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Abstract—The broad adoption of cloud services led to an
increasing concentration of servers in a few data centers. Reports
estimate the energy consumptions of these data centers to
be between 1.1% and 1.5% of the worldwide electricity con-
sumption. This extensive energy consumption precludes massive
CO2 emissions, as a significant number of data centers are
backed by “brown” power plants. While most researchers have
focused on reducing energy consumption of cloud data centers
via server consolidation, we propose an approach for reducing
the power required to execute urgent, CPU-intensive Bag-of-
Tasks applications on cloud infrastructures. It exploits intelligent
scheduling combined with the Dynamic Voltage and Frequency
Scaling (DVFS) capability of modern CPU processors to keep the
CPU operating at the minimum voltage level (and consequently
minimum frequency and power consumption) that enables the ap-
plication to complete before a user-defined deadline. Experiments
demonstrate that our approach reduces energy consumption with
the extra feature of not requiring virtual machines to have
knowledge about its underlying physical infrastructure, which
is an assumption of previous works.

I. INTRODUCTION

In the last years, we witnessed a shift in focus from tradi-

tional IT models to cloud computing [1]. Cloud computing

enables IT services to be offered to customers as utilities:

physical resources hosting the application are obtained from

a resource pool and accessed via the Internet. The amount

of resources allocated to a service can be dynamically mod-

ified to better supply its demand (a feature called elasticity),

and the utilization of resources is metered. Regarding the

particular IT service model offered by the provider, they

broadly can be classified as Infrastructure as a Service (IaaS),

where customers lease virtual machines (VMs) and other low-

level services, such as storage; Platform as a Service (PaaS),

where customers acquire platforms and frameworks for hosting

applications; and Software as a Service (SaaS), where users

use applications hosted in the data center rather than in their

local systems. This work focuses on IaaS clouds.

The recent surge of cloud service providers led to an

increasing concentration of IT servers in a few data centers. A

point of increasing concern is the amount of energy consumed

by each of these data centers. Reports estimate the energy

consumptions of data centers to be between 1.1% and 1.5%

of the worldwide electricity consumption [2]. This massive

energy consumption causes significant CO2 emissions, as

many data centers are backed by “brown” powerplants.

State-of-the-art research in energy-efficient cloud computing

focuses on the problems of VM consolidation and selection of

energy sources for data centers (see Section II). In this paper,

we consider a different approach, orthogonal to these studies,

which aims at reducing the power required to execute urgent,

CPU-intensive Bag of Tasks (BoT) applications on cloud

infrastructures. A urgent application is a High Performance

Computing application whose execution needs to complete

before a user-defined deadline because of its utilization in

sensitive contexts, such as disaster management and health-

care [3]. We define a deadline-constrained application as an

application that needs to have its execution completed before

a user-defined soft deadline. Notice that, in contrast to a hard

deadline, a soft deadline does not render the computation

useless if the deadline is violated. Instead, there exists a

utility value associated to the computation whose value is

maximized if the application completes by the deadline, and

is increasingly reduced as the completion is delayed [4].

In this direction, the contribution of this paper is the

proposal of an algorithm that exploits intelligent scheduling

combined with the Dynamic Voltage and Frequency Scaling

(DVFS) capability of modern CPU processors to keep the CPU

operating at the minimum voltage level (and consequently

minimum frequency and power consumption) that enables

the application to complete before a user-defined deadline.

The proposed algorithm is more energy-efficient than existing

approaches for the problem, that are not customized for

cloud environments and therefore are unable to make the best

decision when applied in virtualized environments.

