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Abstract Resource management is the principal factor to fully utilize the potential
of Edge/Fog computing to execute real-time and critical IoT applications. Although
some resource management frameworks exist, the majority are not designed based
on distributed containerized components. Hence, they are not suitable for highly dis-
tributed and heterogeneous computing environments. Containerized resource man-
agement frameworks such as FogBus?2 enable efficient distribution of framework’s
components alongside IoT applications’ components. However, the management,
deployment, health check, and scalability of a large number of containers are chal-
lenging issues. To orchestrate a multitude of containers, several orchestration tools are
developed. But, many of these orchestration tools are heavyweight and have a high
overhead, especially for resource-limited Edge/Fog nodes. Thus, for hybrid com-
puting environments, consisting of heterogeneous Edge/Fog and/or Cloud nodes,
lightweight container orchestration tools are required to support both resource-
limited resources at the Edge/Fog and resource-rich resources at the Cloud. Thus, in
this paper, we propose a feasible approach to build a hybrid and lightweight clus-
ter based on K3s, for the FogBus2 framework that offers containerized resource
management framework. This work addresses the challenge of creating lightweight
computing clusters in hybrid computing environments. It also proposes three design
patterns for the deployment of the FogBus2 framework in hybrid environments,
including (1) Host Network, (2) Proxy Server, and (3) Environment Variable. The
performance evaluation shows that the proposed approach improves the response
time of real-time IoT applications up to 29% with acceptable and low overhead.
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1 Introduction

With the rapid development of hardware, software, and communication technology,
IoT devices have become dominant in all aspects of our lives. Traditional physi-
cal devices are connected in the Internet of Things (IoT) environment to perform
humanoid information perception and collaborative interaction. They realize self-
learning, processing, decision-making, and control, thereby completing intelligent
production and service and promoting the innovation of people’s life and work pat-
terns [1].

On this premise, Cloud computing, with its powerful computing and storage capa-
bilities, becomes a shared platform for IoT big data analysis and processing. In most
cases, [oT devices offload complex applications to the Cloud for storage and pro-
cessing, and the output results are then sent from the Cloud to IoT devices [2, 3]. As
aresult, users do not have concerns about insufficient storage space or computational
capacity for IoT devices. However, with the explosive growth in the number of IoT
devices, nowadays, the amount of raw data sensed and acquired by the IoT has been
significantly increasing. Consequently, filtering, processing, and analyzing the mas-
sive amount of data in a centralized approach has become an inevitable challenge
for the Cloud computing paradigm [3, 4].

Moreover, the number of real-time IoT applications has been significantly
increased. These applications require resources that support fast processing and low
access latency to minimize the total response time [5]. Some examples of these appli-
cations are autonomous robots and disaster management applications (e.g., natural
hazard management).

1.1 Case Study: Natural Disaster Management (NDM)

NDM comprises four phases, namely Prevention, Preparedness, Response, and
Recovery. It is commonly referred to as the PPRR framework for disaster manage-
ment. These four phases are not linear and independent as they overlap and support
each other for a better balance between risk reduction and community resilience for
better response and effective recovery. Geo-spatial solutions for different phases are
in offer in practice considering the availability of big earth observation satellite data
achieved from various satellite missions and loT-enabled ground-based sensor infor-
mation [6]. However, the optimal fusion of satellite-based sensors and IoT sensors can
provide accurate and precise information in the case of natural disasters. As presented
in Figs. 1 and 2, for the case of bushfire problems in Australia, satellite-based sensors
and IoT-based sensors have been used in an ad hoc manner to inform the end users.
For example, repositories of satellite data primarily from NASA and Digital Earth
Australia and other location-based data are being used for the live alert feeds by the
emergency services in different states. The potential of satellite data and their fusion
in extracting the optimal information in real time is a challenge due to the granularity
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Fig. 1 A visualization framework on how satellite and ground-based sensors can be fused utilizing
distributed computing paradigm such as edge computing in providing accurate real-time information
to end users

of sensor-specific spatial data structure on spatial, spectral, temporal, and radiomet-
ric resolutions. With the IoT-based real-time information, there is a strong potential
to validate and calibrate the satellite information captured in different resolutions to
inform bushfire alerts in space and time. For example, early bushfire detection, near-
real-time bushfire progression monitoring, and post-fire mapping and analysis are
possible with the optimal integration of ground-based sensors to the satellite-based
sensor’s information. The framework of integrating sensors and providing accurate
information to end users in real time will help in saving lives and properties.

