
Dynamic Scheduling for Stochastic Edge-Cloud
Computing Environments Using A3C Learning

and Residual Recurrent Neural Networks
Shreshth Tuli , Shashikant Ilager , Kotagiri Ramamohanarao, and Rajkumar Buyya , Fellow, IEEE

Abstract—The ubiquitous adoption of Internet-of-Things (IoT) based applications has resulted in the emergence of the Fog computing

paradigm, which allows seamlessly harnessing bothmobile-edge and cloud resources. Efficient scheduling of application tasks in such

environments is challenging due to constrained resource capabilities, mobility factors in IoT, resource heterogeneity, network hierarchy, and

stochastic behaviors. Existing heuristics andReinforcement Learning based approaches lack generalizability and quick adaptability, thus

failing to tackle this problemoptimally. They are also unable to utilize the temporal workload patterns and are suitable only for centralized

setups. However, asynchronous-advantage-actor-critic (A3C) learning is known to quickly adapt to dynamic scenarioswith less data and

residual recurrent neural network (R2N2) to quickly updatemodel parameters. Thus, we propose an A3C based real-time scheduler for

stochastic Edge-Cloud environments allowing decentralized learning, concurrently acrossmultiple agents.We use theR2N2 architecture

to capture a large number of host and task parameters together with temporal patterns to provide efficient scheduling decisions. The

proposedmodel is adaptive and able to tune different hyper-parameters based on the application requirements.We explicate our choice of

hyper-parameters through sensitivity analysis. The experiments conducted on real-world data set show a significant improvement in terms

of energy consumption, response time, Service-Level-Agreement and running cost by 14.4, 7.74, 31.9, and 4.64 percent, respectively when

compared to the state-of-the-art algorithms.

Index Terms—Edge computing, cloud computing, deep reinforcement learning, task scheduling, recurrent neural network, asynchronous

advantage actor-critic

Ç

1 INTRODUCTION

THE advancements in the Internet of Things (IoT) have
resulted in a massive amount of data being generated

with enormous volume and rate. Applications that access
this data, analyze and trigger actions based on stated goals,
require adequate computational infrastructure to satisfy the
requirements of users [1]. Due to increased network latency,
traditional cloud-centric IoT application deployments fail to
provide quick response to many of the time-critical applica-
tions such as health-care, emergency response, and traffic
surveillance [2]. Consequently, emerging Edge-Cloud is a
promising computing paradigm that provides a low latency
response to this new class of IoT applications [3], [4], [5].
Here, along with remote cloud, the edge of the network have
limited computational resources to provide a quick response
to time-critical applications.

The resources at the edge of the network are constrained
due to cost and feasibility factors [6]. Efficient utilization of
Edge resources to accommodate a greater number of applica-
tions and to simultaneouslymaximize their Quality of Service
(QoS) is extremely necessary. To achieve this, ideally, we
need a scheduler that efficiently manages workloads and
underlying resources. However, scheduling in the Edge
computational paradigm is exceptionally challenging due to
many factors. Primarily, due to the heterogeneity, computa-
tional servers between remote cloud and local edge nodes sig-
nificantly differ in terms of their capacity, speed, response
time, and energy consumption. Moreover, machines can also
be heterogeneous within cloud and edge layers. Besides, due
to the mobility factor in Edge paradigm, bandwidth continu-
ously changes between the data source and computing nodes,
which requires continual dynamic optimization to meet the
application requirements. Furthermore, the Edge-Cloud envi-
ronment is stochastic in many aspects, such as the task’s
arrival rate, duration of tasks, and their resource require-
ments,which furthermakes the scheduling problem challeng-
ing. Therefore, dynamic task scheduling to efficiently utilize
the multi-layer resources in stochastic environments becomes
crucial to save energy, cost and simultaneously improve the
QoS of applications.

The existing task or job scheduling algorithms in Edge-
Cloud environments have been dominated by heuristics or
rule-based policies [7], [8], [9], [10], [11], [12]. Although heu-
ristics usually work well in general cases, they do not
account for the dynamic contexts driven by both workloads
and composite computational paradigms like Edge-Cloud.

� Shreshth Tuli is with the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, School of Computing and Information Systems,
University of Melbourne, Parkville, VIC 3010, Australia, and also with the
Department of Computer Science and Engineering, Indian Institute of Tech-
nology, NewDelhi, Delhi 110016, India. E-mail: shreshthtuli@gmail.com.

� Shashikant Ilager, Kotagiri Ramamohanarao, and Rajkumar Buyya are with
the Cloud Computing and Distributed Systems (CLOUDS) Laboratory,
School of Computing and Information Systems, University of Melbourne,
Parkville, VIC 3010, Australia. E-mail: shashikant.ilager@gmail.com,
{kotagiri, rbuyya}@unimelb.edu.au.

Manuscript received 2 Apr. 2020; revised 26 July 2020; accepted 12 Aug. 2020.
Date of publication 17 Aug. 2020; date of current version 3 Feb. 2022.
(Corresponding author: Shreshth Tuli.)
Digital Object Identifier no. 10.1109/TMC.2020.3017079

940 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 3, MARCH 2022

1536-1233� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on February 05,2022 at 00:46:07 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2960-1128
https://orcid.org/0000-0003-2960-1128
https://orcid.org/0000-0003-2960-1128
https://orcid.org/0000-0003-2960-1128
https://orcid.org/0000-0003-2960-1128
https://orcid.org/0000-0003-1178-6582
https://orcid.org/0000-0003-1178-6582
https://orcid.org/0000-0003-1178-6582
https://orcid.org/0000-0003-1178-6582
https://orcid.org/0000-0003-1178-6582
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
mailto:shreshthtuli@gmail.com
mailto:shashikant.ilager@gmail.com
mailto:kotagiri@unimelb.edu.au
mailto:rbuyya@unimelb.edu.au

Furthermore, they fail to adapt to continuous changes in the
system [13], which is common in Edge-Cloud environments
[14]. To that end, Reinforcement Learning (RL) based sched-
uling approach is a promising avenue for dynamic optimiza-
tion of the system [13, 15]. The RL solutions are more
accurate as the models are built from the actual measure-
ments, and they can identify complex relationships between
different interdependent parameters. Recent works have
explored different value-based RL techniques to optimize
several aspects of Resource Management Systems (RMS) in
distributed environments [16], [17], [18, 19]. Such methods
store a Q value function in a table or using a Neural network
for each state of the edge-cloud environment, which is an
expected cumulative reward in the RL setup [20]. The tabular
value-based RL methods face problem of limited scalability
[21], [22], [23], for which researchers have proposed various
Deep learning based methods like Deep Q Learning (DQN)
[24], [25], [26] which use a neural network to approximate
the Q value. However, previous studies have shown that
such value-based RL techniques are not suitable for highly
stochastic environments [27], which make them perform
poorly in Edge-Cloud deployments. Limited number of
works exist which are able to leverage policy gradient meth-
ods [28] and optimize for only a single QoS parameter and
do not use asynchronous updates for faster adaptability in
highly stochastic environments. Moreover, all prior works
do not exploit temporal patterns in workload, network and
node behaviours to further improve scheduling decisions.
Furthermore, these works use a centralized scheduling pol-
icy which is not suitable for decentralized or hierarchical
environments. Hence, this work maps and solves the sched-
uling problem in stochastic edge-cloud environments using
asynchronous policy gradient methods which can recognize
the temporal patterns using recurrent neural networks and
continuously adapt to the dynamics of the system to yield
better results.

In this regard, we propose a deep policy gradient based
scheduling method to capture the complex dynamics of
workloads and heterogeneity of resources. To continuously
improve over the dynamic environment, we use the asyn-
chronous policy gradient reinforcement learning method
called Asynchronous Advantage Actor Critic (A3C). A3C,
proposed by Mnih et al. [27], is a policy gradient method for
directly updating a stochastic policy which runs multiple
actor-agents asynchronously with each agent having it’s
own neural network. The agents are trained in parallel and
update a global network periodically, which holds shared
parameters. After each update, the agents resets their param-
eters to those of the global network and continue their
independent exploration and training until they update
themselves again. This method allows exploration of larger
state-action space quickly [27] and enables models to rapidly
adapt to stochastic environments. Moreover, it allows us to
run multiple models asynchronously on different edge or
cloud nodes in a decentralized fashionwithout a single point
of failure. Using this, we propose a learning model based on
Residual Recurrent Neural Network (R2N2). The R2N2
model is capable of accurately identifying the highly nonlin-
ear patterns across different features of the input and exploit-
ing the temporal workload and node patterns, with residual
layers increasing the speed of learning [29]. Moreover, the

proposed scheduling model can be tuned to optimize the
requiredQoSmetrics based on the application demands using
the adaptive loss function proposed in this work. To that end,
minimizing this loss function through policy learning helps
achieve highly optimized scheduling decisions. Unlike heu-
ristics, the proposed framework can adapt to the new require-
ments as it continuously improves the model by tuning
parameters based on new observations. Furthermore, policy
gradient enables our model to quickly adapt allocation policy
responding to the dynamic workload, host behaviour and
QoS requirements, compared to traditional DQN methods.
The experiment results using an extended version of iFogSim
Toolkit [30] with elements of CloudSim 5.0 [31] show the
superiority of ourmodel against existing heuristics and previ-
ously proposed RL models. Our proposed methodology
achieves significant efficiency for several critical metrics such
as energy, response time, Service Level Agreements (SLA)
violation [8] and cost among others.

In summary, the key contributions of this paper are:

� Wedesign an architectural systemmodel for the data-
driven deep reinforcement learning based scheduling
for Edge-Cloud environments.

� We outline a generic asynchronous learning model for
scheduling in decentralized environments.

� We propose a Policy gradient based Reinforcement
learning method (A3C) for stochastic dynamic sched-
uling method.

� We demonstrate a Residual Recurrent Neural Network
(R2N2) based framework for exploiting temporal pat-
terns for scheduling in a hybrid Edge-Cloud setup.

