
Received: 24 November 2015 Revised: 1 May 2016 Accepted: 12 October 2016

DOI 10.1002/cpe.4041

R E S E A R C H A R T I C L E

A taxonomy and survey on scheduling algorithms for scientific
workflows in IaaS cloud computing environments

Maria Alejandra Rodriguez Rajkumar Buyya

Cloud Computing and Distributed Systems

(CLOUDS) Laboratory, Department of

Computing and Information Systems, The

University of Melbourne, Australia

Correspondence

Maria Rodriguez, Department of Computing

and Information Systems, Doug McDonell

Building, The University of Melbourne,

Parkville 3010, VIC, Australia.

Email: marodriguez@unimelb.edu.au

Summary

Large-scale scientific problems are often modeled as workflows. The ever-growing data and

compute requirements of these applications has led to extensive research on how to efficiently

schedule and deploy them in distributed environments. The emergence of the latest distributed

systems paradigm, cloud computing, brings with it tremendous opportunities to run scientific

workflows at low costs without the need of owning any infrastructure. It provides a virtually infi-

nite pool of resources that can be acquired, configured, and used as needed and are charged on a

pay-per-use basis. However, along with these benefits come numerous challenges that need to be

addressed to generate efficient schedules. This work identifies these challenges and studies exist-

ing algorithms from the perspective of the scheduling models they adopt as well as the resource

and application model they consider. A detailed taxonomy that focuses on features particular to

clouds is presented, and the surveyed algorithms are classified according to it. In this way, we aim

to provide a comprehensive understanding of existing literature and aid researchers by providing

an insight into future directions and open issues.

KEYWORDS

IaaS cloud, resource provisioning, scientific workflow, scheduling, survey, taxonomy

1 INTRODUCTION

Various scientific fields use workflows to analyze large amounts of data

and to run complex simulations and experiments efficiently. A process

can be modeled as a workflow by dividing it into smaller and sim-

pler subprocesses (i.e., tasks). These tasks can then be distributed to

multiple compute resources for a faster, more efficient execution. The

scheduling of workflow tasks in distributed platforms has been widely

studied over the years. Researchers have developed algorithms tailored

for different environments: from homogeneous clusters with a limited

set of resources, to large-scale community grids, to the most recent

paradigm, utility-based, heterogeneous, and resource-abundant cloud

computing. This work focuses on the latter case; it studies algorithms

developed to orchestrate the execution of scientific workflow tasks in

cloud computing environments, in particular, Infrastructure as a Service

(IaaS) clouds.

The IaaS clouds offer an easily accessible, flexible, and scalable

infrastructure for the deployment of large-scale scientific workflows.

They enable workflow management systems to access a shared com-

pute infrastructure on-demand and on a pay-per-use basis.1 This is

done by leasing virtualised compute resources, called virtual machines

(VMs), with a predefined CPU, memory, storage, and bandwidth capac-

ity. Different resource bundles (i.e., VM types) are available at varying

prices to suit a wide range of application needs. The VMs can be elas-

tically leased and released and are charged per time frame, or billing

period. The IaaS providers offer billing periods of different granularity,

for example, Amazon EC22 charges per hour while Microsoft Azure3

is more flexible an charges on a per-minute basis. Aside from VMs,

IaaS providers also offer storage services and network infrastructure

to transport data in, out, and within their facilities. The term cloud will

be used to refer to providers offering the IaaS service model.

Several scheduling challenges arise from the multitenant,

on-demand, elastic, and pay-as-you-go resource model offered by

cloud computing. When compared to other distributed systems such

as grids, clouds offer more control over the type and quantity of

resources used. This flexibility and abundance of resources creates

the need for a resource provisioning strategy that works together

with the scheduling algorithm; a heuristic that decides the type and

number of VMs to use and when to lease and to release them. Another

challenge that must be addressed by scheduling algorithms is the

utility-based pricing model of resources. Schedulers need to find a

trade-off between performance, nonfunctional requirements, and cost

Concurrency Computat: Pract Exper. 2017;29:e4041. wileyonlinelibrary.com/journal/cpe Copyright © 2016 John Wiley & Sons, Ltd. 1 of 23
https://doi.org/10.1002/cpe.4041

https://doi.org/10.1002/cpe.4041


2 of 23 RODRIGUEZ AND BUYYA

FIGURE 1 Sample workflow with nine tasks. The graph nodes represent computational tasks and the edges the data dependencies between these
tasks

to avoid paying unnecessary and potentially prohibitive prices. Finally,

algorithms need to be aware of the dynamic nature of cloud platforms

and the uncertainties this brings with it because performance vari-

ation is observed in resources such as VM CPUs, network links, and

storage systems. In addition to this, providers make no guarantees on

the time it takes to provision and deprovision VMs, with these values

being highly variable and unpredictable in practice. Schedulers need

to be aware of this variability to recover from unexpected delays and

achieve their performance and cost objectives.

