloads onto nearby edge servers for processing
with low service latency [26]. Furthermore, this helps alleviate
the traffic burden on the back-haul network [29]. However,
the geographic distribution of edge servers in an EC system
raises many new security issues. In particular, a distributed
denial-of-service (DDoS) attack in EC may control a number of
devices to generate attack workloads against edge servers [18].
For example, with Mirai - a malware used to attack web servers
belonging to PayPal, Netflix, Twitter, and Spotify in 2016, an ad-
versary can control over 400,000 devices as bots to coordinate a
DDoS attack [9]. The rapid growth of mobile and Web-of-Things
(WoT) devices in recent years significantly increases the number
of potential bots that can be leveraged to attack the edge servers
in an EC system.

DDoS attacks against cloud servers have been studied in-
tensively [1], [3], [36], but not those against edge servers at
the network edge [18]. Many previous studies have focused
on detecting DDoS attacks by differentiating attack workloads
from benign ones [46]. However, it typically requires long-term
workload monitoring, which is unsuitable in EC systems that
often host dynamic and short-lived services [14] (Section II).
With virtually infinite resources available in the cloud, recent
DDoS defense mechanisms have employed workload migration
to mitigate DDoS attacks, making it a resource competition
between the attacker and the defender [13], [18]. The main idea
is to migrate both benign and attack workloads across autoscaled
virtual machine instances so that they can all be processed
timely with minimum resources without the need for attack
detection [3]. However, compared with powerful cloud servers,
edge servers suffer from constrained resources [8]. They cannot
be autoscaled easily and flexibly like cloud servers to handle
migrated workloads. As a result, they fall victim to DDoS attacks
easily, which can cause significant economic and societal losses
because edge servers usually power critical applications like
autonomous driving [24]. Other cloud DDoS defense solutions
based on traffic scrubbing [13] and routing orchestration [39]
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are not practical for EC systems either because their responses
also take seconds to minutes. In fact, the slow responses of
state-of-the-art DDoS defense solutions have inspired the new
pulse-wave DDoS attacks [1].

Fortunately, with peer-offloading [8], edge servers in the
same area can communicate with each other and transmit data
efficiently. They can mitigate DDoS attacks collaboratively [18].
In fact, even without attacks, jobs often need to be migrated
across edge servers for processing to utilize their resources col-
lectively [43]. This allows edge DDoS mitigation to be integrated
with job migration cohesively without having to turn on edge
servers’ intrusive “defense mode” upon detected attacks. This
paper presents EdgeShield, a novel DDoS mitigation system
that leverages edge servers’ collective resources to mitigate edge
DDoS attacks collaboratively without the need for attack detec-
tion. It is designed to maximize system throughput over time
while ensuring low service latency under edge DDoS attacks.
The main contributions include:
� We design EdgeShield to fight edge DDoS attacks specif-

ically, considering its unique attack characteristics and
system characteristics.

� We propose a cumulative delay monitor (CDM) to ensure
that EdgeShield can ensure a low service delay while
fighting edge DDoS attacks.

� We design a job completion estimator (JCE) to estimate
job completion time so that the adaptive time scaler (ATS)
can dynamically adjust the time slot length for formulating
mitigation strategies. This allows EdgeShield to strike a
balance between performance gains and system overheads
produced by implementing new strategies.

� We design an attack mitigation engine (AME) for for-
mulating mitigation strategies with the support of CDM
and ATS. Strategies from AME leverage edge servers’
collective resources to mitigate edge DDoS attacks without
significant impacts on benign jobs.

� We experimentally evaluate the performance of
EdgeShield and the results demonstrate that EdgeShield
outperforms all benchmark systems significantly.

II. BACKGROUND AND RELATED WORK

In cloud computing, DDoS attacks have been studied compre-
hensively from various perspectives [35], e.g., detecting attacks
based on attack characteristics [3], mitigating attacks through
job migration mechanisms [13], etc. Edge DDoS attacks are
structurally different from cloud DDoS attacks. In a cloud DDoS
attack, attack workloads usually come from attackers world-
wide [13]. While cloud DDoS attacks usually target a single
server in the cloud, edge DDoS attacks can target multiple edge
servers in the same area at the network edge, compromising
their ability to support each other and crippling the defense
mechanisms deployed at the core of the internet. In addition,
low service latency is a key feature promised and pursued
by EC [15]. To accommodate edge users’ dynamic demands
with low end-to-end latency, services are often deployed in
docker containers on edge servers for quick starts with mini-
mal overheads [38]. Thus, edge services are usually short-lived

Fig. 1. Example EC system comprised of multiple edge servers and edge
devices such as smart vehicles, smartphones, laptops, etc.

and it is challenging to monitor their workloads constantly for
DDoS attack detection. Even if constant workload monitoring
is possible, the workload analysis for attack detection usually
takes a long time, up to 15 seconds according to recent stud-
ies [46]. Similarly in industry, existing edge DDoS protections
are also based on attack detection, such as Cisco Secure DDoS
Edge Protectionprovided by Cisco, and an edge DDoS solution
called Autonomous Edgeprovided by Cloudflare. Most defense
mechanisms, including Cisco Secure DDoS Edge Protection and
Autonomous Edge, also take seconds to minutes to respond to
an attack, which is the major vulnerability exploited by the new
pulse-wave DDoS attack [1]. Given the need to maintain low
service latency for users, edge servers cannot afford to wait for
a long time to receive a detection result before taking necessary
mitigation actions.