� We show the superiority of the proposed solution
through extensive simulation experiments and com-
pare the results against several baseline policies.

The rest of the paper is organized as follows. Section 2
describes the systemmodel and also formulates the problem
specifications. Section 3 explains a generic policy gradient
based learning model. Section 4 explains the proposed A3C-
R2N2 model for scheduling in Edge-Cloud environments.
The performance evaluation of the proposed method is
shown in Section 5. The relevant prior works are explained
in Section 6. Conclusions and future directions are presented
in Section 7.

2 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we describe the system model and interac-
tion between various components that allow an adaptive
reinforcement-based scheduling. In addition, we describe
the workload model and problem formulation.

2.1 System Model

In this work, we assume that the underlying infrastructure is
composed of both edge and cloud nodes. An overview of the
system model is shown in Fig. 1. The edge-cloud environ-
ment consists of distributed heterogeneous resources in the
network hierarchy, from the edge of the network to the
multi-hop remote cloud. The computing resources act as
hosts for various application tasks. These hosts can vary sig-
nificantly in their compute power and response times. The
edge devices are closer to the users and hence provide much

TULI ETAL.: DYNAMIC SCHEDULING FOR STOCHASTIC EDGE-CLOUD COMPUTING ENVIRONMENTS USING A3C LEARNING AND... 941

Authorized licensed use limited to: University of Melbourne. Downloaded on February 05,2022 at 00:46:07 UTC from IEEE Xplore. Restrictions apply.

lower response times but are resource-constrained with lim-
ited computation capability. On the other hand, cloud
resources (Virtual Machines) located several hops away
from the users, provide much higher response time. How-
ever, cloud nodes are resource enriched with increased
computational capabilities that can process multiple tasks
concurrently.

The infrastructure is controlled by a Resource Manage-
ment System (RMS) which consists of Scheduling, Migration
and Resource Monitoring Services. The RMS receives tasks
with their QoS and SLA requirements from IoT devices and
users. It schedules the new tasks and also periodically
decides if existing tasks needs to be migrated to new hosts
based on the optimization objectives. The tasks’ CPU, RAM,
bandwidth, and disk requirements with their expected com-
pletion times or deadlines affect the decision of the RMS.
This effect is simulated using a stochastic task generator
known as the Workload Generation Module (WGM) follow-
ing a dynamic workload model for task execution described
in the next subsection.

In our model, the Scheduler and Migration services
interact with a Deep Reinforcement Learning Module
(DRLM), which suggests placement decision for each task
(on hosts) to the former services. Instead of a single sched-
uler, we run multiple schedulers with separate partitions
of tasks and nodes. These schedulers can be run on a single
node or separate edge-cloud nodes [27]. As shown in prior
works [27], [32], having multiple actors learn parameter
updates in an asynchronous fashion allows computational
load to be distributed among different hosts, allowing
faster learning within the limits of resource constrained
edge devices. Thus, in our system, we assume all edge and
cloud nodes to accumulate local gradients to their schedu-
lers and add and synchronize gradients of all such hosts to
update their models individually. Our policy learning
model is part of the DRLM with each scheduler with a sep-
arate copy of the global neural network, which allows
asynchronous updates. Another vital component of the
RMS is the Constraint Satisfaction Module (CSM) which
checks if the suggestion from the DRLM is valid in terms
of constraints such as whether a task is already in migra-
tion or the target host is running at full capacity. The
importance and detailed functionality of CSM is explained
in Section 3.2.

2.2 Workload Model

As described before, task generation is stochastic and each
task has a dynamic workload. Based on changing user
demands and mobility of IoT devices, the computation and
bandwidth requirements of the tasks change with time. As
done in prior works [8], [30], we divide our execution time

into scheduling intervals of equal duration. The scheduling
intervals are numbered based on their order of occurrence as
shown in Fig. 2. The ith scheduling interval is shown as SIi,
which starts at time ti and continues till the beginning of the
next interval i.e., tiþ1. In each SIi, the active tasks are those
that were being executed on the hosts and are denoted as ai.
Also, at the beginning of SIi, the set of tasks that get com-
pleted is denoted as li and the new tasks that are sent by the
WGM are denoted as ni. The tasks li leave the system and
new tasks ni are added to the system. Thus, at the beginning
of the interval SIi, the active tasks ai is ai�1 [ni n li.

2.3 Problem Formulation

The problem that we consider is to optimize the perfor-
mance of the scheduler in the edge-cloud environment as
described in Section 2.1 and dynamic workload described
in Section 2.2. The performance of the scheduler is quanti-
fied by the metric denoted as Loss defined for each schedul-
ing interval. The lower the value of Loss, the better the
scheduler. We denote loss of the interval SIi as Lossi.

In the edge-cloud environment, the set of hosts is
denoted as Hosts and its enumeration as ½H0; H1; . . . ; Hn�.
We assume that the maximum number of hosts at any
instant of the execution is n. We also denote host assigned
to a task T as fTg. We define our scheduler as a mapping
between the state of the system to an action which consists
of host allocation for new tasks and migration decision for
active tasks. The state of the system at the beginning of SIi,
denoted as Statei, consists of the parameter values of Hosts,
remaining active tasks of the previous interval which
(ai�1 n li) and new tasks (ni). The scheduler has to decide for
each task in ai (¼ ai�1 [ni n li), the host to be allocated or
migrated to, which we denote as the Actioni for SIi. How-
ever, all tasks may not be migratable. Letmi � ai�1 n li be the
migratable tasks. Thus,Actioni ¼ fh 2 Hosts for task T jT 2
mi [nig which is a migration decision for tasks in mi and
allocation decision for tasks in ni. Thus scheduler, denotes as
Model, is a function: Statei ! Actioni. The Lossi of an inter-
val depends on the allocation of the tasks to hosts i.e.,
Actioni by theModel. Hence, for an optimalModel, the prob-
lem can be formulated as described by Equation (1)

Fig. 1. System model.

Fig. 2. Dynamic task workload model.

942 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 3, MARCH 2022

Authorized licensed use limited to: University of Melbourne. Downloaded on February 05,2022 at 00:46:07 UTC from IEEE Xplore. Restrictions apply.

minimize
Model

X
i

Lossi

subject to 8 i; Actioni ¼ModelðStateiÞ
8 i 8 T 2 mi [ni; fTg ActioniðT Þ:

(1)

A symbol table for ease of meaning recall and a Venn dia-
gram of various task sets are given in Table 1 and Fig. 3,
respectively.

3 REINFORCEMENT LEARNING MODEL

We now propose a Reinforcement Learning model for the
problem statement described in Section 2.3 suitable for pol-
icy gradient learning. First, we present the input and output
specifications of the Neural Network and then describe the
modeling of Lossi (from Equation (1)) in our model.

3.1 Input Specification

The input of the schedulerModel, is the Statei which consists
of the parameters of hosts, which include utilization and
capacity of CPU, RAM, bandwidth, and disk [16]. It also
includes the power characteristics, cost per unit time,Million
Instructions per Seconds (MIPS) for the host, response time,
and the number of tasks to which this host is allocated. Dif-
ferent hosts would have different computational power
(CPU), memory capacity (RAM) and I/O availability (disk
and bandwidth). As tasks in an edge-cloud setup impose
compute, memory and I/O limitations, such parameters are
crucial for scheduling decisions. Moreover, allowing multi-
ple tasks to be placed on a small cluster of hosts could ensure
low energy usage (hibernating the ones with no tasks). A
host with higher I/O capacity (disk read/write speeds)
could allow I/O intensive tasks to be completed quickly and
prevent SLA violations. All these parameters are defined for

all hosts in a feature vector denoted as FV Hosts
i as shown in

Fig. 4a. The tasks in ai are segregated into two disjoint sets:
ni and ai�1 n li. The former consists of parameters like task
CPU, RAM, bandwidth, and disk requirements. The latter
also consists of the index of the host assigned in the previous
interval. The feature vectors of these set of tasks are denoted
asFV ni

i andFV
ai�1nli
i as shown in Figs. 4b and 4c respectively.

Thus, Statei becomes ðFV Hosts
i ; FV

ai�1nli
i ; FV

ni
i Þ, which is the

input of themodel.

3.2 Output Specification

At the beginning of the interval SIi, the model needs to pro-
vide a host assignment for each task in ai based on the input
Statei. The output, also denoted as Actioni is a host assign-
ment for each new task 2 ni and migration decision for
remaining active tasks from previous interval 2 ai�1 n li.
This assignment must be valid in terms of the feasibility
constraints such that each task which is migrated must be
migratable to the new host (we denote migratable task asmi

which is � ai), i.e., it is not under migration. Moreover,
when a host h is allocated to any task T , then after allocation
h should not get overloaded i.e., h is suitable for T . Thus, we
describe Actioni through Equation (2) such that for the
interval SIi, 8 T 2 ni [mi; fTg ActioniðT Þ,

Actioni ¼
h 2 Hosts 8 t 2 ni

hnew 2 Hosts 8 t 2 mi if t is to be migrated

�
subject to

Actioni is suitable for t 8 t 2 ni [mi:

(2)

However, developing a model that provides a constrained
output is computationally difficult [33] hence, we use an alter-
native definition of model action which is unconstrained. We
compensate for the constraints in the objective function. In the
unconstrained formulation of the model action, the output
would be a priority list of hosts for each task. Thus, for task
T

ai
j , we have a list of hosts ½H0

j ;H
1
j ; . . . ;H

n
j � in decreasing

order of allocation preference. For a neural network, the out-
put could be a vector of allocation preference for each host for
every task. This means that rather than specifying a single
host for each task, the model provides a ranked list of hosts.
We denote this unconstrained model action for policy gradi-
ent setup asActionPG

i as shown in Fig. 5.
This unconstrained action cannot be used directly for

updating the task allocation to hosts. We need to select the
most preferable host for each task which is suitable for only
those tasks that are migratable. To convert ActionPG

i to
Actioni is straightforward as shown in Equation (3). For
ActioniðTai

j Þ, if Tai
j 2 ai�1 n li and is not migratable then it is

not migrated. Otherwise, Tai
j will be allocated to the highest

rank hostwhich is suitable. By the conversion of Equation (3),

TABLE 1
Symbol Table

Symbol Meaning

SIi ith scheduling interval
ai Active tasks in SIi
li Tasks leaving at beginning of SIi
ni New tasks received at beginning of SIi
Hosts Set of hosts in the Edge-Cloud Datacenter
n Number of hosts in the Edge-Cloud Datacenter
Hi ith host in an enumeration ofHosts
TS
i ith task in an enumeration of S
fTg Host assigned to task T
FV S

i Feature vector corresponding to S at SIi
mi Migratable tasks in ai
ActionPG

i Scheduling decision at start of SIi
LossPGi Loss function for the model at start of SIi

Fig. 3. Venn diagram of various task sets.