In this survey, different characteristics of existing cloud workflow

scheduling algorithms are analyzed. In particular, the scheduling, appli-

cation, and resource models are studied. Because extensive research

has been done on the scheduling field in general, widely accepted and

accurate classifications already exist for these features. We extend and

complement with a cloud-focused discussion those that are of partic-

ular importance to the studied problem. Some of these include the

dynamicity of the scheduling and provisioning decisions, the schedul-

ing objectives, and the optimization strategy. The application model is

studied from the workflow multiplicity point of view, that is, the num-

ber and type of workflows that algorithms are capable of processing.

Finally, classifications for the resource model are made on the basis of

different cloud features and services such as storage and data transfer

costs, pricing models, VM delays, data center and provider deployment

models, and VM heterogeneity among others.

The rest of this paper is organized as follows. Section 2 introduces

the notion of scientific workflows while Section 3 discusses the work-

flow scheduling problem and the challenges particular to cloud environ-

ments. The proposed classification system is presented in Section 4. A

detailed discussion of outstanding algorithms is presented in Section 5

along with the classification of all the studied solutions. Finally, future

directions and conclusions are described in Section 6.

2 SCIENTIFIC WORKFLOWS: AN OVERVIEW

The concept of workflow has its roots in commercial enterprises as

a business process modeling tool. These business workflows aim to

automate and optimize the processes of an organization, seen as an

ordered sequence of activities, and are a mature research area4 lead

by the workflow management coalition* (WfMC), founded in 1993.

This notion of workflow has extended to the scientific community in

*http://www.wfmc.org/

which scientific workflows are used support large-scale, complex scien-

tific processes; they are designed to conduct experiments and prove

scientific hypotheses by managing, analyzing, simulating, and visualiz-

ing scientific data.5 Therefore, even though both business and scientific

workflows share the same basic concept, both have specific require-

ments and hence need separate consideration. In this survey we focus

on scientific workflows, and from now on, we will refer to them simply

as workflows.

A workflow is defined by a set of computational tasks with depen-

dencies between them. In scientific applications, it is common for the

dependencies to represent a data flow from one task to another; the

output data generated by one task becomes the input data for the next

one. Figure 1 shows a sample workflow with 9 tasks. These applica-

tions can be CPU, memory, or I/O intensive (or a combination of these),

depending on the nature of the problem they are designed to solve. In a

CPU intensive workflow most tasks spend most of their time perform-

ing computations. In a memory-bound workflow most tasks require

high physical memory usage. The I/O intensive workflows are com-

posed of tasks that require and produce large amounts of data and

hence spend most of their time performing I/O operations.6

Scientific workflows are managed by different institutions or indi-

viduals in different fields meaning they have different requirements for

the software needed by tasks to run. These characteristics make them

great candidates to leverage the capabilities offered by cloud comput-

ing. Scientists can configure VM images to suit the software needs of a

specific workflow, and with the help of scheduling algorithms and work-

flow management systems, they can efficiently run their applications

on a range of cloud resources to obtain results in a reasonable amount

of time. In this way, by providing a simple, cost-effective way of running

scientific applications that are accessible to everyone, cloud computing

is revolutionizing the way e-science is done.

Many scientific areas have embraced workflows as a mean to express

complex computational problems that can be efficiently processed in

distributed environments. For example, the Montage workflow7 is an

astronomy application characterized by being I/O intensive that is used

to create custom mosaics of the sky on the basis of a set of input images.

It enables astronomers to generate a composite image of a region of

the sky that is too large to be produced by astronomical cameras or

that has been measured with different wavelengths and instruments.

During the workflow execution, the geometry of the output image is

calculated from that of the input images. Afterwards, the input data is

reprojected so that they have the same spatial scale and rotation. This

is followed by a standardization of the background of all images. Finally,



RODRIGUEZ AND BUYYA 3 of 23

FIGURE 2 Structure of 5 different scientific workflows: Montage (Astronomy), Cybershake (Earthquake science), Epigenomics (Bioinformatics),
SIPHT (Bioinformatics), and LIGO (astrophysics)

all the processed input images are merged to create the final mosaic of

the sky region.