Our approach applies DVFS at the middleware/Operating

System level rather than at CPU level. This means that max-

imum frequency levels to be assigned during tasks execution

are supplied by our algorithm. If our approach is combined

with DVFS techniques applied at the CPU level to manage

frequency for operation at the microinstruction level [5],

[6], even more savings could be expected. Experiments are

presented that demonstrate that our algorithm significantly

reduces energy consumption with the extra feature of not

requiring virtual machines to have knowledge about its un-

derlying physical host, which is an assumption of previous

solutions for the problem.
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II. RELATED WORK

To counter the increasing energy consumption and green-

house gases emissions caused by cloud data centers, recent

studies focused on optimizing the utilization of hosts via

dynamic consolidation (with or without reconfiguration) of

virtual machines [7]–[10]. In this model, VMs with low

utilization are placed together on a single host, which enables

the other hosts initially hosting the VMs to be shut down.

Laszewski et al. [11] developed an algorithm for energy-

efficient scheduling of VMs in hosts that are part of a vir-

tualized cluster. These approaches see VMs as “black boxes”

and thus cannot guarantee the deadlines of urgent applications

within the VM.

Li et al. [12] developed an energy-aware algorithm for

scheduling tasks on heterogeneous clusters. However, the ap-

proach tries to minimize the execution time without enforcing

deadline for applications. It also does not explore DVFS.

Rather, it takes into account the different power consumption

incurred by heterogeneous machines.

Chetsa et al. [13] developed a technique where characteris-

tics of HPC applications are inferred at runtime and measures

for energy savings are applied based on the characteristics of

the application. Although the approach does not address the

problem of deadline-constrained applications, it can be used

in conjunction with our algorithm. This is because we focus

on dynamic scaling the CPU frequency, whereas Chetsa et al.

approach also applies energy-saving measures to other system

components, such as network, hard disk, and memory.

The utilization of DVFS as a means to reduce energy con-

sumption of applications has been explored in the last years in

related areas. Ruan et al. [14] and Wang et al. [15] applied the

technique in workflow applications on clusters, whereas Tian

et al. [16] apply the approach for web servers. Our approach

is designed for urgent, CPU-intensive BoT applications, where

there are no execution dependencies between tasks, and works

based on user-defined deadlines for application execution.

Eyerman and Eeckhout [5] and March et al. [6] propose

techniques for fine grain control of frequency and voltage at

the CPU level. Eyerman and Eeckhout [5] explores regulation

of frequency to slow down the flow of CPU instructions

through CPU units (such as buffers and functional units) in

the event of cache misses that disrupt the flow of execution

of operations being processed. March et al. [6] apply DVFS

and task migrations to balance load among CPU cores, what

in some circumstances enables the whole CPU to execute at a

lower frequency/voltage. These approaches are complementary

to ours, as they operate at the CPU level whereas our approach

is applied at middleware/Operating System level. Thus, one

could expect further reduction in energy consumption if our

approach is applied in conjunction with Eyerman and Eeck-

hout’s approach at CPU level.

Kim et al. [17] and Zhang et al. [18] developed heuris-

tics for scheduling deadline-constrained BoT applications in

clusters and heterogeneous distributed systems, respectively.

Kim et al. [17] approach requires each execution node to have

knowledge about the total consumption from the underlying

hardware. Although this is a reasonable approach for clusters,

this is not reasonable in cloud systems, where nodes are virtual

machine that, because of security issues, cannot have access

to information about energy consumption from other VMs

in the same host. Zhang et al. [18] approach is also not

tailored for cloud environments, where VMs share the same

hardware and therefore their potential co-location affects the

total consumption caused by the host. Therefore, a different

approach, like ours, is necessary for cloud infrastructures.

III. SYSTEM AND APPLICATION MODELS

Our target system model is depicted in Figure 1. It is

composed of a virtualized IaaS cloud data center that supports

a PaaS layer that is available to multiple users for execution

of urgent, CPU-intensive BoT applications. The data center is

composed of a number of (potentially heterogeneous) physical

servers (hosts). Virtual machines are executed in the servers,

and they are managed by a virtual machine manager installed

on each host. We also assume that a dedicated amount of
servers from the cloud is available for execution of the urgent
applications, and therefore it does not suffer from interference
of other services or other tasks hosted in the same cloud. It

means that any task already executing in the resources are

subject to the proposed approach.