Fig. 4. Matrix representation of model inputs.

TULI ETAL.: DYNAMIC SCHEDULING FOR STOCHASTIC EDGE-CLOUD COMPUTING ENVIRONMENTS USING A3C LEARNING AND... 943

Authorized licensed use limited to: University of Melbourne. Downloaded on February 05,2022 at 00:46:07 UTC from IEEE Xplore. Restrictions apply.

Actioni always obeys constraints specified in Equation (2)
and hence is used formodel update as

ActioniðTai
j Þ ¼ Hk

j j Tai
j 2 mi [ni

^Hk
j is suitable for Tai

j

^ 8 l < k;Hl
j 2 ActionPG

i�1ðTai
j Þ;

Hl
j is not suitable for Tai

j :

(3)

Additionally, we define penalty for the unconstrained
action as in Equation (4). This captures two aspects of pen-
alty: (1) the migration penalty as the fraction of tasks that the
model wanted to migrate but cannot be migrated to the total
number of tasks and (2) the host allocation penalty as the
sum for each task, the number of hosts that could not
be allocated to that task but were given higher preference.
This penalty would be used in the Loss function defined in
Section 3.3. The first addend in Equation (4) captures the
host allocation penalty and the second addend captures the
migration penalty and this penalty guides the learning model
to make decisions based on the constraints in Equation (2).
Thus, we define penalty as

Penaltyiþ1 ¼P
t2ai k jHk ¼ ActioniðtÞ ^Hk 2 ActionPG

i ðtÞ
jaij � n

þ
P

t2ai�1nli 11ðt =2 mi ^ActioniðtÞ 6¼ ftgÞ
jaij :

(4)

Hence, the output ActionPG
i is first processed by the CSM

to generate Actioni and Penaltyiþ1. Now, to update the
parameters of the model at the beginning of SIi, we incorpo-
rate both Lossi and Penaltyi as described in the next
subsection.

3.3 Loss Function

In our learning model, we want the model to be optimum to
reduce Lossi in each interval and hence the cumulative loss.
Also, we want our model, which is a mapping from Statei
to Actioni, to adapt to the dynamically changing state. For
this, we now define Lossi, which acts as a metric for param-
eter update for the model. First, we define various metrics
(normalized to [0,1]) which help us to define Lossi.

1) Average Energy Consumption (AEC) is defined for any
interval as the energy consumption of the infrastruc-
ture (which includes all edge and cloud hosts) nor-
malized by the maximum power of the environment.
However, edge and cloud nodes may have different
energy sources like energy harvesting devices for
edge and main supply for cloud [34]. Thus, we mul-
tiply the energy consumed by a host h 2 Hosts by a

factor ah 2 ½0; 1� which can be set for edge and cloud
nodes as per the user requirement and deployment
strategy. The power is normalized as

AECHosts
i ¼

P
h2Hosts ah

R tiþ1
t¼ti PhðtÞdtP

h2Hosts ahP
max
h ðtiþ1 � tiÞ ; (5)

where PhðtÞ is the power function of host h with
time, and Pmax

h is maximum possible power of h.
2) Average Response Time (ART) is defined for an inter-

val SIi as the average response time for all leaving
tasks (liþ1) in that interval normalized by maximum
response time until the current interval as shown in
Equation (6). The task response time is the sum of
host (on which this task is scheduled) response time
and task execution time. Hence ART is defined as

ARTi ¼
P

t2liþ1 Response TimeðtÞ
jliþ1jmaximaxt2liResponse TimeðtÞ : (6)

3) Average Migration Time (AMT) is defined for an inter-
val SIi as the average migration time for all active
tasks (ai) in that interval normalized by maximum
migration time until the current interval as shown in
Equation (7). AMT is defines as

AMTi ¼
P

t2ai Migration TimeðtÞ
jaijmaximaxt2liResponse TimeðtÞ : (7)

4) Cost (C) is defined for an interval SIi as the total cost
incurred during that interval as shown in Equation (8)

Costi ¼
P

h2Hosts

R tiþ1
t¼ti ChðtÞdtP

h2Hosts C
max
h ðtiþ1 � tiÞ ; (8)

where ChðtÞ is the cost function for host h with time,
and Cmax

h is maximum cost per unit for host h.
5) Average SLA Violations (SLAV) is defined for an inter-

val SIi as the average number of SLA violations in
that interval for leaving task (liþ1) as shown in Equa-
tion (9). SLAðtÞ of task T is defined in [8] which is
product of two metrics: (i) SLA violation time per
active host and (ii) performance degradation due to
migrations. Thus,

SLAVi ¼
P

t2liþ1 SLAðtÞ
jliþ1j : (9)

To minimize the above mentioned metrics, as done in
various prior works [16], [35], we define Lossi as a convex
combination of these metrics for interval SIi�1. Thus

Lossi ¼ a �AECi�1 þ b �ARTi�1 þ g �AMTi�1
þ d � Costi�1 þ � � SLAVi�1

such that a;b; g; d; � � 0

^ aþ bþ g þ dþ � ¼ 1:

(10)

Based on different user QoS requirements and application
settings different values of hyper-parameters ða;b; g; d; �Þ
may be required. Say for energy sensitive applications [36],
[37], [38], we need to optimize energy even though other

Fig. 5. Matrix representation of model output: ActionPG
i .

944 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 3, MARCH 2022

Authorized licensed use limited to: University of Melbourne. Downloaded on February 05,2022 at 00:46:07 UTC from IEEE Xplore. Restrictions apply.

metrics might get compromised. Then the loss would have
a ¼ 1 and rest 0. For response time-sensitive applications like
healthcare monitoring or traffic management [39], the loss
would have b ¼ 1 and rest 0. Similarly, for different applica-
tions, a different set of hyper-parameter values is required.

Now, for the Neural Network model we need to incl-
ude the penalty as well because the output described in
Section 3.2 is unconstrained, as done in other works [40],
[41]. If we include the penalty defined by Equation (4), then
the model updates its parameters to not only minimize
Lossi but also to satisfy constraints described in Equa-
tion (2). Thus, we define the loss for the Neural Network as
shown in Equation (11). So

LossPGi ¼ Lossi þ Penaltyi: (11)

3.4 Model Update

Having defined the input-output specifications and the loss
function we now define the procedure to update the Model
after every scheduling interval. A summary of the interaction
andmodel update for the transition from interval SIi�1 to the
interval SIi is shown in Fig. 6.We consider an episode to con-
tain n scheduling intervals. At the beginning of every sched-
uling interval say SIi, the WGM sends new tasks to the
Scheduling and Migration Service (SMS). Then, SMS and
WGM send the Statei to the DRLM which includes the fea-
ture vectors of hosts, remaining active tasks from previous
interval (ai�1 n li) and new tasks (ni). Also, the RMS sends
the Lossi to the DRLM. The CSM sends Penaltyi based on
decision of ActionPG

i�1. The model then generates an ActionPG
i

and updates its parameters based on Equation (11), which is
sent to the CSM. The CSM converts ActionPG

i to Actioni and
sends it to RMS. It also calculates and stores Penaltyiþ1 for
next interval SIiþ1. The RMS allocates new tasks (ni) and
migrates remaining tasks from previous interval (ai�1 n li)
based on Actioni received from CSM. This updates ai�1 to ai
as ai ai�1 [ni n li. The tasks in ai execute for the interval
SIi and the cycle repeats for the next interval SIiþ1.

4 STOCHASTIC DYNAMIC SCHEDULING USING

POLICY GRADIENT LEARNING

The complete framework works as follows: at the beginning
of every scheduling interval, (1) the RMS receives the task

requests including task parameters like computation, band-
width and SLA requirements. (2) These requirements and
the host characteristics from Resource Monitoring Service
are used by the DRL model to predict the next scheduling
decisions. (3) The constraint satisfaction module finds the
possible migration and scheduling decision from the output
of DRL model. (4) For the new tasks, the RMS informs the
user/IoT device to send its request directly to the corre-
sponding edge/cloud device scheduled for this task. (5) The
loss function is calculated for the DRLmodel and its parame-
ters are updated. The formulation and the learning model
described earlier in Section 3 is generic for any policy based
RL model. The model, which is a function form Statei to
ActionPG

i is assumed to be the theoretically best function for
minimizing LossPGi . There exist many prior works which try
to model this function using Q-Table or a neural network
function approximator [16], [24], [26] giving a deterministic
policy which is unable to adapt in stochastic settings. How-
ever, our approach tries to approximate the policy itself and
optimize it using policy gradient methods with LossPGi as a
signal to update the network.

4.1 Neural Network Architecture

To approximate the function from Statei to ActionPG
i for

every interval SIi, we use a R2N2 network. The advantage
of using an R2N2 network is its ability to capture complex
temporal relationships between the inputs and outputs. The
architecture with the layer description used for the pro-
posed work is shown in Fig. 7. A single network is used to
predict both policy (actor head) and cumulative loss after
the current interval (critic head).