1.2 Edge and Fog Computing

For smooth and efficient execution of IoT applications, distributed computing
paradigms, called Edge and Fog computing, have been emerged. They concentrate
data and processing units as close as possible to the end users, as opposed to the
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Fig.2 A detailed system model on various sensors integration and their utilization in disseminating
data to inform end users

traditional Cloud computing paradigm that concentrates data and processing units
in Cloud data centers [7]. The key idea behind Edge and Fog computing is to bring
Cloud-like services to the edge of the network, resulting in less application latency
and a better quality of experience for users [8, 9]. Edge computing can cope with
medium to lightweight tasks. However, when the users’ requirements consist of com-
plex and resource-hungry tasks, Edge devices are often unable to efficiently satisfy
those requirements since they have limited computing resources [7, 10]. To address
these challenges, Fog computing, also referred to as hybrid computing, is becoming
a popular solution. Figure 3 depicts an overview of the Fog/Hybrid computing envi-
ronment. In our view, Edge computing only harnesses the closest resources to the
end users while Fog computing uses deployed resources at Edge and Cloud layers. In
such computing environments, Cloud can act as an orchestrator, which is responsible
for big and long-period data analysis. It can operate in areas such as management,
cyclical maintenance, and execution of computation-intensive tasks. Fog computing,
on the other hand, efficiently manages the analysis of real-time data to better support
the timely processing and execution of latency-sensitive tasks. However, in practice,
contradicting the strong market demand, Fog computing is still in its infancy, with
problems including no unified architecture, the large number and wide distribution
of Edge/Fog nodes, and lack of technical standards and specifications.

Meanwhile, container technology has been significantly developing in recent
years. Compared with physical and virtual machines, containers are very lightweight,
simple to deploy, support multiple architectures, have a short start-up time, and are
easy to expand and migrate. These features provide a suitable solution to the prob-
lem of severe heterogeneity of Edge/Fog nodes [11]. Container technology is being
dominantly used by industry and academia to run commercial, scientific, and big
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Fig. 3 Overview of Fog/Hybrid computing environment

data applications, build IoT systems, and deploy distributed containerized resource
management frameworks such as FogBus2 framework [12]. FogBus2, which is a
distributed and containerized framework, enables fast and efficient resource man-
agement in hybrid computing environments.

Considering the ever-increasing number of containerized applications and frame-
works, efficient management and orchestration of resources have become an impor-
tant challenge. While container orchestration tools such as Kubernetes have become
the ideal solution for managing and scaling deployments, nodes, and clusters in the
industry today [13], there are still many challenges with their practical deployments in
hybrid computing environments. Firstly, orchestration techniques need to consider
the heterogeneity of computing resources in different environments for complete
adaptability. Secondly, the complexity of installing and configuring hybrid comput-
ing environments should be addressed when implementing orchestration techniques.
Thirdly, a strategy needs to be investigated to solve potential conflicts between orches-
tration techniques and the network model in the hybrid computing environment.
Also, as Edge/Fog devices are resource-limited, lightweight orchestration techniques
should be deployed to free up the resources for the smooth execution of end-user
applications. Finally, integrating containerized resource management frameworks
with lightweight orchestration tools is another important yet challenging issue to
support the execution of a diverse range of IoT applications.

To address these problems, this paper investigates the feasibility of deploying
container orchestration tools in hybrid computing environments to enable scalability,
health checks, and fault tolerance for containers.
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The main contributions of this paper can be summarized as follows:

e Presents feasible designs for implementing container orchestration techniques in
hybrid computing environments.

e Proposes three design patterns for the deployment of the FogBus2 framework
using container orchestration techniques.

e Puts forward the detailed configurations for the practical deployment of the Fog-
Bus2 framework using container orchestration tools.

