
Future Generation Computer Systems 137 (2022) 14–30

a

b

g
(
t
c
e
o

p

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Deep reinforcement learning for energy and time optimized
scheduling of precedence-constrained tasks in edge–cloud computing
environments
Amanda Jayanetti a,∗, Saman Halgamuge b, Rajkumar Buyya a

Cloud Computing and Distributed Systems (CLOUDS) Lab, School of Computing and Information Systems, The University of Melbourne, Australia
School of Electrical Mechanical and Infrastructure Engineering, The University of Melbourne, Australia

a r t i c l e i n f o

Article history:
Received 22 April 2021
Received in revised form 8 June 2022
Accepted 16 June 2022
Available online 21 June 2022

Keywords:
Workflow scheduling
Edge-computing
Deep reinforcement learning
Proximal policy optimization
Energy efficiency
Internet of things

a b s t r a c t

The wide-spread embracement and integration of Internet of Things (IoT) has inevitably lead to an
explosion in the number of IoT devices. This in turn has led to the generation of massive volumes of
data that needs to be transmitted, processed and stored for efficient interpretation and utilization. Edge
computing has emerged as a viable solution which complements cloud thereby enabling the integrated
edge–cloud paradigm to successfully satisfy the design requirements of IoT applications. A vast
majority of existing studies have proposed scheduling frameworks for individual tasks and only very
few works have considered the more challenging problem of scheduling complex workloads such as
workflows across edge–cloud environments. Workflow scheduling is an NP hard problem in distributed
infrastructures. It is further complicated when scheduling framework needs to coordinate workflow
executions across resource constrained and highly distributed edge–cloud environments. In this work,
we leverage Deep Reinforcement Learning for designing a workflow scheduling framework capable of
overcoming the aforementioned challenges. Different from all existing works we have designed a novel
hierarchical action space for promoting a clear distinction between edge and cloud nodes. Coupled with
this a hybrid actor–critic based scheduling framework enhanced with proximal policy optimization
technique is proposed to efficiently deal with the complex workflow scheduling problem in edge–
cloud environments. Performance of the proposed framework was compared against several baseline
algorithms using energy consumption, execution time, percentage of deadline hits and percentage of
jobs completed as evaluation metrics. Proposed Deep Reinforcement Learning technique performed
56% better with respect to energy consumption and 46% with respect to execution time compared to
time and energy optimized baselines, respectively. This was achieved while also maintaining the energy
efficiency in par with the energy optimized baseline and execution time in par with the time optimized
baseline. The results thus demonstrate the superiority of the proposed technique in establishing the
best-trade off between the conflicting goals of minimizing energy consumption and execution time.

© 2022 Published by Elsevier B.V.
1. Introduction

Recent advances in Internet of Things (IoT) facilitates a de-
ree of intelligence infused connectivity between physical devices
Things) and the external environment that has revolutionized
he manner in which digital services in the world operates. Ac-
ordingly, IoT has become an integral component that greatly
nhances the convenience and efficiency of not only industrial
perations, but also the day to day activities of individuals.
Despite numerous benefits offered by the Cloud computing

aradigm, the traditional cloud computing architectures are largely
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ttps://doi.org/10.1016/j.future.2022.06.012
167-739X/© 2022 Published by Elsevier B.V.
agnostic to certain design requirements of emerging IoT appli-
cations. These include ultra low response time requirements,
location-awareness and privacy and security concerns associated
with sending data through public cloud platforms. The inher-
ently centralized architecture of the cloud computing paradigm
necessitates the transmission of data between IoT devices and
cloud over congestion prone wide area networks thus introducing
additional delays. Furthermore, the unprecedented growth of IoT
devices continues to impose a significant strain on cloud due to a
multitude of factors including the need for processing and storing
massive volumes of generated data, and complexities associated
with the transmission of huge volumes of data over networks
with limited bandwidths.

Edge computing extends computational resources to the edge

of the networks thus enabling data to be processed and analyzed
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loser to the sources of generation. This enables the integrated
loud–edge paradigm to meet the QoS (Quality of Service) de-
ands of latency-sensitive and bandwidth-hungry IoT applica-

ions while fully leveraging the benefits of public cloud platforms
or compute-heavy processing and storage requirements. Further-
ore, processing data at the edge of the networks cuts-down the
olume of data that should be transmitted and stored in cloud,
hus greatly reducing the overhead imposed on networks. Along
ith the promise of ultra-low latency processing, and reduced
andwidth usage, the edge computing paradigm itself introduces
fresh set of challenges. Scheduling dynamic workloads with
iverse QoS requirements among heterogeneous and resource
onstrained edge nodes and cloud is one such challenge that
hould be efficiently addressed for fully harnessing the power of
his novel computing paradigm.

In the existing literature, there are contradictory arguments
bout the energy-efficiency of edge computing infrastructures
ompared to centralized cloud datacenters. Some studies have
oncluded that edge computing solutions are more
nergy-efficient [1] while others have suggested that depending
n the network infrastructure and application characteristics it
ould be less energy-efficient in certain scenarios [2]. However,
n obvious fact is that, although a single node (terminal, edge)
ay not consume a high level of power, the combined energy
onsumption of billions of edge nodes (e.g. IoT devices, service
odes) will impose a non-negligible impact on the underlying
nfrastructures, thereby threatening the end-to-end sustainabil-
ty of the entire computing paradigm. Furthermore, owing to
he need for decentralized deployment as well as other de-
ign requirements such as portability, ease of installation and
aintenance, a significant proportion of edge nodes may be
owered through batteries or energy harvesting devices with
imited capacities.

Both academia as well as industry have rendered significant
esearch efforts for efficiently addressing the aforementioned
hallenges. However, a vast majority of proposed scheduling
echniques are aimed at independent task oriented workloads
3–5]. Only very few studies have considered more complex
orkloads, such as those with precedence relations [6,7]. In the
emainder of this paper, we use the term workflow to refer to
orkloads with precedence-constrained tasks. Workflow is an
pplication model that can be used to represent a wide variety
f IoT applications (health care, stream processing, smart city
pplications).
In this paper we focus on addressing the conflicting objec-

ives of time minimization and energy optimization in scheduling
AG (Directed Acyclic Graphs) based workflows across cloud
nd edge computing environments. Specifically, we use Deep
einforcement Learning (DRL) techniques which have proven to
e efficient at handling highly dynamic and complex environ-
ents [8]. Inherent characteristics of the Reinforcement Learning

RL) paradigm such as learning through experience coupled with
he use of neural networks for function approximation, makes
RL an ideal candidate for handling the unpredictable dynam-
city associated with edge computing environments. We model
he problem of energy and time optimized workflow schedul-
ng in edge–cloud environments as a Markov Decision Process
MDP). Since energy-efficiency and time minimization are gen-
rally conflicting goals, it is crucial to emphasize the importance
f establishing a balanced trade-off between these goals to the
RL agent. We achieve this by training the DRL agent to pro-
uce scheduling actions which minimize energy consumption of
he system while meeting workflow deadlines in a best-effort
anner.
The main contributions of this work are as follows:
15
• We present a Reinforcement Learning model for energy
and time optimized scheduling of precedence constrained
tasks in edge–cloud environments. We design an energy and
deadline integrated reward model for training the Deep Re-
inforcement Learning agent to establish a desired trade-off
between the conflicting objectives of energy optimization
and time minimization in workflow executions across cloud
and edge computing environments.
• We propose a novel hierarchical action space formulation.

Different from existing studies in which all edge and cloud
nodes are considered together in non-hierarchical action
spaces, the proposed hierarchical action space promotes a
clear distinction between edge and cloud nodes.
• We propose a hybrid Deep Reinforcement Learning model

comprising of multiple actor networks and one critic net-
work. As opposed to the general case where a single actor
network determines the node to which a task is assigned,
the multi-actor network finely divides the responsibility
of determining the tier (cloud/edge) and determining the
node to separate actors, thus greatly enhancing the learning
process. The critic network is used to guide both actor net-
works. The results of the experiments clearly demonstrate
that the proposed multi-actor technique performs better
than the single-actor technique.

The rest of the paper is organized as follows: In Section 2
e review background of the addressed problem along with
elevant literature. In Section 3 we present the system model and
ormulate the objective of this work mathematically. Followed by
his, the DRL oriented framework for scheduling is presented in
ection 4. Section 5 and Section 6 present the evaluation of the
roposed technique and conclusion of the study, respectively.

