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A B S T R A C T

With the rapid advancement of Internet of Things (IoT) devices, a variety of IoT applications that require a
real-time response and low latency have emerged. Fog computing has become a viable platform for processing
emerging IoT applications. However, fog computing devices tend to be highly distributed, dynamic, and
resource-constrained, so deploying fog computing resources effectively for executing heterogeneous and delay-
sensitive IoT tasks is a fundamental challenge. In this paper, we mathematically formulate the task scheduling
problem to minimize the total energy consumption of fog nodes (FNs) while meeting the quality of service
(QoS) requirements of IoT tasks. We also consider the minimization of the deadline violation time in our
model. Next, we propose two semi-greedy based algorithms, namely priority-aware semi-greedy (PSG) and
PSG with multistart procedure (PSG-M), to efficiently map IoT tasks to FNs. We evaluate the performance of
the proposed task scheduling approaches with respect to the percentage of IoT tasks that meet their deadline
requirement, total energy consumption, total deadline violation time, and the system’s makespan. Compared
with existing algorithms, the experiment results confirm that the proposed algorithms improve the percentage
of tasks meeting their deadline requirement up to 1.35x and decrease the total deadline violation time up to
97.6% compared to the second-best results, respectively, while the energy consumption of fog resources and
makespan of the system are optimized.
1. Introduction

The rapid development and widespread proliferation of Internet
of Things (IoT) devices have enabled the emergency of many IoT
applications such as e-health in healthcare domain, smart grid in
energy management, livestock monitoring in agriculture, and smart
traffic in road transportation management. These delay-sensitive IoT
applications typically have strict quality of service (QoS) requirements
and require processing capabilities beyond what could be offered by the
IoT devices with severe resource constraints (Ghanavati et al., 2020b).
To ameliorate this challenge, a fog computing platform (Mahmud
et al., 2020; Baccarelli et al., 2017), that extends cloud computing
infrastructure (Shojafar et al., 2019) to the edge of the network have
recently gained significant attention for processing IoT applications
(Ghanavati et al., 2020b; Mishra et al., 2018; Sun et al., 2018). The
advantage of fog computing is that it offers computing resources within
the proximity of IoT devices, which significantly reduces the time
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required for accessing computing resources and enables IoT requests
to be processed quickly.

Although fog computing is suitable for processing IoT applications,
it also possesses significant challenges with respect to provisioning and
management of the fog resources. This is because fog computing re-
sources are capacity limited, dynamic, heterogeneous, and distributed.
Moreover, energy consumption is one of the critical issues to be op-
timized in fog computing utilization (Ghanavati et al., 2020b; Jiang
et al., 2019; Abdel-Basset et al., 2020a; Gu et al., 2019; Vemireddy
and Rout, 2021). Therefore, fog resource provisioning and management
are critical to fully leverage the capabilities of the fog computing for
efficiently executing IoT applications. However, the question of how
heterogeneous and dynamic fog resources can be effectively allocated
to IoT tasks with objectives of ensuring QoS of IoT tasks while minimiz-
ing energy consumption of the fog nodes (FNs) remains a fundamental
problem that need to be addressed (Ghanavati et al., 2020b; Deng et al.,
2016; Taami et al., 2019).
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Various approaches to efficiently schedule IoT tasks on heteroge-
neous and resource-limited fog networks based on different optimiza-
tion techniques have been proposed (Mahmud et al., 2020; Alizadeh
et al., 2020; Yang and Rahmani, 2020; Islam et al., 2021). Many
previous works propose metaheuristic algorithms (Ghanavati et al.,
2020b; Mishra et al., 2018; Sun et al., 2018; Abdel-Basset et al.,
2020a; Aburukba et al., 2020; Hoseiny et al., 2021a) and machine
learning techniques (Zhang et al., 2019b; Tang and Wong, 2020; Ale
et al., 2021) to solve the IoT task scheduling problem. Although these
approaches may produce reasonable solutions, their running time is
challenging, especially for scheduling the IoT tasks with a firm and
hard deadline. Also, many previous studies focus on minimizing the
response time (Sun et al., 2018; Aburukba et al., 2020; Hoang and
Dang, 2017; Liu et al., 2018; Auluck et al., 2019; Misra and Saha, 2019;
Louail et al., 2020; Adhikari et al., 2020; Bu and Wang, 2021; Almutairi
and Aldossary, 2021; Hoseiny et al., 2021b) or energy consumption
of FNs (Mishra et al., 2018; Abdel-Basset et al., 2020a; Gu et al.,
2019; Yang et al., 2018; Gai et al., 2020; Abdel-Basset et al., 2020b).
However, solely focusing on one of the scheduling parameters is not
sufficient to ensure both a high QoS for the IoT users and low energy
cost for fog service providers. To address these issues, we pose and
solve the following research question: How can we propose an efficient
algorithm with reasonably low time complexity to schedule the IoT
tasks on heterogeneous and resource-limited fog computing with the
aims of (i) optimizing the energy consumption of FNs, and (ii) meet
the deadline requirement of the IoT tasks?

To address the above research question, we propose two efficient
IoT task scheduling algorithms that consider the deadline requirement
of the tasks and the energy consumption of the FNs. We first model
the task scheduling problem as a mixed integer nonlinear programming
(MINLP) with the objective of energy consumption minimization and
the constraint of meeting IoT task deadline. We also consider the
minimization of the deadline violation time in our model. To provide
an efficient solution for each instance of the problem, we propose two
semi-greedy based algorithms called priority-aware semi-greedy (PSG)
and PSG with multi-start procedure (PSG-M). We performed extensive
simulation to verify the effectiveness of the proposed algorithms. Previ-
ously, we proposed two greedy heuristics algorithms for solving the task
scheduling problem in volunteer computing systems (VCSs) with focus
on minimizing the total cost in terms of computation, communication
and deadline violation (Hoseiny et al., 2021b). Interestingly, in this
paper, we improve our previous work by

1. Including the analysis for energy consumption of FNs in the
system model;

2. Presenting a mathematical model for calculating the waiting
time of the FN queue;

3. More importantly, proposing two semi-greedy based approaches
to obtain more efficient results.

The major advantage of semi-greedy approaches over greedy heuristic
algorithms is that they can avoid local optima due to the existence of
randomness, thus the quality of the results is improved (Klincewicz,
1992).

Our main contributions are summarized as follows:

• We propose a MINLP model for the scheduling of IoT tasks in het-
erogeneous fog networks with the aim of optimizing the total energy
consumption of the FNs while meeting the deadline of the tasks. Our
model also includes the minimization of the deadline violation time.

• We propose two semi-greedy based algorithms called PSG and PSG-M
to efficiently map the IoT tasks to available FNs in order to provide
high QoS for IoT users in terms of response time and minimize the
energy consumed by FNs.

• We conduct extensive experiments to evaluate the performance of
the proposed approaches. The results demonstrate that using our
2

proposed algorithms the deadline requirement of a very large per-
centage of the IoT tasks are met and the rest get their response
with a little violation time. Meanwhile, the total energy consumption
and makespan of the system is reduced so the profit of fog service
providers is also maximized.

The rest of this paper is organized as follows. Section 2 reviews related
studies on the task scheduling in fog computing. Section 3 presents
the system model, including the architecture and problem formulation.
Our proposed algorithms are described and analyzed in Section 4.
Evaluation and experimental results are given in Section 5. Finally,
Section 6 and Section 7 discusses and concludes the paper, respectively.

2. Related work

In recent years, extensive researches have been conducted on the
scheduling of IoT tasks in the fog and edge environment (Mahmud
et al., 2020; Alizadeh et al., 2020; Yang and Rahmani, 2020; Islam
et al., 2021; Kaur et al., 2021). Each of them has focused on various
aspects of the problem optimization. Generally speaking, they can be
classified into three categories: (i) delay-aware, (ii) energy-efficient,
and (iii) joint delay-aware and energy-efficient. In the following, we
review some representative related works in each category.

