
DOI: 10.4018/JOEUC.2017100101

Journal of Organizational and End User Computing
Volume 29 • Issue 4 • October-December 2017

﻿
Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

IoT Based Agriculture as a Cloud
and Big Data Service:
The Beginning of Digital India
Sukhpal Singh Gill, CLOUDS Lab, School of Computing and Information Systems, University of Melbourne, Melbourne, Australia

Inderveer Chana, Computer Science and Engineering Department, Thapar University, Patiala, India

Rajkumar Buyya, CLOUDS Lab, School of Computing and Information Systems, University of Melbourne, Melbourne, Australia

ABSTRACT

Cloud computing has transpired as a new model for managing and delivering applications as services
efficiently. Convergence of cloud computing with technologies such as wireless sensor networking,
Internet of Things (IoT) and Big Data analytics offers new applications’ of cloud services. This
paper proposes a cloud-based autonomic information system for delivering Agriculture-as-a-Service
(AaaS) through the use of cloud and big data technologies. The proposed system gathers information
from various users through preconfigured devices and IoT sensors and processes it in cloud using
big data analytics and provides the required information to users automatically. The performance of
the proposed system has been evaluated in Cloud environment and experimental results show that
the proposed system offers better service and the Quality of Service (QoS) is also better in terms of
QoS parameters.

Keywords
Agriculture as a Service, Autonomic Management, Big Data, Cloud Computing, Internet of Things

1. INTRODUCTION

Emergence of ICT (Information and Communication Technologies) plays an important role in the
agriculture sector by providing services through computer-based agriculture systems (Singh and
Chana, 2015). But these agriculture systems are not able to fulfill the needs of today’s generation
due to processing of large amount of data, lack of important requirements like processing speed,
data storage space, reliability, availability, scalability etc. and even resources used in computer-based
agriculture systems are not utilized efficiently. Agriculture-as-a-Service (AaaS) applications exhibit
Big data characteristics. For example, the volume of agriculture dataset captured by environments
such as Open Government Data Platform India (data.gov.in, 2015), India Agriculture and Climate
Data Set (Sanghi et al.), and regional land and climate modelling in China (Shangguan et al., 2012)
can be in order of 1000000 records with size of 3.5 GB. The data is coming in large data variety and
volume from both users in the form of images like damaged crop images due to weather, insects etc.
and devices through Internet of Things (IoT) sensors and satellites (GPS systems) that send weather
related images. As a result of regular capturing and collection of datasets, they grow with the velocity

1

Journal of Organizational and End User Computing
Volume 29 • Issue 4 • October-December 2017

2

of 80.72 KB/minute or more (data.gov.in, 2015). To solve the problem of existing agriculture systems,
there is a need to develop a cloud-based service that can easily manage different types of agriculture
related-data based on different domains (crop, weather, soil, pest, fertilizer, productivity, irrigation,
cattle, and equipment) through these steps: i) gather data from various sensors through preconfigured
devices, ii) classify the gathered data (heterogeneous, high volume of big data) into various classes
through analysis, iii) store the classified information in cloud repository for future use, and iv)
automatic diagnosis of the agriculture status. As large number of users are using agriculture systems
operating on large datasets simultaneously, there is a need of highly scalable and elastic distributed
computing environment such as cloud computing. In addition, cloud-based autonomic information
system should be able to identify the QoS (Quality of Service) requirements of user request and
resources should be allocated efficiently to execute the user request based on these requirements.

The main aim of this paper is to design architecture of Agriculture-as-a-Service (AaaS) that
manages various types of agriculture-related data based on different domains. This is realized through
the following objectives: i) propose an autonomic resource management technique which is used to a)
gather the information from various users through preconfigured devices, IoT sensors, GPS (Global
Positioning System), etc. b) extract the attributes, c) analyze the information by creating various
classes based on the information received, d) store the classified information in cloud repository for
future use and e) diagnose the agriculture status automatically and ii) perform resource allocation
automatically at infrastructure level after identification of QoS requirements of user request.

The rest of the paper is organized as follows. Section 2 presents related work of existing
agricultures systems. Proposed architecture is presented in Section 3. Section 4 presents Autonomic
Resource Management. Sections 5 describe the experimental setup and present the results of evaluation.
Section 6 presents conclusions and future scope.

2. RELATED WORK

Existing research reported that few agriculture systems have been developed with limited functionality.
Related work of existing agriculture systems has been presented in this section.

2.1. Existing Agriculture Systems
Ranya et al. (2013) presented ALSE (Agriculture Land Suitability Evaluator) to study various types
of land to find the appropriate land for different types of crops by analyzing geo-environmental
factors. ALSE used GIS (Global Information System) capabilities to evaluate land using local
environment conditions through digital map and based on this information decisions can be made.
Raimo et al. (2010) proposed FMIS (Farm Management Information System) used to find the precision
agriculture requirements for information systems through web-based approach. Author identified the
management of GIS data is a key requirement of precision agriculture. Sorensen et al. (2010) studied
the FMIS to analyze dynamic needs of farmers to improve decision processes and their corresponding
functionalities. Further they reported that identification of process used for initial analysis of user
needs is mandatory for actual design of FMIS. Zhao (2002) presented an analysis of web-based
agricultural information systems and identified various challenges and issues still pending in these
systems. Due to lack of automation in existing agriculture system, the system is taking longer time
and is difficult to handle dynamic needs of user which leads to customer dissatisfaction. Sorensen
et al. (2011) identified various functional requirements of FMIS and information model is presented
based on these requirements to refine decision processes. They identified that complexity of FMIS
is increasing with increase in functional requirements and found that there is a need of autonomic
system to reduce complexity. Yuegao et al. (2004) proposed WASS (Web-based Agricultural Support
System) and identified functionalities (information, collaborative work and decision support) and
characteristics of WASS. Based on characteristics, authors divided WASS into three subsystems:
production, research-education and management.