The R2N2 network has 2 fully connected layers followed
by 3 recurrent layers with skip connections. A 2-dimen-
sional input is first flattened and then passed through the
dense layers. The output of the last recurrent layer is sent to
the two network heads. The actor head output is of size 104

which is reshaped to a 2-dimension 100� 100 vector. This
means that the this model can manage maximum 100 tasks
and 100 hosts. This is done for a fair comparison with other
methods that have tested on similar settings [8], [16], but for
a larger system the network must be changed accordingly.
Finally, softmax is applied across the second dimension so
that all values are in [0,1] and the sum of all values in a row
equals 1. This output (say O) can be interpreted as a proba-
bility map where Ojk represents the probability with which
task T

ai
j should be assigned to host Hk which is kth host in

an enumeration of Hosts. The output of the critic head is a
single constant which signifies the value function i.e., the

Fig. 6. Learning model.

Fig. 7. Neural network architecture.

TULI ETAL.: DYNAMIC SCHEDULING FOR STOCHASTIC EDGE-CLOUD COMPUTING ENVIRONMENTS USING A3C LEARNING AND... 945

Authorized licensed use limited to: University of Melbourne. Downloaded on February 05,2022 at 00:46:07 UTC from IEEE Xplore. Restrictions apply.

cumulative loss starting from next interval (CLossPGiþ1). The
recurrent layers are formed using Gated Recurrent Units
(GRUs) [42], which model the temporal aspects of the task
and host characteristics including tasks’ CPU, RAM and
bandwidth requirements and hosts’ CPU, RAM and band-
width capacities. Although the GRU layers help in taking
an informed scheduling decision by modeling the temporal
characteristics, they increase the training complexity due to
large number of network parameters. This is solved by
using the skip connections between these layers for faster
gradient propagation.

4.2 Pre-Processing and Output Conversion

The input to themodel for the interval SIi is Statei, which is a
2-dimensional vector. This includes FV Hosts

i ; FV
ni
i ; FV

ai�1nli
i .

Among these vectors, the values of all elements of the first
two are continuous, but the host index in each row of
FV

ai�1nli
i is a categorical value. Hence, the host indices

are converted to a one-hot vector of size n and all feature vec-
tors are concatenated. After this, each element in the
concatenated vector is normalized based on the minimum
and maximum values of each feature and clipped between
[0, 1]. We denote the feature of element e as fe, andminimum
andmaximumvalues for feature f asminf andmaxf respec-
tively. These minimum and maximum values are calculated
based on a sample dataset using two heuristic-based sched-
uling policies: Local-Regression (LR) for task allocation and
Maximum-Migration-Time (MMT) for task selection as
described in [8]. Then, the feature-wise standardization is
done based on Equation (12). Hence

e ¼
0 if maxfe ¼ minfe

minð1;maxð0; e�minfe
maxfe�minfe

ÞÞ otherwise:

(
(12)

This pre-processed input is then sent to the R2N2 model
which flattens it and passes through the Dense layers. The
output generated O is converted to ActionPG

i by first gener-
ating the sorted list of host SortedHostsi with decreasing
probability in Oi for all i. Then, ActionPG

i ðTmi[ni
k Þ

SortedHostsk 8 k 2 f1; 2; . . . ; jmi [nijg.

4.3 Policy Learning

To learn the weights and biases of the R2N2 network, we use
the back-propagation algorithmwith reward as�LossPGi . For
the current model, we use adaptive learning rate starting
from 10�2 and decrease it to 1=10th when the absolute sum of
of change in the reward for the last ten iterations is less than
0.1. Using reward as �LossPGi , we perform Automatic Differ-
entiation [43] to update the network parameters. We accumu-
late the gradients of local networks at all edge nodes
asynchronously and update the global network parameters
periodically as described in [27]. The gradient accumulation
rule after the ith scheduling interval is given by Equation (13)
similar to the one in [27]. Here u denotes the global network
parameters and u0 denotes the local parameters (only one gra-
dient is set because of a single networkwith two heads). Thus

du du � aru0 log ½pðStatei; u0Þ�ðLossPGi þ CLossPrediþ1 Þ
þ aru0 ðLossPGi þ CLossPrediþ1 � CLossPredi Þ2:

(13)

The log term in the Equation (13) specifies the direction of
change in the parameters, ðLossPGi þ CLossPrediþ1 Þ term is the
predicted cumulative loss in this episode starting from
Statei. To minimize this, the gradients are proportional to
this quantity and have a minus sign to reduce total loss. The
second gradient term is the Mean Square Error (MSE) of the
predicted cumulative loss with the cumulative loss after
one-step look-ahead. The output ActionPG

i is converted to
Actioni by CSM and sent to the RMS every scheduling inter-
val. Thus, for each interval, there is a forward pass of the
R2N2 network. For back-propagation, we use a episode size
of 12, thus we save the experience of the previous episode
to find and accumulate gradients and update model param-
eters after 12 intervals. For large batch sizes, parameter
updates are slower and for small ones the gradient accumu-
lation is not able to generalize and has high variance.
Accordingly, empirical analysis has resulted into optimal
episode size of 12. As described in Section 5.1, the experi-
mental setup has a scheduling interval of 5 minutes, and
hence back-propagation is performed every 1 hour of simu-
lation time (after 12 intervals).

A summary of the model update and scheduling with
back-propagation is shown in Algorithm 1. To decide the
best possible scheduling decision for each scheduling
interval, we iteratively pre-process and send the interval
state to the R2N2 model with the loss and penalty to
update the network parameters. This allows the model to
adapt on-the-fly to the environment, user and application
specific requirements.

Algorithm 1. Dynamic Scheduling

Inputs:
1: Number of scheduling intervals N
2: Batch Size B
Begin
3: for interval index i from 1 to N do
4: if i > 1 and i%B ¼¼ 0 then
5: Use LossPGi ¼ Lossi þ Penaltyi in RL Model for

back-propagation
6: end if
7: send PREPROCESS(Statei) to RL Model
8: probabilityMap output of RL Model for Statei
9: (Actioni, Penaltyiþ1) CONSTRAINTSATISFACTIONMODULE

(probabilityMap)
10: Allocate new tasks and migrate existing tasks based on

Actioni

11: Execute tasks in edge-cloud infrastructure for interval SIi
12: end for
End

Complexity Analysis. The complexity of Algorithm 1
depends on multiple tasks. The pre-processing of the input
state isOðabÞwhere a� b is the maximum size of feature vec-
tor among the vectors FV Hosts

i ; FV
ni
i ; FV

ai�1nli
i . To generate

theActioni and Penaltyi the CSM takesOðn2Þ time for n hosts
and tasks based on Equations (4) and (3). As the feature vec-
tors have a higher cardinality than the number of hosts or
tasks, OðabÞ dominates Oðn2Þ. Therefore, discarding the for-
ward pass and back-propagation (as they are performed in
Graphics ProcessingUnits - GPU [44]), forN scheduling inter-
vals, the total time complexity isOðabNÞ.

946 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 3, MARCH 2022

Authorized licensed use limited to: University of Melbourne. Downloaded on February 05,2022 at 00:46:07 UTC from IEEE Xplore. Restrictions apply.

5 PERFORMANCE EVALUATION

In this section, we describe the experimental set up, evalua-
tion metrics, dataset and give a detailed analysis of results
comparing our model with several baseline algorithms.

5.1 Experimental Set Up

To evaluate the proposed Deep Learning-based scheduling
framework, we developed a simulation environment by
extending the elements of iFogSim [30] and CloudSim tool-
kits [31] which already have resource monitoring services
inbuilt. As described in Section 4.3, the execution of the sim-
ulation was divided into equal-length scheduling intervals.
The interval size was chosen to be 5 minutes long, same as
in other works [8], [16], [24] for a fair comparison with base-
line algorithms. The tasks, named as Cloudlets in iFogSim
nomenclature, are generated by the WGM based on Bitbrain
dataset [45]. We extended the modules of iFogSim and
CloudSim to allow the use of parameters like response time,
cost and power of edge nodes. We also created new mod-
ules to simulate mobility of IoT devices using bandwidth
variations, delayed execution of tasks and interact with
deep learning software. Additional software for Constraint
Satisfaction Module, input pre-processing and output con-
version was developed.

The loss function is calculated based on host and task
monitoring services in CloudSim. The penalty is calculated
by the CSM and sent to the DRLM for model parameter
update.We nowdescribe inmore detail the dataset, task gen-
eration and duration implementation, hosts’ configuration
andmetrics for evaluation.

5.1.1 Dataset

In the simulation environment, the tasks (cloudlets) are
assigned to Virtual Machines (VMs) which are then allo-
cated to hosts. For the current setting of task on edge-cloud
environment, we consider a bijection from cloudlets to VMs
by allocating ith created Cloudlet to ith created VM and dis-
card the VM when the corresponding Cloudlet is com-
pleted. The dynamic workload is generated for cloudlets
based on real-world open-source Bitbrain’s dataset [45].1

The Bitbrain’s dataset [45] has real traces of resource con-
sumption metrics of business-critical workload hosted on Bit-
brain infrastructure. This data includes logs of over 1,000
VMs workload hosting on two types of machines. We have
chosen this dataset as it represents real-world infrastructure
usage patterns, which is useful to construct precise input fea-
ture vectors for learningmodels. The dataset consists ofwork-
load information for each time-stamp (separated by 5
minutes) including the number of requested CPU cores, CPU
usage in terms of MIPS, RAM requested with Network
(receive/transmit) and Disk (read/write) bandwidth charac-
teristics. These different categories of workload data consti-
tute the feature values of FV ni

i and FV
ai�1nli
i , where the latter

also has an index of host allocated in the previous schedul-
ing/simulation interval. The CPU, RAM, network bandwidth
and disk characteristics for a random node and its trace in the
BitBrain dataset are shown to be highly volatile in Fig. 8.