VMs do not share CPU cores with other VMs in the same

host. It means that, apart from a small fraction of CPU time

reclaimed by the virtual machine manager for its operation, the

CPU core is exclusively available for the VM (a configuration

that can be obtained in current virtual machine managers such

as Xen [19]). Each VM has exclusive use of a share of the

host’s memory. In order to control the access to VMs by

jobs from multiple users, the PaaS layer contains a Resource

Management System (RMS) that coordinates the execution of

applications submitted by users in the infrastructure. In the

context of clouds, a RMS is a key element of the PaaS that

is responsible for provisioning and management decisions for

resources and incoming requests.

The PaaS layer maintains one queue for each VM to store

tasks scheduled for execution until the VM is idle. Only one

task is executed simultaneously on each VM, and if more than

one task is scheduled to the same VM, the remaining tasks are

kept the queue. Formally, we define for the data center a set

VM = {v0, v1, ..., vn − 1} of n available VMs.

The application model consists of urgent, CPU-intensive

Bag-of-Tasks applications submitted by users of the PaaS

service. The job execution request for a job ji contains the

following information: (i) the independent tasks t0, t1, ..., tn
that compose the job; (ii) estimated runtime rtmax(tk) of

each task tk executed at the maximum frequency of the CPU.

This information can be obtained via previous profiling and/or

from historical data from previous executions of the job; and

(iii) a deadline dl(ji) for the job to complete. Tasks are non

preemptable, and the completion time of the job is computed

as the completion time of the last task. It means that the
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Fig. 1. System and application models adopted in this paper. A cloud data center containing VMs with dedicated CPU cores execute, on its PaaS layer,
urgent, CPU-intensive BoT applications (jobs) from multiple users. The CPU frequency of each core/VM can be independently adjusted in order to balance
energy utilization and application deadlines.

scheduling algorithm has to operate in such a way that all the

tasks that compose the job are finished before the job deadline.

In the proposed model, jobs have “soft deadlines”, which

means that violations on deadlines do not render the compu-

tation irrelevant, but reduces its value for the user [4]. As loss

of value of the computation is proportional to the amount of

delay for job completion regarding its deadline, it is important

that deadlines are not missed at all, or are missed by just a

small margin. Deadlines missed by large margins result in the

computation being useless for the user and therefore the energy

spent on its computation can be considered wasted. Therefore,

if the PaaS layer, via its RMS, determines that the job deadline

cannot be met, the request is rejected.

The above model is a generalization of a more restrictive

model where users submit requests for specific computational-

intensive services whose details of the underlying application

(e.g., video transcoding, data analytics) is known by the

provider and enhanced with the concept of execution soft

deadline. An example of a commercial cloud service applying

this more restrictive model without deadlines is Amazon

Elastic Transcoder1.