2.1. Delay-aware algorithms

Due to the importance of the response time for IoT application
requests, many researchers have considered this aspect in their opti-
mization goals. In Hoang and Dang (2017), the authors investigate the
task scheduling problem in a fog environment with multiple regions
and formulate it as an integer program such that the task completion
time is minimized. Then, they propose a priority-aware heuristic al-
gorithm to solve the problem. Sun et al. (2018) propose an improved
non-dominated sorting genetic algorithm II (NSGA-II) to reduce the
completion time of a task and improve the overall stability of the task
execution. In Liu et al. (2018), Liu et al. introduce dispersive stable
task scheduling, named DATS, which is based on the stable matching
theory to achieve minimal service delay in heterogeneous fog networks.
DATS is a decentralized algorithm that considers the computation and
communication delay in its model. The authors of Auluck et al. (2019)
consider three types of tasks, named hard, firm and soft. Then, they
try to schedule hard tasks on embedded devices, firm tasks on FNs
and soft ones on cloud servers. The main goal of their task assignment
problem is to minimize the total communication delay. Misra and Saha
(2019) study the task offloading problem is software-defined network-
ing (SDN)-enabled fog networks with focus on the minimization of
IoT tasks delay and IoT devices’ energy consumption. They model the
problem as an ILP and solve it using a greedy-heuristic-based approach.
Aburukba et al. (2020) formulate the scheduling of IoT service requests
as an ILP and propose a customized genetic algorithm (GA) to minimize
service time includes transmission, propagation, queueing delay and
processing time.

Furthermore, a dynamic task scheduling approach for Industrial
IoT (IIoT) with the goal of minimizing the number of rejected tasks
is proposed in Louail et al. (2020). To achieve this goal, a new dis-
cipline based on the deadline and frequency of tasks is introduced.
Adhikari et al. (2020) design a novel deadline and priority-aware task
offloading strategy, named DPTO, for scheduling IoT tasks and put
forward a multilevel feedback queueing model to minimize the overall
latency of the offloaded tasks while meeting their deadline. In order
to minimize the task processing delay, Bu and Wang (2021) present
a three-schema mechanism that leverages SDN to assign each task
to the most suitable edge computing server (ECS). In Almutairi and
Aldossary (2021), the authors propose a fuzzy logic-based approach
for scheduling the offloaded tasks in edge–cloud environments with
the aim of minimizing the overall service time of latency-sensitive
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applications. Recently, in our previous work (Hoseiny et al., 2021b), we
propose two efficient heuristic algorithms to jointly minimize the cost
of computation, communication and deadline violation in volunteer
fog–cloud computing systems. The simulation results demonstrate that
the proposed algorithms significantly outperform their counterparts in
terms of the percentage of tasks that meet their deadline and the cost of
violation. Although the aforementioned works make great contribution
in their respective domains, they do not take into account energy
consumption while this work does.

2.2. Energy-efficient algorithms

Energy efficiency is one of the major concerns in IoT ecosys-
tem (Baccarelli et al., 2017; Jiang et al., 2019). Therefore, minimizing
energy consumption of the FNs is considered to be one of the ob-
jectives in recent studies. Jalali et al. (2016) show that running IoT
applications in fog computing is more energy-efficient than running
the same applications in cloud data centers. In Yang et al. (2018),
Yang et al. provide a comprehensive analytical model for evaluating the
overall energy efficiency in fog networks with homogeneous FNs. Then,
they propose a maximal energy-efficient task scheduling algorithm,
named MEETS, to get an energy efficient solution for their model. Gu
et al. (2019) study the task allocation and energy scheduling problem
in green edge computing with the goal of minimization of brown
energy consumption. They first formulate the problem as a MILP and
then give a relaxation-based heuristic algorithm to solve the problem
efficiently. Gai et al. (2020) address the task allocation problem in
the context of high-performance fog computing. They have focused on
the energy minimization under the constraint of total execution time
length, i.e., makespan, and developed a novel heuristic algorithm to
solve their optimization model.

To minimize the total system makespan and the consumed energy
in the field of fog computing, several efforts have been carried out
recently. For example, Mishra et al. (2018) propose different meta-
heuristic algorithms for optimal allocation of a set of services to a set of
heterogeneous virtual machines (VMs) in a fog computing domain. The
approach in Abdel-Basset et al. (2020a) is based on a nature-inspired
algorithm, named Harris hawks optimization (HHO) (Heidari et al.,
2019), with adaptation of a local search strategy to improve the per-
formance of the standard HHO algorithm. Similar to this work, Abdel-
Basset et al. (2020b) use the marine predators algorithm (MPA) (Fara-
marzi et al., 2020) and their two improved versions to reduce the
carbon dioxide emission rate by minimizing the energy consumption
and makespan. Moreover, Ghanavati et al. (2020b) introduce ant mat-
ing optimization (AMO) and use it to solve the task scheduling problem
in fog computing environment. In the above-mentioned studies, great
efforts have been devoted to reduce the energy consumption in the con-
text of fog computing environments. However, none of them considers
the deadline requirement of IoT tasks.

2.3. Joint delay-aware and energy-efficient algorithms

Considering both of the delay requirement of IoT tasks and the
energy consumption of FNs has become an active research area nowa-
days. For example, in order to achieve a trade-off between the service
delay of artificial intelligence (AI) tasks and the energy consumed by
the Cloudlet server, Zhang et al. (2019a) propose MASM, a multiple
algorithm service model in which the computing VMs can adopt dif-
ferent AI algorithms for processing the same type task. Then, they
develop a tide ebb algorithm (TEA) to derive robust solutions for their
proposed model. Hassan et al. (2020) propose an efficient policy for
the service scheduling problem in fog–cloud computing systems to
provide low response time for IoT requests and energy efficiency for
fog service providers. The authors classify the IoT services into critical
and normal. For critical services, they propose MinRes whose goal is
minimizing response time, and propose MinEng for normal ones to
3

reduce the consumed energy of FNs. Recently in Ale et al. (2021), a
deep reinforcement learning (DRL) approach to maximize the number
of completed tasks before their deadline and minimize the consumed
energy of edge servers is studied.

A summary of related work and their main features comparison is
shown in Table 1. Although there are some studies on delay and energy
optimization in fog/edge computing, the present work is essentially
different from these studies in several significant aspects. First, our
work focuses on the FNs energy consumption whereas the objective of
the majority of studies such as Misra and Saha (2019), Shahryari et al.
(2021), Li (2021) and Sun et al. (2019) is to minimize the energy con-
sumption of mobile devices. Therefore, this work complements them.
Second, unlike Zhang et al. (2019a) which make a trade-off between the
service delay and energy consumption of a Cloudlet server, in our work
the total energy consumption of FNs is optimized while the deadline
requirement of the tasks is considered as a constraint. Third, Hassan
et al. (2020) does not take into account the deadline requirement of
each IoT service request, whereas in this work we consider it. Fourth,
although DRL-based approaches like Zhang et al. (2019b) and Tang and
Wong (2020) may provide a near-optimal solutions, unfortunately they
need heavy computation cost (Ghanavati et al., 2020b). To cop with
this, in this work, we present a semi-greedy-based approach in which
the time complexity is very low compared to the most of AI techniques.
Fifth, unlike heuristic-based approaches, the semi-greedy approach can
avoid local optima and improve the quality of the results. Moreover, to
our best knowledge, this work and our previous work (Hoseiny et al.,
2021b) are the only studies that address the deadline violation time of
tasks in fog computing environments.

3. System model

This section includes two subsections which together define our
system model. In the first subsection, the general architecture of IoT-
fog–cloud is presented. In the second subsection, the task scheduling
problem is mathematically formulated.

3.1. Architecture

Fig. 1 illustrates the high-level system architecture of the IoT-fog–
cloud environment, which consists of four parts, namely IoT devices,
gateways, fog environment and cloud environment. In the following, we
explain each part in detail.

• IoT Devices: This part includes a large number of IoT devices such
as smart wearables, RFID tags, automobile sensors, security sensors,
smart home appliances, thermostats, smart meters, industry devices,
and so on. These devices are geographically distributed in various
places and usually generate a lot of time sensitive data which requires
(nearly) real-time processing. For example, data generated from a
health monitoring system must be instantly processed and analyzed,
where latency in these systems can lead to catastrophic consequences.
However, most of IoT devices are resource constraint, i.e., they suffer
from limited resources including processing capabilities, memory,
and battery power. Therefore, they offload their tasks to the nearby
gateways.