Journal of Organizational and End User Computing
Volume 29 • Issue 4 • October-December 2017

3

Reddy at el. (1995) proposed GIS based DSS (Decision Support System) framework in which
Spatial DDS has been designed for watershed management and management of crop productivity at
regional and farm level. GIS is used to gather and analyze the graphical images for making new rules
and decisions for effective management of data. Shitala et al. (2013) presented mobile computing
based framework for agriculturists called AgroMobile for cultivation and marketing and analysis of
crop images. Further, AgroMobile is used to detect the disease through image processing and also
discussed how dynamic needs of user affects the performance of system. Seokkyun et al. (2013)
proposed cloud based Disease Forecasting and Livestock Monitoring System (DFLMS) in which sensor
networks has been used to gather information and manages virtually. DFLMS provides an effective
interface for user but due to temporary storage mechanism used, it is unable to store and retrieve data
in databases for future use. The proposed QoS-aware Cloud Based Autonomic Information System
(AaaS) has been compared with existing agriculture systems as described in Table 1.

All the above research works have focused on different domains of agriculture with different
QoS parameters. None of the existing agriculture systems considers self-management of resources.
Due to lack of automation of resource management, services become inefficient which further leads
to customer dissatisfaction. The proposed system is a novel QoS-aware cloud based autonomic
information system and considers various domains of agriculture and, allocates and manages the
resources automatically which is not considered in other existing agriculture systems.

3. AGRICULTURE-AS-A-SERVICE ARCHITECTURE

The existing agriculture systems are not able to fulfill the needs of today’s generation due to lacking
in important requirements like processing speed, data storage space, reliability, availability, scalability
etc. Even resources used in computer based agriculture systems are not utilized efficiently. To solve
the problem of existing agriculture systems, there is a need to develop a cloud-based autonomic
information system that delivers Agriculture-as-a-Service. This section presents architecture of
cloud-based autonomic information system for agriculture service called AaaS that manages various

Table 1. Comparisons of existing agriculture systems with proposed system (AaaS)

Agriculture
System Mechanism QoS-aware

(Parameter) Domains Data
Classification

Resource
Management

Big
Data

ALSE (Elsheikh
et al., 2013)

Non-
Autonomic Yes (Suitability) Soil Yes No No

FMIS (Nikkila et
al., 2010)

Non-
Autonomic No Pest and Crop No No No

WASS (Hu et al.,
2004)

Non-
Autonomic No Productivity No No No

AgroMobile
(Prasad et al.,
2013)

Non-
Autonomic

Yes (Data
accuracy) Crop Yes No No

DFLMS (Jeong et
al., 2013)

Non-
Autonomic No Crop No Yes No

Proposed System
(AaaS) Autonomic

Yes (Cost,
Time, Resource
Utilization,
Latency,
Throughput and
Attack Detection
Rate)

Crop, Weather, Soil,
Pest, Fertilizer and
Irrigation

Yes Yes Yes

Journal of Organizational and End User Computing
Volume 29 • Issue 4 • October-December 2017

4

types of agriculture-related data based on different domains. Architecture of AaaS is shown in Figure
1. QoS parameters (execution time and cost) must be identified before the allocation of resources.
AaaS is the key mechanism that ensures that the resource manager can serve large amount of requests
without violating SLA terms and dynamically manages the resources based on QoS requirements
identified by QoS manager. The services of AaaS has been divided into three types: SaaS (Software
as a Service), PaaS (Platform as a Service) and IaaS (Infrastructure as a Service). In SaaS, a user
interface is designed in which users can interact with system. Aneka is a .NET-based application
development PaaS, which is used as a scalable cloud middleware to make interaction between cloud
subsystem and user subsystem. In IaaS, an autonomic resource manager manages the resource
automatically based on the identified QoS requirements of a particular request. The architecture of
AaaS comprises of two subsystems: i) user and ii) cloud.

3.1. User Subsystem
This subsystem provides a user interface, in which different type of users interact with AaaS to provide
and get useful information about agriculture based on different domains. Nine types of information of
different domains in agriculture has been considered: crop, weather, soil, pest, fertilizer, productivity,
irrigation, cattle, and equipment. Users are basically classified in three categories: i) agriculture
expert, ii) agriculture officer, and iii) farmer. The agriculture expert shares professional knowledge
by answering farmer queries and updates the AaaS database based on the latest research done in the
field of agriculture with respect to their domain. Agriculture officers are the government officials
that provide the latest information about new agriculture policies, schemes, and rules passed by the
government. Farmer is an important entity of AaaS who can take maximum advantage by asking his
queries and getting automatic reply after analysis. Users can monitor any data related to their domain
and get their response without visiting the agriculture help center. It integrates the different domains
of agriculture with AaaS. The queries received from user(s) are forwarded to cloud repository for
updates and response sends back to particular user on their preconfigured devices (tablets, mobile
phones, laptops etc.) via internet.

3.2. Cloud Subsystem
This subsystem contains the platform in which agriculture service is hosted on a cloud. Details
about users and agriculture information are stored in a cloud repository in different classes for
different domains with unique identification number. The information is monitored, analyzed, and
processed continuously by AaaS. The analysis process consists of various sub processes: selection,
data preprocessing, transformation, classification and interpretation as shown in Figure 1. Different
classes for every domain and sub classes for further categorization of information have been designed.
In storage repository, user data is categorized based on different predefined classes of every domain.
This information is further forwarded to agriculture experts and agriculture officers for final validation
through preconfigured devices. Further, a number of users can use cloud-based agriculture service
so the QoS manager and autonomic resource manager in cloud subsystem have been integrated. QoS
manager identifies the QoS requirements based on the number and type of user queries as discussed
in previous research work (Jeong et al., 2013; Singh and Chana, 2015; Singh et al., 2015). Based on
QoS requirements, autonomic resource manager identifies resource requirements automatically and
allocates and executes the resources at infrastructure level. Performance monitor is used to verify the
performance of system and also maintain it automatically. If the system will not be able to handle the
request automatically then the system generates an alert.

3.2.1. Cloud-Based Agriculture Service
Cloud-based agriculture service provides a user platform through which user can access agriculture
service as shown in Figure 2. Firstly, agriculture service allows user to create profile for interaction
with AaaS. After profile creation, the user is required to provide his personal details along with the

Journal of Organizational and End User Computing
Volume 29 • Issue 4 • October-December 2017

5

details of information domain. AaaS analyses the information to verify whether the data is complete
or not for further processing by performing various checks. Further data is processed and redundancy
of data is removed and data is used to select domain to which data belongs. Information is classified
properly in order with unique identification number. This information is forwarded to agriculture
experts and agriculture officers for final validation through preconfigured devices. After successful
validation of information, it is stored in AaaS database. If user wants to know the response of their
query, then system will automatically diagnose the user query and send the response back to that user.