The objective of the cloud platform is to balance the en-

ergy consumption of the system and comply with application

deadlines. This is achieved with the proper configuration of

the frequency of VMs to speed up or slow down the CPU

core allocated to each VM (and consequently reduce its energy

consumption). We assume that the frequency and voltage of

each core can be individually managed (a set up that is

demonstrated [20] to provide more energy efficiency than

per-chip DVFS) by the RMS. Formally, each host hl of the

data center has r cores, c1..., cr. Therefore, different hosts

can have different number of cores. Each core c can be in

one of lc different CPU levels, where lc0 is the idle state

of core c and lcmax is the state of maximum frequency (and

energy consumption) of core c. Without loss in generality, we

1http://aws.amazon.com/elastictranscoder/

assume that the number of states can be different among cores

belonging to different hosts, but are the same for cores in the

same host.
As we target CPU-intensive applications, we assume that

performance of core c is linearly proportional to the frequency

level for frequency levels between lc0 and lcmax. The power

consumed by each host is calculated based on the individual

contribution of each core of the host. Furthermore, we assume

that hosts that are not in use (i.e., all its VMs are idle, and

therefore their respective CPU cores are in the state lc0) are

suspended until one of the VMs is necessary, so the host

is restored to a full operational mode. Also, as the time for

scaling the CPU frequency is at the scale of nanoseconds while

application execution is minutes or hours [5], we assume as

negligible the time taken by the CPU core to reach the desired

frequency level. The total energy consumed by a host is a

function of the frequency level of each of its cores.
When a new job is received by the system, the RMS decides

in which VM the task will be executed, in what position of the

queue it will be placed, and the frequency level to be applied

to the VM.

IV. CLOUD-AWARE SCHEDULING ALGORITHM

The rationale behind our proposed scheduling algorithm

is to dynamically scale the frequency and voltage of CPUs

assigned to a virtual machine in such a way that tasks sequen-

tially executed in the VM complete before their deadlines.

As discussed in Section II, the idea has been explored in

clusters in the past. One key difference between traditional

(i.e., non-virtualized) clusters and clouds is that, in the former,

calculation of energy consumption incurred by applications is

straightforward, as there is no abstraction of physical resources

as in the case of clouds.
In a cloud environment, hardware is shared among VMs. It

means that the energy consumption of a host is not determined

by a single VM, but by the combined state of all the VMs.

Furthermore, when scheduling a task, the physical location of
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the VM can be taken into consideration, in such a way that

requests are preferentially submitted to VMs whose host is

already in use (i.e., other VMs in the same host are already

executing tasks). This enables the system to consolidate the

load whenever possible. This in turns helps in reducing the

total energy consumption of the infrastructure, as it enables

unused hosts to be suspended or kept in low power states.

Schedulers unaware of the virtualized system are unable to

make decisions based on the location of the VM and therefore

cannot make such kind of optimization.

The cloud-aware scheduling algorithm is listed in Algorithm

1. For selecting the most suitable VM for each task, it adopts

the concepts of score of the selection and energy ranking of

hosts. For the purpose of this algorithm, the best solution is the

one that requires the least extra energy to operate. Therefore,

from the best to the worst approach, the possible scheduling

decisions are: (i) the task is scheduled to a VM in use, and

does not require its frequency to be increased; (ii) the task is

scheduled to a VM in use, but the CPU frequency has to be

increased; (iii) the task is scheduled to an idle VM, but the host

contains at least one VM that is not idle; and (iv) the task is

scheduled to an idle VM from an idle host, i.e., the host has to

be taken from its low-energy state to execute the task. Integer
constants are applied in the algorithm in order to enforce
the above order for host selection. The only requirement for

setting such parameters is that the value assigned to the score

of an option is bigger than the maximum value that can be

achieved by the score of the next option in the preference

order, even in the case of some deductions are applied by the

algorithm. If the number of frequency levels is equal or smaller

than ten, the base score for each of the four decisions above

can be set, without loss of generality, as 10000, 1000, 100,

and 10 (so the last option never assumes a negative value if it

has to go from the lowest frequency to the highest frequency).

Any other values could be chosen, as long as subtractions in

lines 17, 19, 25, and 27 never result in a negative score value

or result in the score assuming the value of the score value of

next possible scheduling decision.

The energy ranking is an abstraction adopted by the algo-

rithm for classifying different hosts from the infrastructure.

The more energy efficient the host, the higher its rank. In the

context of the algorithm, ranks are applied for each particular

server type (hosts of the type of the most efficient server is

ranked 0, the second most efficient 1, and so on). Alternatively,

groups of server types with close energy performance can

be grouped within a single rank, so for the purpose of the

algorithm, hosts that are of any of the grouped types are

considered as having the same efficiency.