• Smart Gateways: The computation tasks offloaded from IoT devices
are received by the smart gateways (or access points) present at the
edge of network. Depending on the characteristics of tasks such as
their priority and deadline (Adhikari et al., 2020), gateways decide
where to submit a task for processing, distributed FNs or centralized
cloud servers. This decision-making process can be done by applying
different methods like machine learning techniques (Guevara et al.,
2020) and data mining algorithms (Savaglio et al., 2019). Generally
speaking, latency-sensitive tasks are submitted to fog environment
while latency-tolerant ones are sent to cloud environment (Peng et al.,

2018; Omer et al., 2021). It is worth mentioning that smart gateways
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Table 1
A summary of related work and their attributes comparison.

Work Approach Delay-aware Energy consumption of FNs Violation time Run time

Hoang and Dang (2017) Heuristic ✓ × × Low
Sun et al. (2018) NSGA-II ✓ × × High
Liu et al. (2018) Stable matching theory ✓ × × Low
Auluck et al. (2019) Heuristic ✓ × × Low
Misra and Saha (2019) Greedy-heuristic ✓ × × Low
Aburukba et al. (2020) GA ✓ × × High
Louail et al. (2020) Heuristic ✓ × × Low
Adhikari et al. (2020) Multilevel feedback queueing model ✓ × × Low
Bu and Wang (2021) Heuristic ✓ × × Low
Almutairi and Aldossary (2021) Fuzzy logic ✓ × × Low
Hoseiny et al. (2021b) Heuristic ✓ × ✓ Low
Yang et al. (2018) Analytical model × ✓ × Low
Gu et al. (2019) Heuristic × ✓ × Low
Gai et al. (2020) Heuristic × ✓ × Low
Mishra et al. (2018) Metaheuristic × ✓ × High
Abdel-Basset et al. (2020a) Harris hawks optimization × ✓ × High
Abdel-Basset et al. (2020b) Marine predators algorithm × ✓ × High
Ghanavati et al. (2020b) Ant mating optimization × ✓ × High
Zhang et al. (2019a) Multiple algorithm service model ✓ ✓ × Low
Hassan et al. (2020) Heuristic ✓ ✓ × Low
Ale et al. (2021) Deep reinforcement learning ✓ ✓ × High

This work Semi-greedy ✓ ✓ ✓ Low
Fig. 1. Proposed System Architecture.
are as close as one hope to the IoT devices. Thus, they can be
considered as the edge node for the IoT devices. Although edge nodes
can be used to solve some IoT-related issues, their limited resources
are not capable of executing large-scale IoT tasks (Mahmud et al.,
2020).

• Fog Environment: A fog environment includes a fog controller (FC),
also called broker, and a fog network, as it can be seen from Fig. 1.
FC is a central component of a fog service provider where it man-
ages the fog resources and schedules tasks according to the task
scheduling algorithm. Fog network consists of a set of wide-spread
and geographically distributed devices, e.g., high-end servers, set-top
boxes, Raspberry Pis, routers, personal computers, and smart phones,
known as FNs. The common characteristic of FNs is that they have the
computing, storage, and networking capabilities in order to execute
the IoT tasks (Marín-Tordera et al., 2017). Each FN contains a Foglet
software agent which monitors the health and other state information
of the FN, and sends the information to the FC using its API (Bonomi
et al., 2014). Also, the submitted tasks from gateways to the fog
environment are temporarily stored in a buffer. Then, FC periodically
run the task scheduler algorithm in each time period based on the
information of the FNs and requirements of the tasks.
4

• Cloud Environment: This part is mainly composed of a set of vir-
tual machines (VMs) with high computing power and storage ca-
pacity (Calheiros et al., 2011; Azizi et al., 2020). Cloud VMs are
usually more suitable for executing latency-tolerant and computation
intensive tasks than FNs.

3.2. Problem formulation

In this section, we present a formal model for the task scheduling
problem in a heterogeneous fog computing system. First, the basic
elements and decision variables of the optimization problem are in-
troduced. Then, the response time and energy models are described.
Finally, the problem overview is given. Table 2 presents symbols and
notations used in our problem formulation.

3.2.1. Basic elements
Fog nodes and submitted tasks from IoT devices are the basic

elements of our model. In the following, we formally describe them.

• Fog Nodes: A fog network consists of several interconnected FNs
which form a mesh topology. Thus, it can be modeled as follows.
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Table 2
Main notation. D-variable: decision variables.

Symbol Description Type - Unit Appears in Eq.

Set
𝑭 Set of FNs, where ∣ 𝑭 ∣= 𝑚 – –
𝑳 Set of communication links between FNs – –
𝑻 Set of tasks, where ∣ 𝑻 ∣= 𝑛 – –

Index

𝑖 Index of FNs, 𝑖 ∈ 𝑭 Integer - [units] –
𝑗 Index of FNs, 𝑗 ∈ 𝑭 Integer - [units] –
𝑘 Index of tasks, 𝑘 ∈ 𝑻 Integer - [units] –
𝑙 Index of tasks, 𝑘 ∈ 𝑻 Integer - [units] (18), (19)

Input Parameter

F 𝐶
𝑖 CPU processing power of FN F𝑖 Continuous - [W] (7)

F 𝑎𝑐𝑡
𝑖 Power consumption of FN F𝑖 in active state Continuous - [W] (17)

F 𝑖𝑑𝑙𝑒
𝑖 Power consumption of FN F𝑖 in idle state Continuous - [W] (17)

𝑒𝑝𝑖𝑗 Propagation delay of link 𝑒𝑖𝑗 Continuous - [s] (5)
𝑒𝑏𝑖𝑗 Bandwidth of link 𝑒𝑖𝑗 Continuous - [MB] (6)
T 𝑠
𝑘 Size of task T𝑘 Continuous - [MI] (7)

T 𝑑
𝑘 Deadline requirement of task T𝑘 Continuous - [s] (3), (7), (4), (12), (21),

T 𝑖𝑛
𝑘 Input file size of task T𝑘 Continuous - [MI] (6)

T 𝑜𝑢𝑡
𝑘 Output file size of task T𝑘 Continuous - [MI] (6)

Variable

𝑑𝑝𝑟𝑝
𝑘 Propagation delay of task T𝑘 from the FC to the destination FN Continuous - [s] (5), (9)

𝑑𝑡𝑥
𝑘 Transmission time of task T𝑘 from the FC to the destination FN Continuous - [s] (5), (9)

𝑑𝑒𝑥𝑒
𝑘 Execution time of task T𝑘 at the destination FN Continuous - [s] (7), (8),(9),(14)

𝑑𝑤𝑡
𝑘 Waiting time of task T𝑘 at the destination FN Continuous - [s] (9)

R𝑘 Response time of task T𝑘 Continuous - [s] (4), (12), (21),
N𝑆 Number of tasks that meet their predefined deadline Integer - [units] (10), (11)
𝑆% Percentage of tasks that meet their predefined deadline Continuous - [units] (11)
𝜈𝑘 Deadline violation time of task T𝑘 Continuous - [s] (12),(13)
A𝑖 Active time of FN F𝑖 Continuous - [s] (14), (15), (16), (17)
𝜄𝑖 Idle time of FN F𝑖 Continuous - [s] (16), (17)
𝜖𝑖 Energy consumption of FN F𝑖 Continuous - [KJ] (17), (18)
M Makespan of the system Continuous - [s] (15), (16)
V 𝑡𝑜𝑡 Total deadline violation time of the set of tasks Continuous - [s] (13), (23)
E𝑡𝑜𝑡 Total Energy consumption of the system Continuous - [KJ] (18), (19)