Another example of a workflow is Cybershake,8 a data and mem-

ory intensive earthquake hazard characterization application used by

the Southern California Earthquake Centre. The workflow begins by

generating strain green tensors for a region of interest via a simula-

tion. These strain green tensor data are then used to generate synthetic

seismograms for each predicted rupture followed by the creation of

acceleration and probabilistic hazard curves for the given region. Other

examples include the laser interferometer gravitational wave observa-

tory (LIGO),9, SIPHT,10 and Epigenomics11 workflows. The LIGO is a

memory intensive application used in the physics field with the aim of

detecting gravitational waves. In bioinformatics, SIPHT is used to auto-

mate the process of searching for small RNA encoding genes for all bac-

terial replicons in the National Centre for Biotechnology Information12

database. Also in the bioinformatics field, the Epigenomics workflow

is a CPU intensive application that automates the execution of various

genome sequencing operations.

The aforementioned applications are a good representation of scien-

tific workflows as they are taken from different domains and together

provide a broad overview of how workflow technologies are used to

manage complex analyses. Each of the workflows has different topo-

logical structures all common in scientific workflows such as pipelines,

data distribution, and data aggregation.13 They also have varied data

and computational characteristics, including CPU, I/O, and memory

intensive tasks. Figure 2 shows the structure of these 5 scientific work-

flows, and their full characterization is presented by Juve et al.6

The scope of this work is limited to workflows modeled as directed

acyclic graphs (DAGs), which by definition have no cycles or condi-

tional dependencies. Although, there are other models of computation

that could be used to express and process scientific workflows such as

best effort, superscalar, and streaming pipelines, this survey focuses on

DAGs as they are commonly used by the scientific and research commu-

nity. For instance, workflow management systems such as Pegasus,14

Cloudbus WfMS,15 ASKALON,16 and DAGMan17 support the execu-

tion of workflows modeled as DAGs. We refer the readers to the work

by Pautasso and Alonso18 for a detailed characterization of different

models of computation that can be used for optimizing the perfor-

mance of large-scale scientific workflows.

Formally, a DAG representing a workflow application W = (T, E) is

composed of a set of tasks T= {t1, t2,… , tn} and a set of directed edges E.

An edge eij of the form (ti, tj) exists if there is a data dependency between

ti and tj, case in which ti is said to be the parent task of tj and tj is said to

be the child task of ti. On the basis of this definition, a child task cannot

run until all of its parent tasks have completed, and its input data are

available in the corresponding compute resource.

3 WORKFLOW SCHEDULING IN IAAS
CLOUDS

In general, the process of scheduling a workflow in a distributed system

consists of assigning tasks to resources and orchestrating their execu-

tion so that the dependencies between them are preserved. The map-

ping is also done so that different user-defined quality of service (QoS)

requirements are met. These QoS parameters are generally defined in

terms of performance metrics such as execution time and nonfunctional

requirements such as security and energy consumption. This problem

is NP-complete19 in its general form, and there are only 3 special cases

that can be optimally solved within polynomial time. The first one is

the scheduling of tree-structured graphs with uniform computation



4 of 23 RODRIGUEZ AND BUYYA

costs on an arbitrary number of processors.20 The second one is the

scheduling of arbitrary graphs with uniform computation costs on 2

processors,21 and the third one is the scheduling of interval-ordered

graphs.22 The problem addressed in this work does not fit any of these

3 scenarios, and no optimal solution can be found in polynomial time.

To plan the execution of a workflow in a cloud environment, 2 sub-

problems need to be considered. The first one is known as resource

provisioning, and it consists of selecting and provisioning the compute

resources that will be used to run the tasks. This means having heuris-

tics in place that are capable of determining how many VMs to lease,

their type, and when to start them and shut them down. The second

subproblem is the actual scheduling or task allocation stage, in which

each task is mapped onto the best-suited resource. The term schedul-

ing is often used to refer to the combination of these 2 subproblems

by authors developing algorithms targeting clouds, and we follow the

same pattern throughout the rest of this survey.

3.1 Cloud workflow management system

The execution of workflows in clouds is done via a cloud workflow man-

agement system (CWfMS). It enables the creation, monitoring, and exe-

cution of scientific workflows and has the capability of transparently

managing tasks and data by hiding the orchestration and integration

details among the distributed resources.23 A reference architecture

is shown in Figure 3. The depicted components are common to most

CWfMS implementations; however, not all of them have to be imple-

mented to have a fully functional system.