. Related work

In this section we review related works that uses RL for
ependent and independent task scheduling in cloud and edge
omputing environments.

.1. Cloud computing environments

A number of studies [9,10] have used RL for addressing the
roblem of task scheduling in cloud computing environments.
n [9] Q-learning is used for prioritizing tasks allocated to servers
o that energy efficiency of cloud resources are maximized.
-learning was also used in [10] together with queuing theory
or scheduling tasks in cloud computing environments under the
resence of resource constraints.
RL based scheduling algorithms are proposed in several works

11–16] for scheduling dependent tasks of workflows in cloud
omputing environments. In [11] Q-learning was used for sort-
ng the tasks of a workflow prior to provisioning resources for
ts execution. Multiple reinforcement learning agents were used
o compute an average Q-value of each node in a workflow
hich was then used to sort tasks in ascending order. In the
esource provisioning phase, co-operative multi-agent coordina-
ion was achieved through a Markov game for determining the
asks which should execute on a particular resource, with the
bjectives of optimizing energy consumption and cost. A com-
ination of multi-agent coordination together with the on-policy
L algorithm SARSA and genetic algorithm was used for a simi-
ar workflow scheduling problem in [12]. In [13], a multi-agent
einforcement learning framework for multi-objective workflow
cheduling in cloud infrastructures is proposed. The proposed
pproach uses separate Deep Q Learning agents for each objective
cost and makespan) and the scheduling problem is designed as
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Table 1
Summary of literature review.
Ref Application model Edge–cloud Algorithm Heterogeneous Objectives Shortcomings

Workflow Bag of tasks

[9] ✓ Q-Learning ✓ energy Over simplification of state-space

[10] ✓ Q-Learning ✓ response time Over simplification of state-space

[16] ✓ Deep Q-Learning ✓ energy Lack of coordination among agents
may lead to a local optima

[11] ✓ Q-Learning ✓ energy, cost Loss of accuracy due to
discretization of state space

[12] ✓ SARSA, Genetic
Algorithm

✓ makespan, resource
utilization

High time and space complexity
associated with SARSA

[13] ✓ Deep Q-Learning ✓ cost, makespan Complexity associated with
multi-agent coordination

[14] ✓ Deep Q-Learning ✓ makespan High time and space complexity
associated with Q table updates

[15] ✓ Deep Q-Learning ✓ makespan, energy High time and space complexity
associated with Q-learning

[3] ✓ ✓ Q-Learning ✓ delay, energy Loss of information due to state
space discretization

[4] ✓ ✓ Asynchronous
Advantage Actor–Critic

✓ delay, energy, cost Trained model cannot distinguish
between edge and cloud nodes

[5] ✓ ✓ Deep Q-Learning ✓ delay, cost Trained model cannot distinguish
between edge and cloud nodes

[17] ✓ ✓ Deep Q-Learning ✓ delay, resource
utilization

High computational power required
for training (LSTM)

[6] ✓ ✓ Temporal Difference
Learning

delay, energy Only addresses the problem of
scheduling tasks among edge nodes

[7] ✓ ✓ Deep Q-Learning system cost High computational power required
for training (LSTM)

Proposed ✓ ✓ Proximal Policy
Optimization

✓ energy, makespan
a Markov game with a correlated equilibrium. Deep Q Learning
was also used in [14] for workflow scheduling in cloud with the
objectives of minimizing response time and makespan. A multi-
stage Deep Q Learning framework has been proposed in [16]
for scheduling tasks of DAG based jobs with the objectives of
minimizing energy cost of cloud service providers. In the first
stage, the server farm to which a task should be allocated is
determined. Second stage determines the exact server to which
the task is allocated for execution.

2.2. Edge–cloud environments

A number of studies [3–5,17] have used RL for task scheduling
n edge–cloud environments. A number of studies have used the
opular TD learning based Q learning algorithm for enhancing the
erformance of task scheduling in edge–cloud systems. Q learning
as used in [3] to determine if a task should be assigned to
he same edge node in which it originated, or to the nearby fog
ayer or to cloud to achieve the highest energy-efficiency while
eeting the real-time processing requirements of the task. To

educe the dimension of the state space, they have discretized the
ales of the state parameters (Bandwidth, CPU, stored energy) to a
re-defined number of levels. The use of function approximators
uch as neural networks for approximating the Q function is
better alternative for overcoming inherent disadvantages as-

ociated with state-space discretization. [5] proposed a Double
eep Q Learning algorithm for task scheduling in fog comput-
ng environment with the objectives of minimizing delay and
omputation cost. In [4], A3C (Asynchronous Advantage Actor–
ritic) technique is used together with R2N2 (Residual Recurrent
eural Networks for task scheduling and migration in edge–cloud
nvironment. [17] used Deep Q Learning coupled with LSTM
Long Short Term Memory Networks) for task scheduling in cloud
16
computing environments with the aims of optimizing resource
utilization and minimizing execution delay.

Several studies [6,7] used RL for scheduling dependent tasks
in edge–cloud environment. [6] used a TD (Temporal Differ-
ence) learning based RL algorithm for scheduling dependent tasks
of requests modeled as DAGs (Directed Acyclic Graphs) in an
edge–cloud environment with the objective of minimizing energy
consumption while meeting user specified time constraints. How-
ever, this work assumes that the decision of offloading task
executions to the cloud is made beforehand, and therefore only
addresses the problem of scheduling tasks among multiple edge
nodes. In [7], Deep Q Learning and LSTM networks were used to
select the service nodes of dependent tasks in IoT applications
with the objective of minimizing overall system cost.

2.3. A qualitative analysis

A table summarizing the primary characteristics and limi-
tations of existing works are presented in Table 1. Q learning
is one of the most fundamental off-policy RL algorithms which
forms the basis of many state-of-the art RL algorithms includ-
ing Deep Q Learning. A large number of studies have used Q
learning for dependent and independent task scheduling in cloud
and edge computing environments [3,9–11]. The scheduling al-
gorithm proposed in [12] used the on-policy RL algorithm SARSA.
An obvious advantage of Q learning and SARSA over model-based
techniques such as dynamic programming is that they are model-
free RL algorithms which do not require complete knowledge
about the dynamics of the environment. Therefore scheduling
techniques based on these RL algorithms are capable of operating
in highly unpredictable cloud and edge computing environments.
However, these techniques also have a number of limitations. Q
learning as well as SARSA require the RL agent to visit all states
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uring the training process and store the state transition data in
tabular format which is both time as well as space consuming.
o overcome this issue in [3] state space discretization is used.
he drawback of this approach is that discretization could lead to
he loss of information.

The combination of RL with deep learning which is referred
o as Deep Reinforcement Learning (DRL) has successfully proven
o overcome the aforementioned issue through function approxi-
ation, thereby eliminating the need for agents to visit all states
uring the training process and for storing state transition data
n space consuming tabular formats. Deep Q Learning is one of
he most popular DRL algorithms used for task scheduling in
loud and edge computing environments [13,14,16]. DQN based
cheduling algorithms are more cost effective compared to Q
earning and SARSA based techniques since they require less
ime for training as the agents need not visit all states of the
nvironment. One drawback associated with DQN algorithms is
hat they tend to overestimate the Q values of actions since the
ame function approximator is used for both action evaluation
nd selection. Double Deep Q Learning algorithm used in [5]
or task scheduling overcomes this overestimation bias by de-
oupling action selection from evaluation with the use of two
unction approximators [18].