D-Variable

𝑥𝑖𝑘 Value 1 if task T𝑘 assigned to FN F𝑖, otherwise zero Binary - [units] (1), (7), (8), (14), (20),(22)
𝑦𝑘𝑖𝑗 Value 1 if link 𝑒𝑖𝑗 is chosen for routing task T𝑘, otherwise zero Binary - [units] (2), (5), (6), (22)
𝑧𝑘𝑙 Value 1 if task T𝑙 has a higher priority that task T𝑘, otherwise zero Binary - [units] (3), (8), (10), (22)
𝑠𝑘 Value 1 if deadline of task T𝑘 is satisfied, otherwise zero Binary - [units] (4), (10)
Let us assume a heterogeneous fog network 𝐺 = (𝑭 ,𝑳) where 𝑭 =
{F1,F2,… ,F𝑚} describes the set of 𝑚 FNs and 𝑳 = {𝑒𝑖𝑗 |𝑖, 𝑗 ∈ 𝑭 }
represents the set of communication links between FNs. Each FN 𝐹𝑖 ∈
𝑭 has some specific characteristics that are (i) CPU processing power
F 𝑐
𝑖 in MIPS (Million Instruction Per Second), (ii) power consumption in
active state F 𝑎𝑐𝑡

𝑖 in W (Watt), as well as (iii) power consumption in idle
state F 𝑖𝑑𝑙

𝑖 in W. Also, each link 𝑒𝑖𝑗 ∈ 𝑳 is associated with two main
characteristics that are (i) propagation delay 𝑒𝑝𝑖𝑗 in ms (milli second)
and (ii) bandwidth 𝑒𝑏𝑖𝑗 in 𝑀𝑏𝑝𝑠 (Mega bit per second).

• Tasks: Let us consider 𝑻 = {T1, T2,… , T𝑛} is the set of 𝑛 indepen-
dent tasks offloaded from IoT devices to the FC during a specific
time period. Each task T𝑘 ∈ 𝑻 is defined by a four tuple: T𝑘 =
⟨T 𝑠

𝑘 , T 𝑑
𝑘 , T 𝑖𝑛

𝑘 , T 𝑜𝑢𝑡
𝑘 ⟩, where T 𝑠

𝑘 is the size of the task in MI (Million
Instruction), T 𝑑

𝑘 is the deadline requirement in ms, T 𝑖𝑛
𝑘 is the input

file size in 𝐾𝐵 (Kilo Byte), and T 𝑜𝑢𝑡
𝑘 is the output file size in 𝐾𝐵.

It is assumed that the value of these parameters is known to the
FC (Ghanavati et al., 2020b; Abdel-Basset et al., 2020a; Auluck et al.,
2019). It can be estimated by the IoT devices or smart gateways. In
order to take advantage of parallel and distributed computing power
on a fog network and reduce the response time, IoT tasks usually are
independent to each other (Ghanavati et al., 2020b; Nguyen et al.,
2019; Konečnỳ et al., 2016). Hence, we assume this in our work,
similar to Ghanavati et al. (2020b), Abdel-Basset et al. (2020a), Ale
et al. (2021) and Adhikari et al. (2020).

3.2.2. Decision variables
Before the description of our response time and energy model for

the considered system, we first introduce our decision variables. We
denote 𝑋𝑚×𝑛 as the task assignment matrix, where its (𝑖, 𝑘)th entry is
represented by 𝑥𝑖𝑘 ∈ {0, 1} which is given by

𝑥𝑖𝑘 =

{

1 if task T𝑘 is assigned to FN F𝑖 , ∀𝑖 ∈ 𝑭 ,∀𝑘 ∈ 𝑻 (1)
5

0 otherwise
For each task T𝑘, we define a binary variable 𝑦𝑘𝑖𝑗 ∈ {0, 1} to represent
whether link 𝑒𝑖𝑗 ∈ 𝐿 is chosen for routing the task T𝑘. So, we have

𝑦𝑘𝑖𝑗 =

{

1 if link 𝑒𝑖𝑗 is chosen for routing T𝑘
0 otherwise

, ∀𝑖, 𝑗 ∈ 𝑭 ,∀𝑘 ∈ 𝑻 (2)

Also, we use a binary variable 𝑧𝑘𝑙 ∈ {0, 1} to compare the priority
of two tasks T𝑘 and T𝑙. To this end, we set 𝑧𝑘𝑙 = 1, if task T𝑙 has a higher
priority than task T𝑘; otherwise, we set its value as zero. In this work,
the priority of tasks is determined by their deadline. Thus, we have

𝑧𝑘𝑙 =

{

1 if T 𝑑
𝑙 < T 𝑑

𝑘
0 otherwise

, ∀𝑙, 𝑘 ∈ 𝑻 (3)

Finally, we use a binary variable 𝑠𝑘 ∈ {0, 1} for showing whether
the deadline of task 𝑇𝑘 is satisfied. We can say

𝑠𝑘 =

{

1 if R𝑘 ≤ T 𝑑
𝑘

0 otherwise
, ∀𝑙, 𝑘 ∈ 𝑻 (4)

where R𝑘 denote the response time of task T𝑘 and its value is obtained
in the next subsection.

3.2.3. Response time
For a given task T𝑘 submitted to the FC, its response time comprises:

(a) propagation delay 𝑑𝑝𝑟𝑝𝑘 from the FC to FN F𝑖 ∈ 𝑭 and vice versa, (b)
transmission time 𝑑𝑡𝑥𝑘 which is included the time taken to transmit the
input file size T 𝑖𝑛

𝑘 from the FC to FN F𝑖 ∈ 𝑭 and retransmit the output
file size T 𝑜𝑢𝑡

𝑘 from the FN F𝑖 to the FC, (c) execution time 𝑑𝑒𝑥𝑒𝑘 and (d)
time 𝑑𝑤𝑡

𝑘 for waiting at the queue of FN F𝑖.
The propagation delay experienced by the task T𝑘 in the fog network

can be represented as follows:

𝑑𝑝𝑟𝑝𝑘 =
∑

(

2 × 𝑒𝑝𝑖𝑗 × 𝑦𝑘𝑖𝑗
)

, ∀𝑘 ∈ 𝑻 (5)

∀𝑒𝑖𝑗∈𝑳
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In our multi-hop fog network, the transmission time of the task T𝑘
s derived from the following equation.

𝑡𝑥
𝑘 =

∑

∀𝑒𝑖𝑗∈𝑳

T 𝑖𝑛
𝑘 + T 𝑜𝑢𝑡

𝑘

𝑒𝑏𝑖𝑗
× 𝑦𝑘𝑖𝑗 , ∀𝑘 ∈ 𝑻 (6)

CPU execution time is one the main factors in determining the
response time of a given task. The execution time of the task T𝑘 is
btained by dividing its size by the CPU processing power of the
ssigned FN. We have

𝑒𝑥𝑒
𝑘 =

∑

∀𝑖∈𝑭

T 𝑠
𝑘

F 𝑐
𝑖
× 𝑥𝑖𝑘, ∀𝑘 ∈ 𝑻 (7)

In this work, we assume that each FN can process only one task at
a time. We also assume that tasks are non-preemptive, i.e., once a task
is executed on a particular FN, it executes continuously till completion.
Therefore, when a task arrives at a FN, it must wait in the FN queue
until the completion of the high-priority tasks assigned to that FN.
Based on this, the waiting time of the task T𝑘 can be expressed as
follows.

𝑑𝑤𝑡
𝑘 =

∑

∀𝑙∈𝑻

∑

∀𝑖∈𝑭

(

𝑑𝑒𝑥𝑒𝑙 × 𝑧𝑘𝑙 × 𝑥𝑖𝑘 × 𝑥𝑖𝑙
)

, ∀𝑘 ∈ 𝑻 (8)

Therefore, the response time of the task T𝑘 is calculated using the
ollowing equation.

𝑘 = 𝑑𝑝𝑟𝑝𝑘 + 𝑑𝑡𝑥𝑘 + 𝑑𝑒𝑥𝑒𝑘 + 𝑑𝑤𝑡
𝑘 , ∀𝑘 ∈ 𝑻 (9)

We can now calculate the percentage of IoT tasks that meet their
eadline as well as the total deadline violation time for the set of 𝑛
asks submitted to the FC during a specific time period. For this end,
et N𝑠 represents the number of tasks that their predefined deadline is
atisfied. Hence, we have

𝑠 =
∑

∀𝑘∈𝑻
𝑠𝑘, ∀𝑘 ∈ 𝑻 (10)

We define 𝑆% as the percentage of IoT tasks that meet the deadline
equirement. 𝑆% can be obtained as follows.