The rest part of the paper is organized as follows. Section 2 provides a background
study on the relevant technologies and reviews the container orchestration techniques
in Fog computing environments. Section 3 describes the configuration properties of
the K3s cluster and the detailed implementation of deploying the FogBus2 framework
into the K3s cluster. Section4 presents the performance evaluation. Finally, Sect. 5
concludes the paper and presents future directions.

2 Background Technologies and Related Work

This section discusses the resource management framework and container orches-
tration tools, including the FogBus2 framework and K3s. Moreover, it also reviews
the existing works on container orchestration in the Cloud and Edge/Fog computing
environments.

2.1 FogBus2 Framework

FogBus2 [12] is a lightweight distributed container-based framework, developed
from scratch using Python programming language, enabling distributed resource
management in hybrid computing environments. It integrates edge and Cloud envi-
ronments to implement multiple scheduling policies for scheduling heterogeneous
IoT applications. In addition, it proposes an optimized genetic algorithm for fast con-
vergence of resource discovery to implement a scalable mechanism that addresses
the problem that the number of IoT devices increases or resources become over-
loaded. Besides, the dynamic resource discovery mechanism of FogBus2 facilitates
the rapid addition of new entities to the system. Currently, several resource man-
agement policies and [oT applications are integrated with this framework. FogBus2
contains five key containerized components, namely Master, Actor, RemoteLogger,
TaskExecutor, and User, which are briefly described below.

e Master: It handles resource management mechanisms such as scheduling, scala-
bility, resource discovery, registry, and profiling. It also manages the execution of
requested IoT applications.

e Actor: It manages the physical resources of the node on which it is running. Also,
it receives commands from the Master component and initiates the appropriate
Task Executor components based on each requested IoT application.
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Fig. 4 Key components of FogBus2 [12]

e Remote Logger: It collects periodic or event-driven logs from other components
(e.g., profiling logs, performance metrics) and stores them in persistent storage
using either a file system or database.

e TaskExecutor: Each IoT application consists of several dependent or independent
tasks. The logic of each task is containerized in one TaskExecutor. Accordingly,
it executes the corresponding task of the application and can be efficiently reused
for other requests of the same type.

e User: It runs on the user’s [oT device and handles the raw data received from
sensors and processed data from Master. It also sends placement requests to the
Master component for the initiation of an IoT application.

Figure 4 shows an overview of the five main components of the FogBus2 and their
interactions.

2.2 K3s: Lightweight Kubernetes

K3s is a lightweight orchestration tool designed for resource-limited environments,
suitable for IoT and Edge/Fog computing [ 14]. Compared to Kubernetes, K3s is half
the size in terms of memory footprint, but API consistency and functionality are
not compromised [15]. Figure 5 shows the architecture of a K3s cluster containing
one server and multiple agents. Users manage the entire system through the K3s
server and make appropriate usage of the resources of the K3s agents in the cluster to
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Fig. 5 The architecture of a single server K3s cluster

achieve optimal operation of applications and services. K3s clusters allow pods (i.e.,
the smallest deployment unit) to be scheduled and managed on any node. Similar to
Kubernetes, K3s clusters also contain two types of nodes, with the server running the
control plane components and kubelet (i.e., the agent that runs on each node), and
the agent running only the kubelet [16]. Typically, a K3s cluster carries a server and
multiple agents. When the URL of a server is passed to a node, that node becomes
an agent; otherwise, it is a server in a separate K3s cluster [14, 16].

2.3 Related Work

Rodriguez et al. [17] investigates multiple container orchestration tools and proposes
a taxonomy of different mechanisms that can be used to cope with fault tolerance,
availability, scalability, etc. Zhong et al. [18] proposed a Kubernetes-based con-
tainer orchestration technique for cost-effective container orchestration in Cloud
environments. The FLEDGE, developed by Goethals et al. [19], implements con-
tainer orchestration in an Edge environment that is compatible with Kubernetes.
Pires et al. [20] proposed a framework, named Caravela, that employs a decentralized
architecture, resource discovery, and scheduling algorithms. It leverages users’ vol-
untary Edge resources to build an independent environment where applications can
be deployed using standard Docker containers. Alam et al. [21] proposed a modular
architecture that runs on heterogeneous nodes. Based on lightweight virtualization, it
creates a dynamic system by combining modularity with the orchestration provided
by the Docker Swarm. Ermolenko et al. [22] studied a framework for deploying
IoT applications based on Kubernetes in the Edge-Cloud environment. It achieves
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lightweight scaling of task-based applications and allows the addition of external
data warehouses.