For the above concepts to be applied, the algorithm, for each

task, iterates over each VM (Lines 6–40). It first verifies the

utilization status of the VM. If the VM is in use (Line 10),

the task will have to be inserted in the existing non-empty

execution queue of the VM. The queue is arranged so that

tasks are kept in ascending order of deadline. The new task is

temporarily (until the check for the feasibility of the deadline

is performed) inserted in the correct position in the list (Line

Algorithm 1 Cloud-Aware Energy-Efficient Scheduling.

1: for each task ti ∈ J do
2: chosenV m← null;

3: chosenPosition← null;

4: chosenFrequency ← null;

5: maxScore← 0;

6: for each VM vn ∈ VM do
7: score← 0; position← 0; freqRank ← 0;

8: energyRank ← energy ranking of the host where the

VM runs;

9: if there are tasks scheduled to vn then
10: Insert ti in the scheduling list so that the list is sorted

in non-decreasing order of task deadline;

11: position← position of ti in the scheduling list;

12: freqRank ← index of the smallest frequency level

able to meet the deadline of all tasks in the scheduling

list, or -1 if no frequency meets all the deadlines;

13: if frequencyRank = −1 then
14: score = −1;

15: else
16: if freqRank >current frequency of vn then
17: score← 1000− freqRank − energyRank;

18: else
19: score← 10000− freqRank − energyRank;

20: end if
21: end if
22: else
23: freqRank ← index of the smallest frequency level

able to meet the deadline of ti, or -1 if no frequency meets

the deadline;

24: if freqRank > −1 and the host where vn runs

contains at least 1 VM not idle then
25: score = 100− energyRank;

26: else if frequency> −1 then
27: score = 10− energyRank;

28: else
29: score = −1;

30: end if
31: Insert ti in the empty scheduling list for vn;

32: position← 0;

33: end if
34: if score > maxScore then
35: maxScore← score;

36: chosenPosition← position;

37: chosenFrequency ← frequencyRank;

38: chosenV m← vn;

39: end if
40: end for
41: if chosenV m = null then
42: Remove all scheduled tasks from J from the schedul-

ing queues;

43: Return failure.

44: end if
45: end for
46: Return success.
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10). If other task with the same deadline is also in the queue,

it has priority over the arriving task.

The next step consists on the computation of the lowest fre-

quency level that can meet the deadline of all tasks (Line 12).

If the deadline cannot be met even at the highest frequency,

this VM is not suitable for executing the task, and the score

of this VM is set to -1 (Line 14). Otherwise, the VM can be

used for the task. In this case, the score is determined based

on the necessity of increasing the frequency level (Line 17) or

not (Line 19). The base value of the score function is set to

1000 or 10000, respectively. Because a similar solution (for

example, scheduling without changing the frequency level) can

be achieved for different VMs, the algorithm prioritizes the

VM that can run in the smaller frequency. This is achieved

via subtraction of the frequency level from the base value.

If the VM being iterated is idle, its score is based on the

state of the host, as stated previously. If the task cannot have

its deadline met even at the highest CPU frequency, the score

value is -1, as in the previous case. Otherwise, a score value

of 100 is assigned if the host is in use and a value of 10 is

assigned if the host is idle (Lines 24–27). The CPU frequency,

in this case, is the lowest one able to meet the task deadline.

In any case, the rank of the host is debited from the score, so

if two selections have the same score, the algorithm prioritizes

the one with the highest rank (and therefore belonging to the

more energy-efficient class of hosts). If many ranks are avail-

able, the base value of the score function must be increased

to avoid a valid solution (i.e., a solution whose deadline of all

tasks are met) resulting in a negative score. However, it does

not require any change in the dynamics of the algorithm.

The selection of the best VM so far for the task occurs

between lines 34 and 39. Because maxScore is initially set

to 0, negative score values (i.e., unmet deadlines) do not lead

to update of the VM to be chosen. It means that, if no VM

can meet the deadline, chosenV m will maintain its initial

value null and this is regarded as a failure in scheduling the

task, and consequently the job (Lines 41–43). In this case, the

scheduled tasks are removed from the queues and the job is

rejected. If all tasks can be successfully scheduled, the process

is considered successful (Line 46), and the job is accepted for

execution.