Edge servers are especially vulnerable to DDoS attacks due to
the constrained resources which can be rapidly exhausted by an
edge DDoS attack [8]. A straightforward solution is to offload the
workloads to the cloud. However, many users would experience
high service latency, which conflicts with their low latency re-
quirement for edge services. Fortunately, edge servers can share
their resources through the high-speed communication links
connecting them [8] to perform various tasks. The workloads
on edge servers under an edge DDoS attack can be offloaded to
nearby edge servers for processing. In this way, the edge servers
can mitigate such DDoS attacks collectively. This is the key
idea of existing edge DDoS mitigation approaches [18], [20],
[45]. In [20], SecEG is proposed to defend against edge DDoS
attacks by implementing a queueing theory model for resource
allocation on edge servers. SecEG applies anomaly detection to
identify benign and attack workloads roughly, then puts attack
workloads in an isolated container. In [18], the authors propose
EDMGame, a game-theoretic approach designed to mitigate
edge DDoS attacks. When an attack is detected, EDMGame
kicks in and transfers the workloads of the affected edge servers
to other edge servers for processing. Zhou et al. [45] introduce a
prediction-free online approach (PFO) by using the resources in
both cloud and edge to mitigate edge DDoS attacks to balance the
workloads mitigated to edge servers and remote cloud. However,
the above-mentioned approaches aim to maximize the current
system throughput without considering system performance
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TABLE I
SUMMARY OF NOTATIONS

over time, suffering from poor performance against continuous
DDoS attacks (Section V).

Integrating edge DDoS mitigation with runtime job migra-
tion can 1) ensure low service latency by fast responses; and
2) alleviate the need for DDoS attack detection. This motivates
the design of EdgeShield. Please note that edge DDoS mitigation
is fundamentally different from conventional load balancing.
Load balancing aims to achieve vastly different goals, e.g., fair
workload distribution, equal remaining capacities, etc., with
“evenness” as a key objective [44]. To mitigate edge DDoS
attacks, EdgeShield tries to fully utilize the capacities of edge
servers close to the edge servers under attack.

III. EDGE DDOS MITIGATION PROBLEM

In EC, devices can submit attack or benign workloads to
nearby edge servers with latency constraints. When an edge
DDoS attack occurs, adversaries generate and submit a large
volume of jobs to target edge servers as attack workloads. As
discussed in Section II, the accurate and timely detection of
edge DDoS attacks is difficult. Fortunately, the resources on
edge servers can be shared to collaboratively process workloads.
Thus, collaboration among edge servers is critical to mitigating
edge DDoS attacks. The notations and symbols used in this paper
are summarized in Table I.

System Throughput: Given M edge servers in an EC system,
denoted by S = {s1, . . ., sm, . . ., sM}, and jobs arrived in time
slot t ∈ T , denoted by J t, the objective of the edge DDoS
mitigation problem is to maximize the system throughput for
migrating the stress of an edge DDoS attack. This is quantified
by the number of benign jobs processed during the mitigation
process. In time slot t, the system throughput can be formulated
by

∑
jti∈Jt

B

∑
sm∈S σt

i,m, where J t
B is the set of newly arrived

benign jobs in time slot t and σt
i,m ∈ {0, 1} is the mitigation

Fig. 2. EdgeShield system overview. EdgeShield consists of four main compo-
nents, including the cumulative delay monitor (CDM), job completion estimator
(JCE), adaptive time scaler (ATS) and attack mitigation engine (AME).

decision about whether job jti is allocated to edge server sm
in time slot t or not. If job jti is allocated to edge server sm
in time slot t, there is σt

i,m = 1; otherwise, there is σt
i,m = 0.

The mitigation decisions for all the jobs constitute the mitigation
strategy in time slot t, denoted by σt.

Capacity Constraint: Since each edge server only has a
limited amount of resources, e.g., CPU, GPU, memory, band-
width, etc., denoted by R, each type of resource r ∈ R re-
quired by all the jobs newly assigned to an edge server in any
time slot must not exceed its current available resources, i.e.,∑

jti∈Jt cti,rσ
t
i,m ≤ ct,am,r, ∀sm ∈ S, r ∈ R, t ∈ T , where cti,r is

the amount of resource r ∈ R needed by job jti and ct,am,r is the
available amount of r on edge server sm in time slot t. Please
note that edge servers are heterogeneous in their resources, as
well as their runtime workloads.

Latency Constraint: Each job comes with its own latency con-
straint lt,Ei . Thus, jti ’s service latency should be no longer than
lt,Ei . To fulfill this latency constraint, lti ≤ lt,Ei , ∀jti ∈ J t, t ∈ T
should be fulfilled, where lti is the actual service latency for
job jti according to the mitigation strategy σt. Specifically,
service latency is calculated based on the data size of job jti
and the allocated bandwidth, i.e., inter-edge bandwidth for edge
mitigation and cloud-edge bandwidth for cloud mitigation.

Problem Formulation: The edge DDoS mitigation problem
can be formulated with the aim to maximize the system through-
put over time T , while fulfilling capacity constraint and latency
constraint.

Threat Model: In this study, attackers can coordinate a DoS at-
tack by sending attack jobs to a subset of edge servers. However,
they cannot gain direct control over edge servers to sabotage their
collaborative defense.

IV. EDGESHIELD SYSTEM

A. System Overview

Fig. 2 overviews an EdgeShield system. Before EdgeShield
runs the attack mitigation engine (AME) to formulate miti-
gation strategies to solve the edge DDoS mitigation problem
effectively, it first collects the current system status, such as the
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service latency and processing time of the jobs finished in previ-
ous time slots. After that, the cumulative delay monitor (CDM)
calculates the cumulative delay to check the latency constraint
and sends the result to the AME. In this way, EdgeShield keeps
the low service delay in long-term via CDM. In the meantime, the
job completion estimator (JCE) estimates the completion time
of each current job based on the processing time of completed
jobs. Based on JCE’s estimation, the adaptive time scaler (ATS)
decides the time slot length to determine the timing for running
AME. With JCE and ATS, EdgeShield can utilize available
resources effectively with low system overhead. When the AME
starts to formulate the mitigation strategy, it collects information
about new jobs in the time slot, such as resource demands,
latency constraints, and arrival time. Based on the value of the cu-
mulative service latency provided by the cumulative delay mon-
itor, the AME formulates the mitigation strategy to decide where
each job goes. If the system resources are insufficient to mitigate
all jobs, the AME migrates some jobs to the remote cloud. We
will now introduce CDM (Section IV-B), JCE (Section IV-C),
ATS (Section IV-D), and AME (Section IV-E) in detail.