DQN typically requires complete state information which is
ot readily available in mobile edge computing environments
hich tend to be partially observable due to high complexity
nd dynamicity of the environment. To address this issue DQN
s coupled with LSTM networks in [7,17]. The recurrent nature
f LSTM networks facilitates the integration of long term histor-
cal data for accurately estimating the system state. An inherent
eakness associated with Q learning based algorithms is the need
o perform a maximization over all the actions in the action
pace, which is intractable with very large action spaces. Policy
radients are a branch of RL algorithms that are better suited for
nvironments with very large action spaces. As opposed to value
ased RL algorithms such as Q learning and DQN that derive a
olicy from a learnt value function, policy gradients directly learn
parameterized policy. Despite the aforementioned advantages,
anilla policy gradients could take prohibitively long durations
or learning complex policies due to the inherent sample inef-
iciency associated with them. To mitigate this issue [4] used
synchronous Advantage Actor–Critic (A3C) technique in which
ultiple agents are trained in parallel and a global network with
hared parameters are updated periodically thus speeding up the
raining process. As opposed to training a single agent, training
ultiple agents asynchronously consumes more computational
ower.
Regardless of the underlying RL algorithm, a common limi-

ation in all reviewed techniques is that the service nodes are
onsidered together in the same action space with no distinc-
ion between those that belong to cloud and edge tiers. This
imits the applicability of the techniques for different scenarios.
or instance, consider a commonly encountered scenario where
asks of certain workflows are restricted to execute only on
dge due to security constraints. With existing single-agent RL
echniques [3–5,17], this situation cannot be handled since the
rained model cannot distinguish between edge and cloud nodes.
n the proposed work we design the action space in a hierarchical
anner, so that the trained model can easily accommodate the
forementioned scenario with no modifications. We propose a
ovel multi-actor framework with a single critic for handling the
ierarchical action space in an efficient manner. As evidenced by
he results of extensive simulation experiments in Section 5, com-
ared to the traditional single-actor method, the use of two actors
as led to improved performance with respect to all evaluation

etrics. For efficiently training the proposed DRL framework we t

17
use Proximal Policy Optimization (PPO) technique [19] which
is capable of overcoming the inherent sample inefficiency asso-
ciated with traditional actor–critic methods with the use of a
clipped surrogate objective function. The following sections elab-
orate the design and implementation of the proposed scheduling
framework.

3. System model

In this section, we present the system model and the formula-
tion of the workflow scheduling problem in the edge–cloud envi-
ronment which forms the basis of the DRL framework proposed
in this work.

3.1. Application model

Directed Acyclic Graph (DAG) is a popular execution model
that can be used to represent a wide variety of applications. A
workflow can be modeled as a DAG, G = (T , E) where T repre-
ents the set of vertices and E represents the set of directed edges.
Each vertex in T represents a computing task, ti. Each edge ei,j ∈ E
represents a data dependency between tasks ti and tj such that
the execution of tj cannot be commenced until the execution of
ti completes. Accordingly, a precedence constraint exists between
the two tasks and ti is a predecessor of tj and tj is a successor of
i. A task may have multiple predecessors and its execution can
nly be commenced when all of its predecessors have completed
xecution and all the data dependencies are satisfied. When all
he precedence constraints of a task are satisfied, it is said to be
n ready state. The bottom most task of the workflow which has
o successors is referred to as a sink task.

.2. Network model

By nature, a majority of edge nodes are likely to be resource
onstrained and therefore efficient collaboration among multi-
le edge nodes with heterogeneous processing capabilities is
narguably beneficial for optimizing the efficiency of the entire
ystem. In this study we consider a cluster of edge nodes with
iverse computing capabilities and energy efficiencies collabo-
ating with each other for provisioning on-demand compute and
etwork resources to IoT devices in the vicinity. Fig. 1 illustrates
high level overview of the system architecture. We consider
master worker architecture in which a gateway node with an
mbedded scheduler acts as the master node and the rest of
he edge nodes in the cluster act as slave nodes. The considered
rchitecture comprises of a non-hierarchical topology in which
ll edge nodes have direct connectivity with the gateway node.
he gateway node acts as a virtual controller for managing and
cheduling resources in the edge cluster. All nodes periodically
hare their resource availability (CPU, Memory etc.) with the
ateway node, so that the real-time status of the network and
dge nodes are incorporated in the formulation of scheduling
ecisions. Further details on the proposed DRL framework for
cheduling will be discussed in latter sections of this paper.

.3. Delay model

In the considered architecture, a task maybe executed in an
dge node or in the cloud. The execution time of a task mainly
epends on the computation delay and communication delay.
omputation time (CT ) of a task depends on the size of the task
nd the processing power of the node to which it is assigned for
xecution. If the task is assigned to a node with no idle capacity,
hen waiting time also contributes to total delay associated with

ask execution. Accordingly, computation time of task, tj with
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Fig. 1. System architecture.

size L(tj) in a server with processing rate F can be expressed as
follows:

CT (tj) =
L(tj)
F
+WT (tj) (1)

where WT (tj) is the waiting time of the task at the server before
its execution commences.

In order for the execution of task, tj to be commenced, all the
precedence constraints of the task must be satisfied. This means
all the predecessors of tj must have completed execution and the
output data from predecessors required for the execution of tj,
ust be available at the node to which tj is assigned. Let ti be

an immediate predecessor of task tj and the size of data to be
transferred from ti to tj be D(ti, tj). If the bandwidth between the
execution nodes of ti and tj is B, the total transmission time (TT )
can be denoted by the following equation:

TT (ti, tj) =
D(ti, tj)

B
(2)

Accordingly, the earliest start time (EST ) of task, tj can be
represented as follows:

EST (tj) = max
ti∈pred(tj)

(FT (ti)+ TT (ti, tj)) (3)

where FT (ti) is the finish time of task ti and pred(tj) is the set of
predecessors of task tj. The finish time (FT ) of task tj can then be
represented as:

FT (tj) = EST (tj)+ CT (tj) (4)

The completion time (MT ) of a workflow will then be equiv-
alent to the finish time of the task that completes execution last
18
as represented by the following equation:

MT = max
tj∈T

(FT (tj)) (5)

here T represents the set of all tasks of the workflow.

.4. Energy consumption model

Energy consumed during the execution of a workflow is the
ggregate of the computation energy and communication en-
rgy incurred during the execution of workflow tasks. With CPU
tilization based power consumption model [20] the energy con-
umed during the computation of task, tj can be expressed as
ollows:

COMP(tj) = CT (tj)× [U × Pactive + Pidle] (6)

here Pactive and Pidle are the power consumption rates at active
nd idle states of the processors and U is the current CPU uti-
ization level of the server. Energy consumption associated with
he transmission of data from the predecessor tasks is denoted as
elow:

COMM(tj) =
∑

ti∈pred(tj)

TT (ti, tj)× Pcomm (7)

here Pcomm is the power consumption associated with the trans-
ission of data. Accordingly. the total energy consumed during

he execution of a workflow can be denoted by the following
quation:

=

∑
tj∈T

(ECOMP(tj)+ ECOMM(tj)) (8)

.5. Deadline model

The primary goal of this work is to minimize energy con-
umption associated with workflow executions, and reduction
n energy consumption is usually achieved at the expense of
ncreased execution times. This is because when the scheduling
lgorithm operates with the sole objective of minimizing energy
onsumption, tasks maybe allocated to more energy-efficient yet
elatively slower servers thus lengthening task execution times.
owever, it is important to impose a limit on the extension of
xecution time to prevent the degradation of user experience.
eadlines are used in this work to establish a soft upper bound
n the degree to which execution time is allowed to increase in
xchange for higher energy savings. This means while the pri-
ary focus of the scheduler is to minimize energy consumption,

t will also attempt to formulate allocation decisions such that the
orkflows complete execution close to their deadlines.
As opposed to individual jobs, a workflow consists of multiple

asks all of which cannot be executed in parallel owing to the
resence of precedence constraints among them. As discussed in
atter sections of this paper, we transform the workflow schedul-
ng problem to a task scheduling problem so that the scheduling
ecisions can be made in real time as tasks become ready for
xecutions with the fulfillment of their precedence constraints.
herefore, it is important to decompose workflow deadlines to in-
ividual task deadlines, so that the scheduler can make informed
ecisions, taking into account the deadline of tasks.
The upward rank, r(tj) of a task tj [21] can be computed

ecursively with the following equation:

(tj) = max
tk∈succ(tj)

(TT (tj, tk)+ r(tk)+ w(tk)) (9)

where succ(tj) is the set of successors of tj, w(tk) is the average ex-
ecution time of t and TT (t , t ) is the transmission time computed
k j k
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ts upward rank. For a workflow submitted to the system at time
T with deadline D, the deadline d(tj) of a task tj can simply be
represented as follows [22]:

d(tj) = ST + r(tA)+ w(tA)− r(tj) (10)

where tA is the source task of the workflow and w(tA) is the
verage execution time of tA. Clearly the deadline derivation pre-

sented above is not appropriate for this work since the satisfac-
tion of such deadlines will lead to the minimization of makespan
rather than energy. The CP-P technique presented in [22] ad-
dresses the aforementioned problem by setting the deadlines of
tasks to the maximum values. Slack time (difference between ear-
liest and latest finish times) is divided evenly among all tasks by
setting the deadlines proportionally to their ranks. Accordingly,
the deadline of a task is calculated as below:

d(tj) = ST + (D− ST ) ∗
r(tA)+ w(tA)− r(tj)

r(tA)+ w(tA)
(11)

3.6. Objective

The objective of this work is to minimize the completion time
of workflows submitted to the system while also minimizing
the total energy consumption of the entire system. Therefore
the scheduling objective can be represented as a bi-objective
function considering completion time and energy consumption
of workflows as follows:

Minimize:
N∑

n=1

αMn + (1− α)En

Subject to: Mn ≤ Dn

(12)

where N is the total number of workflows submitted to the sys-
tem, and Mn and En are makespan and energy consumed during
the execution of nth workflow, respectively. Dn is the deadline of
the workflow. Since delay and energy are conflicting goals, in the
above bi-objective function we use a normalized weight factor α
for determining the degree of prominence that should be given
to each goal based on system requirements.