In the current literature, some techniques such as [18, 22] use Kubernetes directly
on Edge/Fog nodes, which have a high overhead on resource-limited Edge/Fog nodes.
Some techniques such as [21] are restricted to run a master node (i.e., server) only on
the Cloud, which does not support different cluster deployment approaches. More-
over, some orchestration techniques such as [20] are only working with nodes with
public IP addresses, which restricts many use-cases in Edge/Fog computing environ-
ments where nodes do not have public IP addresses. Considering the current litera-
ture, there exists no lightweight container orchestration technique for the complete
deployment of containerized resource management frameworks in hybrid comput-
ing environments, where heterogeneous nodes are distributed in Edge/Fog and Cloud
computing environments.

3 Container Orchestration Approach

In this section, we propose a feasible approach for deploying container orchestration
techniques in hybrid computing environments. First, we present a high-level overview
of the design. Next, we introduce the concrete implementation details of the proposed
approach.

3.1 Overview of the Design

To build a complete hybrid computing environment for different IoT scenarios, we
use several Cloud and Edge/Fog nodes. We choose K3s as the backbone for the hybrid
computing environment because it only occupies less than half of the resources of
Kubernetes, but fully implements the Kubernetes API, and is specially optimized
for the resource-constrained nodes at the Edge/Fog layer. In practice, we use three
Cloud instances at the Cloud layer and create several Linux virtual machines (aligned
with hardware specification of Raspberry Pi Zero) as our Edge/Fog nodes. Our Cloud
nodes have public IP addresses while Edge/Fog nodes do not hold public IP addresses.
To address this problem, we use Wireguard to set up a lightweight Peer-to-Peer (P2P)
VPN connection among all nodes. After creating the hybrid computing environment,
we start to embed the FogBus2 resource management framework into it. To take
advantage of the container orchestration tool, we allocate only one container to each
Pod created by K3s, with only one component of the FogBus2 framework running
inside each container. Also, to balance the load on each node between clusters,
we assign pods to different nodes. The initialization of the FogBus2 components
requires the binding of the host IP address, which will be used to pass information
between the different components. This means that in K3s clustering, the FogBus2
component needs to bind the IP address of the pod, which poses a difficulty for the
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Fig. 6 Overview of the design pattern

implementation, as usually the pod is created at the same time as the application
is deployed. To address this challenge, we evaluate three approaches and finally
decide to use host network mode to deploy the FogBus2 framework in the K3s
hybrid environment. Host network mode allows pods to use the network configuration
of virtual instances or physical hosts directly, which addresses the communication
challenge of the FogBus2 components and the conflict between K3s network planning
service and VPN. Figure 6 shows a high-level overview of our proposed design
pattern.

3.2 Configuration of Nodes

The deployed hybrid computing environment consists of several instances, labeled A
through E. The node list, computing layer, specifications, public network IP address,
and private network IP address, after the VPN connection is established, are given
in Table 1.

3.3 P2P VPN Establishment

As shown in Table 1, Cloud nodes have public IP addresses, while in most cases,
devices in the Edge/Fog environment do not have public IP addresses. In this case,
in order to build a hybrid computing environment, we need to establish a VPN
connection to integrate the Cloud and Edge/Fog nodes. We use Wireguard to establish
a lightweight P2P VPN connection between all the nodes. In the implementation,
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# *** For worker@4 Only ***

[Interface]

PrivateKey = gA+AhTAA+YSMQFW8tQ/3YbgH3XvNo3VD1lba3wlyilnM=
Address = 192.0.0.5/24

ListenPort = 4999

[Peer]