B. Cumulative Delay Monitor

To maximize system throughput, a straightforward solution
is to process as many jobs as possible without considering their
latency constraints. However, this solution may result in a lot of
late job completions and violates the corresponding service level
objectives (SLOs). To calculate and manage the service delay,
we introduce the cumulative job delay, i.e., the total delay in
processing all previous jobs. According to latency constraint in
Section III, the cumulative service latency, denoted byLCM , can
be calculated by LCM =

⌊∑
t∈T

∑
jti∈Jt σt

i,m · (lti − lt,Ei )
⌋
+

.
Then, the average service delay Lavg in an EC system is
Lavg = LCM∑

t∈T
∑

jt
i
∈Jt σt

i,m
. Since EdgeShield aims to eliminate

the service latency to ensure the low latency services in the long-
term, this service delay should eventually converge to 0 over
time T , i.e., Lavg = 0, t → |T |. However, this requires that the
complete information about system dynamics must be available
in advance, i.e., all the jobs over T and edge servers’ remaining
capacities in every time slot. Unfortunately, it is not realistic in
a real-world EC system where jobs arrive dynamically.

To tackle this challenge, EdgeShield employs a cumulative
delay monitor (CDM) to monitor the current cumulative delay
for AME (Section IV-E). The cumulative delay by a time slot t
can be obtained byLt

CM =
⌊Lt−1

CM +
∑

jt−1
i ∈Jt−1 σt

i,m · (lt−1
i −

lt−1,E
i )

⌋
+

. The cumulative delay by time slot t is calculated
based on the cumulative delay by time slot t− 1 and the total job
delay in time slot t− 1. This indicates that when the cumulative
delay increases, the value of Lt

CM increases. When Lt
CM is

more than 0, CDM sends this value to the AME for triggering
strategy adjustment (Section IV-E).

C. Job Completion Estimator

As discussed in Section IV-A, ATS in EdgeShield relies on
the estimated completion time of the current jobs. Accurate
estimation will contribute to proper utilization of edge servers’

Algorithm 1: Job Completion Estimator (JCE).

capacities against edge DDoS attacks. Many approaches have
been proposed in recent years to make workload-related predic-
tions based on machine learning models [19]. However, these
approaches are likely to suffer from poor performance in esti-
mating job completion time for edge servers. The main reasons
are twofold: 1) the user demands are highly dynamic and often
vary drastically across edge servers [32]; and 2) edge servers’
resources are heterogeneous and limited [43]. It is challenging
to train a machine learning model universally suitable for every
edge server in different areas. More importantly, high efficiency
and low overheads in formulating mitigation strategies must be
ensured in the EC environment, while the training process of a
machine learning model is relatively slow [46]. To tackle those
challenges, EdgeShield employs a lightweight algorithm JCE to
estimate job completion time rapidly.

JCE processes the current jobs iteratively. For a current job
jti , JCE obtains the processing time of similar completed jobs
on the edge server processing jti (Line 2). Then, JCE employs
a signature-based prediction method [23] to find the job most
similar to jti in resource demands, and obtains its processing
time ¯timeproc (Line 3). It is possible that jti ’s elapsed processing
time has already exceeded ¯timeproc. In such cases, JCE also
calculates the ratio of the longest job processing time over
¯timeproc, denoted by αm, for estimating jti ’s completion time

(Line 4). According to jti ’s elapsed processing time (Line 5),
denoted by timecurrproc,i, JCE checks whether timecurrproc,i is longer
than the best matching processing time ¯timeproc (Line 6). If
there is timecurrproc,i ≤ ¯timeproc, JCE assigns ¯timeproc as the
estimated completion time of jti (Line 7), assuming that job jti ’s
processing time is similar to the best matching job previously
completed on the same edge server. If jti ’s elapsed processing
time is already longer than ¯timeproc, jti is likely to take more
time to complete. In this case, JCE randomly selects an estimated
completion time from 1× to αm× timecurrproc,i for jti (Line 9).

JCE Complexity: Let J t
m,comp denote the number of jobs

completed on edge server sm in time slot t. In this case, the
computation complexities of Line 2 and Line 3 in time slot t′
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Fig. 3. System throughput versus estimation error (θ) on 20 edge servers
over 100 seconds. The experiments were executed under the default settings
introduced in Section V-A.

TABLE II
JCE’S AVERAGE ESTIMATION ERROR (θ) UNDER FIVE ATTACKS

are O(
∑

t∈t′ J
t
m,comp). Since the computation complexities of

Lines 4-9 are always constant, i.e.,O(1), the average complexity

of JCE over time is O(
∑

t∈T Jt
m,comp

T ) ≈ O( |J |
MT ).