With the deadline decomposition technique introduced in pre-
vious subsection, an individual deadline, d(tj) is assigned to each
sub task, tj. Accordingly, for a system that schedules a set of
workflows (W ), constraint in Eq. (12) can be rewritten as:

∀w∈W∀tj∈T FT (tj) ≤ d(tj) (13)

If task deadlines were set to minimize makespan as in Eq. (10),
it will be possible to meet workflow deadlines even if some task
deadlines are exceeded. In that case the constraint imposed by
the condition in Eq. (13) is tighter than that in Eq. (12). However,
since task deadlines are already set to maximum values by CP-P
technique, the constraint imposed by the condition in Eq. (13) is
equivalent to that in Eq. (12). The use of deadline constraints in
this manner allows the expansion of makespan within predefined
upper bounds, so that further gains in energy efficiency can be
achieved.

Accordingly, the objective function for the system can be
reformulated as:

Minimize:
N∑

n=1

En

Subject to: ∀w∈W∀tj∈T FT (tj) ≤ d(tj)

(14)

4. Deep reinforcement learning based application scheduling
framework

In this section, we provide a brief overview of the RL paradigm.
Followed by this, we present an RL-oriented formulation of the
19
energy and time optimized workflow scheduling problem in the
edge–cloud environment. We then describe the proposed DRL
framework for efficiently handling the workflow scheduling prob-
lem.

4.1. Background

Reinforcement learning is a branch of Machine Learning which
operates by training an agent to learn a desired behavior in an
interactive environment based on the experiences it encounters.
Essentially, the agent receives a reward for each action that
it performs in a particular state and this reward serves as an
indication of the success of the chosen action in that state.

For instance, taking the action, at in the current state, st
transitions the environment to a new state, st+1 and the agent
receives a reward, rt . With sufficient training the agent learns to
perform actions which result in the highest accumulated reward
over time. Markov Decision Process (MDP) is commonly used
for modeling the environment in which the RL agent operates.
Accordingly, state transitions and rewards are considered to be
governed by Markov Property, which assumes that the next state
and reward depends solely on the current state, and the action
taken by the agent in the current state.

Goal of an RL agent is to maximize the expected cumulative
discounted rewards. A policy, π (at |st ) is the strategy which dic-
tates the course of actions to be followed by an agent to achieve
the desired goal. vπ (s) is the value function of a state, s under a
policy, π . It is a function for estimating the desirability of an RL
agent to be in a certain state, and can be represented in terms of
expected return when following a policy π starting from state, s.

vπ (s) = Eπ [Gt |st = s] (15)

where, Gt is the sum of discounted rewards after time, t and is
expressed as:

Gt =

∞∑
k=0

γ krt+k+1 (16)

γ is the discounting factor which reflects the importance of future
rewards, and γ ∈ (0, 1). A similar notation can be used to
define the state action value function, qπ (s, a) which represents
the expected return when action, at is taken at state, st and policy,
π is followed thereafter.

qπ (s, a) = Eπ [Gt |st = s, at = a] (17)

Owing to the high dimensionality of the complex environ-
ment associated with our problem, it is impossible to store data
(states, actions) in a tabular format due to space constraints
associated with storing experiences as well as the in-feasibility
for an agent to explore all states during the training process. The
use of neural networks as function approximators has emerged as
a remarkably successful way of overcoming the aforementioned
problems. Accordingly, the policy π (at |st ) can be modeled as a
parameterized function with respect to an adjustable parameter
θ , as πθ (at |st ). In order to evaluate the performance of the policy,
we define a performance objective J(θ ), which can be defined as
the expected return starting from the start state of the episode,
s0 and thereafter following the policy πθ . This in fact is the value
function of state, s0 as expressed in Eq. (18).

J(θ ) = vπθ
(s0) (18)

Policy gradients are a branch of RL algorithms that directly
learn the parameterized policy. This is done by estimating the
gradient of J(θ ) with respect to each policy parameter, and up-
dating the policy parameter in the direction of the gradient as
shown below.

θ = θ + α∇J(θ ) (19)
t+1 t t
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Algorithm 1 Workflow Analyzing and Dispatching

1: upon event Submission of a workflow do
2: Decompose workflow deadline to individual task

deadlines
3: for Each task in the workflow do
4: if task is in Ready state then
5: Dispatch the task to task scheduler
6: Update global waiting-task map

7: upon event Receipt of a task completion notification do
8: if Completed task is a Sink task then
9: Send results to user
0: else
1: Use the waiting-task map to identify successors
2: for Each successor of completed task do
3: if task is Ready then
4: Dispatch the task to task scheduler
5: Update global waiting-task map

return

where α is the learning rate. From the policy gradient theo-
rem [23], the gradient of J(θ ) can be expressed in the following
manner:

∇J(θ ) = Eπ [

∑
a

qπ (st , a)∇π (a|st , θ )]

= Eπ [

∑
a

π (a|st , θ )qπ (st , a)
∇π (a|st , θ )
π (a|st , θ )

]

= Eπ [qπ (st , at )
∇π (at |st , θ )
π (at |st , θ )

]

= Eπ [Gt
∇π (at |st , θ )
π (at |st , θ )

]

(20)

REINFORCE [24] is a popular policy gradient algorithm which
ses the above derivation for updating policy parameters via
radient ascent as shown in Eq. (21). This however gives rise to
low convergence and high variance in gradient estimates due to
he possibility of high deviations between trajectories. Therefore,
e used Actor–Critic technique as the basis of our scheduling

ramework.

t+1 = θt + αGt
∇π (at |st , θt )
π (at |st , θt )

= θt + αGt∇ lnπ (at |st , θ )
(21)

4.2. Reinforcement learning oriented problem formulation

Now we propose an RL oriented formulation of the workflow
scheduling problem in edge–cloud environment. As opposed to
individual jobs, a workflow cannot be executed at once owing
to the complex precedence relations amongst workflow tasks.
Although, some studies have attempted to determine in ad-
vance, the servers in which all the workflow tasks are to be
executed [25], such approaches are less appropriate in a highly
dynamic edge–cloud environment as the conditions may have
significantly changed from the time scheduling decisions were
made to the time the tasks (particularly the ones towards the
bottom of the workflow) are actually scheduled for execution.
Therefore, in this work we design the RL model in a manner
such that all scheduling decisions are made in real time when
workflow tasks are actually ready for execution.

For this we transform the complex workflow scheduling prob-

lem to a task scheduling problem, such that each scheduling
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decision corresponds to an allocation of a task whose precedence
constraints are met, to an edge or cloud node for execution.
Accordingly, the scheduler in gateway node maintains a map of
pending tasks which await the completion of their predecessors
for commencing execution. Whenever a task completes execution
in an edge node or in the cloud, the gateway node is notified.
With the receipt of this notification, the scheduler uses the pro-
posed DRL based resource scheduling framework to determine
where to execute any successors of the completed task which
may now be in ready state. In the context of this problem, the DRL
agent is the task scheduler which resides in the cluster manager.
Algorithm 1 summarizes the sequence of events involved in the
execution of aforementioned steps.

State Space All the worker nodes periodically share their
power consumption rates, queue statuses and resource capacities
with the gateway node as described in Section 3.2. Accordingly, a
comprehensive state-representation which includes the real time
status of the network together with the resource requirements
and deadline of the task to be scheduled is provided to the DRL
agent as described below. Specifically, the following properties
will be incorporated in the state:

1. Total CPU and Memory requirements of the task, tj
2. Deadline of task, tj. The ultimate objective of the scheduling

problem is to ensure the QoS requirements (e.g. deadlines)
of workflows are satisfied while energy consumption of
the system is minimized. Since the workflow scheduling
problem is mapped to a task scheduling problem, from the
perspective of the DRL agent, the goal would be to meet
the deadlines of individual tasks whilst minimizing system
energy consumption. Therefore we decompose workflow
deadlines to individual task deadlines so that the schedul-
ing actions of the agents could be rewarded or penalized
depending on their propensity to meet the deadline of the
task in consideration.