User interface. The user interface allows for users to create, edit,

submit, and monitor their applications.

Workflow engine. The workflow engine is the core of the system

and is responsible for managing the actual execution of the

workflow. The parser module within the engine interprets a

workflow depicted in a high-level language such as XML and

creates the corresponding internal workflow representation

such as task and data objects. The scheduler and resource pro-

visioning modules work together in planning the execution of

the workflow. The resource provisioning module is responsi-

ble of selecting and provisioning the cloud resources, and the

scheduling component applies specific policies that map tasks

to available resources, both processes on the basis of the QoS

requirements and scheduling objectives. The performance pre-

diction and runtime estimation module uses historical data,

data provenance, or time series prediction models, among other

methods, to estimate the performance of cloud resources, and

the amount of time tasks will take to execute in different VMs.

These data are used by the resource provisioning and schedul-

ing modules to make accurate and efficient decisions regarding

the allocation of tasks. The data management component of

the workflow engine handles the movement, placement, and

storage of data as required for the workflow execution. Finally,

the task dispatcher has the responsibility of interacting with

the cloud APIs to dispatch tasks ready for execution onto the

available VMs.

Administration and monitoring tools. The administration and

monitoring tools of the CWfMS architecture include mod-

ules that enable the dynamic and continuous monitoring of

workflow tasks and resource performance as well as the

FIGURE 3 Reference architecture of a workflow management system



RODRIGUEZ AND BUYYA 5 of 23

management of leased resources, such as VMs. The data

collected by these tools can be used by fault tolerance mech-

anisms or can be stored in a historical database and used by

performance prediction methods, for example.

Cloud information services. Another component of the archi-

tecture is the cloud information services. This component

provides the workflow engine with information about differ-

ent cloud providers, the resources they offer including their

characteristics and prices, location, and any other information

required by the engine to make the resource selection and map-

ping decisions.

Cloud provider APIs. These APIs enable the integration of applica-

tions with cloud services. For the scheduling problem described

in this paper, they enable the on-demand provisioning and

deprovisioning of VMs, the monitoring of resource usage within

a specific VM, access to storage services to save and retrieve

data, transferring data in or out of their facilities, and config-

uring security and network settings, among others. Most IaaS

APIs are exposed as REST and SOAP services, but protocols

such as XML-RPC and Javascript are also used. For instance,

CloudSigma, Rackspace, Windows Azure, and Amazon EC2 all

offer REST-based APIs. As opposed to providing services for

a specific platform, other solutions such as Apache JClouds24

aim to create a cross-platform cloud environment by provid-

ing and API to access services from different cloud providers

in a transparent manner. Cross-platform interfaces have the

advantage of allowing applications to access services from mul-

tiple providers without having to rewrite any code, but may

have less functionality or other limitations when compared to

vendor-specific solutions.

3.2 Challenges

Scheduling algorithms need to address various challenges derived from

the characteristics of the cloud resource model. In this section we

discuss these challenges and the importance of considering them to

leverage the flexibility and convenience offered by these environments.

Other approaches developed for environments such as grids or other

parallel platforms could be applied to scheduling workflows on IaaS

clouds; however, they would fail to leverage the on-demand access to

“unlimited” resources, lead to unnecessary costs by not considering

the IaaS cost model, and fail to capture the characteristics of clouds of

performance variation and sources of uncertainty.

Resource provisioning. The importance of addressing the resource

provisioning problem as part of the scheduling strategy is

demonstrated in several studies. The works by Gutierrez-Garcia

and Sim,25 Michon et al,26 and Villegas et al27 have demon-

strated a dependency between both problems when scheduling

bags of tasks (BoTs) in clouds while Frincu et al28 investigated

the impact that resource provisioning has on the scheduling

of various workflows in clouds. They all found a relationship

between the 2 problems and concluded that the VM provision-

ing strategy affects the cost and makespan (total execution time

of the workflow) achievable by the scheduling strategy.

Choosing the optimal configuration for the VM pool that will

be used to run the workflow tasks is a challenging problem.

Firstly, the combination of VMs needs to have the capacity to

fulfill the scheduling objectives while considering their cost. If

VMs are underprovisioned, then the scheduler will not be able

to achieve the expected performance or throughput. On the

other hand, if VMs are overprovisioned, then the system’s uti-

lization will be low, resulting in capacity wastage and unneces-

sary costs.