We conducted an experiment to investigate the impact of
JCE’s estimation on EdgeShield’s performance. Aiming for high
efficiency and low overheads, JCE may not always be able to
estimate job completion time accurately. Inaccurate estimation
may mislead ATS in determining the right timing for mitiga-
tion strategy formulation. We also conducted an experiment to
investigate the impact of JCE’s inaccurate estimation on the
performance of EdgeShield. In the experiment, we manually
fed incorrect estimates of job completion time to ATS. The
estimation error (θ) ranges from −0.5 to 0.5in steps of 0.1. For
example, if the actual completion time of a job is 200ms, an
estimate with a −0.5 error is 100ms, and an estimate with a 0.5
error is 300ms. We ran the experiments under the default settings
introduced in Section V-A. Fig. 3 illustrates the results. Unsur-
prisingly, EdgeShield achieves the highest system throughput
when the estimates of job completion time are always accurate
(θ = 0), with a 13.28% advantage over the worst case (θ = 0.5).
Fig. 3 shows that the performance of EdgeShield decreases with
the increase in estimation error (|θ|). In addition, Table II also
summarizes the estimation errors of JCE under five attack distri-
butions including sinusoidal distribution (SINUS), exponential
distribution (EXPO), poisson distribution (POISS), gamma dis-
tribution (GAMMA) and pulse-wave distribution (PW), which
are also implemented in the experiments presented and discussed
in Section V-C. The results demonstrate that JCE’s θ ranges from
0.2 to 0.4 under various attacks. Combining the results in Fig. 3,
in the worst cases, the performance of EdgeShield is still better
compared to existing approaches, according to the advantages
of EdgeShield in the experiments. Please note that if a more
accurate estimator is available, EdgeShield can directly integrate
it to improve its performance.

D. Adaptive Time Scaler

Most existing studies of dynamic problems in cloud com-
puting and EC assume an equal length for all the time slots

Fig. 4. EdgeShield with different fixed time slot lengths |t|.

and execute algorithms in each time slot. Usually, job arrivals
follow a specific distribution in general, e.g., sinusoidal distribu-
tion [40], uniform distribution [5], etc. In this case, job arrivals
can be estimated based on the corresponding distribution. It is
reasonable to consider a fixed length for all the time slots if server
capacities are known. However, an edge DDoS attack does not
follow these distributions because it generates a large volume of
attack jobs within a short period of time in a geographical area.
When the attack occurs, a fixed time slot length can easily cause
system resource waste because edge servers’ idle resources
cannot be utilized timely. Here, we analyze the disadvantages
of fixed-length time slots in two cases and present the Adaptive
Time Scaler as a solution.

Case 1: Short Fixed Time Slots: In this case, small time
slots are considered, e.g., 100ms. With such small time slots,
timely system inspection allows high system resource utiliza-
tion and high system throughput when an edge DDoS attack
occurs. For example, running over 100 seconds under the same
implementation settings in Section V-A, EdgeShield’s system
throughput with different fixed time slot lengths, i.e., 100ms,
1,000ms and 10,000ms in Fig. 4(a). EdgeShield with 100ms time
slots achieves the highest system throughput, i.e., processing
0.16× and 10.01×more jobs than EdgeShield with 1,000ms and
10,000ms time slots. As discussed in Section IV-A, EdgeShield
needs to inspect the system status before formulating the mit-
igation strategy. Frequent inspections will consume more time
overall. As shown in Fig. 4(b), the total time for EdgeShield
to inspect the system status with 100ms time slots is 18,393ms
during an edge DDoS attack, higher than 7,361ms with 1,000ms
time slots and 5,146ms with 10,000ms time slots. This indicates
that frequent system status inspection consumes edge servers’
bandwidth, slows down the mitigation process, and increases
service latency.

Case 2: Long Fixed Time Slots: In this case, large time slots
are considered, e.g., 10,000ms. Most jobs can be processed
within one time slot. This often leads to system resources’ under-
utilization because a lot of resources remain idle before the
next time slot. This is evidenced by the low system throughput
presented in Fig. 4(a) when the time slot length is 10,000ms.

As discussed above, the time slot length significantly impacts
the performance of EdgeShield in mitigating an edge DDoS
attack. Unfortunately, it is impossible to find an optimal time
slot length without all the job and system information over time,
even without the DDoS attack. EdgeShield employs an Adaptive
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Algorithm 2: Adaptive Time Scaler (ATS).

Time Scaler (ATS) algorithm to adjust the time slot length. Its
pseudo code is presented in Algorithm 2.

At the beginning, ATS checks the current time slot length
denoted by It, and the end of the current time slot denoted by
λt. ATS also inspects whether any jobs have been finished and
how many jobs have been offloaded to the remote cloud. If no
jobs have been finished or more than half of new jobs have
been offloaded to the remote cloud, ATS reduces the length
of the next time slot It+1 to It

2 (Line 2). This is because the
current jobs’ processing time has exceeded a time slot and they
are likely to be finished soon. If there are finished jobs, ATS
executes JCE to estimate the current jobs’ completion time and
computes the ratio α on each edge server. Then, ATS obtains
the median value E[λcomp,medi] of all the estimated completion
time and the median value αmedi of the ratios (Line 4). Next,
ATS uses the median value of the estimated remaining time
E[λcomp,medi]− λt to determine the length of the next time
slot It+1. When this median value is higher than αmedi× It, it
indicates that most of the current jobs are likely to be finished
after running over a period of αmedi× It time. As observed in
Fig. 4(a), a longer time slot will lower the system throughput.
Thus, ATS sets the length of the next time slot to αmedi× It in
this case (Line 6). When E[λcomp,medi]− λt is in the range of

[ 1
αmedi

, αmedi]× It, ATS sets It+1 =
max{E[λcomp,medi]−λt,It}

αmedi

to leverage the advantages of a short time slot while avoiding
excessively long system inspection time (Line 9). For the same
reason, when E[λcomp,medi]− λt is lower than It

αmedi
, ATS sets

It+1 = It

αmedi
(Line 11).

ATS Complexity: According to Algorithm 2, the average

computation complexity of Line 1 is (
∑

t∈T
∑

sm∈M Jt
m,comp

T ) =

O( |J |T ). The computation complexity of Line 4 is

O(
∑

sm∈S 1 · |J |
TM ), given the O( |J |

MT ) complexity of JCE.

Algorithm 3: Attack Mitigation Engine (AME).