3. An array (d1, d2, . . . , di) each element of which represents
the amounts of data to be transferred from each node, i to
the node in which the current task will be allocated before
its execution can commence. Specifically, the amount of
data to be transferred from node i is the sum of total input
data from all predecessors that executed in node i. If none
of task’s predecessors executed in node i, then di = 0.

4. Total capacity and utilization of CPU, Memory and Band-
width of each node

5. CPU frequency in Million Instructions per Second (MIPS) of
each node

6. Rate of power consumption at idle and active states of each
node

7. Approximate time at which a newly scheduled task can
commence execution at each node (This is equivalent to the
sum of execution times of tasks queued for execution at the
node and the time remaining for tasks which are already in
execution to complete)

Accordingly, the size of state space is 3 + 11 * total number of
nodes.

Action Space We formulate a hierarchical action space for
determining the task allocation node in cloud–edge environment.
As opposed to the commonly used approach [3,4] where all edge
and cloud nodes are considered together in the same action space,
the proposed hierarchical action space formulation enables the RL
framework to clearly distinguish between cloud and edge nodes.
Furthermore, it substantially reduces the action space of each
agent, hence greatly expediting the training process.

Accordingly, a complete action produced by the RL framework
can be represented as (a , a ) where a is the action which
1 2 1
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ndicates the layer (cloud/edge) to which the task under consid-
ration (tj) should be allocated, and a2 indicates the node (in the
ier given by a1) to which tj should be assigned for execution.
herefore the action space can be defined as follows:

= {(a1, a2)|a1 ∈ {Cloud, Edge} & a2 ∈ {1, 2, . . . ,Na1}} (22)

where Na1 is the total number of nodes that belong to the tier
given by action a1. We then adapt the hybrid actor–critic tech-
nique proposed in [26] for parameterized action spaces, to the
hierarchical action space in our problem. Details on the proposed
DRL framework will be presented in the next section.

Note that the state space only includes details of one ready
task, and each action is for mapping this task to a node in
either cloud or edge. But in reality at each actual time step, the
Ready Task Queue (RTQ) will have one or more tasks ready to be
scheduled for execution. If the details of all ready tasks are to be
incorporated, the size of state space as well as action space would
increase which in turn could impede the speed of agent’s learning
process. Therefore, in each actual time-step, we use the DRL agent
multiple times to determine the nodes in which all tasks in RTQ
are to be scheduled [8].

Reward It is imperative to design a reward that is inline with
the objective of the scheduling problem, so that with sufficient
training the agent learns to optimize the objective while meeting
any constraints. The problem addressed in this work requires the
agent to minimize the energy consumption of the system whilst
ensuring QoS requirements as defined by the deadlines are met
in a best effort manner. Accordingly, we define the reward with
the following two components:

1. R1: Total energy consumption of the system during the
time elapsed since last action. Negative sign is required
since we need the DRL agent to minimize energy consump-
tion.

2. R2: A constant positive or negative reward depending on
whether the selected node is capable of meeting task dead-
line, d(tj) or not:

R2 =

{
+1, if FT (tj) ≤ d(tj)
−1, otherwise

(23)

where FT (tj) is the estimated completion time of task tj at
the selected node. It can be calculated as in Eq. (4).

Accordingly, at each time step the reward (rt ) received by the
DRL agent is R1 and aggregate of R2 for all the tasks scheduled in
that time step.

4.3. Actor–critic based scheduling framework with proximal policy
optimization

Actor–critic is a branch of policy gradient algorithms that have
proven to be efficient at overcoming the limitations of vanilla
policy gradients by combining the advantages of value based
methods and policy based methods. As the name implies, actor–
critic algorithms consist of two main components; an actor and a
critic. Actor is responsible for learning the policy, πθ (at |st ) which
determines the action to be taken in each state for achieving the
desired objective whereas critic is responsible for providing con-
structive criticism on the actions taken by the actor. In advantage
actor–critic method [27], the return, Gt of REINFORCE is replaced
with the advantage function, Aπ (s, a) = qπ (s, a) − vπ (s). If Ât
represents an estimator of the advantage function at time t, the
equation for updating policy parameters of the actor network can
be denoted as follows:

θ = θ + αÂ ∇ lnπ (a |s , θ ) (24)
t+1 t t t t t T
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In this work, as the estimator, Ât of the advantage function we
used the Generalized Advantage Estimator, GAE(γ , λ) presented
in [27], with λ = 0. Let V be an approximate value function, and
Rt be the return then Ât can be defined as follows:

GAE(γ , 0) : Ât := δt = Rt + γV (st+1)− V (st ) (25)

As expressed in Eq. (25), Ât is equal to δt in the special case
where λ = 0. Note that we have used θ and ω to represent
he set of adjustable parameters of the actor and critic networks
espectively. The critic network is trained to learn the state-
alue function, vπ (st |ω). It is initialized with arbitrary weights

which are updated during the course of training thus allowing
the critic to learn the actual state-value function. This is done
by iteratively minimizing the mean squared difference (TD error)
between network’s predictions (vπ (st |ω)) and target values (Rt +

vπ (st+1|ω)) as shown in Eq. (26). And then updating the network
parameters with TD error as shown in Eq. (27).

L(ω) =
1
2
[vπ (st |ω)− (Rt + vπ (st+1|ω))]2 (26)

ω← ω + βδt∇vπ (st |ω)
here δt = Rt + vπ (st+1|ω)− vπ (st |ω)

(27)

here β is the learning rate of the critic network. As training pro-
resses, the critic network learns to more accurately predict the
alue of a given state. By incorporating the feedback from critic
or updating policy parameters in the direction of improvements
s shown in Eq. (24), the actor-network also learns to produce
ctions that result in higher rewards.
Despite the fact that actor–critic methods solve problems as-

ociated with vanilla policy gradients such as high variance, the
traightforward application of actor–critic method did not work
ell for our problem. In fact these methods could take pro-
ibitively long durations for learning complex policies due to
he inherent sample inefficiency associated with them. The step
ize, α∇θ J(θt ) in vanilla policy gradient (Eq. (19)) cannot be made
oo large since that could lead to large policy updates that col-
apses performance. Trust Region Policy Optimization (TRPO) [28]
echniques address the aforementioned problem by maximizing a
urrogate objective function subject to a constraint, σ as shown in
q. (28). KL indicates the Kullback–Leibler divergence in Eq. (28).
he constraint restricts the degree to which new policy, πθ (at |st )
s allowed to change from the old policy, πθold (at |st ) hence en-
bling the policy to monotonically improve (approximately). In
n algorithm that alternates between sampling and optimization,
he expectation Êt [..] indicates the empirical average computed
ver a finite batch of samples. However, the theories which forms
he basis of TRPO requires complex and computationally expen-
ive calculations. Hence, we used Proximal Policy Optimization
PPO) [19] technique which is proven to provide the benefits of
RPO techniques, with the added advantages of less complexity,
mproved sample complexity and generalizability.

aximize: Êt

[
πθ (at |st )

πθold (at |st )
Ât

]
Subject to: Êt [KL[πθold (.|st ), πθ (.|st )]] ⩽ σ

(28)

If the surrogate objective function of TRPO in Eq. (28) is
aximized without a constraint, it could lead to large policy
pdates that in turn may adversely impact performance. Hence,
he constraint is an imperative condition that should be satisfied
hen optimizing the objective. PPO attempts to find an alternate
eans for solving essentially the same problem, but without
sing an external constraint. It achieves this by limiting the
egree to which new policy is allowed to change from the old
olicy by clipping the objective function as shown in Eq. (29).
his is achieved through the clip function, clip(µ (θ ), 1 − ϵ, 1
t
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Fig. 2. Traditional actor–critic based scheduling.
Fig. 3. Proposed scheduling framework.
l-
ϵ)Ât which removes the desirability of large policy updates that
changes the rt (θ ) ratio beyond the interval [1− ϵ, 1+ ϵ].
CLIP (θ ) = Êt [min(µt (θ ))Ât , clip(µt (θ ), 1− ϵ, 1+ ϵ)Ât ]

here µt (θ ) =
πθ (at |st )

πθold (at |st )
(29)

As described in Section 4.2, we have proposed a novel hier-
rchical action space for the task scheduling problem in edge–
loud environment. We then adapted a hybrid actor–critic tech-
ique [26] designed for parameterized action spaces to the hier-
rchical action space in our problem.
Figs. 2 and 3 illustrate high level overviews of traditional

ctor–critic based scheduling and the proposed hierarchical schedu
ng framework, respectively. As opposed to the traditional actor–
ritic technique which comprises of a single actor network and a
ingle critic network, the proposed framework consists of multi-
le actors and one critic. All actor networks use the same state
pace described in Section 4.2. Critic network also uses the same
tate space since it is trained to learn the state-value function and
ot the state–action value function which requires action input as
22
well. The advantage given by the critic network is used to update
the stochastic actor networks.