# master

PublicKey = sZgxVFEs@4zxIA9N@dWIo7SHnS5vHMIgrRGOk@tkpCnE=
Endpoint = 45.113.235.156:4999

AllowedIPs = 192.0.0.1/32

PersistentKeepalive = 15

[Peer]

# worker@l

PublicKey = JiuDTBe26S9rqPyROtbTsgNQ/M9+eBMS51IsbeuN2gUk=
Endpoint = 45.113.232.199:4999

AllowedIPs = 192.0.0.2/32

PersistentKeepalive = 15

[Peer]

# worker@2

PublicKey = VERS1sB6VsTanrEwkVS@DD1BieZnC1Refdnw/P@r7VU=
Endpoint = 45.113.232.232:4999

AllowedIPs = 192.0.0.3/32

PersistentKeepalive = 15

[Peer]

# worker@3

PublicKey = 9kSrAu7K4NVoOGk37bGXY7F/m+8XGANXQY1ZNuMzu34=
Endpoint = 192.168.0.40:4999

AllowedIPs = 192.0.0.4/32

PersistentKeepalive = 15

Fig. 7 A sample configuration script for the Wireguard

we install the Wireguard on each node and generate the corresponding configuration
scripts (based on the FogBus2 VPN scripts) to ensure that each node has direct access
to all other nodes in the cluster. A sample configuration script for the Wireguard VPN,
derived from FogBus2 scripts, is shown in Fig. 7.
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NAME STATUS ROLES AGE  VERSION

worker@4  Ready <nhone> 15d  v1.21.5+k3s1
worker@3  Ready <nhone> 15d  v1.21.5+k3sl1
worker@l  Ready <nhone> 15d  v1.21.5+k3sl
worker@2  Ready <none> 15d  v1.21.5+k3sl1
master Ready control-plane,master 15d v1.21.5+k3sl

Fig. 8 K3s deployment in computing environment

3.4 K3s Deployment

The K3s server can be located at the Cloud or at the edge, while the remaining
four nodes act as K3s agents. As the aim of this research is to enable container
orchestration on the FogBus2 framework, we need to install and enable Docker on
both the server and agents before building K3s. First, we install and start the K3s
server in Docker mode. K3s allows users to choose the appropriate container tool,
but as all components of FogBus2 run natively in Docker containers, we use Docker
mode to initialize the K3s server to allow it to access the Docker images. Then, we
extract a token from the server, which will be used to join other agents to the server.
After that, we install the K3s on each agent, specifying the IP of the server and
the token obtained from the server during installation to ensure that all agents can
properly connect to the server. Figure 8 shows the successful deployment of the K3s
cluster.

3.5 Fogbus2 Framework Integration

In the native design of the FogBus2 framework, all components are running in con-
tainers. The pod, as the smallest unit created and deployed by K3s, can wrap one or
more containers. Any containers in the same pod will share the same namespace and
local network. Containers can easily communicate with other containers in the same
or different pod as if they were on the same machine while maintaining a degree of
isolation. So first, we are faced with the choice of assigning only one container per
pod (i.e., a component that the FogBus2 framework is built on) or allowing each pod
to manage multiple containers. The former design would balance the load on K3s
nodes as much as possible to facilitate better management by the controller, while
the latter design would reduce the time taken to communicate between components
and provide faster feedback to users. We decide to adopt the former design to achieve
batch orchestration and self-healing from failures.

In order to integrate all types of FogBus2 framework’s components into K3s, we
first define the YAML deployment files for necessary components. This file is used to
provide the object’s statute, which describes the expected state of the object, as well
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as some basic information about the object. In our work, the YAML deployment file
serves to declare the number of replicas of the pod, the node it is built on, the name
of the image, the image pulling policy, the parameters for application initialization,
and the location of the mounted volumes. Code Snippet 1 illustrates the YAML
deployment file for the Master component of the FogBus2 framework.