Figure 1. Agriculture-as-a-Service architecture

Figure 2. Functional aspects of AaaS

Journal of Organizational and End User Computing
Volume 29 • Issue 4 • October-December 2017

6

3.2.2. Detailed Methodology
AaaS allows users to upload the data related to different domains of agriculture through preconfigured
devices and classified them based on the domains specified in database. Subtasks of information
gathering and provided in AaaS are: i) selection, ii) preprocessing, iii) transformation, iv) classification
and v) interpretation. In selection, target datasets are created based on the relevant information that will
further be considered for analysis in next sub process. In preprocessing, different users have different
information regarding agriculture. To develop a final training set, there is need of preprocessing steps
because data might contain some missing sample or noise components. In AaaS, data preprocessing
contains four different sub processes: i) data cleaning, ii) data integration, iii) data conversion and
iv) data reduction. Data transformation provides an interface between data analysis sub process
(classification) and data preprocessing. After data preprocessing, this process converts the labeled
data into adequate format suitable for classification. In classification, AaaS classify the agriculture
information of different users of different domains based on the extracted data. K-NN (k-Nearest
Neighbor) classification mechanism has been used in this research work to identify the different
class labels of users. K-NN is supervised machine learning technique which is used to classify the
unknown data using training data set generated by it. K-NN used to identify the productivity level
through Training Instance Dataset (TID). Figure 3 describes the K-NN Algorithm.

In K-NN algorithm, distance is computed from one specific instance to every training instance
to classify that unknown instance. Both k-nearest neighbor and k minimum distance is determined
and output class label is identified among k classes. During training phase, K-NN Algorithm utilizes
training data. Figure 4 illustrates the classification process used in this research work.

K-NN model is used to identify the productivity level through Training Instance Dataset (TID).
Five levels of productivity (A - E) have been fixed as shown in Table 2. The level ‘A’ indicates the
productivity is very high while level ‘E’ indicates the productivity is very low. Based on the given
information, TID identifies the class in which given data belongs.

Test data is an input of this model and it is compared with TID and identifies the class in which
data laid using following rule:

Rule: If {Crop Name ˄ Temperature ˄ Soil Texture ˄ Season ˄ Pesticide ˄ Fertilizer} then Productivity

The final step is to interpret the agriculture data submitted by different users of different domains
which helps user to understand the classified datasets. AaaS is capable to diagnose the agriculture status
based on the information entered by user and send the diagnosed agriculture status to particular user

Figure 3. Pseudo code of K-NN algorithm

Journal of Organizational and End User Computing
Volume 29 • Issue 4 • October-December 2017

7

automatically. Six attributes have been considered: Crop Name, Temperature, Soil Texture, Season,
Pesticide and Fertilizer and one output: Productivity. Based on these six attributes, AaaS designs
rules. Values for six variables are considered as TID. For example, refer to Table 3.

AaaS uses the rule shown in Table 3 to find the productivity level using TID (see Table 4).
Similarly, any type of query related to different domains can be asked by users and AaaS executes

the user query and send response back to particular user automatically based on the rules defined in
AaaS database. Through AaaS, users can easily diagnose the agriculture status automatically.

3.2.3. Infrastructure Management (IaaS)
Efficient management of infrastructure in cloud is mandatory to maintain the performance of the
Agri-Info. It comprises of two sub units: QoS Manager and Resource Manager.

Figure 4. Classification process

Table 2. Productivity Levels

Productivity Level Description

A Very High Productivity

B High Productivity

C Neutral Productivity

D Low Productivity

E Very Low Productivity

Table 3. User wants to retrieve the productivity level using AaaS

User Query

Crop
Name Temperature Soil

Texture Season Pesticide Fertilizer Productivity

Soybean 21-27 °C Slity Loam
Clay Winter Organochlorine Urea ?

Journal of Organizational and End User Computing
Volume 29 • Issue 4 • October-December 2017

8

3.2.3.1. QoS Manager
User submits a request to Agri-Info to retrieve some specific agriculture related information. Agri-
Info identifies the QoS parameters required to process the user request through analysis based on
user request. Based on the key QoS requirements of a particular user request, the QoS Manager puts
the user request into critical and non-critical queues through QoS assessment. For QoS assessment,
QoS Manager will calculate the execution time of user request and find the approximate user request
completion time. If the completion time is lesser than the desired deadline then it will execute
immediately with the available resources and release the resource(s) back to resource manager for
another execution otherwise calculate extra number of resources required and provide from the
reserved stock for current execution.
3.2.3.2. Resource Manager
Further, two resource scheduling policies (Singh and Chana, 2015) are used to schedule the resources
for execution of user queries: time based and cost based scheduling policy. Time based scheduling
policy works as per following: First, the allocation agent begins to compute the Deadline Time of the
user request in the given budget. Allocate resources based on time, the user request which has shortest
Deadline Time will execute first. If the two requests have same deadline time then that request will
execute first that has lesser execution time. The allocation agent then schedules all the requests with
smallest execution time request to the resources that provide high QoS. The rules for time based
scheduling policy are described in Table 5 along with their conditions.

Cost based scheduling policy works as per following: First, the allocation agent begins to compute
the cost of each request then sort, as the priority is given to the request which has maximum budget.
If the two requests have same budget then that request will execute first that has lesser execution time.
The allocation agent then schedules all the requests with high budget request to the resources that
provide high QoS. Finally, all other requests are scheduled on the available resources set. The rules
for cost based scheduling policy are described in Table 6 along with their conditions.