In addition, the computation complexity of Lines 5-11
is O(1). Thus, the computation complexity of ATS is
max{O( |J |T ), O(

∑
sm∈S 1 · |J |

TM )} = O( |J |T ).
To evaluate the performance of ATS in the EdgeShield sys-

tem, we implement an implementation of EdgeShield without
ATS, named EdgeShield−ATS , as a benchmark system in Sec-
tion V-B. According to Fig. 4, 1,000ms is a proper time slot
length for EdgeShield−ATS . Thus, we set the time slot length to
1,000ms in the evaluation.

E. Attack Mitigation Engine

Edge servers are geographically distributed [7] and remote
control from the cloud introduces significant delays in their
responses to DDoS attacks [43]. Edge servers must coordinate to
mitigate edge DDoS attacks collaboratively. A series of game-
theoretic approaches have been designed to enable collaboration
among edge servers [12], [18]. They require up to hundreds of
communication rounds among edge servers to make a major
decision. Even with a small EC system, this can lead to a high
delay in edge DDoS mitigation and edge servers cannot act until
the mitigation strategy is formulated. To tackle this challenge,
EdgeShield employs a global algorithm named AME (Attack
Mitigation Engine) to migrate all the jobs, benign or attack.

After ATS outputs the time slot length for the next time slot,
AME runs at the end of the next time slot and collects system
information as its input. AME migrates jobs heuristically, aiming
to mitigate an edge DDoS attack. To maximize system through-
put, AME needs to sort the jobs by the amount of required
resources in ascending order. However, a job normally requires
multi-dimensional resources, e.g., CPU and memory. Thus,
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before the sorting process, all the resource requirements are
normalized based on the remaining system resources (Line 1).
For example, let us assume that a job requires 0.2GB memory
while the total remaining memory in the system is 10GB. It is
normalized to 0.02. After that, we can sort all the jobs based on
the euclidean norm over all the resource dimensions (Line 2).
The job requiring the least resources is migrated for processing
first. Then, AME receives the cumulative service latency Lt

CM

from CDM and assigns the value of Lt
CM

2 to L′t
CM (Lines 3–4).

Reducing the cumulative delay to 0in one time slot may require
migrating many jobs to the remote cloud. Thus, AME will try
to reduce the cumulative delay by half. Next, AME migrates
the sorted jobs iteratively (Lines 6–13) based on the value of
L′t
CM . In each iteration, AME first checks whether there is an

edge server with sufficient resources for processing job jti with
a latency constraint lt,Ei (Line 6). Since the latency between
edge servers may vary over time, we use the latency obtained
in the previous time slot here. If no edge servers have sufficient
resources due to the resource limit or exhaustion, this job is
migrated to the remote cloud for processing (Line 7). Otherwise,
this job is migrated to a suitable edge server depending on the
value of L′t

CM (Lines 9–13). When L′t
CM > 0, the cumulative

delay is overly large. In this case, AME migrates the job to the
edge server with the minimum service latency lt,Ei,m (Lines 10).

Then, AME deducts the value of L′t
CM by the reduced delay

compared to jti ’s latency constraint lt,Ei (Line 11). When L′t
CM

is equal to or less than 0, AME migrates the job to the edge
server with the most available resources (Line 13).

AME Complexity: Since AME needs to sort the jobs in
Line 2, the computation complexity of Line 2 depends on the
selected sorting algorithm. In the implementation, the merge
sort is adopted in this paper, and its computation complexity
is O( |J |T · log |J |

T ). For the iteration process in Lines 5-13, the

computation complexity is O( |J |T ·M). Thus, the computation

complexity of AME is O( |J |T ·max{M, log |J |
T }).

Since the complexities of JCE and ATS are O( |J |
MT )

and O( |J |T ), respectively, the complexity of EdgeShield

is max{O( |J |
MT ), O( |J |T ), O( |J |T ·max{M, log |J |

T })} = O( |J |T ·
max{M, log |J |

T }), same as the complexity of ATS.
Remark: EdgeShield does not conflict attack detection. Attack

detection, if available, can complement EdgeShield and reduce
the workloads transferred across edge servers. For example,
high-risk workloads can be discarded immediately to reduce
the overall system resources needed to mitigate an edge DDoS
attack and to decrease the average service latency.

F. System Deployment

1) Leader Election: A conventional way to deploy
EdgeShield is to run everything on a remote cloud server,
including the CDM, JCE, ATS and AME. However, the high
end-to-end network latency between the edge and the cloud
will inevitably slow down EdgeShield’s responses to edge
DDoS attacks. The remote cloud server may also become
a performance bottleneck or a potential vulnerability. For

example, targeted attacks may be launched against the cloud
server running EdgeShield to delay or block its communication
with edge servers.

As discussed in Section III, in the defense against an edge
DDoS attack against edge servers in an area, EdgeShield
leverages the resources available on other edge servers in the
same area to ensure that benign jobs can be processed under
corresponding latency constraints. Taking this into account,
EdgeShield can be deployed on a specific edge server in the
area to coordinate the edge servers’ fight against an edge DDoS
attack. This approach has been widely adopted to solve various
problems at the edge, including the state-of-the-art solution to
edge DDoS mitigation [18].

However, the edge server selected as the leader may also
create a performance bottleneck and is potentially subject to
targeted attacks. To tackle it, in each time slot, EdgeShield
runs a secret election process to identify leaders to formulate
mitigation strategies. Inspired by Algorand [16], the election
process employs the bilinear mapping function (BMF) [2]
and verifiable random function (VRF) [27] to protect an
elected leader against targeted attacks by hiding its identity
until it announces the mitigation strategy. A brief introduc-
tion to BMF and VRF can be found in Section A, available
online.