Secondly, provisioners need to dynamically scale in and out

their resource pool. They need to decide when to add or remove

VMs in response the application’s demand. This may aid in

improving the performance of the application, the overall sys-

tem utilization, and reducing the total infrastructure cost. In

this way, workflow management systems have the ability to use

resources opportunistically on the basis of the number and type

of workflow tasks that need to be processed at a given point

of time. This is a convenient feature for scientific workflows as

common topological structures such as data distribution and

aggregation13 lead to significant changes in the parallelism of

the workflow over time.

Finally, provisioners have a wide range of options when

selecting the VM type to use. Clouds offer VM instances with

varying configurations for compute, memory, storage, and net-

working performance. Different instance types are designed

so that they are optimal for certain types of applications. For

example, Amazon EC2 offers a family of compute-optimized

instances designed to work best for applications requiring high

compute power, a family of memory-optimized instances that

have the lowest cost per GB of RAM and are best for memory

intensive applications, and a storage-optimized instance fam-

ily best suited for applications with specific disk I/O and stor-

age requirements, among others.2 Moreover, the price of VM

instances varies with each configuration, and it does not neces-

sarily increase linearly with an increase in capacity. While this

large selection of VM types offers applications enormous flexi-

bility, it also challenges algorithms to be able to identify not only

the best resource for a given task, but also the optimal combi-

nation of different instance types that allow for the user’s QoS

requirements to be met.

Performance variation and other sources of uncertainty. Charac-

teristics such as the shared nature, virtualisation, and het-

erogeneity of nonvirtualised hardware in clouds result in a

variability in the performance of resources. For example, VMs

deployed in cloud data centers do not exhibit a stable perfor-

mance in terms of execution times.29–33 In fact, Schad et al29

report an overall CPU performance variability of 24% in the

Amazon EC2 cloud. Performance variation is also observed in

the network resources, with studies reporting a data trans-

fer time variation of 19% in Amazon EC2.29 Additionally,

if resources are located in different data centers or under

different providers, they may be separated by public internet

channels with unpredictable behavior. In case of scientific work-

flows with large data dependencies, this may have a consider-

able impact in the workflow runtime. This indeterminism makes

it extremely difficult for schedulers to estimate runtimes and

make accurate scheduling decisions to fulfill QoS requirements.



6 of 23 RODRIGUEZ AND BUYYA

A variability in performance has also been observed in other

environments such as grids,34–36 and several performance esti-

mation techniques have been developed as a result. However,

the public and large-scale nature of clouds makes this problem

a more challenging one. For instance, to achieve a more accu-

rate prediction of the runtime of a job in a specific VM, IaaS

providers would have to allow access to information such as

the type of host where the VM is deployed, its current load

and utilization of resources, the overhead of the virtualisation

software, and network congestion, among others. Because

access to this information is unlikely for users, algorithms, espe-

cially those dealing with constraints such as budget and dead-

line, need to acknowledge their limitations when estimating the

performance of resources and have mechanisms in place that

will allow them to recover from unexpected delays.

Other sources of uncertainty in cloud platforms are VM pro-

visioning and deprovisioning delays. A VM is not ready for use

immediately after its request. Instead, it takes time for it to be

deployed on a physical host and booted; we refer to this time

as the VM provisioning delay. Providers make no guarantees

on the value of this delay, and studies29,30,37 have shown that

it can be significant (in some providers more than others) and

highly variable, making it difficult to predict or rely on an aver-

age measurement of its value. As an example, Osterman et al30

found the minimum resource acquisition time for the m1.large

Amazon EC2 instance to be 50 seconds and the maximum to

be 883 seconds; this demonstrates the potential variability that

users may experience when launching a VM. As for the depro-

visioning delay, it is defined as the time between the request

to shutdown the VM and the actual time when the instance is

released back to the provider and stops being charged. Once

again, IaaS vendors make no guarantees on this time, and it

varies from provider to provider and VM type to VM type. How-

ever, Osterman et al30 found that it has a lower variability and

average value than the acquisition time, and hence, it may be

slightly easier to predict and have a smaller impact on the exe-

cution of a workflow.

Utility-based pricing model. Schedulers planning the execution of

workflows in clouds need to consider the cost of using the

infrastructure. The use of VMs, as well as network and stor-

age services, is charged for on a pay-per-use basis. Algorithms

need to find a balance between performance, nonfunctional

requirements, and cost. For example, some schedulers may be

interested in a trade-off between execution time, energy con-

sumption, and cost. It is not only this trade-off that adds to the

scheduling complexity but also the already mentioned difficulty

in predicting the performance of resources, which translates

in a difficulty in estimating the actual cost of using the chosen

infrastructure.