Wedivide thedataset into twopartitions of 25 and75percent
VM workloads. The larger partition is used for training of
the R2N2 network and the former partition is used for testing of
the network, sensitivity analysis and comparison with other
relatedworks.

5.1.2 Task Generation and Duration Configuration

In the proposedwork, we consider a dynamic task generation
model. Priorwork [8] does not consider a dynamic task gener-
ation environment, which is not close to the real-world set-
ting. At the beginning of every interval, the WGM sends ni

new tasks where jnij is normal distributed Nðmn; s
2
nÞ. Also,

each task t 2 ni has an execution duration of Nðmt; s
2
t Þ sec-

onds. In our setting, we kept 100 hosts and no more than 100
tasks in the systembeing scheduled on 10 actor-agents (sched-
ulers). We keep in our simulation environment: ðmni

; sniÞ ¼
ð12; 5Þ and ðmt; stÞ ¼ ð1800; 300Þ seconds for number of new
tasks and duration of tasks respectively. At the time of task
creation, for already active jai�1 n lij tasks, we only create
minð100� jai�1 n lij;Nðmni

; s2
ni
ÞÞ tasks so that jaij does not

exceed 100. This limit is required because the size of the input
to the R2N2 network has a prefixed upper limit which in our
case is 100.

5.1.3 Hosts - Edge and Cloud Nodes

The infrastructure considered in our studies is a heteroge-
neous edge-cloud based environment. Unlike prior work
[16], [24], [25], [26], we consider both resource-constrained
edge-cloud devices closer to the user and thus having lower
response time and also resource-abundant cloud nodes
with much higher response time. In our settings, we have
considered response time of edge-cloud nodes to be 1 ms
and that of cloud nodes to be 10 ms based on the empirical
studies using the Ping utility in an existing edge-cloud
framework namely FogBus [4].

Moreover, the environment considered is heterogeneous
with a diverse range of computation capabilities of edge
and cloud host. A summary of CPU, RAM, Network and
other capacities with the Cost Model is given in Table 2, 25
instances of each host type in the environment. The cost
model for the cloud layer is based on Microsoft Azure IaaS
cloud service. The cost per hour (in US Dollar) is calculated
based on the costs of similar configuration machines offered
by Microsoft Azure in South-East Australia.2 For the edge
nodes, the cost is based on the energy consumed by the

Fig. 8. Bitbrain dataset characteristics.

1. The BitBrain dataset can be downloaded from: http://gwa. ewi.
tudelft.nl/datasets/gwa-t-12-bitbrains

2. Microsoft Azure pricing calculator for South-East Australia
https://azure.microsoft.com/en-au/pricing/calculator/

TULI ETAL.: DYNAMIC SCHEDULING FOR STOCHASTIC EDGE-CLOUD COMPUTING ENVIRONMENTS USING A3C LEARNING AND... 947

Authorized licensed use limited to: University of Melbourne. Downloaded on February 05,2022 at 00:46:07 UTC from IEEE Xplore. Restrictions apply.

http://gwa. ewi.tudelft.nl/datasets/gwa-t-12-bitbrains
http://gwa. ewi.tudelft.nl/datasets/gwa-t-12-bitbrains
https://azure.microsoft.com/en-au/pricing/calculator/

edge node. As per the targeted environment convention, we
choose resource-constrained machines at edge (Intel i3 and
Intel i5) and powerful rack server as cloud nodes (Intel
Xeon). The power consumption averaged over the different
SPEC benchmarks [46] for respective machines is shown in
Table 2. However, the power consumption values shown in
Table 2 are average values over this specific benchmark
suite. Power consumption of hosts also depends on RAM,
Disk and bandwidth consumption characteristics and are
provided to the model by the underlying CloudSim simula-
tor. In the execution environment, we consider the host
capacities (CPU, RAM, Network Bandwidth, etc) and the
current usage to form the feature vector FV Hosts

i for the ith
scheduling interval. For the experiments, we keep the test-
ing simulation duration of 1 day, which equals to total 288
scheduling intervals.

5.2 Evaluation Metrics

To evaluate the efficacy of the proposed A3C-R2N2 based
scheduler, we consider the following metrics. Motivated
from prior works [4], [16], [35], energy is paramount in
resource constrained edge-cloud environments and real-
time tasks require low response times. Moreover, service
level agreements are crucial in time-critical tasks and low
execution cost is required for budget task execution:

1) Total Energy Consumption which is given as
P

h2HostsR tiþ1
t¼ti PhðtÞdt for the complete simulation duration.

2) Average Response Time which is given asP
t2liþ1 Response TimeðtÞ

jliþ1j .

3) SLA Violations which is given as

P
i
SLAVi�jliþ1jP

i
li

where
SLAVi is defined by Equation (9).

4) Total Costwhich is given as
P

i

P
h2Hosts

R tiþ1
t¼ti ChðtÞdt.

Other metrics of importance include: Average Task Com-
pletion Time, Total number of completed Tasks with fraction of
tasks that were completed within the expected execution
time (based on requested MIPS), Number of task migrations in
each interval and Total migration time per interval. The task
completion time is defined as the sum of the average task
scheduling time, task execution time and response time of
host on which the task ran in last scheduling interval.

5.3 Baseline Algorithms

We evaluate the performance of our proposed algorithms
with the following baseline algorithms, the reasons for choos-
ing these is described in Section 6. Multiple heuristics have
been proposed by [8] for dynamic scheduling. These are a
combination of different sub heuristics for different sub-prob-
lems such as host overload detection and task/VM selection
and we have selected the best three heuristics from those. All
of these variants use Best Fit Decreasing (BFD) heuristics to

identify the target host. Furthermore, we also compare our
results to two types of standard RL approaches that are
widely used in the literature.

� LR-MMT: schedules workloads dynamically based
on Local Regression (LR) andMinimum Migration Time
(MMT) heuristics for overload detection and task
selection, respectively (details in [8])

� MAD-MC: schedules workloads dynamically based
on Median Absolute Deviation (MAD) and Maximum
Correlation Policy (MC) heuristics for overload detec-
tion and task selection, respectively (details in [8])

� DDQN: standardDeep Q-Learning based RL approach,
many works have used this technique in literature
including [16], [25], [26]. We implement the optimized
DoubleDQN technique.

� DRL (REINFORCE): policy gradient based REIN-
FORCE method with fully connected neural network
[28].

It is important to note that we implement these algo-
rithms adapting to our problem and compare the results.
The RL model that has been used for comparison with our
proposed model uses a state representation same as the
Statei defined in Section 3.1 for fair comparison. An action
is a change from one state to another in the state space. As
in [24], the DQN network is updated using Bellman Equa-
tion [47] with the reward defined as �LossPGi . The REIN-
FORCE method is implemented without asynchronous
updates or recurrent network.

5.4 Analysis of Results

In this subsection, we provide the experimental results
using the experimental setup and the dataset described in
Section 5.1. We also discuss and compare our results based
on evaluation metrics specified in Section 5.2. We first ana-
lyze the sensitivity of hyper-parameters ða;b; g; d; �Þ on the
model learning and how it affects different metrics. We
then analyze the variation of scheduling decisions based on
different hyper-parameter values and show how the com-
bined optimization of different evaluation metrics provides
better results. We also compare the fraction of scheduling
time with total execution time by varying the number of
layers on the R2N2 network. Based on the above analysis,
we find the optimum R2N2 network and hyper-parameter
values to compare with the baseline algorithms described in
Section 5.3. All model learning is done for 10 days of simula-
tion time and testing is done for 1 day of simulation time
using a disjoint set of workloads of the dataset.

5.4.1 Sensitivity Analysis of Hyper-Parameters

We first provide experimental results in Fig. 9 for different
hyper-parameter values and show how changing the loss

TABLE 2
Configuration of Hosts in the Experiment Set Up

948 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 3, MARCH 2022

Authorized licensed use limited to: University of Melbourne. Downloaded on February 05,2022 at 00:46:07 UTC from IEEE Xplore. Restrictions apply.

function to learn only one of the metric of interest specifi-
cally, varies the learned network to give different values of
the evaluation metrics, these experiments were carried for a
single day of simulation duration. To visualize the output
probability map from the R2N2 network, we display it
using a color map to depict probabilities (0 to 1) of allocating
tasks to hosts as described in Section 4.2.

When a ¼ 1 (rest = 0), then the R2N2 network solely tries
to optimize the average energy consumption, and hence we
call it Energy Minimizing Network (EMN). The total energy
consumed across the simulation duration is least for this net-
work as shown in Fig. 9a. As low energy devices (edge
nodes) consume the least energy and also have least cost,
energy is highly correlated to cost, and hence the Cost Mini-
mizing Network (CMN, d ¼ 1) also has very low total energy
consumption. As shown in Fig. 10, for the same Statei, the
probability map and hence the allocation are similar for both
networks. Similarly, we can also see that in Fig. 9d, CMN has
the least cost and the next least cost is achieved by EMN.

The graph in Fig. 9b shows that the Response Time Mini-
mizing Network (RTMN, b ¼ 1) has the least average
response time and tries to place most of the tasks on edge
nodes also shown in Fig. 11a. Moreover, this network does
not differentiate among the edge nodes in terms of their
CPU loads because all edge nodes have the same response
time and hence gives almost same probability to every edge
node for each task. The SLA Violation Minimizing Network

(SLAVMN, � ¼ 1) also has a low response time as a number
of SLA violations are directly related to response time for
tasks. However, SLA violations also depend on the comple-
tion time of tasks, and as the average task completion time
of RTMN is very high, the SLA violations of this network
are much more than the other network as shown in Fig. 9c.
The fraction of SLA violation is least for SLAVMN and next
least is for the Migration Time Minimizing Network (MMN,
g ¼ 1). The SLAVMN network also sends tasks to edge
nodes like RTMN, but it also considers task execution time
and CPU loads to distribute tasks more evenly as shown in
Fig. 11b.