4. AUTONOMIC RESOURCE MANAGEMENT

Working of autonomic element of Agri-Info is based on IBM’s autonomic model that considers four
steps of autonomic system: i) monitor, ii) analyze, iii) plan and iv) execute as shown in Figure 1. The

Table 4. AaaS response utilized to in order to find the productivity level using TID

AaaS Response

Crop
Name Temperature Soil

Texture Season Pesticide Fertilizer Productivity

Soybean 21-27 °C Slity Loam
Clay Winter Organochlorine Urea C

Table 5. Rules of time based resource scheduling

Request Pending Urgency Add Resource Request

Yes Yes Reserve Submit

Yes No Available Submit

No - - Finish

Journal of Organizational and End User Computing
Volume 29 • Issue 4 • October-December 2017

9

objective of resource provisioning in autonomic resource management is to provision the resources
to process user requests. The requests submitted should be executed within their budget and deadline.
Requests submitted by user to resource provisioner are stored as bulk of workloads for their execution.
All the submitted workloads are analyzed based on their QoS requirements. Based on importance
of the attribute, weights for every cloud workload are calculated. After that, workloads are clustered
based on k-means based clustering algorithm for better resource provisioning (Singh et al., 2015). If
the value of workloads executes within deadline and budget and [Resource Consumption and Requests
Missed is lesser than Threshold Value] then it will provision resources otherwise generate alert for
analyses the workload again.

After successful provisioning of resources, Resource Scheduler (RS) takes the information from
the appropriate workload after analyzing the various workload details which user request demanded
(Singh and Chana, 2015). Knowledge Base contains details of all the resources available in resource
pool and reserve resource pool. Based on Cloud consumer details, RS assigns resources and executes
Cloud workloads. During execution of a particular cloud workload, the Resource Executor (RE) will
check the current workload. If the resources are sufficient for execution then it will continue with
execution otherwise request for more resources. If the value of Resource Consumption and Requests
Missed is lesser than threshold value, then RE will execute workloads otherwise RE will generate alert.
After successful execution of Cloud workloads, RE releases the free resources to resource pool and
RE is ready for execution of new cloud workloads. During execution of user requests, performance is
monitored continuously using sub unit performance monitor to maintain the efficiency of Agri-Info
and generates alert in case of performance degradation. Alerts can be generated in two conditions
generally: i) if resource consumption is more than threshold values of resource consumption to execute
user request (Action: Reallocates resources) and ii) if the number of missed requests are greater than
the threshold value (Action: Predict QoS Requirements Again). Same action is performed twice, if
Agri-Info fails to correct it then system will be treated as down. Components of autonomic system
are described below:

4.1. Sensors
Sensors get the information about performance of other nodes using in the system and their current
state. Firstly, the updated information from processing nodes is transfer to manager node then manager
node transfers this information to sensors. Updated information includes information about QoS
parameters (execution time, execution cost and resource utilization etc.).

4.2. Monitor
Initially, Monitors are used to collect the information from sensors for monitoring continuously
performance variations by comparing expected and actual performance, and monitors the value of

Table 6. Rules of cost based resource scheduling

Request Pending RA > 0 Et > Wd BA > Pr Status

Yes True True True Add Resource

Yes False True True Add Resource

No - - - Finish

Yes True False True Finish

Yes True True False Finish

R
A

 = Resource Available, E
t

 = Estimated Time, P
r

 = Resource Price, W
d

 = Desired Deadline and B
A

 = Available Budget. Details of both
time and cost based scheduling policy is given in previous research work (Singh and Chana, 2015).

Journal of Organizational and End User Computing
Volume 29 • Issue 4 • October-December 2017

10

resource consumption and missed requests. Actual information about performance is observed based
QoS parameters and transfers this information to next module for further analysis.

4.3. Analysis and Plan
Analyze and plan module start analyzing the information received from monitoring module and make
a plan for adequate actions for corresponding alert. Following formula is used to calculate Resource
Consumption (Equation 1):

Resource
Consumption

i

n

� =
=
∑
1

Actual�Resource�Usage

Predicted�Reesource�Usage











	 (1)

where Actual Resource Usage is usage of resource to execute particular number of user requests
and Predicted Resource Usage is resource usage estimated before actual execution and n is the
number of resources. Assumed: Predicted Resource Usage Actual Resource Usage≤



 . Value

of ResourceConsumption . is more than 1 generally because Actual Resource Usage is more
than Predicted Resource Usage but ideally it will be 1 when both are equal. In this research rk,
maximum values for ResourceConsumption has been fixed and that is called threshold value.
Following formula is used to calculate number of requests missed Requests

Missed() in a particular
period of time (Equation 2):

Requests
Missed

 = [Number of Requests Executed Successfully – Number of Requests Missed Deadline]	 (2)

For successful execution of resources, value of Requests
Missed

 is lesser than threshold value.
Algorithm 1 is used to analyses the performance of management of resources.

With the help of (Equation 1) and (Equation 2), resource consumption is calculated and allocates
the resources for execution and then compares the resource consumption with threshold value Th

c() .
If resource consumption is less than threshold value and value of Requests

Missed
 is less than threshold

value Th
m() then execution of resources continues otherwise no resource is allocated and process

of reallocation is started using Algorithm 1. After meeting this condition, resources are allocated for

Algorithm 1. Analyzing and Panning Unit (AU)

Journal of Organizational and End User Computing
Volume 29 • Issue 4 • October-December 2017

11

further execution and value of resource consumption and Requests
Missed

 are checked periodically. In
case of more value than threshold, alert will be generated by performance monitor.

4.4. Executor
Executor implements the plan after analyzing completely. To reduce the execution time and execution
cost and improve resource utilization is a main objective of executor. Based on the output given by
analysis and executor tracks the new user request submission and resource addition, and take the
action according to rules described in knowledge base.

4.5. Effector
Effector is used to exchange updated information and it is used to transfer the new policies, rules and
alerts to other nodes with updated information.

5. PERFORMANCE EVALUATION

The aim of this performance evaluation is to demonstrate that it is feasible to implement and deploy
the agriculture as a service on real cloud resources. Tools used for setting up cloud environment for
performance analysis are Microsoft Visual Studio 2010 (SaaS), Aneka (PaaS), SQL Server 2008,
and Citrix Xen Server (IaaS). Aneka has been installed along with its requirements on all the nodes
that provide cloud service. Nodes in this system can be added or removed based on the requirement.
AaaS is installed on main server and tested on virtual cloud environment that has been established at
CLOUDS Lab, University of Melbourne, Australia. Different number of virtual machines have been
installed on different servers, and deployed the AaaS to measure the variations. In this experimental
setup, three different cloud platforms are used: Software as a Service (SaaS), Platform as a Service
(PaaS) and Infrastructure as a Service (IaaS) as shown in Figure 5.