# YAML deployment file for the Master component
# of the FogBus2 framework
apiVersion: apps/vl
kind: Deployment
metadata:
labels:
app: fogbus2-master
name: fogbus2 -master
spec:
replicas: 1
selector:
matchLabels:
app: fogbus2-master

strategy:
type: Recreate
template:
metadata:
labels:
app: fogbus2-master
spec:
containers:
- env:
- name: PGID
value: "1000"
- name: PUID
value: "1000"
- name: PYTHONUNBUFFERED
value: "0"

- name: TZ
value: Australia/Melbourne
image: cloudslab/fogbus2-master
imagePullPolicy: ""
name: fogbus2 -master
args: ["--bindIP", "192.0.0.1",
"--bindPort", "5001",
"--remotelLoggerIP", "192.0.0.1",
"--remoteLoggerPort", "5000",
"--schedulerName", "RoundRobin",
--containerName",
"TempContainerName" ]
resources: {}
volumeMounts :
- mountPath: /var/run/docker.sock
name: fogbus2 -master -hostpathO
- mountPath: /workplace/
name: fogbus2 -master-hostpathl
- mountPath: /workplace/.mysgl.env
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name: fogbus2-master-hostpath2
restartPolicy: Always
serviceAccountName :
nodeName: master
hostNetwork: true
volumes:
- hostPath:
path: /var/run/docker.sock
name: fogbus2-master-hostpathO
- hostPath:
path: /home/hehe/FogBus2/containers
/master/sources
name: fogbus2-master -hostpathl
- hostPath:
path: /home/hehe/FogBus2/containers
/master /sources/.mysgl.env
name: fogbus2-master-hostpath2
status: {1}

Code Snippet 1 The YAML deployment file for the Master component of the FogBus2 framework

In the communication design of the FogBus2 framework, the initialization of
components requires the binding of the host IP address, which will be used to pass
information between components. For example, when a Master component is created,
the IP address of the host will be passed in as a required parameter, which will also
be passed in as a necessary parameter to initializing the Acfor component. Because
the FogBus?2 framework has some generic functions that will be used by multiple or
all components, the Master component will send its assigned host/VPN IP address
to the Actor component and requests to return the information to this address. If this
IP address is not the same as the IP address used to initialize the Actor component,
communication cannot be correctly established. When the FogBus2 framework is
deployed using Docker Compose (e.g., the native way that FogBus2 is deployed),
communication between the components is smooth because the containers are run-
ning directly on the host. However, when the FogBus2 framework starts in K3s,
the communication mechanism between the components should be updated since
containers are running in pods and each pod has its own IP address. Components
cannot listen to the IP address of the host because, by default, the pod’s network
environment is separate from the host, which poses a challenge for the deployment
of the FogBus2 framework. To cope with this problem, we propose the following
three design models.

Host Network When starting FogBus2 components in a K3s cluster, instead of using
the cluster’s own network services, we use the host’s network configuration directly.
Specifically, we connect each pod directly to the network of its host. In this case, the
components in the FogBus2 framework can be bound directly to the host’s network
at initialization, and the IP address notified to the target component is the same as
the one configured by the target component at initialization. This design implements
the following functions for the FogBus2 framework:
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e Batch Orchestration: It allows containers to be orchestrated across multiple hosts.
In contrast, the native FogBus2 uses docker-compose, which can only create a
single container instance locally.

e Health Check: The system knows when the container is ready and can start accept-
ing traffic.

e Self-healing from Failure: When a running pod stops abnormally or is deleted
by mistake, the system can restart the pod.

e Dynamic Change: Users can dynamically change the resources limit of the run-
ning pods, including the size of physical memory footprint, the number of physical
CPUs, etc.

e Resource Utilization: The system can distribute each application on each node
and choose the one with the lowest physical resource usage to deploy.

However, this design pattern sacrifices some of the functionality of K3s. When
pods are connected directly to the network environment where the hosts are located,
the K3s controller will not be able to optimally manage all the containers within the
cluster because these services require the K3s controller to have the highest level of
access to the network services used by the pods. If the pods are on a VPN network,
we will not be able to implement all the features of K3s. We use Host Network mode
to deploy the FogBus2 framework in the K3s cluster in this paper.