When only average migration time is being optimized,
the average task completion time is minimum, as shown in
Fig. 9e. However, the SLA violation is not minimum as this
network does not try to minimize the response time of tasks,
as shown in Fig. 9b. Moreover, the number of completed
tasks is highest for this network as shown in Fig. 9f. Still, the
fraction of tasks completed within the expected time is high-
est for SLAVMN. Figs. 9g and 9h show that number of task
migrations and migration time is least for MTMN. Also
compared in Fig. 12 the number of migrations for the sam-
ple size of 30 initial tasks are 7 for EMN and 0 for the other.

Optimizing each of the evaluation metrics independently
shows that the R2N2 based network can adapt and update

Fig. 9. Comparison of model trained with different loss functions.

Fig. 10. Probability map for EMN and CMN showing similarity and posi-
tive correlation.

Fig. 11. Probability Map for RTMN and SLAVMN showing that the former
does not distinguish among edge nodes but SLAVMN does.

TULI ETAL.: DYNAMIC SCHEDULING FOR STOCHASTIC EDGE-CLOUD COMPUTING ENVIRONMENTS USING A3C LEARNING AND... 949

Authorized licensed use limited to: University of Melbourne. Downloaded on February 05,2022 at 00:46:07 UTC from IEEE Xplore. Restrictions apply.

its parameters to learn the dependence among tasks and
hosts to reduce metric of interest which may be energy,
response time, etc. However, for the optimum network, we
use a combination of all metrics. This combined optimization
leads to amuch lower value of the loss and amuch better net-
work. This is because optimizing only along one variable
might reach a local optimumand the loss of hyper-parameter
space being a highly non-linear function, combined optimi-
zation leads to much better network [48]. Based on the
empirical evaluation for each combination and block coordi-
nate descent [49] for minimizing Loss, the optimum values
of the hyper-parameters are given by Equation (14). Thus,

ða;b; g; d; �Þ ¼ ð0:4; 0:16; 0:174; 0:135; 0:19Þ: (14)

5.4.2 Sensitivity Analysis of the Number of Layers

Now that we have the optimum values of hyper-parame-
ters, we analyze the scheduling overhead with the number
of recurrent layers of the R2N2 network. The scheduling
overhead is calculated as the ratio of time taken for schedul-
ing to the total execution duration in terms of simulation
time. As shown in Fig. 13, the value of the loss function
decreases with the increase in the number of layers of the
Neural Network. This is expected because as the number of
layers increase so do the number of parameters and thus
the ability of the network to fit more complex functions
becomes better. The scheduling overhead depends on the
system on which the simulation is run, and for the current
experiments, the system used had CPU - Intel i7-7700K and
GPU - Nvidia GTX 1,070 graphics card (8 GB graphics
RAM). As shown in the figure, there is an inflection point at
3 recurrent layers because the R2N2 network with 4 or more
such layers could not fit in the GPU graphics RAM. Based
on the available simulation infrastructure, for the compari-
son with baseline algorithms, we use the R2N2 network

with 3 recurrent layers and hyper-parameter values given
by Equation (14).

5.4.3 Scalability Analysis

We now show how the A3C-R2N2 model scales with the
number of actor agent hosts in the setup. As discussed in Sec-
tion 2, we have multiple edge-cloud nodes in the environ-
ment which run the policy learning as described in
Section 4.3. However, the number of such agents affects the
time to train the Actor-Critic network. We define the time
taken by n agents to reduce the loss value to 2.5 as Timen.
Now, speedup corresponding to a systemwith n actors is cal-
culated asSn ¼ Time1

Timen
. Moreover, efficiency of a systemwith n

agents is defined asEn ¼ Sn
n [50]. Fig. 14 shows how speedup

and efficiency of themodel varywith number of agent nodes.
As shown, the speedup increases with n, however, efficiency
reduces as n increases in a piece-wise linear fashion. There is
a sudden drop in efficiency when number of agents is
increased from 1. This is because of the communication delay
between agents which leads to slower model updates. The
drop increases again after 20 hosts due to addition of GPU-
less agents after 20 hosts. Thus, having agent run only on
CPU significantly reduces the efficiency of the proposed
architecture. For our experiments, we keep all active edge-
cloud hosts (100 in our case) as actor agents in the A3C learn-
ing for faster convergence andworst-case overhead compari-
son. In such a case, the speedup is 34.3 and efficiency is 0.37.

5.4.4 Evaluation With Baseline Algorithms

Having the empirically best set of values of hyper-parame-
ters and the number of layers and discussed the scalability
aspects of the model, we now compare our policy gradient
based reinforcement learning model with the baseline algo-
rithms described in Section 5.3. The graphs in Fig. 16 pro-
vide results for 1 day of simulation time with a scheduling
interval of 5 minutes on the Bitbrain dataset.

Fig. 16a shows that among the baseline algorithms,
DDQNandREINFORCE have the least energy consumption,
but A3C-R2N2 model has even lower energy consumption
which is 14.4 and 15.8 percent lower than REINFORCE and
DDQN respectively. The main reason behind this is that the
A3C-R2N2 network is able to adapt to the task workload
behavior quickly. This allows a resource hungry task to be
scheduled to a powerful machine. Moreover, the presence of
Average Energy Consumption (AEC) metric of all the edge-
cloud nodes within the loss function enforces the model to
take energy efficient scheduling decisions. It results in the
minimum number of active hosts with the remaining hosts
in stand-bymode to conserve energy (utilizing this feature of

Fig. 12. Probability maps showing that MTMN has lesser migrations than
EMN.

Fig. 13. Loss and scheduling overhead with number of recurrent layers.

Fig. 14. Scalability of A3C-R2N2.

950 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 3, MARCH 2022

Authorized licensed use limited to: University of Melbourne. Downloaded on February 05,2022 at 00:46:07 UTC from IEEE Xplore. Restrictions apply.

CloudSim). Moreover, Fig. 16b shows that among all the
scheduling policies, A3C-R2N2 provides the least average
response time which is 7.74 percent lower than the REIN-
FORCE policy, best among the baseline algorithms. This is
because the A3C-R2N2 model explicitly takes input about
whether a node is a edge or cloud node and allocates tasks
without multiple migrations and Average Migration Time
(AMT) being embedded in the loss function. As shown in
Fig. 16c, the A3C-R2N2 model has the least number of SLA
violations which is 31.9 percent lower than the REINFORCE
policy. This again is due to reduced migrations and intelli-
gent scheduling of tasks to prevent the high loss value
because of SLA violations. As shown in Fig. 16d, the total
cost of the data center is least for the A3C-R2N2 model as it
gets the cost model (Cost per hour consumption) for each
host as a feature in FV Hosts

i and can ensure that tasks can be
allocated to as low number of cloud VMs as possible to
reduce cost. Compared to the best baseline (REINFORCE),
the A3C-R2N2model reduces cost by 4.64 percent.

Furthermore, the A3C-R2N2 model also considers the
tasks completion time in the previous scheduling interval
and the expected completion time for running tasks. For
time-critical tasks, the A3C-R2N2 model allocates it to a
powerful host machine and avoid migration to save the
migration time. This way, the A3C-R2N2 model can reduce

the average completion time as shown in Fig. 16e which is
lower than REINFORCE by 17.53 percent. Also, as seen in
Fig. 16f, the number of tasks completed and the fraction
completed in expected time is highest for the A3C-R2N2
model. As a number of migration and migration time
severely affect the quality of response of the tasks, Figs. 16g
and 16h show how A3C-R2N2 model can achieve the best
metric values by having a low number of task migrations.

To compare the scheduling overhead of the R2N2 model
with the baseline algorithms, we provide a comparative
result in Fig. 15. As the R2N2 network needs to be updated
every 1 hour of simulation time, the scheduling time is
slightly higher than the other algorithms. Heuristic-based
algorithms have very low scheduling overhead as they fol-
low simple greedy approaches. R2N2 model has overhead
higher by 0.002 percent from RL model. Even though the
scheduling overhead is higher than the baseline algorithms,
it is not significantly large. Considering the performance
improvement by the R2N2model, this overhead is negligible
and makes the R2N2 model a better scheduler compared to
the heuristics or traditional RL based techniques for Edge-
Cloud environments with stochastic workloads.

5.5 Summary of Insights

The R2N2 model works better than the baseline algorithms
because it can sense and adapt to the dynamically changing
environment, unlike the heuristic-based policies which use
a representative technique for making scheduling decisions
and are prone to jump to erroneous conclusions due to their
limited adaptability. Compared to the DDQN approach,
asynchronous policy gradient allows the R2N2 model to
quickly change the scheduling policy based on changes in
network, workload and device characteristics allowing the
model to quickly adapt to dynamically changing scenarios.
Fig. 17 shows scheduling decisions classified as edge or
cloud for different approaches with time for a sample task
and response time minimization goal. For a task that has

Fig. 16. Comparison of deep learning model with prior heuristic-based works.

Fig. 15. Overheads.

TULI ETAL.: DYNAMIC SCHEDULING FOR STOCHASTIC EDGE-CLOUD COMPUTING ENVIRONMENTS USING A3C LEARNING AND... 951

Authorized licensed use limited to: University of Melbourne. Downloaded on February 05,2022 at 00:46:07 UTC from IEEE Xplore. Restrictions apply.

low resource requirement, it is better to schedule in low
latency edge node rather than cloud. When task becomes
resource intensive, only then is it optimal to send it to cloud
as it may slow down the edge node. The REINFORCE-
Dense model is unable to exploit temporal patterns like
increasing resource utilization of a task with previous
scheduling decisions to optimally decide the task allocation.
This not only leads to higher frequency of sub-optimal deci-
sions but also increases migration time. Considering these
points, the A3C-R2N2 strategy can adapt to non-stationary
targets and approximate and learn the parameters much
faster and more precisely compared to the traditional RL
based approaches as shown in Fig. 18. Fig. 18 also shows
that the loss value for the RL framework is much lower
when the A3C-R2N2 model compared to the REINFORCE-
Dense model. The average loss value in last 1 hour in a full
day experiment is 2.78 for REINFORCE-Dense and 1.12
(nearly 60 percent reduction in loss value) for the proposed
model. To summarize, earlier works did not model tempo-
ral aspects using neural networks due to slower training of
recurrent layers like GRU. However, modern advancements
of residual connections and the proposed formulation allow
faster propagation of gradients leading to a solution for the
slow training problem.