Additionally, some IaaS providers offer a dynamic pricing

scheme for VMs. In Amazon’s EC2 terminology for example,

these dynamically priced VMs are known as spot instances,

and their prices vary with time on the basis of the market’s

supply and demand patterns.38 Users can acquire VMs by bid-

ding on them, and their price is generally significantly lower

than the “on-demand” price; however, they are subject to ter-

mination at any time if the spot price exceeds the bidding

price. Offerings such as this give users the opportunity to use

VMs at significantly lower prices, and scientific workflows can

greatly benefit from this. But schedulers need to address chal-

lenges such as selecting a bid, determining the actions to take

when a spot instance is terminated, and deciding when it is

appropriate to use spot VMs versus statically priced, more

reliable, ones.

4 TAXONOMY

The scope of this survey is limited to algorithms developed to sched-

ule workflows exculsively in public IaaS clouds. As a result, only those

that consider a utility-based pricing model and address the VM provi-

sioning problem are studied. Other scope-limiting features are derived

from the application model, and all the surveyed algorithms consider

workflows with the following characteristics. Firstly, they are modeled

as DAGs with no cycles or conditional dependencies. Secondly, their

execution requires a set of input data, generates intermediate tempo-

rary data, and produces a result of an output data set. Thirdly, tasks

are assumed to be nonparallel in the number of VMs they require for

their execution. Finally, the structure of the workflows is assumed to

be static, that is, tasks or dependencies cannot be updated, added, or

removed at runtime.

This section is limited to providing an explanation of each taxonomy

classification; examples and references to algorithms for each class are

presented in Section 5.

4.1 Application model taxonomy

All algorithms included in this survey share most of the application

model features. They differ however in their ability to schedule either a

single or multiple workflows.

4.1.1 Workflow multiplicity

As shown in Figure 4, algorithms can be designed to schedule a sin-

gle instance of a workflow, multiple instances of the same workflow, or

multiple workflows. On the basis of this, we identify 3 types of schedul-

ing processes from the workflow multiplicity perspective.

Single workflow. Algorithms in this class are designed to optimize

the schedule of a single workflow. This is the traditional model

used in grids and clusters and is still the most common one in

cloud computing. It assumes the scheduler manages the execu-

tion of workflows sequentially and independently. In this way,

the scheduling algorithm can focus on optimizing cost and meet-

ing the QoS requirements for a single user and a single DAG.

Workflow ensembles. Many scientific applications39–41 are com-

posed of more than one workflow instance. These interrelated

workflows are known as ensembles and are grouped together

because their combined execution produces a desired output.42

In general, the workflows in an ensemble have a similar struc-

ture but differ in size and input data. Scheduling algorithms in

this category focus on executing every workflow on the ensem-

ble using the available resources. Policies need to be aware of



RODRIGUEZ AND BUYYA 7 of 23

FIGURE 4 Application model taxonomy

the QoS requirements are meant for multiple workflows and

not just a single one. For example, all 100 workflows in an

ensemble with a 1-hour deadline need to be completed before

this time limit. On the basis of this, algorithms are generally

concerned with the amount of work (number of executed work-

flows) completed and tend to include this in the scheduling

objectives. Another characteristic of ensembles is that the num-

ber instances is generally known in advance and hence the

scheduling strategy can use this when planning the execution

of tasks.

Multiple workflows. This category is similar to the workflow

ensembles one, but differs from it in the workflows being sched-

uled are not necessarily related to each other and might vary

in structure, size, input data, application, etc. More importantly,

the number and type of workflows are not known in advance,

and therefore, the scheduling is viewed as a dynamic process

in which the workload is constantly changing, and workflows

with varying configurations are continuously arriving for execu-

tion. Yet another difference is that each workflow instance has

its own independent QoS requirements. Algorithms in this cat-

egory need to deal with the dynamic nature of the problem and

need to efficiently use the resources to meet the QoS require-

ments of as many workflows as possible.

An example of a system addressing these issues is proposed

by Tolosana-Calasanz et al.43 They develop a workflow sys-

tem for the enforcement of QoS of multiple scientific workflow

instances over a shared infrastructure such as a cloud comput-

ing environment. However, their proposal uses a superscalar

model of computation for the specification of the workflows as

opposed to the DAG model considered in this survey.