Different from traditional actor–critic technique which only
performs one gradient update with each experience sample, the
use of PPO technique enables the proposed framework to store
experience samples in memory and perform multiple rounds
of gradient updates with mini-batches of samples. As training
progresses, the first actor-network learns to make the binary
decision of whether to allocate a task either to cloud tier or to
edge tier. Since there are multiple nodes in the tier selected by
the first actor, the second actor-network learns to decide which
node is most appropriate for task execution. Accordingly, the
integrated output of which node in which tier is to be selected
for task allocation is determined by the proposed hierarchical RL
framework.

Pseudocode of the training process of the proposed multi-actor
scheduling framework is presented in Algorithm 2. As indicated in
lines 1–2 we first initialize the actor networks and critic network
with random weights. Then the training parameters are also
initialized. We train the DRL model for a total of N episodes (line
3), and at the beginning of each episode, the environment state is
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Algorithm 2 Actor–Critic based Scheduling Framework with PPO
1: Initialize actor networks π (a|s, θ1), π (a|s, θ2) and critic

network V (s|ω) with random weights
2: Initialize the training parameters: α, β, γ

3: for episode = 1 to N do
4: Reset the environment
5: for step = 1 to T do
6: Input the state of the environment to actor networks

π (a|s, θ1), π (a|s, θ2)
7: Select action a1 (tier) from first actor network
8: Select action a2 (node) from second actor network
9: Execute the combined action (a1, a2) and observe the

corresponding reward rt and next state of the system
st+1

0: Store the most recent transition (st , at , rt , st+1) in
memory D

1: Compute advantage estimates Â1 to ÂT
2: for j = 1 to K do
3: Randomly sample a mini-batch of samples of size S

from D
4: for i = 1 to S do
5: Update critic network:

ω← ω + βδt∇vπ (st |ω)
6: Update first actor network:

θ1 ← θ1 + αÂi∇ lnπ (a1|s, θ1)
7: Update second actor network:

θ2 ← θ2 + αÂi∇ lnπ (a2|s, θ2)
8: Clear memory D

return

Algorithm 3 Online Scheduling

1: upon event Submission of a task do
2: Enqueue task in waiting-task queue
3: while Waiting-task queue is not empty do
4: Deque a task from queue
5: Get the latest status updates of all worker nodes
6: Get resource requirements and predecessor relations of

task
7: Formulate the state space
8: Action (a1, a2) = Agent(state)
9: Submit the task description with the location of input data

to the tier and worker node specified in Action
0: return

reset. Since, the problem is modeled as an input driven MDP, each
time-step of the episode actually corresponds to scheduling of a
task from Ready Task Queue. As indicated in lines 6–8, at each
time-step the current state of the environment is given as input
to the actor networks, and the output of the first actor network
provides the tier to which the task should be allocated, and the
second actor network’s output provides the node in the selected
tier to which the task should be allocated. Upon the execution
of combined action (allocation of task to the selected node), the
agent receives a reward and the environment transitions to a
new state (line 9). Details of the transition which includes state
of the environment, combined action, reward and next state are
stored in memory as indicated in line 10. For each transition, the
advantage estimates are also calculated and stored. At the end
of each episode, we train the networks K times with randomly
sampled mini-batch samples of size S (line 12–18). As opposed
to techniques such as Deep Q Learning in which samples in
23
memory are persisted over multiple episodes, with PPO technique
the samples in the memory are cleared before starting the next
episode of training.

Algorithm 3 summarizes the steps involved in online task
scheduling process. As training the DRL model is a resource inten-
sive and time consuming process, the DRL model is pre-trained
and used in real time for obtaining the scheduling decisions.
Real-time network status of all nodes together with the resource
requirements of the task to be scheduled (dequeued from ready
task queue) are merged for formulating the current state of the
environment. It is then provided as input to the actor networks.
The task is then allocated to the tier and node given by the
combined action output of the actor networks.

5. Performance evaluation

In this section we present a comprehensive analysis of the
performance of the proposed DRL framework in comparison to
several baseline algorithms in a number of different scenarios.

5.1. Experimental setup

For evaluating the performance of proposed workflow schedul-
ing framework, we used an extension [30] of the popular CloudSim
simulation toolkit. We have also implemented new modules for
simulating the proposed workflow scheduling framework and
interacting with the deep learning algorithms implemented using
the deep learning library Keras [31].

The simulated scenario comprises of a highly heterogeneous
cluster with 16 edge nodes and 8 cloud nodes. We used the
SPEC benchmark [29] for obtaining the resource configurations
and power consumption rates of nodes as shown in Table 2.
Following the simulation experiments of similar works [4] based
on empirical studies, communication delay between edge–edge
nodes and edge–cloud nodes was considered to be 1 ms and
10 ms respectively.

5.2. Dataset

Evaluation dataset was created based on synthetic workflow
structures [32] provided by the popular Peagasus workflow frame-
work. Task length in terms of number of instructions (as per
CloudSim nomenclature) and the sizes of precedence constraints
(in megabytes) were randomly selected from the ranges 0.5k to
1000k, and 0.1k to 10k respectively. A total of 1000 workflows
comprising of 5292 tasks was used for the experiments. For
simulating workflow arrival times, we used a Poisson distribution.
Rather than using random deadlines we used a workflow aware
process for setting realistically achievable deadlines considering
the resources available in the simulated cluster. Critical path
of a workflow is the longest execution path which essentially
determines the total execution time of the workflow. For each
workflow, we obtain the nodes in the critical path of the work-
flow [21]. Then we calculate the total execution time of the
critical path using the processing speed of a randomly selected
node in the cluster. The reason for using a random node’s pro-
cessing power rather than the average processing power of the
cluster is to improve the diversity of the deadlines. We then
add a deadline base [5] which is a constant value for each
resulting critical path execution time, to derive deadlines that
are realistically achievable in the simulated environment. For this
we used a trial and error method where the target being the
selection of a deadline base with which EFT (Earliest Finish Time)
algorithm (described in Section 5.3) can meet approximately 90%
of deadlines.
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Table 2
Host configurations derived from SPEC benchmark [29] for experimental setup.
Layer Server name Processor Cores MIPS RAM Bandwidth Power (Watts)

(GB) (GB/s) Idle Active

Cloud Dell Inc. PowerEdge R740 Intel Xeon Platinum 8280 2.70 GHz 56 604.8k 64 1.5 50 432

Cloud IBM System x iDataPlex dx360 M2 Intel Xeon X5570 2.933 GHz 16 187.712k 48 1 116 475

Edge Fujitsu FUJITU Server PRIMERGY TX1320 M3 Intel Xeon E3-1230 v6 3.50 GHz 4 56k 8 1 9 51

Edge Hewlett-Packard Company ProLiant DL385 G5 AMD Opteron processor 2356 2.3 GHz 8 55.2k 16 1 178 299

Edge Hewlett-Packard Company ProLiant ML110 G4 Intel Xeon Processor 3040 1.86 GHz 2 14.88k 16 0.1 86 117
Table 3
Hyper-parameters used for the DRL model.
Parameter Value

General
Discount factor (γ ) 0.2
Mini-batch size (S) 64
No. of mini-batch iterations per episode (K) 50
No. of training episodes (N) 550
Optimizer Adam

Critic network
Learning rate (β) 0.00005
No. of input layers 1
No. of output layers 1
No. of hidden layers 2
No. of neurons in each hidden layer 100

First actor network
Learning rate (α) 0.00001
No. of input layers 1
No. of output layers 1
No. of hidden layers 2
No. of neurons in each hidden layer 100

Second actor network
Learning rate (α) 0.00001
No. of input layers 2
No. of output layers 2
No. of hidden layers 4
No. of neurons in each hidden layer 100

5.3. Comparison algorithms

We used the following four algorithms for evaluating the
erformance of the proposed scheduling framework.