A. Complexity Analysis

The outer loop of the Algorithm 1 (Lines 1–45) iterates

over each task of J . Given n the number of tasks of J , then

the complexity incurred by this loop is O(n). The inner loop

(Lines 6–40) iterates for each VM, and therefore it is O(m),
where m is the number of VMs in the cloud.

The insertion in Line 10 requires, in the worst case, all the

elements in the list to be read. The worst case scenario in this

case occurs when all tasks are assigned to the same VM, and

therefore the size of the list will be the number of scheduled

tasks in the VM. As this requires insertion of elements in a

sorted sequence, efficient data structures (such as Red-Black

trees) can perform each insertion in O(log n). In total, this

operation is repeated for each of the n tasks (the outer loop),

and the insertion operation in the worst case will be performed

in O(n log n). In this situation, still all the VMs are tested,

although the other cases led to O(1) operations. Therefore,

the complexity at this point of analysis is O(mn log n).

The statements in Lines 12 and 23 require, in the worst case,

all the frequencies to be tested, leading to a worst case O(l),
where l is the available frequency levels. However, given that

l << mn log n, because while VM are expected to be in the

order of hundreds or thousands, CPUs are expected to have

frequency levels in the order of tens and the tasks are also

expected to be in higher number than the number of frequency

levels. This allows us to ignore the term in the analysis, as it

is dominated by the number of VMs and tasks, to establish

the asymptotic complexity of the algorithm as O(mn log n),
where m is the number of VMs and n is the number of tasks.

This complexity is acceptable (i.e., it does not delay too

much the execution of the tasks and thus does not compromise

the capacity of the system to complete the tasks within

their deadlines) given that, typically, the average number of

tasks in a BoT application is between 5 and 50 [21], which

is much smaller than the expected number of VMs in a

typical infrastructure. When the number of tasks or VMs is

too large, the scheduling process could be split so different

nodes compute the scheduling for a subset of hosts/VMs, and

the partial results are gathered and used to decide the final

placement of the task.

V. PERFORMANCE EVALUATION

In order to evaluate the effectiveness of our proposed

algorithm for energy efficient scheduling of BoT applications

in clouds, we performed simulation experiments using the

CloudSim toolkit [22]. The simulated environment consists

of a cloud data center hosting 200 hosts. Each host has four

cores and 8 GB of RAM. Each host supports up to four

virtual machines, amounting to 800 VMs in the data center.

The energy consumption model assumed for each host is the

one observed from an IBM System x3250 M3 [10]. Although

our algorithm supports heterogeneous hosts, we limited this

experiment to a homogeneous data center in order to enable

us to focus on the effects different workloads have on the

performance of the algorithm.

The BoT workload that is submitted to the cloud is based

on the model proposed by Iosup et al. [21]. The analysis

established that the arrival of jobs has different behavior in

peak and in off-peak times. Nevertheless, to further stress the

infrastructure for the purpose of these experiments, we applied

the inter-arrival rate at the peak time for the observed 24-hour

period. Such an inter-arrival rate is approximated by a Weibull

distribution with parameters (4.25, 7.86) [21].

For each incoming job execution request, the number of

tasks that composes the job is given by 2x, where x is a

Weibull distribution with parameters (1.76, 2.11). Execution

time of tasks of the same job is assumed to be homogeneous

and given by 2x minutes, where x follows a normal distribu-

tion with average 2.73 and standard deviation 6.1.
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TABLE I
AVERAGE NUMBER OF JOBS GENERATED BY EACH WORKLOAD, FOR

URGENCY RATE OF 20% (URGENCY RATE OF 50% IN PARENTHESIS).