% =
N𝑠
𝑛
. (11)

For each task T𝑘, the amount of its deadline violation time can be
defined as follows.

𝜈𝑘 = max
(

0,R𝑘 − T 𝑑
𝑘
)

, ∀𝑘 ∈ 𝑻 (12)

To measure the quality of a given task scheduler, we need to see
what the total amount of the deadline violation time is. The following
equation give us this value.

V 𝑡𝑜𝑡 =
∑

∀𝑘∈𝑻
𝜈𝑘 (13)

3.2.4. Energy
Here, we focus on the energy spent by the FNs to finish the execu-

tion of all the 𝑛 tasks. During this time period, the energy consumed
y a FN F𝑖 ∈ 𝑭 is obtained from the sum of energy consumed in the

active state and in the idle state. The active time of the FN F𝑖 is equal
to the time required to process all of the tasks assigned to it which can
be calculated by the following formula.

A𝑖 =
∑

∀𝑘∈𝑻

(

𝑑𝑒𝑥𝑒𝑘 × 𝑥𝑖𝑘
)

, ∀𝑖 ∈ 𝑭 (14)

To obtain the idle time of each FN, we first need to have the
makespan of the system, the maximum execution time of a FN among
all FNs. The following equation gives us the value of makespan (M ).

M = max
∀𝑖∈𝑭

(A𝑖) (15)

Now the idle time of the FN F𝑖 can be easily achieved as follows.

𝜄 =
(

M − A
)

, ∀𝑖 ∈ 𝑭 (16)
6

𝑖 𝑖
We can estimate the energy consumed by a FN based on its power
consumption profile and the amount of time being in each state.
Therefore, for a given FN F𝑖, its energy consumption is computed as
below (Mishra et al., 2018).

𝜖𝑖 =
(

A𝑖 × F 𝑎𝑐𝑡
𝑖 + 𝜄𝑖 × F 𝑖𝑑𝑙

𝑖
)

, ∀𝑖 ∈ 𝑭 (17)

The total energy consumption of the considered system is obtained
by the summation of the energy consumed of each FN. That is:

E𝑡𝑜𝑡 =
∑

∀𝑖∈𝑭
𝜖𝑖 (18)

3.2.5. Problem formulation
Let 𝑻 = {T1, T2,… , T𝑛} is the set of 𝑛 independent tasks offloaded

from IoT devices to be scheduled on a set of 𝑚 heterogeneous FNs
𝑭 = {F1,F2,… ,F𝑚}. The problem is to map these tasks to the FNs,
𝛹 ∶ 𝑻 → 𝑭 , such that the total energy consumption is optimized
while the deadline of the tasks is satisfied. Thus, we formally model
this problem as follows.

min E𝑡𝑜𝑡 (19)

subject to
∑

∀𝑖∈𝑭
𝑥𝑖𝑘 = 1, ∀𝑘 ∈ 𝑻 (20)

R𝑘 ≤ T 𝑑
𝑘 , ∀𝑘 ∈ 𝑻 (21)

𝑥𝑖𝑘, 𝑦
𝑘
𝑖𝑗 , 𝑧𝑘𝑙 , 𝑠𝑘 ∈ {0, 1}, ∀𝑖, 𝑗 ∈ 𝑭 ,∀𝑘, 𝑙 ∈ 𝑻 (22)

An equality constraint (20) states that each task can only be as-
signed to exactly one FN. An inequality constraint (21) requires that
each task’s deadline must be satisfied. The domain of our decision
variables is determined by the constraint (22).

It is worth to mention that sometimes the deadline of some tasks
may not be met. In this case, there are two possible choices: accept
or reject them. In this work, we select the first one. Therefore, if the
deadline of a given task is not satisfied, we should try to minimize its
deadline violation time. As a result, we also add the following goal to
our optimization problem.

min V 𝑡𝑜𝑡 (23)

To efficiently solve this optimization problem, we design a semi-
greedy approach, which is described in the next section.

4. Proposed algorithms

In this section, we propose PSG, a Priority-aware Semi-Greedy
algorithm for solving the task scheduling problem in a given fog envi-
ronment. PSG is a semi-greedy algorithm because it adds randomization
to a greedy algorithm (Resende and Ribeiro, 2016). Also, it considers
the priority of tasks during the scheduling process. The algorithm
tries to find an efficient solution for the optimization problem (see
Section 3.2.5), and it will be periodically run by the FC (see Fig. 1)
every 𝜏 milliseconds. The description of our proposed algorithm is
presented in the following.

4.1. PSG algorithm

The main goal of the PSG algorithm is to schedule the IoT tasks
based on their priority and assign them to the suitable FNs in order to
minimize the energy consumption of the fog environment while meet
the deadlines. However, if the deadline of a given task is not met,
the algorithm tries to reduce its violation time as far as possible. It is
worth mentioning that the primary aim of the PSG is to provide high
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QoS for IoT users while optimizing the energy consumed by FNs is the
secondary aim. Our proposed PSG consists of four main steps as follows.

Step 1: In first step, tasks are sorted in non-descending order of their
predefined deadline. Note that the deadline of each task is determined
by its smart gateway (see Fig. 1).

Step 2: In this step, the response time of a given task on all available
FNs is computed using Eq. (9). Based on the result, the FNs are divided
into two groups: DSList and USList. DSList is the deadline satisfied
nodes, those FNs that meet the deadline of the task while USList is the
list of FNs that do not satisfy the requested deadline of the task.

Step 3: If the DSList is not empty, i.e., there exist at least one FN
that can meet the delay constraint of the task, for each FN in DSList,
the energy consumption of the system is estimated by mapping of the
given task to that FN. Then, a restricted candidate list (RCL) is created
by the best FNs, i.e., those whose provide the least increase of energy
consumption to the system. Finally, a FN is randomly chosen from RCL
and the task is assigned to that.

Step 4: If the DSList is empty, i.e., none of the FNs can meet the task
deadline, the task is mapped to the FNs in the USList with the minimum
deadline violation time.

Algorithm 1 presents the proposed PSG algorithm for solving the
task scheduling problem in a heterogeneous fog domain. First, the set
of tasks are sorted in non-descending order based on their predefined
order (line 1). Next, the algorithm gets the available time of all FNs
from the FC (line 2). For each task, the algorithm tries to find a suitable
FN for the selected task T𝑘 (main loop, i.e., lines 3–19). To this end, first
two empty sets are created for the task T𝑘, DSList and USList (lines 4–
5). Now, the second loop (lines 6–13) searches among all the available
FNs and check if the FN F𝑖 ∈ 𝐹 can meet the deadline of the task T𝑘
or not. If the response time of F𝑖 is less than the deadline of T𝑘, the
algorithm adds it to the deadline satisfied list, i.e., DSList ; otherwise,
it is added to the unsatisfied list, i.e, USList. At this point, with regard
to the size of DSList, the algorithm takes two different strategies (lines
14–18). If DSList is not empty, i.e., there exists at least one FN that
can met the deadline requirement of the task T𝑘, the algorithm calls
SEMI-GREEDY strategy (Algorithm 2) as reported in line 15; otherwise,
it calls MIN-VIOL strategy (Algorithm 3) as reported in line 17.