Proxy Server As the problem stems from a conflict between the communication
design of the FogBus2 framework and the communication model between pods in
the K3s cluster, we can create a proxy server that defines the appropriate routing poli-
cies to receive and forward messages from different applications. When a FogBus2
component needs to send a message to another component, we import the message
into the proxy server, which analyzes the message to extract the destination and for-
ward it to the IP address of the target component according to its internal routing
policy. This approach bypasses the native communication model of the FogBus2
framework, and all communication between applications is done through the proxy
Server.

There are two types of communication methods in the FogBus2 framework, pro-
prietary methods and generic methods. The proprietary methods are used to commu-
nicate with fixed components, such as master and remote logger, whose IP addresses
are configured and stored as global variables when most components are initialized.
In contrast, the generic methods are used by all components and are called by compo-
nents to transmit their IP addresses as part of the message for the target component.
Therefore, to enable all components to send messages to the proxy server for pro-
cessing, we need to change the source code of the FogBus2 framework so that all
components are informed of the IP address of the proxy server at initialization and
to unify the two types of communication methods so that components will include
information about the target in the message and send it to the proxy server. As aresult,
this design would involve a redesign of the communication model of the FogBus2
framework.
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Environment Variable In the K3s cluster, when the application is deployed, the
cluster controller will automatically create a pod to manage the container in which
the application resides. However, in the YAML file, we can obtain the IP address of
the created pod when configuring the container information, which allows us to pass
it in as an environment variable when initializing the components of the FogBus2
framework. Then, the IP address bound to the component is the IP address of the
pod and the component can transmit this address to the target component when
communicating and receiving a message back.

However, in our experiments, we find that pods on different nodes have problems
communicating at runtime. We trace the flow of information transmitted and find
that the reason for this is the conflict between the network services configured within
the cluster and the VPN used to build the hybrid computing environment. The pods
possess unique IP addresses and use them to communicate with each other, but
these addresses cannot be recognized by the VPN on the nodes, which prevents the
information from being transferred from the hosts. To solve this problem, we have
proposed two solutions:

e Solution 1: K3s uses flannel as the Container Network Interface (CNI) by default.
We can change the default network service configuration of the K3s cluster and
override the default flannel interface with the Wireguard Ethereum Name Service.

e Solution 2: We can change the Wireguard settings to add the interface of the
network service created by the K3s controller to the VPN profile to allow incoming
or outgoing messages from a specific range of IP addresses.

4 Performance Evaluation

In this section, two experiments are conducted using three real-time applications to
evaluate the performance of orchestrated FogBus2 (O-FogBus2) and native FogBus2,
as well as the performance of FogBus2 in the hybrid versus Cloud environment. The
real-time applications used in the experiments are described in Table 2.

Table 2 The list of applications
Application name Tag Description

NaiveFormulaSerialized Formula | A mathematical formula where different
parts are calculated as different tasks

FaceDetection (480P Res) FD4380 Face detection from real-time/recorded
video streams at 480P resolution

FaceDetection (240P Res) FD240 Face detection from real-time/recorded
video streams at 240P resolution
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Fig. 9 Response times for Orchestrated FogBus2 (O-FogBus2) versus native FogBus2 in three
applications

4.1 Experiment 1: Orchestrated FogBus2 Versus Native
FogBus2

This experiment studies the performance of the FogBus2 framework deployed in
K3s and compares it with the native FogBus2. In the experiment, we run the systems
in the same network environment and set the same scheduling policy to ensure the
reliability of the experimental results.

The environment setup for this experiment is shown in Table 1. For both deploy-
ment types, we implement the same deployment strategy to ensure fairness, with the
Master and one Actor running on the Edge, and the Remote Logger and two other
Actors running on the Cloud.

Figure 9 shows the response time for orchestrated FogBus2 and native FogBus2
using three applications. The red dots represent the average response time, while the
top and bottom green lines represent the 95% confidence interval for the mean value.
For all tested applications, when FogBus2 is running in K3s, the average response
time is longer than the native FogBus2 framework by an average of 7%. This is
because the management of deployments by the K3s cluster itself requires some
overhead; however, given the resource management mechanisms, scheduling, and
automatic container health checks provided by K3s, we believe this overhead is very
lightweight and acceptable.