α = 4.25 α = 8.5

β = 15.72 6040.9 (6041.0) 5818.5 (5823.2)
β = 3.93 24163.2 (24170.0) 23285.9 (23313.8)
β = 7.86 12099.4 (12085.9) 11636.4 (11637.7)

The traces that originated the model we utilize do not

contain information about job deadlines. Thus, we assigned

deadlines based on the following method. Jobs are divided in

two urgency classes, namely low-urgency and high-urgency
jobs. Jobs are assigned to each class uniformly according

to a defined share. We considered in these experiments two

different proportions of high-urgency jobs, namely 20% and

50%.

Although all the jobs have a deadline regardless of their
urgency class, deadlines of high-urgency and low-urgency jobs

have different ratios between the given deadline and the task

runtime. High-urgency jobs have such a rate sampled from

a uniform distribution with average 3 and standard deviation

1.4 (i.e., in average the deadline is 3 times of the estimated

runtime), whereas low-urgency jobs have such a rate sampled

from a uniform distribution with average 8 and standard

deviation 3. The obtained value for deadline is counted from

the moment the job is submitted for execution.

To enable our algorithm to be evaluated under different load

conditions, we conducted experiments with varied arrival rates

of jobs by modifying the parameters of the Weibull distribution

that defines the inter-arrival time. Experiments were repeated

using two different values for the scale of the distribution (first

parameter of the Weibull distribution): 4.25, as in the traces,

and 8.5. We also tested three different values for the shape

(second parameter of the Weibull distribution): 7.86, as in the

traces, along with 3.93 and 15.72. Table I presents the number

of jobs generated by each workload.

The 24 hours-long workloads with different arrival rates

were submitted for execution in the simulated cloud. Exper-

iments for each combination of arrival rates (six different

combinations of shape and scale) and two rates of urgent

requests (20% and 50%), amounting to 12 different workloads,

were repeated 10 times. The collected output metrics are:

• Job execution time: The time taken from the moment

the job is submitted to the moment the last task of the

job completes its execution;

• Rejection rate: The amount of jobs that were rejected

because the algorithms were unable to find a schedule

that would allow the job to complete before its deadline;

• Deadline violations: Proportion of accepted jobs whose

deadline was violated (i.e., the job execution finished after

the established deadline);

• Energy consumption: Total energy consumption in-

curred by the servers to execute the workload.

The reported output is the average for the 10 repetitions.

A. Baseline Algorithm

There are a few algorithms available in the literature that

apply DVFS to execute applications. As discussed in Sec-

tion II, some of them target different application models [14],

[15], whereas other focus on other environments, such as

homogeneous clusters [17] and heterogeneous clusters [18].

In order to provide a compatible baseline for experiment

purposes, and to demonstrate the advantages of being aware

of the virtualized environment when making energy-efficient

scheduling decisions for urgent applications, we use as a

baseline a modified version of our proposed algorithm that is

not cloud-aware. Such approach, referred to as baseline in the

results, operate similarly to our approach when reusing VMs. It

means that computations related to positioning, frequency se-

lection, and ranking are the same as our cloud-aware algorithm

when the loop starting on Line 6 of Algorithm 1 is considering

a VM that is already in use. However, when the algorithm is

considering a VM that is not in use, it cannot differentiate

cases where the host is in use from cases where hosts are not

in use. Therefore, the conditional statement on Algorithm 1

Line 24 is ignored, and the same score of 100−energyRank
is returned when this point of the algorithm is reached.

The simulation scenario described previously is subject

to scheduling and execution through our proposed algorithm

and through the baseline algorithm described in this section.

Results are presented and discussed next.

B. Results and Discussion

Figure 2 presents the average energy consumption incurred

by each algorithm for each workload. Our algorithm performs

better than the baseline: energy consumption is between 2%

and 29% better than the baseline approach. The graphs show

that the workload (in terms of inter-arrival and number of

requests) has a big impact on the performance of the algorithm.