Algorithm 1 PSG: Priority-aware Semi-Greedy algorithm for task
cheduling
Input: set of 𝑛 independent tasks), 𝐺 = (𝑭 ,𝑳) (𝑭 : set of 𝑚 FNs, 𝑳: set of
ommunication links between FNs), 𝛼 (to control the amounts of greediness
nd randomness in the algorithm)
utput: 𝛹 ∶ 𝑻 → 𝑭

1: sort 𝑻 in non-descending order of deadline;
2: get the available time of FNs from the FC;
3: for each T𝑘 ∈ 𝑻 do
4: 𝐷𝑆𝐿𝑖𝑠𝑡 ← ∅;
5: 𝑈𝑆𝐿𝑖𝑠𝑡 ← ∅;
6: for each F𝑖 ∈ 𝑭 do
7: calculate R𝑘 using Eq. (9);
8: if R𝑘 ≤ T 𝑑

𝑘 then
9: 𝐷𝑆𝐿𝑖𝑠𝑡 ← 𝐷𝑆𝐿𝑖𝑠𝑡 ∪ F𝑖;

10: else
11: 𝑈𝑆𝐿𝑖𝑠𝑡 ← 𝑈𝑆𝐿𝑖𝑠𝑡 ∪ F𝑖;
12: end if
13: end for
14: if 𝐷𝑆𝐿𝑖𝑠𝑡 ≠ ∅ then
15: call 𝑆𝐸𝑀𝐼 − 𝐺𝑅𝐸𝐸𝐷𝑌 (T𝑘, 𝐷𝑆𝐿𝑖𝑠𝑡, 𝛼);
16: else
17: call 𝑀𝐼𝑁 − 𝑉 𝐼𝑂𝐿(T𝑘, 𝑁𝑆𝐿𝑖𝑠𝑡);
18: end if
19: end for
20: return 𝐷𝑆𝐿𝑖𝑠𝑡 and 𝑈𝑆𝐿𝑖𝑠𝑡
7

Algorithm 2 shows the pseudocode of our SEMI-GREEDY strategy.
ssume the size of DSList is 𝐶 (line 1). Lines 2 to 4 estimates the energy
onsumed of the system by mapping the task T𝑘 to each of the FNs F𝑖 ∈
SList. After this process, the DSList is sorted in non-descending order of
nergy (line 5. Next, the first (1+⌊𝛼×𝐶⌋) FNs from the DSList is selected
line 6), i.e., those FNs which provide the least increase of energy
onsumption to the system, and is placed in a restricted candidate list
RCL). Here, 𝛼 ∈ [0, 1) is a constant parameter to control the amounts
f greediness and randomness in the algorithm. It can be observed that
etting 𝛼 = 0 corresponds to a pure greedy algorithm, i.e., the FN
ith the minimum energy consumed is selected. While setting 𝛼 ≅ 1

eads to a random algorithm, i.e., each FN F𝑖 ∈ DSList will have equal
robability to be selected. In line 7, a FN is selected at random from
he RCL. Then, the task T𝑘 is assigned to that FN and its available time
s updated (lines 8 and 9). If none of the FNs can meet the deadline
f task T𝑘, i.e., 𝐷𝑆𝐿𝑖𝑠𝑡 = ∅, the MIN-VIOL strategy is run where its
seudocode is given in Algorithm 3. This strategy gets the task T𝑘 and
he USList. First, 𝜈𝑚𝑖𝑛 → ∞ is set (line 1). Next, lines 2 to 8 search
mong all the FNs F𝑖 ∈ USList and finds a FN which provides the least
eadline violation time for T𝑘. Line 9 allocates T𝑘 to the founded FN
nd update its available time in line 10.

Algorithm 2 SEMI-GREEDY
Input: T𝑘, 𝐷𝑆𝐿𝑖𝑠𝑡, 𝛼, 𝐶
utput: Scheduling of task T𝑘 to minE𝑡𝑜𝑡

1: let |𝐷𝑆𝐿𝑖𝑠𝑡| = 𝐶the available time of FNs from the FC;
2: for each F𝑖 ∈ 𝐷𝑆𝐿𝑖𝑠𝑡 do
3: EstimateEnergy (T𝑘,F𝑖) using Eq. (18);
4: end for
5: sort 𝐷𝑆𝐿𝑖𝑠𝑡 in non-descending order of energy;
6: 𝑅𝐶𝐿 → pick the first (1 + ⌊𝛼 × 𝐶⌋) FNs from 𝐷𝑆𝐿𝑖𝑠𝑡;
7: select a FN from the 𝑅𝐶𝐿 randomly;

save the selection on F𝑖𝑛𝑑𝑒𝑥
8: assign T𝑘 to F𝑖𝑛𝑑𝑒𝑥;
9: update the available time of FN F𝑖𝑛𝑑𝑒𝑥;

10: return scheduled T𝑘

Algorithm 3 MIN-VIOL
Input: T𝑘, 𝑈𝑆𝐿𝑖𝑠𝑡
Output: Scheduling of task T𝑘 to minV 𝑡𝑜𝑡

1: 𝜈𝑚𝑖𝑛 ← ∞;
2: for each F𝑖 ∈ 𝑈𝑆𝐿𝑖𝑠𝑡 do
3: calculate 𝜈𝑘 using Eq. (12);
4: if 𝜈𝑘 < 𝜈𝑚𝑖𝑛 then
5: 𝜈𝑚𝑖𝑛 ← 𝜈𝑘;
6: 𝑖𝑛𝑑𝑒𝑥 ← 𝑖;
7: end if
8: end for
9: assign T𝑘 to F𝑖𝑛𝑑𝑒𝑥;

10: update the available time of FN F𝑖𝑛𝑑𝑒𝑥;
11: return scheduled T𝑘

4.2. PSG-M algorithm

Here, we improve the PSG algorithm by adding the multistart
procedure to it. The improved algorithm, named PSG-M, conducts a
series of the PSG algorithm and outputs the best solution found over
all iterations. Note that each iteration or trial is independent of the
others, therefore each of them produces an independent solution. There
are different criteria for selecting the best solution. However, since
the main focus of this study is providing high QoS for IoT users, the
solution with the highest 𝑆%, i.e., the percentage of IoT tasks that

meet the deadline requirement (see Eq. (11)), is reported as the best.
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The pseudocode of the proposed PSG-M is shown in Algorithm 4. In
first step, the algorithm set zero for 𝑆%

𝑚𝑎𝑥 (line 1). In the next step,
the PSG algorithm (Algorithm 1) is run 𝑁𝑖𝑡𝑟 times (lines 2–9) where
each iteration generates a solution. Among these 𝑁𝑖𝑡𝑟 iterations, the
solution which offer the maximum 𝑆% is selected as the best solution
and returned by the algorithm (line 10).
Algorithm 4 PSG-M: Priority-aware Semi-Greedy Algorithm with

ultistart
Input: 𝑻 (set of 𝑛 independent tasks), 𝐺 = (𝑭 ,𝑳) (𝑭 : set of 𝑚 FNs, 𝑳: set of
ommunication links between FNs), 𝑁𝑖𝑡𝑟 (number of iterations), 𝛼 (to control

the amounts of greediness and randomness in the algorithm)
Output: 𝛹 ∶ 𝑻 → 𝑭
1: 𝑆%

𝑚𝑎𝑥 ← 0;
2: for 𝑖 = 1 ∶ 𝑁𝑖𝑡𝑟 do
3: 𝑆 ← call𝑃𝑆𝐺(𝑻 , 𝐺, 𝛼);
4: calculate 𝑆% for solution 𝑆 using Eq. (11);
5: if 𝑆% > 𝑆%

𝑚𝑎𝑥 then
6: 𝑆∗ ← 𝑆;
7: 𝑆%

𝑚𝑎𝑥 ← 𝑆%;
8: end if
9: end for

10: return 𝑆∗

4.3. Complexity analysis

In the following, we give the time complexity analysis of our
proposed algorithms.

PSG (Algorithm 1): The complexity of line 1 is 𝑂(𝑛 log 𝑛) due to
the sorting of tasks. To get and set the available time of FNs, the
algorithm needs 𝑂(𝑚). For a given task T𝑘 (line 3), grouping FNs
require 𝑂(𝑚) times (lines 6–13). Thus, for a set of 𝑛 tasks, the
complexity of this phase is equal to 𝑂(𝑛 × 𝑚). To find a suitable FN
for a given task T𝑘, the SEMI-GREEDY strategy (Algorithm 2) or MIN-
VIOL strategy (Algorithm 3) is run. The complexity of lines 2–4 of
the SEMI-GREEDY strategy is 𝑂(𝑚), since the maximum cardinality of
DSList is 𝑚, i.e., |𝐷𝑆𝐿𝑖𝑠𝑡| = 𝑚. Also, sorting DSList in line 5, requires
𝑂(𝑚 log𝑚). Other lines take constant time. Therefore, the worst-case
time complexity of the SEMI-GREEDY strategy is 𝑂(𝑚 log𝑚). On the
other hand, the complexity of the MIN-VIOL strategy is in the order
of 𝑂(𝑚) as it contains only one for loop. Note that the maximum
cardinality of USList is 𝑚. Hence, finding a suitable FN for each
task requires at most 𝑂(𝑚 log𝑚), and for the set of 𝑛 tasks need
𝑂(𝑛 × 𝑚 𝑙𝑜𝑔𝑚). Therefore, the overall time complexity of PSG is
𝑂(𝑛 × 𝑚 log𝑚).
PSG-M (Algorithm 4): Since our PSG-M runs the PSG algorithm 𝑁𝑖𝑡𝑟
times, its overall time complexity is equal to 𝑂(𝑁𝑖𝑡𝑟 × 𝑛 × 𝑚 log𝑚).