At SaaS level, Microsoft Visual Studio is used to develop e-agriculture web service to provide
user interface in which user can access service from any geographical location. At PaaS level, Aneka
cloud application platform is used as a scalable cloud middleware to make interaction between IaaS

Figure 5. Deployment of components at runtime and their interaction

Journal of Organizational and End User Computing
Volume 29 • Issue 4 • October-December 2017

12

and SaaS, and continually monitor the performance of the system. At IaaS level, three different
servers (consist of virtual nodes) have been created through Citrix Xen Server and SQL Server has
been used for data storage. Scheduler as shown in Figure 5, runs at IaaS level on Citrix Xen Server.
Computing nodes used in this experiment work are further categorized into three categories as shown
in Table 7. The execution cost is calculated based on user request and deadline (if deadline is too early
(urgent) it will be more costly because there is a need of greater processing speed and free resources
to process particular request with urgency). There is individual price is fixed (artificially) for different
resources because all the resources are working in coordination manner to fulfill the demand of user
(demand of user is changing dynamically).

Experiment setup using 3 servers in which further virtual nodes (12 = 6 (Server 1) +4 (Server 2)
+2 (Server 3)) are created. Every virtual node has different number for Execution Components (ECs)
to process user request and every EC has their own cost (C$/EC time unit (Sec)). Table 1 shows the
characteristics of the resources used and their Execution Component (EC) access cost per time unit in
Cloud dollars (C$) and access cost in C$ is manually assigned for experimental purposes. The access
cost of an EC in C$/time unit does not necessarily reflect the cost of execution when ECs have different
capabilities. The execution agent needs to translate the access cost into the C$ for each resource. Such
translation helps in identifying the relative cost of resources for executing user requests on them. Due
to limited number of resources, cost increases with increase in user requests. Cost is varying in two
different cases: i) relaxed deadline and ii) tight deadline. In both cases, when the deadline is low (e.g.
200 secs), the number of user requests processed increases as the budget value increases. When a
higher budget is available, the execution agent uses expensive resources to process more user requests
within the deadline. Alternatively, when scheduling with a low budget, the number of user requests
processed increases as the deadline is relaxed. Different number of experiments has been performed
by comparing AaaS (QoS-aware Autonomic) as discussed in Section 4 with non-autonomic resource
management technique (non-autonomic) in which no autonomic scheduling mechanism is considered
while allocating resources to process the user requests.

5.1. Datasets
Datasets used in this research work are downloaded from the Open Government Data Platform
India (data.gov.in, 2015), India Agriculture and Climate Data Set (Sanghi et al.), and regional land
and climate modelling in China (Sanghi et al.) can be in the order of 1000000 records, with size of
3.5 GB. The data is coming in large data variety and volume from both users in the form of images
like damaged crop images due to weather, insects etc. and devices through Internet of Things (IoT)
sensors and satellites (GPS systems) that send weather related images. As a result of regular capturing
and collection of datasets, they grow with the velocity of 80.72 KB/minute or more (Sanghi et al.).
Five different tables used to process the different types of data as described in Table 8 to Table 12.

Table 7. Configuration Details of Cloud Environment

Resource_Id Configuration Specifications Operating
System

Number of
Virtual Node

Number
of ECs

Price (C$/
EC Time

Unit)

R1 Intel Core 2 Duo -
2.4 GHz

1 GB RAM and 160
GB HDD Windows 6 18 2

R2 Intel Core i5-
2310- 2.9GHz

1 GB RAM and 160
GB HDD Linux 4 12 3

R3 Intel XEON E
52407-2.2 GHz

2 GB RAM and 320
GB HDD Linux 2 6 4

Journal of Organizational and End User Computing
Volume 29 • Issue 4 • October-December 2017

13

Table 8. Crop Information

CropId Crop
Name

Crop
Type Soil Texture Min

Land
Growing
Period

Seed
Type Price Quantity

C1 Rice Kharif Slity Clay 5 Acre 3 Months Wet 1200 Rs./
Kg 2 Kg/Acre

C2 Maize Rabi Slity Loam Clay 4 Acre 4 Months Dry 1600 Rs./
Kg 1 Kg/Acre

C3 Wheat Zaid Loam Clay 3 Acre 3 Months Wet 1000 Rs./
Kg 2 Kg/Acre

C4 Sugarcane Cash Slity 4 Acre 6 Months Dry 800 Rs./Kg 6 Kg/Acre

Table 9. Weather information

Crop Name Temperature Season Pressure (CFM) Wind Speed Rainfall Location

Rice 15-18 °C Winter 0.75 to 1.5 16 Km/h 300–650 mm Ambala

Maize 17-22 °C Summer 0.05 to 0.5 12 Km/h 100–150 mm Amritsar

Wheat 25-30 °C Rainy 1.5 to 5.2 17.3 Km/h 200–250 mm Ganga Nagar

Sugarcane 35-40 °C Summer 1 to 10 8 Km/h 400–600 mm Pathankot

Table 10. Soil information

Soil
Texture Bulk Density Inorganic

Material
Organic
Material Water Air Color Structure Infiltration

Slity Clay 2.60 to 2.75
grams per cm3 Sand and clay

Plant and
animal
residues

25% 28% Brown Plate-like 15 mm/hour

Slity Loam
Clay

2.7 to 2.75
grams per cm3 Sand and Slit Animal

residues 22% 18% Red Prism-like 10 mm/hour

Loam Clay 2.60 to 2.75
grams per cm3 Clay and Slit Plant residues 37% 21% Brown Block like 18 mm/hour

Slity 2.60 to 2.75
grams per cm3

Sand, Slit and
Clay

Plant and
animal
residues

31% 29% Black Sphere
like 22 mm/hour

Table 11. Pest information

Crop
Type

Crop
Disease Effect Treatment Pesticide Name Solubility

in Water Price Outcome

Kharif Bacterial
brown spot

Degrade soil
fertility

Reduce
Irrigation Carbonate Yes Rs.

1500/L
Improve
Productivity

Rabi Zonate eye
spot

Degrade
productivity

Distribute
Soil Organophosphate No Rs.