Furthermore, the difference in the comparative performance

between the two urgency rates show that the performance is

affected by the urgency of requests: when there are more

high urgent requests, the algorithm has little options for

optimization and needs to use more machines, and thus the

initial energy-efficient placement is outweighed by the need

for extra machines to run the urgent requests.

Table II shows the rejection rate of requests for both

algorithms. Rejections from both algorithms are the same for

most scenarios, and in all the others the cloud-aware algorithm

was able to generate a slightly smaller rejection rate. This

means that the reduction in energy consumption caused by

our algorithm is a result of a more effective scheduling of

the workload, and that the savings in energy do not impact

the acceptance rate of requests. The table also shows that

the main reason for request rejections is unfeasibility of the

request rather than poor decisions by the algorithms.

Besides the quantitative advantages of our cloud-aware

algorithm demonstrated in our experiments, it also has the

advantage that it delegates the estimation of energy consump-

tion to the RMS, whereas existing approaches require each

compute node to estimate its own energy consumption, which
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Fig. 2. Average energy consumption and standard deviation normalized by
the energy consumption of the baseline algorithm. The workload is labeled as
(α, β) parameters of the Weibull distribution that characterizes the inter-arrival
time of jobs. (a) 20% of urgent requests (b) 50% of urgent requests.

TABLE II
AVERAGE REQUEST REJECTION RATES. THE WORKLOAD IS LABELED AS

(α, β) PARAMETERS OF THE WEIBULL DISTRIBUTION THAT

CHARACTERIZES THE INTER-ARRIVAL TIME OF JOBS.

Workload
Urgent requests=20% Urgent requests=50%

Baseline Cloud-aware Baseline Cloud-aware

(4.25,15.72) 29.6% 29.6% 27.5% 27.5%
(4.25, 3.93) 43.3% 43.2% 52.1% 51.8%
(4.25, 7.86) 29.6% 29.6% 33.0% 32.9%
(8.5, 15.72) 29.6% 29.6% 27.7% 27.7%
(8.5, 3.93) 41.7% 41.6% 50.4% 50.3%
(8.5, 7.86) 29.4% 29.4% 31.2% 30.9%

is not appropriate in cloud environments. This is because the

actual energy consumption of a VM is linked to the state of

other VMs sharing the host. If some mechanism is employed

that allows VMs to learn energy consumption of other VMs

in the same host, it would break the encapsulation enabled by

cloud systems, and it could even be seeing as a form of security

flaw, because understanding energy consumption of co-hosted

VMs enables parties to estimate load/activities being carried

out by other VMs, eventually without permission from the

parties operating the co-hosted VMs.

VI. CONCLUSIONS AND FUTURE WORK

As the size of cloud data centers increases, the need for

more energy-efficient use of such infrastructures becomes

critical to enable sustainable utilization of such platforms.

In this paper, we targeted the problem of energy-efficient

execution of urgent, CPU-intensive Bag-of-Tasks applications

in clouds. This type of application is found is domains such

as disaster management and healthcare. We proposed a cloud-

aware scheduling algorithm that applies DVFS to enable dead-

lines for execution of urgent CPU-intensive Bag-of-Tasks jobs

to be met with reduced energy expenditure. Whilst existing

approaches focus on other programming models, they do not

address the issue of execution deadlines, or are not suitable

for cloud platforms. Our approach is able to significantly

reduce energy consumption of the cloud while not incurring

any impact on the Quality of Service offered to users.

As future work, we will improve our algorithm to support

other types of applications, such as workflows and MapRe-

duce. This requires consideration on the energy consumption

of network and storage equipments during the scheduling

process. Another interesting research direction is the investi-

gation of an energy-efficient algorithm in the context of hybrid

cloud scenarios. Finally, we will also investigate the interplay

between our approach and other energy-efficiency strategies

such as server or workload consolidation.
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