. Performance evaluation

In this section, we shed light on the performance and comparison
f the proposed algorithms with other benchmarks in terms of: (1) the
ercentage of IoT tasks that meet their deadline requirement, i.e., 𝑆%

see Eq. (11)); (2) the total energy consumption of the system, i.e., E𝑡𝑜𝑡

see Eq. (19); (3) the total amount of the deadline violation time,
.e., V 𝑡𝑜𝑡 (see Eq. (13); and (4) the makespan of the system, i.e., M
see eq. (15). The compared algorithms are described in Section 5.1.
he simulation settings are given in Section 5.2. Finally, results of the
xperiments are presented in Section 5.3.

.1. Compared algorithms

To show the effectiveness of our proposed algorithms, PSG and
8

SG-M, we compare them against the following baselines. T
First Come First Serve (FCFS) (Zhao and Stankovic, 1989): This is
a simple task scheduling algorithm which aims to balance the load
among the computing nodes of the environment. In the FCFS policy,
the first IoT task that arrives at the FC is the first task to be scheduled.
For each task, a FN is randomly selected to process the task.
Earliest Deadline First (EDF) (Stankovic et al., 2012): EDF is a
delay-aware scheduling algorithm where it gives higher priority to
tasks with the lower deadline. Similar to FCFS, the FN selection phase
is based on the random strategy.
Greedy for Energy (GfE) (Xu et al., 2020): In this algorithm, the task
selection is similar to the FCFS policy. However, its node selection
phase is different. GfE assigns each task to the FN that offers the most
energy-saving for the system.
Detour (Misra and Saha, 2019): This scheme includes three aspects:
(a) local decision-making process, (b) optimal FN selection, and (c)
optimal path selection. The local decision-making process is done
based on a utility function. The FN with the minimum waiting and
execution time is selected for each offloaded task. Finally, the shortest
path using the Dijkstra’s algorithm is calculated to route the offloaded
task to the destination FN. Since the main focus of this work is on the
task scheduling process, we have considered the last two aspects in
our implementation.

.2. Simulation setting

For the simulation experiments carried out in this work, we consider
fog environment consisting of several heterogeneous, interconnected

Ns with random mesh topology and a set of different tasks offloaded
rom IoT devices to be scheduled on the FNs. To conduct different
xperiments, the number of FNs is varied from 30 to 90 and the number
f IoT tasks is changed from 100 to 500. To ensure the heterogeneity
f FNs, the CPU processing power of each FN is assumed to uniformly
istributed from 2000 to 6000 MIPS while its power consumption in
ctive state is randomly generated in [80–200] W. The power con-
umption of a FN in idle state is considered to be about 60%–70%
f its power consumed in active state (Greenberg, 2008; Hashimoto
nd Aida, 2012). The propagation delay between FNs is assumed to
e [1–3] ms while the bandwidth of communication links is set to
000 Mbps. For the IoT tasks, to take a meaningful relation between
he size of the tasks and their deadline requirement into consideration,
wo different types of tasks are considered (Auluck et al., 2019): (1)
ard real-time tasks and (2) firm real-time tasks. For the first type,
he size of the tasks is generated randomly in [100–372] MI while
heir deadline is assumed to be uniformly distributed in the interval
100, 500] ms. For the second type, the values are set to [1028–4280]
I and [500–2500] ms, respectively. For both types, the input and

utput file sizes are randomly selected in [100–10000] KB and [1–
000] KB, respectively. The summary of parameter settings for FNs and
oT tasks are given in Table 3. Regarding of our proposed algorithms,
balance between greediness and randomness is required which can

e controlled by setting the value of the parameter 𝛼. In the next
ubsection, we evaluate the performance of PSG and PSG-M using
arious experiments to specify the value of 𝛼. For the PSG-M algorithm,
he number of iterations, i.e., 𝑁𝑖𝑡𝑟, must be set. Although by increasing
𝑖𝑡𝑟 the value of 𝑆% may be somewhat improved, the execution time of

he algorithm is also increased. Since the running time of the algorithm
s of great importance, the value of 𝑁𝑖𝑡𝑟 should be as low as possible.

e did extensive testing and found that 𝑁𝑖𝑡𝑟 = 100 is a good value for
his parameter.

All simulations are coded in C++ programming language on Dev-
pp 5.11 IDE. The experiments were carried out on a laptop running
n Intel® Core i7-6600U CPU, 2.6 GHz, 4 cores, 16 GB of RAM, and
indows 10 operating system. To provide results with high confidence,

ach experiment is repeated 30 times and reported an average of them.

he source code of the paper is available in Azizi et al. (2021).



Journal of Network and Computer Applications 201 (2022) 103333S. Azizi et al.

r
b

5

F
i
t
a
p
A
t
v
i
o
1

Table 3
Parameter settings for FNs and IoT tasks.

Parameter Value Parameter Value

Number of FNs {30, 45, 60, 75, 90} Number of IoT tasks {100, 200, 300, 400, 500}
FN CPU processing power [2000–6000] MIPS FN power consumption in active state [80–200] W
Propagation delay between FNs [1–3] ms 𝑁𝑖𝑡𝑟 100
IoT task size (type 1) [100–372] MI IoT task size (type 2) [100–500] MI
FN power consumption in idle state [60–70]% ×[80–200] W Bandwidth of communication links 1000 Mbps
IoT task deadline (type 1) [1028–4280] ms IoT task deadline (type 2) [500–2500] ms
Input file size for task [100–10000] KB Output file size for task [1–1000] KB
Table 4
Performance of the PSG and PSG-M as a function of the parameter 𝛼, where the number of FNs is 60 and the number of
tasks is 300. The bold cells represent the best values respect to the 𝛼 ratio.
𝛼 Algorithm 𝑆% M E𝑡𝑜𝑡 V 𝑡𝑜𝑡

0 PSG 93.0 2.18 17,384 2.19
PSG-M 93.1 2.19 17,424 2.16

0.2 PSG 94.3 2.15 17,214 2.13
PSG-M 95.6 2.16 17,133 1.95

0.4 PSG 95.2 2.12 17,100 1.88
PSG-M 96.5 2.10 16,744 0.95

0.6 PSG 92.4 2.25 17,631 1.56
PSG-M 94.7 2.27 17,368 0.89

0.8 PSG 89.0 2.46 18,908 4.16
PSG-M 92.4 2.34 17,837 2.00

1 PSG 90.6 2.44 19,207 1.97
PSG-M 94.9 2.41 18,526 1.07
Table 5
Performance of the PSG and PSG-M as a function of the parameter 𝛼, where the number of FNs is 60 and the number of
tasks is 500. The bold cells represent the best values respect to the 𝛼 ratio.
𝛼 Algorithm 𝑆% M E𝑡𝑜𝑡 V 𝑡𝑜𝑡

0 PSG 52.6 3.54 27,456 103.55
PSG-M 53.5 3.61 28,138 102.54

0.2 PSG 58.0 3.50 26,222 89.91
PSG-M 60.6 3.53 26,426 86.88

0.4 PSG 60.4 3.41 26,527 82.66
PSG-M 62.0 3.49 27,393 71.00

0.6 PSG 48.1 3.70 28,294 123.83
PSG-M 55.1 3.70 29,395 111.53

0.8 PSG 56.8 3.60 28,526 92.68
PSG-M 57.0 3.61 28,586 89.50

1 PSG 54.2 3.63 29,589 97.76
PSG-M 58.4 3.61 28,818 99.22
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5.3. Results

Here, we provide the results of our conducted experiments. We first
investigate the effect of the 𝛼 on the performance of the proposed algo-
ithms. Then, we compare our algorithms with the existing algorithms
y varying the number of tasks and fog nodes.