6 RELATED WORK

Several studies [7], [8], [9], [10], [11], [12], [55] have proposed
different types of heuristics for the scheduling applications
in Edge-Cloud environment. Each of these studies focuses
on optimizing different parameters for a specific set of appli-
cations. Some of the works are applied to Cloud systems,
while others are for Edge-Cloud environments. It is well
known that heuristics work for generic cases and fail to
respond to the dynamic changes in environments. However,
a learning-based model can adapt and improve over time by
tuning its parameters according to new observations.

Predictive optimizations have been studied by [16], [17],
[18], [19], [24], [25], [26], [52] in many of the recent works.
These works use different Machine Learning (ML) and Deep
Learning (DL) techniques to optimize the Resource Manage-
ment System (RMS). Deep Neural Networks (DNN) and
Deep Reinforcement Learning (DRL) approaches have been
widely used in this regard. In most of these works, optimiz-
ing energy is a primary objective. Bui et al. [51] studied a pre-
dictive optimization framework for energy efficiency of
cloud computing. They predict the resource utilization of the

system in the next scheduling period by Gaussian process
regression method. Based on this prediction, they choose a
minimumnumber of servers to be active to reduce the energy
consumption of the overall system. However, their approach
still uses many heuristics in scheduling decisions and hence
do not adapt to dynamic Edge-Cloud environments or chang-
ing workload characteristics. Zhang et al. [26] proposed a
DDQN for energy-efficient edge computing. The proposed
hybrid dynamic voltage frequency scaling (DVFS) schedul-
ing based on Q-learning. As a deep Q-learning model cannot
distinguish the continuous system states, in an extended
work [19], they investigated a double deep Q-learning model
to optimize the solution further. Xu et al. [18] proposed
LASER, a DNN approach for speculative execution and repli-
cation of deadline critical jobs in the cloud. They implement
these DNN based scheduling framework for the Hadoop
framework. Basu et al. [16] investigated the live migration
problem of Virtual Machines (VMs) using RL based Q-learn-
ing model. The proposed algorithms are aimed to improve
over existing heuristic-based live migration. Live migration
is widely used for consolidating the VMs to reduce energy
consumption. Their proposed RL model Megh, continuously
adapts and learns to the changes in the system to increase the
energy efficiency. Cheng et al. [24] have studied Deep rein-
forcement learning-based resource provisioning and task
scheduling approach for cloud service providers. Their Q-
learning based model is optimized to reduce the electricity
price and task rejection rate. Similarly, Mao et al. [25] and Li
et al. [53] explored Resource Management with DDQN. They
apply the DRL to scheduling jobs on multiple resources and
analyze the reasons for achieving high gain compared to
state-of-the-art heuristics. As described before, these Q-learn-
ing based algorithms lack the ability to quickly adapt in sto-
chastic environments. Mao et al. [28] and Rjoub et al. [54] also
explored DRL (REINFORCE) based scheduling for edge only
environments. They only consider response time as a metric
and also do not exploit asynchronous or recurrent networks
to optimizemodel adaptability and robustness.

A summary of the comparison of relevant works with our
work over different parameters is shown in Table 3. We con-
sider that the scheduler is dynamic if the optimization is car-
ried dynamically for active tasks and new tasks that arrive in
the system continuously. Stochastic workload is defined by
changing tasks arrival rates and resource consumption char-
acteristics. The definitions for remaining parameters are self
explanatory. For the sake of brevity, instead of comparing to
all the heuristics based work in the table, we compare our
work to [8] and [12] which act as some of the baseline algo-
rithm in our experiments. The existing RL based solutions
use Q-learning models [16], [24], [25] and are focused on
optimizing the specific parameters such as energy or cost,

Fig. 17. Allocation timeline.

Fig. 18. Convergence comparison.

952 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 3, MARCH 2022

Authorized licensed use limited to: University of Melbourne. Downloaded on February 05,2022 at 00:46:07 UTC from IEEE Xplore. Restrictions apply.

wherein we compare our approach with DDQN [53] and
DRL (REINFORCE) [54]. All these baseline methods are
adapted to be used in the proposed edge-cloud setup. How-
ever, in the Edge-Cloud environments, infrastructure is
shared among the diverse set of users requiring different QoS
for their respective applications. In such a case, the schedul-
ing algorithmmust be adaptive and be able to tune automati-
cally to application requirements. Our proposed framework
can be optimized to achieve better efficiency with respect to
different QoS parameters as shown in Sections 4 and 5. More-
over, Edge-Cloud environment brings heterogeneous com-
plexity and stochastic behavior of workloads which need to
be modeled within a scheduling problem. We model these
parameters efficiently in ourmodel.

7 CONCLUSIONS AND FUTURE WORK

Efficiently utilizing edge and cloud resources to provide a
better QoS and response time in stochastic environments
with dynamic workloads is a complex problem. This prob-
lem is complicated further due to the heterogeneity of multi-
layer resources and difference in response times of devices
in Edge-Cloud datacenters. Integrated usage of cloud and
edge is a non-trivial problem as resources and network have
completely different characteristics when users or edge-
nodes are mobile. Prior work not only fails to consider these
differences in edge and cloud devices but also ignores the
effect of stochastic workloads and dynamic environments.
This work aims to provide an end-to-end real-time task
scheduler for integrated edge and cloud computing environ-
ments. We propose a novel A3C-R2N2 based scheduler that
can consider all important parameters of tasks and hosts to
make scheduling decisions to provide better performance.
Furthermore, A3C allows the scheduler to quickly adapt to
dynamically changing environments using asynchronous
updates, and R2N2 is able to quickly learn network weights
also exploiting the temporal task/workload behaviours.
Extensive simulation experiments using iFogSim and Cloud-
Sim on real-world Bitbrain dataset show that our approach
can reduce energy consumption by 14.4 percent, response
time by 7.74 percent, SLA violations by 31.9 percent and cost
by 4.64 percent. Moreover, our model has a negligible sched-
uling overhead of 0.002 percent compared to the existing
baseline which makes it a better alternative for dynamic task
scheduling in stochastic environments.

As part of future work, we plan to implement this model
in real edge-cloud environments. Implementation in real
environments would require constant profiling CPU, RAM
and disk requirements of new tasks. This can be done using
exponential averaging of requirement values in the current

scheduling interval with the average computed in the previ-
ous interval. Further, the CPU, RAM, disk and bandwidth
usage would have to be collected and synchronized across
all A3C agents in the edge-cloud setup. Further to the sca-
lablity analysis, we also plan to conduct tests to check the
scalability of the proposed framework with number of hosts
and tasks. The current model can schedule for a fixed num-
ber of edge nodes and tasks. However, upcoming scalable
reinforcement learning models like Impala [56] can be
investigated in future. Moreover, we plan to investigate the
data privacy and security aspects in future.

ACKNOWLEDGMENTS

This work was supported by the Melbourne-Chindia Cloud
Computing (MC3) Research Network and the Australian
ResearchCouncil.

REFERENCES

[1] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya,
“Quality of experience (QoE)-aware placement of applications in
fog computing environments,” J. Parallel Distrib. Comput., vol. 132,
pp. 190–203, 2019.

[2] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of
Things (IoT): A vision, architectural elements, and future
directions,” Future Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660,
2013.

[3] J. Diechmann, H. Kersten, R. Thomas, and W. Dominik, “The
Internet of Things: How to capture the value of IoT,” Tech. Rep.,
May 2018, pp. 1–124.

[4] S. Tuli, R. Mahmud, S. Tuli, and R. Buyya, “FogBus: A blockchain-
based lightweight framework for edge and fog computing,” J.
Syst. Softw., vol. 154, pp. 22–36, 2019.

[5] J. Wang, K. Liu, B. Li, T. Liu, R. Li, and Z. Han, “Delay-sensitive
multi-period computation offloading with reliability guarantees
in fog networks,” IEEE Trans. Mobile Comput., vol. 19, no. 9,
pp. 2062–2075, Sep. 2020.

[6] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computa-
tion offloading for mobile-edge cloud computing,” IEEE/ACM
Trans. Netw., vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[7] O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, and P. Leitner,
“Optimized IoT service placement in the fog,” Service Oriented
Comput. Appl., vol. 11, no. 4, pp. 427–443, 2017.

[8] A. Beloglazov and R. Buyya, “Optimal online deterministic algo-
rithms and adaptive heuristics for energy and performance effi-
cient dynamic consolidation of virtual machines in cloud data
centers,” Concurrency Comput., Practice Experience, vol. 24, no. 13,
pp. 1397–1420, 2012.

[9] X.-Q. Pham, N. D. Man, N. D. T. Tri, N. Q. Thai, and E.-N. Huh,
“A cost-and performance-effective approach for task scheduling
based on collaboration between cloud and fog computing,” Int. J.
Distrib. Sensor Netw., vol. 13, no. 11, pp. 1–16, 2017.

[10] A. Brogi and S. Forti, “QoS-aware deployment of IoT applications
through the fog,” IEEE Internet Things J., vol. 4, no. 5, pp. 1185–1192,
Oct. 2017.

[11] T. Choudhari, M. Moh, and T.-S. Moh, “Prioritized task
scheduling in fog computing,” in Proc. ACMSE Conf., 2018,
pp. 22:1–22:8.

TABLE 3
Comparison of Related Works With Different Parameters

TULI ETAL.: DYNAMIC SCHEDULING FOR STOCHASTIC EDGE-CLOUD COMPUTING ENVIRONMENTS USING A3C LEARNING AND... 953

Authorized licensed use limited to: University of Melbourne. Downloaded on February 05,2022 at 00:46:07 UTC from IEEE Xplore. Restrictions apply.