4.2 Scheduling model taxonomy

There have been extensive studies on the classification of schedul-

ing algorithms on parallel systems. For instance, Casavant and Kuhl44

proposed a taxonomy of scheduling algorithms in general-purpose dis-

tributed computing systems, Kwok and Ahmad45 developed a taxon-

omy for static scheduling algorithms for allocating directed task graphs

to multiprocessors, while Yu et al46 studied the workflow scheduling

problem in grid environments. Because these scheduling models still

FIGURE 5 Scheduling model taxonomy

FIGURE 6 Types of task-VM mapping dynamicity

apply to the surveyed algorithms, in this section we identify, and in

some cases extend, those characteristics that are most relevant to our

problem. Aside from a brief introduction to their general definition, we

aim to keep the discussion of each category as relevant to the schedul-

ing problem addressed in this work as possible. Figure 5 illustrates the

features selected to study the scheduling model.

4.2.1 Task-VM mapping dynamicity

Following the taxonomy of scheduling for general-purpose distributed

systems presented by Casavant and Kuhl,44 workflow scheduling

algorithms can be classified as either static or dynamic. This classi-

fication is common knowledge to researchers studying any form of

scheduling, and hence, it provides readers with a quick understanding

of key high-level characteristics of the surveyed algorithms. Further-

more, it is highly relevant for cloud environments as it determines

the degree of adaptability that the algorithms have to an inherently

dynamic environment. In addition to these 2 classes, we identify a third

hybrid one, in which algorithms combine both approaches to find a

trade-off between the advantages offered by each of them. This classi-

fication is depicted in Figure 6.

Static. These are algorithms in which the task to VM mapping is

produced in advance and executed once. Such plan is not altered

during runtime, and the workflow engine must adhere to it no

matter what the status of the resources and the tasks is. This

rigidity does not allow them to adapt to changes in the underly-

ing platform and makes them extremely sensitive to execution

delays and inaccurate task runtime estimation; a slight mis-

calculation might lead to the actual execution failing to meet

the user’s QoS requirements. This is especially true for work-

flows due to the domino effect the delay in the runtime of one

task will have in the runtime of its descendants. Some static

algorithms have strategies in place to improve their adaptabil-

ity to the uncertainties of cloud environments. These include

more sophisticated or conservative runtime prediction strate-

gies, probabilistic QoS guarantees, and resource performance

variability models. The main advantage of static schedulers is

their ability to generate high-quality schedules by using global,

workflow-level, optimization techniques and to compare differ-

ent solutions before choosing the best suited one.

Dynamic. These algorithms make task to VM assignment deci-

sions at runtime. These decisions are based on the current state



8 of 23 RODRIGUEZ AND BUYYA

of the system and the workflow execution. For our schedul-

ing scenario, we define dynamic algorithms to be those that

make scheduling decisions for a single workflow task, at run-

time, once it is ready for execution. These allow them to adapt

to changes in the environment so that the scheduling objectives

can still be met even with high failure rates, unaccounted delays,

and poor estimates. This adaptability is their main advantage

when it comes to cloud environments; however, it also has neg-

ative implications in terms of the quality of the solutions they

produce. Their limited task-level view of the problem hurts

their ability to find high-quality schedules from the optimization

point of view.

Hybrid. Some algorithms aim to find a trade-off between the

adaptability of dynamic algorithms and the performance of

static ones. We identify 2 main approaches in this category,

namely, runtime refinement and subworkflow static. In runtime

refinement, algorithms first device a static assignment of tasks

before runtime. This assignment is not rigid as it may change

during the execution of the workflow on the basis of the cur-

rent status of the system. For example, tasks may be assigned

to faster VMs or they may be mapped onto a different resource

to increase the utilization of resources. Algorithms may choose

to update the mapping of a single task or to update the entire

schedule every cycle. When updating a single task, decisions are

made fast, but their impact on the rest of the workflow execu-

tion is unknown. When recomputing the schedule for all of the

remaining tasks, the initial static heuristic is used every schedul-

ing cycle, resulting in high time and computational overheads.

The subworkflow static approach consists on making static deci-

sions for a group of tasks dynamically. That is, every schedul-

ing cycle, a subset of tasks is statically scheduled to resources

on the basis of the current system conditions. This allows the

algorithm to make better optimization decisions while enhanc-

ing its adaptability. The main disadvantage is that statically

assigned tasks, although to a lesser extent, are still subject to the

effects of unexpected delays. To mitigate this, algorithms may

have to implement further rescheduling or refinement strate-

gies for this subset of tasks.