.3.1. Setting the value of 𝛼 for the proposed algorithms
To specify the value of 𝛼, we conducted two different experiments.

or both experiments we fixed the number of FNs to 60. However,
n the first experiment, the number of tasks is set to 300 while in
he second one it is set to 500. The results are reported in Tables 4
nd 5, respectively. As the results indicate, we notice that both of the
roposed algorithms present better performance in the case of 𝛼 = 0.4.
s the number of tasks increases from 300 to 500, the superiority of

he proposed algorithms with 𝛼 = 0.4 is more significant than the other
alues. In particular, it can be observed that when the number of tasks
s 300 and the value of 𝛼 changes from 0 to 0.4, the improvement
f PSG-M in terms of 𝑆% is 3.65% while this improvement is reached
9

5.89% when the number of tasks is 500. b
.3.2. Impact of increasing number of tasks
Fig. 2 shows how the number of tasks affects the performance of the

lgorithms in different aspects. Here we fixed the number of FNs to 60.
here are some important observations in the figure. First, in general,

ncreasing the number of tasks imposes more load on the system. Conse-
uently, more tasks miss their deadline which lead to increasing of the
iolation time. The energy consumption and makespan of the system
s also increased. Second, from Fig. 2(a) it can be observed that in our
roposed PSG and PSG-M algorithms the deadline for a significantly
igher percentage of tasks is met as compared to the other strategies.
his is expected, since our proposed algorithms consider the priority
f the IoT tasks and the resource availability of FNs in their decision-
aking process. Particularly, the percentage of improvement for our
SG and PSG-M is up to 25.3% and 28.6% in compare with the second-
est results, i.e., Detour, respectively. Third, the energy consumption
nd makespan of our algorithms is comparable with that of GfE, see
ig. 2(b) and Fig. 2(d). This is because our proposed algorithms are
lso taken into account the energy consumption of the system (see
lgorithm 2). It is worth mentioning that the makespan of a system
as a direct impact on the energy consumption (see Section 3.2.4).
ence, when the energy is minimized, the makespan is also expected to

e minimized. Fourth, another interesting observation about our PSG
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Fig. 2. Varying Number of Tasks — Simulation results for 60 FNs where 2(a) 𝑆%∶= Deadline satisfaction, 2(b) E𝑡𝑜𝑡∶= Total energy consumption, 2(c) V 𝑡𝑜𝑡∶= Total violation time,
and 2(d) M ∶= makespan,.
and PSG-M is that they provide a significant improvement over the
benchmarks in terms of the total deadline violation time, as we can
see from Fig. 2(c). To justify this, we should mention that when there
exists no FN to satisfy the deadline of a given task, our algorithms
try to find a FN which offers the minimum violation time for that
task (see Algorithm 3). Finally, regarding our proposed algorithms,
PSG-M somewhat performs better than PSG, especially in terms of the
percentage of the deadline satisfied tasks (see Fig. 2(a)). This is due to
the multistart procedure where it gives the chance to PSG-M to improve
𝑆%, as it selects the solution with the best 𝑆%.

5.3.3. Impact of increasing number of fog nodes
The goal of this experiment is to study the effect of number of FNs

on the performance of the compared algorithms. In this experiment,
the number of tasks is set to 300. Fig. 3(a) to Fig. 3(d) illustrate the
results of simulations. Here are the most important observations. First,
from Fig. 3(a) we observe that as the number of FNs increases, more
tasks meet their deadline. This is expected, since adding more FNs
to the system increases the available resources. However, due to the
prioritizing of tasks and resource-awareness of the proposed algorithms,
the percentage of the tasks that meet their deadline requirement is
significantly higher than the other algorithms. In particular, when the
number of FNs is 60, our PSG and PSG-M satisfy 95.2% and 96.5% of
tasks, respectively, while this value is less than 75% for the other algo-
rithms. Second, from the point of the energy consumed and makespan
of the system (see Fig. 3(b) and Fig. 3(d)), GfE, PSG-M, PSG and Detour
almost have the same performance while they are far better than FCFS
10
and EDF. Third, it can be seen from Fig. 3(c), with an increase in the
number of FNs, the total violation time of all algorithms is substantially
decreased. Again, it is clear that the proposed PSG and PSG-M performs
much better than the compared algorithms.

6. Discussion and limitations

Many of real-time IoT systems, including autonomous cars (Auluck
et al., 2019), smart video surveillance system (Cob-Parro et al., 2021),
industrial IoT (Aazam et al., 2018), health monitoring systems (Gia
et al., 2015), and smart grids (Chen et al., 2019), have limited embed-
ded resources which make them a performance bottleneck for executing
various IoT tasks. With fog computing, there is no need to submit
the time-sensitive tasks to remote cloud servers, leading to delayed
response time. However, the running time of the fog task scheduler
and the quality of the results are critical for such systems. Our time
complexity analysis and performance evaluation verify that the pro-
posed algorithms are promising solutions for scheduling the real-time
IoT tasks in fog computing systems.

Although this study presents two efficient solutions for scheduling
IoT tasks in a heterogeneous fog computing, there are still several
aspects that should be addressed in future studies. First, in this work,
we ignored the decision-making process of smart gateways for the
computation tasks offloaded from IoT devices. However, how to classify
the IoT tasks to be processed on the FNs or cloud servers is a challeng-
ing task. To address this issue, we plan to use methods such as deep
reinforcement learning and k-means in our future work. Second, in the
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Fig. 3. Varying Number of Fog Nodes — simulation results for 300 of tasks where 3(a) 𝑆%∶= Deadline satisfaction, 3(b) E𝑡𝑜𝑡∶= Total energy consumption, 3(c) V 𝑡𝑜𝑡∶= Total
violation time, and 3(d) M ∶= makespan,.
real world, the type of tasks and FNs may be different. For examples,
some tasks may need graphical processing unit (GPU). Thus, such tasks
should be run on the GPU-enabled FNs. Therefore, it is necessary to
modify the proposed algorithms in way that they can also be applied
in such environments.

Third, in this work we assumed that each FN can only execute one
task at any time. However, several lightweight and open-source tools
based on containers have been recently developed such as KubeEdge1,
MicroK8s2, and K3s3, which allow us to run multiple tasks simultane-
ously in a single FN.

Fourth, PSG/PSG-M methods are unable to schedule the tasks on the
fog resources when they face resource failures. To do this, we should
real-time check the trade-off between task replication and task schedul-
ing in the fog resources serving the heterogeneous IoT applications. In
this way, we require to design a fault-tolerant task scheduling algorithm
that aims to concurrently assign tasks and optimize the QoS. It helps
to manage the uncertainty and dynamic nature of task execution in fog
nodes (Ghanavati et al., 2020a; Gazori et al., 2020).

Finally, since the iterations of our PSG-M is independent to each
other, its multistart procedure can be executed in a parallel mode.
Therefore, the running time of the proposed PSG-M can be remarkably
decreased compared with its sequence version.

1 Kubeedge, https://kubeedge.io, accessed: 2021-05-16.
2 Microk8s, https://microk8s.io, accessed: 2021-05-16.
3 K3s, https://k3s.io, accessed: 2021-05-16.
11
7. Conclusion and future work

In this paper, we studied the scheduling of IoT tasks in a hetero-
geneous fog network. The key idea of this paper was to optimize the
total energy consumption of the system while meeting the deadline of
the tasks. If the deadline of a given task is not met, it is allocated to
a fog node which provides the minimum violation from the deadline
requirement of that task. To achieve these goals, two efficient priority-
aware semi-greedy algorithms are proposed. The effectiveness of the
proposed algorithms are evaluated through extensive experiments. The
results demonstrated that the proposed algorithms significantly outper-
form existing algorithms in terms of the percentage of IoT tasks that
meet their deadline requirement, the total energy consumption and
makespan of the system, and the total amount of the deadline violation
time. As future work, we plan to improve the proposed algorithms
to schedule the dependent IoT tasks. We also aim to evaluate the
performance of the proposed algorithms under different real-world
datasets.
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