In each time slot t, every edge server will implement the
mitigation strategy σt received from the leader and set a timeout
based on the length of the current time slot determined by the
leader’s ATS. Then, they will broadcast their workload informa-
tion, including the completion time of their jobs in the current
time slot, the requirements for their ongoing and new jobs, and
the processing time of their ongoing jobs. Upon receiving the
workload information from other edge servers, they run the
AME to formulate a new mitigation strategy σt+1. Next, they
participate in the election process for time slot t+ 1, which goes
through two main phases, i.e., leadership bidding and leadership
verification.

Leadership Bidding: To bid for leadership, every edge
server sm runs the VRF to create its own bid bidm =
< tagkeypri,m

(seed), valuekeypri,m
(seed), keypub,m, σt+1

m >,
where keypri,m and keypub,m are private and public keys of m,
and seed is a random seed in VRF. When the timeout elapses,
sm sends its bid to other edge servers.

Leadership Verification: When an edge server sn receives a
bid, say bidm, it verifies the correctness of bidm with the BMF.
If sn receives multiple correct bids, it accepts the one with the
lowest VRF value, say, bidc, and implements the corresponding
mitigation strategy σt+1

c .
Deployed on all the edge servers, EdgeShield eliminates the

performance bottleneck created by a fixed leader, as well as
the single-point failures. In each time slot, every edge server
will formulate a mitigation strategy. The mitigation does not
rely on any individual edge server. A potential drawback is the
increasing communication overheads when the system scales
up. Fortunately, it is difficult, if not impossible, to coordinate an
edge DDoS attack against a large number of edge servers in an
area because they are only accessible from within their serving
areas [18].
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Fig. 5. System under a targeted attack.

2) Security Analysis: In the EC environment, edge servers
are more vulnerable than cloud servers due to their limited
resources. In practice, mitigation strategies may fail when the
leader becomes unavailable or overwhelmed during targeted
attacks. In each time slot, a leader is elected in EdgeShield and
an edge server can infer whether it is elected as a leader by
inspecting the received bids without a voting process. Since the
VRF value is randomly generated based on a random seed , it is
computationally difficult for adversaries to calculate other edge
servers’ VRF values. In this way, the attacker cannot identify
the leader until its mitigation is released and the leadership can
be protected from targeted attacks. Compared with Raft [28],
the overhead of this leader election mechanism is significantly
lower, thanks to its independence of a Raft-like voting process.

However, adversaries can still launch edge DDoS attacks that
target edge servers, regardless of whether they function as a
leader. In fact, EdgeShield can protect the entire system from
targeted attacks in three general cases, as shown in Fig. 5:
� Case 1: Non-leader edge servers are under attack. In this

case, the mitigation strategy formulated by the leader will
be implemented in the system for the edge servers in the
system to mitigate the attack collectively.

� Case 2: The leader is under attack. The leader, the edge
server with the lowest VRF value, may be slowed down or
overwhelmed. In this case, another leader election process
kicks off after a leader timeout, similar to Raft [28]. In this
way, the mitigation strategy formulated by the new leader
will be acknowledged and implemented in the system
for the edge servers in the system to mitigate the attack
collectively.

� Case 3: Both the leader and non-leader edge servers are un-
der attack. In this case, the mitigation strategy formulated
by the new leader will be acknowledged and implemented,
same as Case 2.

According to the above analysis, EdgeShield possesses the
capability to formulate mitigation strategies to defend against
edge DDoS attacks no matter the leader edge server is specifi-
cally targeted or not. EdgeShield’s effectiveness and efficiency
in devising such strategies are key strengths that contribute to its
resilience in protecting EC systems from edge DDoS attacks.

V. EVALUATION

To evaluate EdgeShield, we implement a prototype and con-
duct intensive experiments to answer the following research
questions:

� Q1 Performance (Section V-C): Is EdgeShield capable of
mitigating different types of DDoS?

� Q2 Scalability (Section V-D): Does EdgeShield scale?
� Q3 Robustness (Section V-E): How does EdgeShield ac-

commodate DDoS attacks of different intensities?
� Q4 Overhead (Section V-F): Is the overhead of EdgeShield

acceptable?

A. Environment Setup

Implementation: The prototype of EdgeShield is implemented
on an EC system comprised of 30 edge servers running Ubuntu
16.04. Each edge server is equipped with 2, 4 or 8 vCPUs and 4,
8, 16 or 32GB memory, the same as the edge servers provided
by AWS Wavelength. Adjacent edge servers are linked based on
their locations according to a given edge density, i.e., the number
of links per edge server in the EC system. An r6g.12xlarge EC2
running Amazon Linux 2 with 48 vCPUs and 384GB memory is
deployed in Amazon’s cloud as the cloud server. The inter-edge
bandwidth is set as 1Gbps, same as the settings in [22], to ensure
that the mitigation process is not throttled by the cloud server.

By default, EdgeShield is installed on 20 edge servers with an
edge density of 2.0, and 6 of these edge servers are under attack.
In the scalability and robustness tests (Sections V-D and V-E),
the edge density, the number of edge servers and the edge DDoS
attack intensity are varied to create various edge DDoS scenarios
and EC system structures to evaluate the impacts of system
scalability and system robustness. As discussed in Section IV-D,
we set the time slot length to 1,000 milliseconds and run each
experiment over 100 seconds. On average, each job, benign or
attack, requires 0.20 CPUs and 0.66GB memory. We ran a stress
test and found that on average, an edge server can process at most
20 jobs simultaneously. Accordingly, the number of new benign
jobs arriving on an edge server in each time slot is randomly
selected following the normal distribution N(20, 1).