1. Random: This is a baseline algorithm which assigns tasks
to a randomly selected node.

2. EFT: This algorithm is similar to the popular HEFT [21]
algorithm except for the insertion based scheduling policy
which is impractical in the considered edge–cloud scenario
due to the lack of control over the processors of the dis-
tributed edge and cloud nodes. (i.e. once a task is allocated
for execution to an edge or cloud node by the cluster
manager, we do not assume it has further control over the
manner in which tasks are actually scheduled for execution
at the remote nodes.) It uses Eqs. (1)–(4) for computing the
estimated finish time of the task to be scheduled in all of
the nodes, and assigns the task to the node with the earliest
finish time. Where there are multiple ready tasks, tasks are
prioritzed based on their upward ranks.

3. EDA This is an energy and delay aware algorithm which
operates by assigning tasks to nodes that can reduce both
delay as well as energy associated with task execution.
Accordingly, it uses Eqs. (4) and (6) to compute the product
of estimated delay and energy for executing a task at each
of the nodes and selects the highest ranked node based on
a score calculated as follows:

SCORE = FT (t )× ECOMP(t ) (30)
i i
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4. EES This is an energy efficient scheduling algorithm that
solely aims to minimize energy consumption in a greedy
manner by assigning the task to the node which requires
the least amount of energy for its execution. It uses Eq. (6)
to compute the energy consumed at each node for task
execution.

5. Single-Actor This is a DRL model in which all edge and
cloud nodes are considered together in the same non-
hierarchical action space. In this comparison method we
used a traditional actor–critic network and trained it using
the same hyper-parameters as the DRL model proposed in
this work.

5.4. Hyper-parameters and network configurations

Table 3 lists the hyper-parameters used for training the agents.
The critic network is set to learn at a faster rate than the actor
networks, since the actor networks rely on the guidance of the
critic network, a critic network with a relatively faster learning
rate speeds up the learning process. Furthermore, a step learning
curve is used for the second actor, and thereby the first actor
is set to learn at a slower rate than the second actor for the
first 100 episodes. This is because during early episodes of train-
ing the reward largely depends on the actions produced by the
second actor, so regardless of how good first actor’s action is
in a given state, the reward could still be bad due to second
actor’s action. Therefore, large weight updates for the first ac-
tor at early stages of training more often leads to sub-optimal
convergence. In the training process of the DRL agent we only
considered computation energy consumption in the calculation
of total energy consumption of the system (R1) since energy
consumed for communication was negligible in comparison to
energy consumed for computations. In communication intensive
environments, the reward should include energy cost of commu-
nications as well. Remaining hyper-parameters were chosen in a
trial and error manner. We used 100 jobs in the training process
of the DRL model. The model was trained 10 times with the
hyper-parameters listed in the table and the model that produced
best results was selected for conducting the experiments.

5.5. Analysis of convergence

Fig. 4 demonstrates the manner in which the agent learns to
produce actions which leads to the achievement of desired ob-
jectives as training progresses. As shown in Fig. 4a, total rewards
accumulated during an episode gradually increase and converges
to a maximum around the 550th episode. The convergence of a
DRL model is evaluated based on reward convergence. Oscilla-
tory trends in other parameters can be expected as a result of
ongoing exploration at early phases and equally favorable learned
actions in latter phases. As the reward is primarily designed for
incentivizing the agent to minimize the energy consumption of
the system, the total energy consumed by the system steadily
decreases as shown in Fig. 4b, and reaches a minimum around

the 550th episode. As a part of the reward is designed to reward
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Fig. 4. Learning progress with training (convergence of DRL model).
he agent for meeting task deadlines, or penalizing for failing
o do so, total number of workflow deadlines hits during an
pisode also increases as shown in Fig. 4d. Energy consumption
nd execution time are often contradictory goals. Therefore, we
se task deadlines to convey the agent an upper bound on the
egree to which execution time of a task can be compromised for
more energy-efficient allocation. As evidenced by the reduction

n both energy consumption as well as execution time (Fig. 4c),
he agent learns to reduce both factors as training progresses.
his is achieved by more frequently allocating tasks to nodes
hat are more efficient in terms of processing speed as well as
nergy consumption, so that task deadlines can also be met with
elatively less energy consumption.

.6. Analysis of performance on experimental dataset

Fig. 5 demonstrate the performance of the algorithm on the
xperimental dataset at an arrival rate of 15 workflows/minute.
he total energy consumption incurred during the execution of
orkflows is demonstrated in Fig. 5a. Clearly, Random algorithm
as resulted in the highest energy consumption. This is due to
he fact that the random task allocations among all cluster nodes,
esults in all the nodes of the cluster being active throughout
he entire period leading to the under utilization of multiple
luster nodes. Since nodes continue to consume energy while
hey are in idle state as well, having all the nodes operating
ignificantly below their capacities causes a steep degradation of
nergy consumption. Compared to random allocation, all other
lgorithms result in much better energy consumption. EES al-
orithm and the proposed DRL framework performs similarly
ith respect to energy savings, with the proposed technique con-
uming marginally more energy (8%). Energy consumed by EDA
25
algorithm, though higher than EES and Proposed techniques, is
much better in comparison with the EFT and Random algorithms.
EFT algorithm consumes the second highest level of energy since
it does not consider energy consumption of the system when
making allocation decisions. The proposed DRL framework con-
sumes 32%, 56% and 75% less energy compared to EDA, EFT and
Random algorithms, respectively. Single-Actor method consumes
significantly more energy compared to the proposed DRL method.
Since this technique and proposed DRL method are identical in
every aspect except that the proposed method has a hierarchical
action space and uses separate actors for determining the task
allocation tier and node, the difference in energy consumption
between the two methods clearly highlights the advantage of
using separate actor networks.

Fig. 5b demonstrates the total time taken for the execution
of workflows. With respect to total time, EES has performed the
worst. This is expected as its sole focus is on the reduction of en-
ergy consumption without any regard to the subsequent impact
on execution time. Since energy consumption and execution time
are conflicting goals, the strategies employed by EES algorithm
for saving energy increases the total execution time. Next highest
level of execution time is incurred by the Random allocation algo-
rithm. This is due to the fact that random allocation is completely
indifferent to the location of where the predecessors of a task
are hence resulting in very high communication times leading
to increased total execution time. An improvement of 11% and
47% over the execution times of Random and EES algorithms
is achieved by the proposed DRL framework, respectively. EDA,
Single-Actor and Proposed techniques have performed similar,
with proposed technique taking slightly less time (2%). As ex-
pected, EFT has outperformed all the algorithms, since its sole
focus is on minimizing execution time the allocation decisions are
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Fig. 5. Comparison of performance of scheduling algorithms on experimental dataset.
ade such that each workflow can finish execution at the earliest
ime possible.

Percentage of deadlines met and jobs completed with each
lgorithm are demonstrated in Figs. 5c and 5d respectively. EES
lgorithm has resulted in the lowest number of deadline hits,
hich is significantly below the level of all other algorithms. The
ighest percentage of deadline hits (97%)is achieved by the EFT
lgorithm. This is expected since the objective of EFT algorithm
s to complete the execution of each workflow within the shortest
ossible time, and that directly increases the probability of work-
lows completing execution within their deadlines. For similar
easons, EDA algorithm has achieved the second highest level of
eadline hits (92%), as a part of its objective function is designed
o favor nodes that contribute to minimizing the finish time of
orkflow tasks. The next highest number of deadline hits (84%)

s achieved by the proposed DRL technique. Note that in this
ork we have considered deadlines to be soft deadlines, which
eans meeting them is desirable but not mandatory. Accordingly,

he DRL model was not trained to meet all deadlines as a hard
onstraint, rather the training objective was formulated to pri-
arily minimize energy consumption while using deadlines to
ontrol the degree to which makespan of workflows is allowed to
ncrease in exchange for higher energy savings. Even-though the
RL agents of both Single-Actor method and proposed method
re trained using the same reward structure, it is clear that
he proposed method is more efficient at learning the training
bjective since it achieves more deadline hits while consuming
ess energy compared to the Single-Actor method.

Proposed DRL method, Single-Actor method, and EFT as well
s EDA techniques take predecessor proximity into account in
he formulation of allocation decisions which is crucial partic-
larly when it comes to workflows with communication inten-
ive precedence relations. Large waiting times that accompanies
26
precedence relations agnostic scheduling decisions given by Ran-
dom and EES algorithms result in timed out tasks which in turn
lead to incomplete jobs as shown in Fig. 5d.