2200/L
Improve soil
fertilization

Zaid Dwarf
bunt

Increase risk of
other disease

Spray
irrigation Parathyroid Yes Rs.

2300/L
Reduce risk of
other diseases

Cash Ergot Degrade
productivity

Drip
Irrigation Parathyroid Yes Rs.

1800/L
Reduce
productivity

Journal of Organizational and End User Computing
Volume 29 • Issue 4 • October-December 2017

14

5.2. Performance Metrics
The following metrics are used to calculate the execution cost, execution time, resource utilization,
latency, detection rate and scalability for processing user requests as taken from previous work (Singh
and Chana, 2015; Singh et al., 2015; Singh and Chana, 2016):

Execution Time is a ratio of difference of request finish time WF
i() and request start time WStart

i()
to number of requests. Following formula is used to calculate Execution Time (ET) (Equation 3):

ET
WF WStart

ni
i

n
i i=
−









=
∑

1

	 (3)

where n is the number of requests to be executed.
Execution Cost is defined as the total amount of cost spent per one hour for the execution of

request and measured in Cloud Dollars (C$). Following formula is used to calculate execution cost
(C) (Equation 4):

C ET Price
i

= × 	 (4)

Latency is a defined as a difference of time of input cloud workload and time of output produced
with respect to that workload. Following formula is used to calculate Latency (Equation 5):

Latency timeof output producedafterexecution time
i

i

n

= −
=
∑
1

� � � � � �� � � � �of inputof cloudworkload() 	 (5)

where n is number of workloads.
Resource Utilization is defined as a ratio of actual time spent by resource to execute workload

to total uptime of resource for single resource. Following formula is used to calculate resource
utilization (Equation 6):

ResourceUtilization
actual timespentbyresourcet

i
i

n

�
� � � � �

=
=
∑
1

ooexecuteworkload

total uptimeof resource

� �

� � �











	 (6)

where n is number of workloads.

Table 12. Fertilizer information

Crop Type Fertilizer Name Nutrient Composition Price

Kharif Urea Nitrogen in form of urea (amide) (N) 7000 Rs./10 Kg

Rabi Ammonium-Nitrate Ammoniacal Nitrogen, Nitrogen Nitrate and Urea
Nitrogen 9100 Rs./10 Kg

Zaid Ammonium-Sulphate Ammoniacal nitrogen and Sulpher 6200 Rs./10 Kg

Cash Urea-Ammonium Ammoniacal nitrogen and Neutral ammonium citrate
Soluble phosphate 13200 Rs./10 Kg

Journal of Organizational and End User Computing
Volume 29 • Issue 4 • October-December 2017

15

Security is measured in terms of detection rate. Experiment has been conducted with different
type of attacks (DoS, R2L, U2R and Probing) and different tools used to launch different attacks are
metasploit framework for DoS, Hydra for R2L, NetCat for L2R and NMAP for probing. Detection Rate
is the ratio of total number of true positives to the total number of intrusions (Sorensen et al., 2010):

DetectionRate
Total NumberofTruePositives

Total Numbe

=

rrof Intrusions
	 (7)

Scalability is measured in terms of throughput. It is the ratio of total number of workloads to
the total amount of time required to execute the workloads. Following formula is used to calculate
throughput (Equation 8):

Throughput
W

Totalamountof
n�

Total�Number�of�Workloads�
=

()
� � �ttimerequired toexecutetheworkloads W

n
� � � � � �()

	 (8)

Experiment has been conducted with 180 user requests for verification of execution cost, execution
time, resource utilization, latency, detection rate and scalability. With increasing the number of user
requests, the value of latency is increasing. The value of latency in QoS-aware autonomic system is
lesser as compared to non-autonomic based resource scheduling at different number of user requests
as shown in Figure 6. The maximum value of latency is 193 seconds and minimum value of latency
is 59 seconds in QoS-aware autonomic resource management technique. Average latency in QoS-
aware autonomic is 15.22% lesser than non-autonomic resource management technique. The value
of average cost for both QoS-aware cloud based autonomic resource management technique and

Figure 6. Effect of change in number of user requests on latency

5.3. Experimental Results -- Based on Modelling and Simulation using CloudSim

Journal of Organizational and End User Computing
Volume 29 • Issue 4 • October-December 2017

16

non-autonomic resource management is calculated with different number of user requests as shown
in Figure 7. Average cost is increasing with increase in number of user requests. At 180 user requests,
average cost in QoS-aware autonomic is 25.36% lesser than non-autonomic resource management
technique. QoS-aware autonomic performs excellent with different number of user requests. Execution
cost in QoS-aware autonomic is 27.65% lesser than non-autonomic resource management technique.

As shown in Figure 8, the execution time is increasing with increase in number of user requests.
At 90 user requests, execution time in QoS-aware autonomic resource management technique
is 24.66% lesser than non-autonomic resource management technique. After 120 user requests,
execution time increases abruptly in non-autonomic resource management technique but QoS-aware
autonomic performs better than non-autonomic technique. Average execution time in QoS-aware
autonomic is 18.960% lesser than non-autonomic resource management technique. With increasing
the number of user requests, the percentage of resource utilization is increasing. The percentage of
resource utilization in QoS-aware autonomic resource management technique is more as compared
to non-autonomic resource management (non-autonomic) at different number of user requests as
shown in Figure 9. The maximum percentage of resource utilization is 94.66% at 180 user requests
in QoS-aware autonomic but QoS-aware autonomic performs better than non-autonomic technique.
Average resource utilization in QoS-aware autonomic is 31.96% more than non-autonomic resource
management technique.

Scalability is measured in terms of throughput. Number of software, network and hardware
faults (fault percentage) has been injected to verify the throughput of the proposed system with 100
user requests. Figure 10 shows the comparison of throughput of both QoS-aware autonomic resource
management approach and non-QoS based resource management technique (non-autonomic) at 100
user requests and it is clearly shown that QoS-aware autonomic performs better than non-autonomic.
In this experiment, it has been found the maximum value of throughput at fault percentage 45% i.e.
QoS-aware autonomic has 26% more throughput than non-autonomic. Detection rate increases with
respect to time and it considers the number of blocked and detected attacks. For new attack or intrusion
detection, database is updated with new signatures and new polices and rules are generated to avoid

Figure 7. Effect of change in number of user requests on execution cost

Volume 29 • Issue 4 • October-December 2017

17

same attack. Experiment has been conducted for known attacks; it is clearly shown in Figure 11 that
QoS-aware autonomic performs better than snort anomaly detector (non-autonomic). Further signatures
of some known attacks have been removed from database to verify the working of proposed system.