Job Generation: In the experiments, benign and attack jobs
are generated based on resource usages/requirements obtained
from the widely-used Alibaba Cluster Trace Program1 [25]. We
generate job information like job processing time by YCSB [10]
for 200,000 jobs with arrival timestamps and edge server IDs.
In the experiment, we randomly select edge servers from this
synthesized dataset. Five typical types of attacks are launched,
following the patterns shown in Fig. 6, including the sinusoidal
distribution (SINUS) [6], [37], exponential distribution
(EXPO) [11], [33], poisson distribution (POISS) [42], gamma
distribution (GAMMA) [34] and pulse-wave distribution
(PW) [1]. As discussed in Section II, the volume of an edge
DDoS attack is much smaller than conventional cloud DDoS
attacks. In the experiments, an edge DDoS attack lasts 10 time
slots, following the threat model in Section III. In each time
slot, each edge server under attack will receive a maximum of
60 jobs under a SINUS attack, 120 jobs under an EXPO attack,
80 jobs under a POISS attack, 60 jobs under a GAMMA attack
and 70 jobs under a PW attack. Our stress test revealed that
those attack jobs can easily exhaust an edge server.

1https://github.com/alibaba/clusterdata
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Fig. 6. DDoS attack patterns.

B. Benchmark Systems

To evaluate EdgeShield, five benchmark systems are imple-
mented for comparison.
� EdgeShield−ATS : This approach is a variant of EdgeShield

without ATS.
� EDMGame [18]: In each time slot, EDMGame finds a Nash

equilibrium as the mitigation strategy. The optimization ob-
jective is to minimize the overall mitigation cost, calculated
based on the service latency and the penalty of unprocessed
jobs. Unlike EdgeShield, EDMGame is activated when
an edge DDoS attack is detected, which is impractical
in real-world scenarios as discussed in Section II. Thus,
in the experiments, EDMGame runs in every time slot to
formulate a mitigation strategy for both benign and attack
jobs.

� PFO [45]: In each time slot, PFO first inspects the current
system status and the information about newly arrived
jobs. After that, it heuristically migrates newly arrived
jobs to edge servers with the minimum cost consisting
of the mitigation cost and the processing cost as its final
strategy in the current time slot. In our experiment, the
cost is measured by the time taken to mitigate and process
jobs. To facilitate a fair comparison, PFO employs the same
leadership mechanism as EdgeShield (Section IV-F) for
system deployment.

� SecEG [20]: SecEG implements a lightweight anomaly de-
tection based on the Poisson distribution. In each time slot,
SecEG first inspects the current edge server status and the
information about newly arrived jobs on this edge server.
Then, SecEG implements attack detection and groups the
jobs into two a whitelist and a greylist. After that, SecEG
allocates the available resources on an edge server equally
to the jobs on the whitelist and greylist. Finally, SecEG
migrates jobs that cannot be executed on edge servers to
the remote cloud.

� HWS [26]: In each time slot, HWS first finds a set of
available mitigation strategies based on the Karush–Kuhn–
Tucker (KKT) conditions [17], aiming to maximize the

system throughput without considering the service delays.
After that, HWS selects the mitigation strategy that utilizes
the available resources on edge servers with the minimum
service delay as its final strategy in the current time slot.
Similar to PFO, HWS also employs the leadership mecha-
nism presented in Section IV-F for system deployment.

C. Overall Performance

The performance of EdgeShield is evaluated under five
typical types of edge DDoS attacks, including SINUS-based,
EXPO-based, POISS-based, GAMMA-based and PW-based
edge DDoS attacks.

Under SINUS-based edge DDoS attacks, Fig. 7(a) and (f)
show that EdgeShield achieves the highest system throughput
and the lowest service delay. In terms of system throughput,
EdgeShield has a 27.94% advantage over EdgeShield−ATS ,
135.73% over EDMGame, 144.46% over PFO, 183.79% over
SecEG and 207.43% over HWS. It can also be seen that the sys-
tem throughput achieved by EdgeShield is continuously higher
than that achieved by other approaches over time. Fig. 7(f)
demonstrates that the service delay in EdgeShield is much
lower than those in other systems. In fact, EdgeShield is the
only system that manages to converge the service delay to 0
under SINUS attacks. Fig. 7(b) and (g) show that EdgeShield
can mitigate EXPO attacks, and outperform benchmark sys-
tems with large margins. Specifically, its system through-
put is 1.48×, 2.51×, 2.94×, 3.08× and 3.58× achieved by
EdgeShield−ATS , EDMGame, PFO, SecEG and HWS, respec-
tively. Again, EdgeShield is the only system that fulfills the
long-term latency constraint Lavg = 0, t → |T | under EXPO
attacks.

With similar performance and advantages over benchmark
systems, Fig. 7(c), (h), (d), (i), (e) and (j) show that EdgeShield
can mitigate POISS, GAMMA and PW attacks effectively. Un-
der POISS, GAMMA and PW attacks, EdgeShield achieves an
average of 1.51×, 1.28× and 1.20× system throughput achieved
by EdgeShield−ATS , 2.38×, 2.12× and 1.96× achieved by
EDMGame, 2.85×, 2.60× and 2.28× achieved by PFO, 2.98×,
2.78× and 2.46× achieved by SecEG, and 3.49×, 3.14× and
2.87× of achieved by HWS, respectively. This demonstrates
the superior performance of EdgeShield in mitigating edge
DDoS attacks. In Fig. 7, POISS attacks are the most difficult
to be mitigated. Under POISS attacks, all five systems achieve
the lowest throughput. However, the advantages of EdgeShield
under POISS attacks are the most significant among all five
DDoS attacks.

In summary, EdgeShield excels in mitigating edge DDoS
attacks. It can mitigate all five typical types of edge DDoS attacks
effectively with similar performance. In the remainder of this
section, we illustrate and analyze its performance under SINUS
attacks for demonstration purposes.

D. System Scalability

In practice, scalability is a crucial concern - EdgeShield must
be able to scale with system size, which is the first scalability
dimension. As discussed and illustrated in Section I, an EC
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Fig. 7. System performance under 5 different attacks at 6 random edge servers out of 20 over 100 seconds.