5.7. Analysis of performance at different workflow arrival rates

Fig. 6 demonstrates the performance of algorithms in terms of
energy consumption, total execution time, deadline hits and jobs
completed as the workflow arrival rate varies. As shown in Fig. 6a
EES and proposed DRL technique have succeeded in keeping the
energy consumption in a lower level than all other algorithms
at all arrival rates. Random allocation leads to a drastic rise
in energy consumption compared to other algorithms as arrival
rate increases. With EFT technique as well the rise in energy
consumption is more prominent compared to EDA, EES, Single-
Actor and proposed DRL technique. It is clear that with scheduling
techniques which incorporate minimizing energy consumption
as a part of their scheduling objectives, the energy consumption
rises at a lower rate as arrival rate increases.

A moderate rise in total execution time can be observed in
Fig. 6b with all algorithms as the arrival rate increases, except
with EES algorithm. Clearly, the scheduling decisions made by EES
algorithm for optimizing energy consumption severely degrades
the total execution time by increasing the waiting times of task
executions.

As indicated in Figs. 6c and 6d, at moderate arrival rates EFT,
EDA and proposed technique perform equally well with respect to
total number of deadline hits achieved as well as total makespan.
But at high arrival rates the performance of both Single-Actor as
well as proposed DRL techniques degrade slightly more compared
to EFT and EDA techniques. This is expected behavior since the
DRL models were trained at a moderate arrival rate, so as the
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Fig. 6. Comparison of performance of scheduling algorithms at different workflow arrival rates.
arrival rate increases the learnt behavior may not be appropriate
with respect to achieving certain goals since the environment in
which the agent operates is changed significantly. This is in-fact
a known drawback associated with DRL models trained in input
driven environments [33]. In this work we have considered the
workflow arrival rate to be moderate, however if burst arrival
rates are also common, a feasible workaround to this problem
maybe to train the model under different arrival rates [33].

5.8. Analysis of performance at different computational workloads

Fig. 7 demonstrates the performance of the algorithms as the
computational workload varies. Computational workload in Fig. 7
represents the aggregate computational workload of all work-
flows scheduled by the system. In Fig. 7a, Random algorithm’s
performance with respect to energy consumption severely de-
grades with increasing workload. EFT algorithm also consumes
significantly more energy compared to EDA, EES, Single-Actor
and proposed DRL technique which consider energy efficiency
as a sole or partial objective in the formulation of scheduling
decisions. These algorithms are able to achieve a moderate rise
in energy consumption with increasing workload as opposed
to the sharp rise observable with non-energy aware scheduling
algorithms. Proposed technique as well as EES clearly achieves
the best results with very similar performance.

As previously discussed, the fact that EES algorithm only at-

tempts to optimize energy consumption adversely impacts the

27
total execution time, leading to significantly high execution times
at heavy workloads. In contrast, EFT algorithm which operates
with the only objective of minimizing execution time achieves the
best results in execution time. EDA and Proposed DRL technique
also achieves similar results with only a marginal increase in
execution time compared to EFT at heavy workloads. Random
algorithms performance cannot be evaluated solely based on the
results in Fig. 7b since it has completed less jobs compared to
other algorithms as indicated in Fig. 7d.

In Fig. 7c, EES algorithms ability to meet deadlines sharply
drops with increasing workload. This is due to the fact that
EES algorithm focuses solely on minimizing energy consumption,
and therefore the allocation decisions it makes lead to increased
execution delays. This in turn delays the completion of task ex-
ecutions leading to deadline misses. Random algorithm also per-
forms poorly in comparison to EFT, EDA and proposed techniques
which exhibit very similar performance. At heavy workloads,
EFT algorithm marginally outperforms EDA as well as proposed
techniques. As previously discussed, this is expected since the
sole focus of EFT algorithm is to speed up the execution of tasks
which in turn leads to higher deadline hits.

6. Overall analysis

As evident through the results of experiments in Figs. 5a,
6a and 7a, EES algorithm is the most efficient at minimizing

energy consumption of workflow executions. This is because its
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Fig. 7. Comparison of performance of scheduling algorithms at different computational workloads.
scheduling decisions are solely focused on reducing the energy
consumption and therefore, regardless of the rise in execution
time it always allocates tasks to the most energy-efficient node.
This however is achieved at the expense of increased execution
time which is highly undesirable given the importance of low
response times in use cases associated with edge computing en-
vironments. Results achieved with proposed DRL method is much
similar to that with EES with respect to energy consumption.
However, the proposed method is much superior to EES since
it manages to minimize energy consumption without adversely
impacting the total execution time as depicted in the experimen-
tal results in Figs. 5b, 6b and 7b. This is due to the fact, that the
DRL agent in proposed method is trained to establish a balanced
trade-off between energy consumption and execution time with
the use of reward formulation presented in Section 4.2.

The execution times of all other algorithms except EES are in
a similar range with EFT technique always achieving the lowest
execution times owing to the fact that its objective is solely
designed to minimize response time. As expected, the percentage
of deadline hits (Figs. 5c, 6c and 7c) follow a similar trend to
execution time since meeting or missing deadlines is largely
dependent on the time taken for task execution. Simply put, EES
algorithm produces best results with respect to energy consump-
tion and EFT algorithm produces best results with respect to
execution time. Therefore the fact that the proposed DRL method
has produced similar results to EES and EFT in terms of energy
28
consumption and execution time, respectively demonstrate the
superiority of the proposed technique at simultaneously achiev-
ing the conflicting objectives of minimizing energy consumption
and execution time. The superior results thus obtained can be
attributed to the multi-component reward used for training the
DRL agent. Such behavior is particularly useful in edge comput-
ing environments where latency sensitive IoT workflows such
as video surveillance are executed in edge nodes powered by
batteries with limited capacities.

As previously mentioned, the Single-Actor method is similar
to the proposed method in all aspects except that the proposed
method has a hierarchical action space and uses separate actors
for determining the task allocation tier and node. But as evident
through the results of the experiments there is a significant
difference between the two methods in terms of energy con-
sumption, execution time as well as deadline hits achieved in the
experimental use cases. This clearly highlights the advantage of
using separate actor networks for determining the task allocation
tier and node.

7. Conclusions and future work

The problem of workflow scheduling itself is complicated due
to the presence of complex precedence relations among work-
flow tasks. Scheduling workflows across edge–cloud environment
adds an additional layer of complexity atop the general work-
flow scheduling problem owing to the fresh set of challenges
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ssociated with facilitating seamless executions across the highly
eterogeneous and distributed edge–cloud environment.
In this work we propose a novel hierarchical state space for-

ulation coupled with a hybrid actor–critic technique for energy-
fficient resource scheduling in edge–cloud environment. The
esulting deep reinforcement learning framework with multiple
ctor networks guided by a single critic network greatly reduces
he size of the action space handled by each actor network while
lso promoting a clear distinction between edge and cloud nodes.
urthermore, we used proximal policy optimization technique
o overcome the known limitations associated with traditional
ctor–critic methods. We also leveraged existing works to decom-
ose workflow deadlines to individual task deadlines which were
hen used as soft upper-bounds during the training process, so
hat the deep reinforcement learning framework agent learns to
stablish a balanced trade-off between latency and energy con-
umption. Results of simulation experiments demonstrate that
he deep reinforcement learning framework outperforms all other
omparison algorithms by reducing the energy consumption of
he system while maintaining the total execution time in par with
ther algorithms.
As evidenced by the results the proposed method can be used

or workflow scheduling in highly dynamic and complex edge
omputing environments while minimizing energy consumption
s well as execution time. A limitation of the proposed reinforce-
ent learning framework is that it is designed to operate in a
entralized manner. As part of the future work, we will extend the
roposed reinforcement learning framework to operate in a dis-
ributed manner. Furthermore, we will implement the proposed
eep reinforcement learning framework based scheduling frame-
ork in a real edge-cloud environment. We will also enhance
he proposed framework by leveraging long short term memory
echnique for enabling the deep reinforcement learning model to
aintain an internal representation of history, which is proven to

mprove the ability of the deep reinforcement learning agents to
dapt to varying conditions. Furthermore, we also intend to apply
ariance reduction techniques for stabilizing the performance of
eep reinforcement learning agents in the presence of highly
ifferent job arrival rates.
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