Table 13 describes the comparison of execution time used to process different number of
workloads (90 and 180) on cloud environment for proposed system with different number of

Figure 8. Effect of execution time with change in number of user requests

Figure 9. Effect of change in number of user requests on resource utilization

Journal of Organizational and End User Computing

Journal of Organizational and End User Computing
Volume 29 • Issue 4 • October-December 2017

18

Virtual Machines (VMs). The number of VMs used to execute the workloads was incremented
gradually showing how the total execution time was reduced when more VMs were added to
the cloud. With one virtual node running on Server R1, execution of 45 workloads finished in
436.12 seconds. With 12 virtual nodes (6 running on R1, 4 running on R2 and 2 running on R3),
the application took 276.16 seconds. It is noted that the execution time is reduced with adding
additional virtual nodes.

Figure 10. Throughput [100 user requests] vs. Fault percentage (%)

Figure 11. Detection rate vs. Attacks

Journal of Organizational and End User Computing
Volume 29 • Issue 4 • October-December 2017

19

5.4. Statistical Analysis

Statistical significance of the results has been analyzed by Coefficient of Variation Coff ofVar. .() ,
a statistical method. Coff ofVar. . is statistical measure of the distribution of data about the mean
value. Coff of Var. . is used to compare to different means and furthermore offer an overall analysis
of performance of the technique used for creating the statistics. It states the deviation of the data as
a proportion of its average value, and is calculated as follows (Equation 9):

Coff ofVar
SD

. . �
M

= ×100 	 (9)

where SD is a standard deviation and M is mean. Coff ofVar. . of execution time and have been
studied of QoS-aware autonomic resource management technique and non-autonomic resource

Table 13. Total execution time of a bulk of cloud workloads distributed in three servers

Number of Workloads
Virtual Nodes

Total Workers Execution Time
(Seconds)R1 R2 R3

45 1 0 0 1 436.12

45 1 1 0 2 428.69

45 2 1 0 3 418.97

45 2 2 0 4 407.55

45 3 2 0 5 398.17

45 4 2 0 6 380.30

45 4 2 1 7 361.66

45 4 3 1 8 345.18

45 5 3 1 9 331.21

45 5 3 2 10 315.03

45 5 4 2 11 299.97

45 6 4 2 12 276.16

90 1 0 0 1 1803.11

90 1 1 0 2 1771.18

90 2 1 0 3 1759.66

90 2 2 0 4 1736.15

90 3 2 0 5 1691.77

90 4 2 0 6 1668.96

90 4 2 1 7 1636.11

90 4 3 1 8 1625.19

90 5 3 1 9 1578.21

90 5 3 2 10 1551.68

90 5 4 2 11 1529.11

90 6 4 2 12 1503.11

Journal of Organizational and End User Computing
Volume 29 • Issue 4 • October-December 2017

20

management technique as shown in Figure 12 and Figure 13. Range of Coff ofVar. . (0.25% - 1.69%)
for execution time and (0.37% - 1.96%) for cost approves the stability of QoS-aware autonomic
resource management technique as shown in Figure 12 and Figure 13. Small value of Coff ofVar. .
signifies QoS-aware autonomic resource management technique is more efficient in resource
scheduling in the situations where the number of user requests has changed. Value of Coff ofVar. .
decreases as the number of user requests is increasing.

6. CONCLUSION AND FUTURE DIRECTIONS

Cloud-based autonomic information system (AaaS) for agriculture service has been presented, which
manages the various types of agriculture-related data based on different domains through different
user preconfigured devices. K-NN (k-Nearest Neighbor) classification mechanism is used to classify
the agriculture data. Further, classified data is interpreted and users can easily diagnose the agriculture
status automatically through AaaS. In addition, AaaS uses two resource scheduling polices (time and
cost) for efficient resource allocation at infrastructure level after identification of QoS requirements
of user request. The performance of proposed system has been evaluated in cloud environment and

Figure 12. CoV for execution time with each scheduling algorithm

Figure 13. CoV for execution cost with each scheduling algorithm

Journal of Organizational and End User Computing
Volume 29 • Issue 4 • October-December 2017

21

experimental results show that the proposed system performs better in terms of execution time, cost,
resource utilization, latency, scalability and security. In future, the proposed technique can be extended
by incorporating other QoS parameters like network bandwidth, availability, customer satisfaction,
computing capacity etc. Proposed technique can be extended by developing pluggable scheduler, in
which resource scheduling can be changed easily based on the requirements.

ACKNOWLEDGMENT

One of the authors, Dr. Sukhpal Singh Gill [Post Doctorate Fellow], gratefully acknowledges the
CLOUDS Lab, School of Computing and Information Systems, The University of Melbourne,
Australia, for awarding him the Fellowship to carry out this research work.

Journal of Organizational and End User Computing
Volume 29 • Issue 4 • October-December 2017

22

REFERENCES

Agriculture Data, Government of India. (n. d.). Retrieved from https://data.gov.in/catalogs/sector/Agriculture-9212

Elsheikh, R., Mohamed Shariff, A. R. B., Amiri, F., Ahmad, N. B., Balasundram, S. K., & Soom, M. A. M.
(2013). Agriculture Land Suitability Evaluator (ALSE): A decision and planning support tool for tropical and
subtropical crops. Computers and Electronics in Agriculture, 93, 98–110. doi:10.1016/j.compag.2013.02.003

Hu, Y., Quan, Z., & Yao, Y. (2004). Web-based Agricultural Support Systems. Proceeding of the Workshop on
Web-based Support Systems (pp. 75-80).

India Agriculture And Climate Data Set. (n. d.). Retrieved from https://ipl.econ.duke.edu/dthomas/dev_data/
datafiles/india_agric_climate.htm

Jeong, S., Jeong, H., Kim, H., & Yoe, H. (2013). Cloud Computing based Livestock Monitoring and Disease
Forecasting System. International Journal of Smart Home, 7(6), 313–320. doi:10.14257/ijsh.2013.7.6.30

Narayana Reddy, M., & Rao, N. H. (1995). GIS Based Decision Support Systems in Agriculture. National
Academy of Agricultural Research Management Rajendranagar.