4.2 Experiment 2: Hybrid Environment Versus Cloud
Environment

This experiment studies the performance of O-FogBus2 deployed in the hybrid com-
puting environment versus the Cloud computing environment. Same as Sect. 4.1, the
environment setup for this experiment is shown in Table 1. For the hybrid computing
environment, the Master and one Actor are running on the Edge, and the Remote Log-
ger and two other Actors are running on the Cloud. And for the Cloud environment,
all the components are running on the Cloud.
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Fig. 10 Response times for Orchestrated FogBus2 (O-FogBus2) in Hybrid versus Cloud deploy-
ment

Figure 10 depicts the response time of FogBus2 deployed in hybrid and Cloud
environments for three applications. For all tested applications, the average response
time is shorter by up to 29% when FogBus2 is running in the hybrid environment
than when FogBus?2 is running in the Cloud. This is because the end users are usually
located at the edge of the network and the final result should be forwarded to them.
If all the components of FogBus2 are running in the Cloud, it will take longer and
will face the impact of the unstable Wide Area Network (WAN). Since FogBus2 is
designed for IoT devices to integrate Cloud and Edge/Fog environments, the intro-
duction of K3 does not deprive this function, so we believe that placing the entire
system in a hybrid computing environment can reasonably utilize the Cloud and
Edge/Fog computing resources and improve system performance.

5 Conclusions and Future Work

In this paper, we discussed the importance of resource management to support real-
time IoT applications. We presented feasible designs for implementing container
orchestration techniques in hybrid computing environments. This study proposed
three design patterns for deploying the containerized resource management frame-
works such as the FogBus2 framework into the hybrid environment. Besides, we
described the detailed configuration of K3s deployment and the integration of the
FogBus?2 framework using the host network approach. The Host Network Pattern con-
nects the components of the cluster to the host network environment, using the native
communication model of the FogBus2 framework by masking the internal network
environment of the cluster while avoiding the network conflict problems related to
VPN. Compared to the native Fogbus2 framework, the new system (i.e., O-FogBus?2)
enables resource limit control, health check, and self-healing from failure to cope
with the ever-changing number and functionality of connected IoT devices.

We identified several future works to further improve the container orchestra-
tion for efficient resource management in hybrid computing environments. Firstly,
we can consider implementing elastic scalability to automatically add or remove
computing resources according to the demands of IoT applications. To address this
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challenge, the Proxy Server and Environment Variable design approaches can be
investigated to enable dynamic scalability. Secondly, lightweight security mecha-
nisms can be embedded into the container orchestration mechanisms. As IoT devices
are highly exposed to users, security and privacy become important. However, the
limited resources of Edge/Fog devices create difficulties for the implementation of
security mechanisms. Therefore, lightweight security mechanisms to ensure end-
to-end integrity and confidentiality of user information can be further investigated.
Next, integrating different orchestration tools, including KubeEdge, Docker Swarm,
and MicroKS8s, can be considered as an important future direction. Different orches-
tration tools may be suitable for different computing environments, so it is essential
to find the best application scenarios for them. We can explore the impact of dif-
ferent integrated container orchestration tools for handling real-time and non-real-
time IoT applications. Also, a variety of scheduling policies can be implemented to
automate application deployment and improve resource usage efficiency for clus-
ters, ranging from heuristics to reinforcement learning techniques [2]. For example,
scheduling pods to nodes with smaller memory and CPU footprints to automatically
load-balancing on the cluster, or spreading replicative pods across different nodes
to avoid severe system failures. Furthermore, since machine learning techniques [2,
23] are becoming mature and widely used in various fields, we can consider integrat-
ing them into the Edge/Fog and Cloud computing environment. Machine learning
techniques can be used to analyze the state of the current computing environment,
improve the system’s ability to manage resources, and distribute workloads. As cur-
rent machine learning tools are often designed for powerful servers, future research
can optimize them to run on resource-constrained Edge/Fog devices. Finally, the
adopted techniques can consider the requirements of specific application domains
such as natural disaster management, which significantly affect human life.
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