[12] X.-Q. Pham and E.-N. Huh, “Towards task scheduling in a cloud-
fog computing system,” in Proc. 18th Asia-Pacific Netw. Operations
Manage. Symp., 2016, pp. 1–4.

[13] D. Jeff, “ML for system, system forML, keynote talk inworkshop on
ML for systems, NIPS,” 2018. [Online]. Available: http://mlforsy
stems.org/

[14] S. Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts,
applications and issues,” in Proc. Workshop Mobile Big Data, 2015,
pp. 37–42.

[15] G. Fox et al., “Learning everywhere: Pervasive machine
learning for effective high-performance computation,” in Proc.
IEEE Int. Parallel Distrib. Process. Symp. Workshops, 2019,
pp. 422–429.

[16] D. Basu, X. Wang, Y. Hong, H. Chen, and S. Bressan, “Learn-as-
you-go with Megh: Efficient live migration of virtual machines,”
IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 8, pp. 1786–1801,
Aug. 2019.

[17] H. Li, K. Ota, andM. Dong, “Learning IoT in edge: Deep learning for
the Internet of Things with edge computing,” IEEE Netw., vol. 32,
no. 1, pp. 96–101, Jan./Feb. 2018.

[18] M. Xu, S. Alamro, T. Lan, and S. Subramaniam, “LASER: A deep
learning approach for speculative execution and replication of
deadline-critical jobs in cloud,” in Proc. 26th Int. Conf. Comput.
Commun. Netw., 2017, pp. 1–8.

[19] Q. Zhang, M. Lin, L. T. Yang, Z. Chen, S. U. Khan, and P. Li, “A
double deep Q-learning model for energy-efficient edge sched-
uling,” IEEE Trans. Services Comput., vol. 12, no. 5, pp. 739–749,
Sep./Oct. 2019.

[20] R. S. Sutton et al., Introduction to Reinforcement Learning. Cambridge,
MA,USA:MIT Press, 1998.

[21] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cam-
bridge,MA,USA:MIT Press, 2016.

[22] M. Bowling, “Convergence problems of general-sum multiagent
reinforcement learning,” in Proc. 17th Int. Conf. Mach. Learn., 2000,
pp. 89–94.

[23] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement
learning with double Q-learning,” in Proc. 13th AAAI Conf. Artif.
Intell., 2016, pp. 2094–2100.

[24] M. Cheng, J. Li, and S. Nazarian, “DRL-cloud: Deep reinforcement
learning-based resource provisioning and task scheduling for
cloud service providers,” in Proc. 23rd Asia South Pacific Des.
Autom. Conf., 2018, pp. 129–134.

[25] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource
management with deep reinforcement learning,” in Proc. 15th
ACMWorkshop Hot Topics Netw., 2016, pp. 50–56.

[26] Q. Zhang, M. Lin, L. T. Yang, Z. Chen, and P. Li, “Energy-efficient
scheduling for real-time systems based on deep Q-learning
model,” IEEE Trans. Sustain. Comput., vol. 4, no. 1, pp. 132–141,
Jan.–Mar. 2019.

[27] V. Mnih et al., “Asynchronous methods for deep reinforcement
learning,” in Proc. Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[28] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource
management with deep reinforcement learning,” in Proc. 15th
ACMWorkshop Hot Topics Netw., 2016, pp. 50–56.

[29] B. Yue, J. Fu, and J. Liang, “Residual recurrent neural networks for
learning sequential representations,” Information, vol. 9, no. 3,
2018, Art. no. 56.

[30] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya,
“iFogSim: A toolkit for modeling and simulation of resource man-
agement techniques in the internet of things, edge and fog com-
puting environments,” Softw., Pract. Experience, vol. 47, no. 9,
pp. 1275–1296, 2017.

[31] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and
R. Buyya, “CloudSim: A toolkit for modeling and simulation
of cloud computing environments and evaluation of resource
provisioning algorithms,” Softw.: Pract. Experience, vol. 41, no. 1,
pp. 23–50, 2011.

[32] Q.Qi andZ.Ma, “Vehicular edge computing via deep reinforcement
learning,” 2018, arXiv: 1901.04290.

[33] D. Pathak, P. Krahenbuhl, and T. Darrell, “Constrained convolu-
tional neural networks for weakly supervised segmentation,” in
Proc. Int. Conf. Comput. Vis., 2015, pp. 1796–1804.

[34] L. Roselli et al., “Review of the present technologies concurrently
contributing to the implementation of the internet of things (IoT)
paradigm: RFID, green electronics, WPT and energy harvesting,”
in Proc. Top. Conf. Wireless Sensors Sensor Netw., 2015, pp. 1–3.

[35] S. Tuli et al., “HealthFog: An ensemble deep learning based smart
healthcare system for automatic diagnosis of heart diseases in
integrated IoT and fog computing environments,” Future Gener.
Comput. Syst., vol. 104, pp. 187–200, 2020.

[36] S. Sarkar and S. Misra, “Theoretical modelling of fog computing:
A green computing paradigm to support IoT applications,” IET
Netw., vol. 5, no. 2, pp. 23–29, 2016.

[37] Z. Abbas and W. Yoon, “A survey on energy conserving mecha-
nisms for the Internet of Things: Wireless networking aspects,”
Sensors, vol. 15, no. 10, pp. 24 818–24 847, 2015.

[38] P. Kamalinejad, C. Mahapatra, Z. Sheng, S. Mirabbasi, V. C. Leung,
and Y. L. Guan, “Wireless energy harvesting for the Internet of
Things,” IEEECommun.Mag., vol. 53, no. 6, pp. 102–108, Jun. 2015.

[39] A. M. Rahmani et al., “Exploiting smart e-Health gateways at the
edge of healthcare Internet-of-Things: A fog computing approach,”
Future Gener. Comput. Syst., vol. 78, pp. 641–658, 2018.

[40] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy
optimization,” in Proc. 34th Int. Conf. Mach. Learn., 2017, pp. 22–31.

[41] R. Doshi, K.-W. Hung, L. Liang, and K.-H. Chiu, “Deep learning
neural networks optimization using hardware cost penalty,” in
Proc. IEEE Int. Symp. Circuits Syst., 2016, pp. 1954–1957.

[42] R. Dey and F. M. Salemt, “Gate-variants of gated recurrent unit
(GRU) neural networks,” in Proc. IEEE 60th Int. Midwest Symp. Cir-
cuits Syst., 2017, pp. 1597–1600.

[43] A. Paszke et al., “Automatic differentiation in PyTorch,” NIPS-W,
2017.

[44] B. Li et al., “Large scale recurrent neural network on GPU,” in
Proc. Int. Joint Conf. Neural Netw., 2014, pp. 4062–4069.

[45] S. Shen, V. van Beek, and A. Iosup, “Statistical characterization of
business-critical workloads hosted in cloud datacenters,” in Proc.
15th IEEE/ACM Int. Symp. Cluster Cloud Grid Comput., 2015,
pp. 465–474.

[46] SPEC, “Standard performance evaluation corporation,” 2018.
[Online]. Available: https://www.spec.org/benchmarks.html

[47] C. J. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,
no. 3/4, pp. 279–292, 1992.

[48] K. Miettinen, Nonlinear Multiobjective Optimization, vol. 12. Berlin,
Germany: Springer, 2012.

[49] S. J. Wright, “Coordinate descent algorithms,” Math. Program.,
vol. 151, no. 1, pp. 3–34, 2015.

[50] D. L. Eager, J. Zahorjan, and E. D. Lazowska, “Speedup versus
efficiency in parallel systems,” IEEE Trans. Comput., vol. 38, no. 3,
pp. 408–423, Mar. 1989.

[51] D.-M. Bui, Y. Yoon, E.-N. Huh, S. Jun, and S. Lee, “Energy effi-
ciency for cloud computing system based on predictive opti-
mization,” J. Parallel Distrib. Comput., vol. 102, pp. 103–114, 2017.

[52] L. Huang, S. Bi, and Y. J. Zhang, “Deep reinforcement learning for
online computation offloading in wireless powered mobile-edge
computing networks,” IEEE Trans. Mobile Comput., early access,
Jul. 24, 2019, doi: 10.1109/TMC.2019.2928811.

[53] F. Li and B. Hu, “DeepJS: Job scheduling based on deep reinforce-
ment learning in cloud data center,” in Proc. 4th Int. Conf. Big Data
Comput., 2019, pp. 48–53.

[54] G. Rjoub, J. Bentahar, O. A. Wahab, and A. S. Bataineh, “Deep and
reinforcement learning for automated task scheduling in large-
scale cloud computing systems,” Concurrency Comput.: Pract. Expe-
rience, e5919, 2020. [Online]. Available: https://doi.org/10.1002/
cpe.5919

[55] Z. Xiong, Y. Zhang, D. Niyato, R. Deng, P. Wang, and L.-C. Wang,
“Deep reinforcement learning for mobile 5G and beyond: Funda-
mentals, applications, and challenges,” IEEE Veh. Technol. Mag.,
vol. 14, no. 2, pp. 44–52, Jun. 2019.

[56] L. Espeholt et al., “IMPALA: Scalable distributed Deep-RL with
importance weighted actor-learner architectures,” in Proc. Int.
Conf. Mach. Learn., 2018, pp. 1407–1416.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

954 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 3, MARCH 2022

Authorized licensed use limited to: University of Melbourne. Downloaded on February 05,2022 at 00:46:07 UTC from IEEE Xplore. Restrictions apply.

http://mlforsystems.org/
http://mlforsystems.org/
https://www.spec.org/benchmarks.html
http://dx.doi.org/10.1109/TMC.2019.2928811
https://doi.org/10.1002/cpe.5919
https://doi.org/10.1002/cpe.5919

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