Fig. 8. System scalability.

system is comprised of multiple connected edge servers. Their
connectivity, often measured by the average number of edges
per edge server, plays a crucial role in the performance of the
system, particularly when edge servers need to collaborate. With
a high edge density, edge servers can seek help from more edge
servers under the latency constraint while fighting an edge DDoS
attack. Similar to many studies [18], [21], [30], [41], we vary the
edge density (measured by the number of links per edge server)
from 2.0 to 4.0in steps of 0.4 and the system size (measured by
the number of edge servers in the system) from 10 to 30in step
5 to investigate the scalability of EdgeShield.

Fig. 8(a) shows the results when varying the edge density from
2.0 to 4.0. EdgeShield achieves the highest system through-
put again, with a 34.16% advantage over EdgeShield−ATS ,
136.62% over EDMGame, 149.76% over PFO, 175.17%
over SecEG and 206.18% over HWS. Fig. 8(b) reveals that
EdgeShield again outperforms all other systems with signif-
icant margins. On average, its system throughput is 40.37%
higher than EdgeShield−ATS , 139.58% higher than EDMGame,
153.80% higher than PFO, 181.40% higher than SecEG and
208.69% higher than HWS. With the increase in system size

Fig. 9. System robustness against attack intensity.

from 10 to 30, the system throughput achieved by EdgeShield,
EdgeShield−ATS , EDMGame, PFO, SecEG, and HWS also
increases by 196.15%, 189.65%, 102.40%, 97.09%, 112.41%,
and 95.15%, respectively. We can see that EdgeShield scales
with system size and can properly leverage the increase in system
resources to mitigate edge DDoS attacks.

As shown in Fig. 8, EdgeShield outperforms other comparison
systems in scalability, evidenced by its much higher system
throughput, as well as faster system throughput increases, com-
pared with the other five approaches.

E. System Robustness

An edge DDoS attack tailored specifically for EdgeShield
can be performed against multiple nearby edge servers simul-
taneously, making it difficult for edge servers to mitigate the
attack collaboratively. Here, we vary the attack intensity, i.e.,
the number of attacked edge servers from 2 to 10in steps of 2, to
investigate the performance of EdgeShield under more powerful
edge DDoS attacks. As shown in Fig. 9(a), EdgeShield signifi-
cantly outperforms the other five comparison systems again in
terms of system throughput. The average system throughput of
EdgeShield is 27.56% higher than EdgeShield−ATS , 121.35%
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TABLE III
SYSTEM OVERHEADS (IN MILLISECONDS) UNDER SINUS ATTACK

higher than EDMGame, 136.35% higher than PFO, 159.64%
higher than SecEG, and 189.85% higher than HWS. To evaluate
the robustness of EdgeShield against such attacks, Fig. 9(b) com-
pares the system throughput when more than two edge servers
are under attack versus when two edge servers are under attack.
When the attack intensity increases from 2 to 8, the volume of
attack jobs decreases correspondingly. Some of the extra attack
jobs will be processed by edge servers with available resources,
which decreases the system throughput. This is consistent with
Fig. 9(a).

F. System Overhead

System overhead is an important metric to evaluate the perfor-
mance of edge DDoS mitigation. System overhead is measured
by the time taken to formulate mitigation strategies. A system
that takes a long time to formulate a mitigation strategy is
impractical for mitigating edge DDoS attacks in real-world
scenarios. In particular, if a system freezes in one of the time
slots, the delay caused will cascade to subsequent time slots
because the jobs arriving in these time slots will also be delayed.
This will increase the service delay profoundly.

Table III summarizes the average system overheads in ex-
periments for evaluating system scalability (Section V-D) and
system robustness (Section V-E). EdgeShield takes the least time
to formulate an individual mitigation strategy. EDMGame and
EdgeShield−ATS take the most time and second most time. We
investigated and found the reason. When a lot of jobs arrive
during an edge DDoS attack, EdgeShield employs ATS to reduce
the time slot length. The jobs will be migrated and processed in
small batches, making it easier for AME to formulate mitigation
strategies, one for each batch. This lowers EdgeShield’s system
overhead in a single time slot. However, EdgeShield−ATS does
not have the support of ATS, and formulates mitigation strate-
gies for large job batches, which take more time than small
job batches tremendously. As a result, EdgeShield formulates
many more mitigation strategies over the same period of time
to mitigate edge DDoS attacks in a fine-grained manner. ED-
MGame applies the potential game theory in its algorithm and
requires hundreds of rounds with information communication
and exchange among edge servers. Thus, communication time
contributes a significant component to the overhead. SecEG
incurs the least system overheads. This comes from the absence
of collaborations among edge servers. This is also the reason

why SecEG achieves the second poorest performance in terms
of system throughput and service delay. Overall, EdgeShield
incurs the least system overheads in formulating an individual
mitigation strategy, taking 63.74%, 99.10%, 63.92%, 44.96%,
and 59.42% less time than EdgeShield−ATS , EDMGame, PFO,
SecEG, and HWS, respectively. This demonstrates the low sys-
tem overheads of EdgeShield.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed EdgeShield, a novel system that
mitigates edge DDoS attacks without the need for attack detec-
tion. By adjusting the time slot length adaptively and triggering
strategy adjustments on demand, EdgeShield can leverage edge
servers’ resources collectively to mitigate edge DDoS attacks
effectively and efficiently. It outperforms all benchmark systems
significantly with a 27.17%–78.55% system throughput gain
over the state-of-the-art solution and a 58.12%–66.00% service
delay reduction with acceptable system overheads. As part of
future work, we will investigate the potential vulnerabilities of
EdgeShield and explore corresponding defense mechanisms.
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