Nikkilä, R., Seilonen, I., & Koskinen, K. (2010). Software architecture for farm management information
systems in precision agriculture. Computers and Electronics in Agriculture, 70(2), 328–336. doi:10.1016/j.
compag.2009.08.013

Prasad, S., Peddoju, S. K., & Ghosh, D. (2013). AgroMobile: A Cloud-Based Framework for Agriculturists
on Mobile Platform. International Journal of Advanced Science and Technology, 59, 41–52. doi:10.14257/
ijast.2013.59.04

Ruixue, Z. (2002). Study on Web-based Agricultural Information System Development Method. Proceedings
of the Third Asian Conference for Information Technology in Agriculture, China (pp. 601-605).

Shangguan, W., Dai, Y., Liu, B., Ye, A., & Yuan, H. (2012, February 29). A soil particle-size distribution dataset
for regional land and climate modelling in China. Geoderma, 171, 85–91. doi:10.1016/j.geoderma.2011.01.013

Singh, S., & Chana, I. (2015). QoS-aware Autonomic Resource Management in Cloud Computing: A Systematic
Review. ACM Computing Surveys, 48(3), 1–46. doi:10.1145/2843889

Singh, S., & Chana, I. (2015). QRSF: QoS-aware resource scheduling framework in cloud computing. The
Journal of Supercomputing, 71(1), 241–292. doi:10.1007/s11227-014-1295-6

Singh, S., & Chana, I. (2015). Q-aware: Quality of service based cloud resource provisioning. Computers &
Electrical Engineering, 47, 138–160. doi:10.1016/j.compeleceng.2015.02.003

Singh, S., & Chana, I. (2016). EARTH: Energy-aware Autonomic Resource Scheduling in Cloud Computing.
Journal of Intelligent and Fuzzy Systems, 30(3), 1581–1600. doi:10.3233/IFS-151866

Sørensen, C. G., Fountas, S., Nash, E., Pesonen, L., Bochtis, D., Pedersen, S. M., & Blackmore, S. B. et al.
(2010). Conceptual model of a future farm management information system. Computers and Electronics in
Agriculture, 72(1), 37–47. doi:10.1016/j.compag.2010.02.003

Sørensen, C. G., Pesonen, L., Bochtis, D. D., Vougioukas, S. G., & Suomi, P. (2011). Functional requirements
for a future farm management information system. Computers and Electronics in Agriculture, 76(2), 266–276.
doi:10.1016/j.compag.2011.02.005

https://data.gov.in/catalogs/sector/Agriculture-9212
http://dx.doi.org/10.1016/j.compag.2013.02.003
https://ipl.econ.duke.edu/dthomas/dev_data/datafiles/india_agric_climate.htm
https://ipl.econ.duke.edu/dthomas/dev_data/datafiles/india_agric_climate.htm
http://dx.doi.org/10.14257/ijsh.2013.7.6.30
http://dx.doi.org/10.1016/j.compag.2009.08.013
http://dx.doi.org/10.1016/j.compag.2009.08.013
http://dx.doi.org/10.14257/ijast.2013.59.04
http://dx.doi.org/10.14257/ijast.2013.59.04
http://dx.doi.org/10.1016/j.geoderma.2011.01.013
http://dx.doi.org/10.1145/2843889
http://dx.doi.org/10.1007/s11227-014-1295-6
http://dx.doi.org/10.1016/j.compeleceng.2015.02.003
http://dx.doi.org/10.3233/IFS-151866
http://dx.doi.org/10.1016/j.compag.2010.02.003
http://dx.doi.org/10.1016/j.compag.2011.02.005

Journal of Organizational and End User Computing
Volume 29 • Issue 4 • October-December 2017

23

Sukhpal Singh Gill joined Computer Science and Engineering Department of Thapar University, Patiala, India, in
2016 as a Faculty. Presently, Dr. Gill is working as Post Doctorate Fellow at CLOUDS Lab, School of Computing and
Information Systems, The University of Melbourne, Australia. Dr. Gill obtained the Degree of Master of Engineering
in Software Engineering from Thapar University, as well as a Doctoral Degree specialization in “Autonomic
Cloud Computing” from Thapar University. Dr. Gill received the Gold Medal in Master of Engineering in Software
Engineering. Dr. Gill is a DST Inspire Fellow [2013-2016] and worked as a SRF-Professional on DST Project,
Government of India. He has done certifications in Cloud Computing Fundamentals, including Introduction to Cloud
Computing and Aneka Platform (US Patented) by ManjraSoft Pty Ltd, Australia and Certification of Rational Software
Architect (RSA) by IBM India. His research interests include Software Engineering, Cloud Computing, Internet
of Things and Fog Computing. He has more than 40 research publications in reputed journals and conferences.

Inderveer Chana joined Computer Science and Engineering Department of Thapar University, Patiala, India, in
1997 as Lecturer and is presently serving as Professor in the department. She is Ph.D. in Computer Science with
specialization in Grid Computing, M.E. in Software Engineering from Thapar University and B.E. in Computer
Science and Engineering. Her research interests include Grid and Cloud computing and other areas of interest
are Software Engineering and Software Project Management. She has more than 100 research publications in
reputed Journals and Conferences. Under her supervision, more than 40 ME thesis and seven Ph.D thesis have
been awarded and five Ph.D. thesis are on-going. She is also working on various research projects funded by
Government of India.

Rajkumar Buyya is a Fellow of IEEE, Professor of Computer Science and Software Engineering and Director of
the Cloud Computing and Distributed Systems (CLOUDS) Laboratory at the University of Melbourne, Australia.
He is also serving as the founding CEO of Manjrasoft, a spin-off company of the University, commercialising its
innovations in Cloud Computing. He has authored over 500 publications and four text books. He is one of the
highly cited authors in computer science and software engineering worldwide (h-index 110+, 60000+ citations).
He has served as the founding Editor-in-Chief (EiC) of IEEE Transactions on Cloud Computing and now serving
as Co-EiC of Journal of Software: Practice and Experience.