4.2.2 Resource provisioning strategy

As with the task to VM mapping, algorithms may also adopt a static

or dynamic resource provisioning approach. We define static resource

provisioners to be those that make all of the decisions regarding the

VM pool configuration before the execution of the workflow. Dynamic

provisioners on the other hand make all of the decisions or refine ini-

tial ones at runtime, selecting which VMs to keep active, which ones to

lease, and which ones to release as the workflow execution progresses.

Figure 7 illustrates different types of static and dynamic resource pro-

visioning strategies.

Static VM pool. This strategy may be used by algorithms adopt-

ing a static resource provisioning approach. Once the VM pool

is determined, the resources are leased, and they remain active

throughout the execution of the workflow. When the applica-

tion finishes running, the resources are released back to the

provider. These algorithms are concerned with estimating the

resource capacity needed to achieve the scheduling objectives.

The advantage is that once the resource provisioning decision is

made, the algorithm can focus solely on the task to VM alloca-

tion. The effects of VM provisioning and deprovisioning delays

is highly amortized and becomes much easier to manage. How-

ever, this model does no take advantage of the elasticity of

resources and ignores the cloud billing model. This may result

in schedules that fail to meet the QoS requirements because

of poor estimates and that are not cost-efficient as even billing

periods in which VMs are idle are being charged for.

Elastic VM pool. This strategy is suitable for algorithms following

either a static or dynamic resource provisioning approach. This

method allows algorithms to update the number and type of

VMs being used to schedule tasks as the execution of the work-

flow progresses. Some algorithms make elastic decisions on the

basis of their cost-awareness and the constraint requirements of

tasks. For instance, a new VM can be provisioned so that the

task being scheduled can finish before its deadline while idle

VMs can be shutdown to save cost. Another way of achieving

this is by periodically estimating the resource capacity needed

by tasks to meet the application’s constraints and adjust the VM

pool accordingly. Other algorithms make scaling decisions on

the basis of performance metrics such as the overall VM utiliza-

tion and throughput of tasks. For example, new VMs may be pro-

visioned if the budget allows for it and the utilization rises above

a specified threshold or if the number of tasks processed by sec-

ond decreases below a specified limit. Finally, static algorithms

that use elastic VM pools do so by determining the leasing peri-

ods of VMs when generating the static schedule. These leasing

periods are bounded by the estimated start time of the first task

assigned to a VM and the estimated finish time of the last task

assigned to it.

4.2.3 Scheduling objectives

Being cost-aware is the common denominator of all the surveyed algo-

rithms. In addition to this objective, most algorithms also consider

FIGURE 7 Types of resource provisioning strategies



RODRIGUEZ AND BUYYA 9 of 23

FIGURE 8 Types of scheduling objectives

some sort of performance metric such as the total execution time or

the number of workflows executed by the system. Furthermore, some

state-of-the-art algorithms also incorporate energy consumption, reli-

ability, and security as part of their objectives. The scheduling objec-

tives included in this taxonomy (Figure 8) are derived from those being

addressed by the reviewed literature presented in Section 5.

Cost. Algorithms designed for cloud platforms need to consider the

cost of leasing the infrastructure. If they fail to do so, the cost

of renting VMs, transferring data, and using the cloud storage

can be considerably high. This objective is included in algorithms

by either trying to minimize its value or by having a cap on the

amount of money spent on resources (i.e., budget). All of the

algorithms studied balance cost with other objectives related

to performance or nonfunctional requirements such as security,

reliability, and energy consumption. For instance, the most com-

monly addressed QoS requirement is minimizing the total cost

while meeting a user-defined deadline constraint.

Makespan. Most of the surveyed algorithms are concerned with

the time it takes to run the workflow, or makespan. As with cost,

it is included as part of the scheduling objectives by either try-

ing to minimize its value, or by defining a time limit, or deadline,

for the execution of the workflow.

Workload maximization. Algorithms developed to schedule

ensembles generally aim to maximize the amount of work

done, that is, the number of workflows executed. This objective

is always paired with constraints such as budget or deadline,

and hence, strategies in this category aim at executing as many

workflows as possible with the given money or within the

specified time frame.

VM utilization maximization. Most algorithms are indirectly

addressing this objective by being cost-aware. Idle time slots

in leased VMs are deemed as a waste of money as they were

paid for but not used, and as a result, algorithms try to avoid

them in their schedules. However, it is not uncommon for this

unused time slots to arise from a workflow execution, mainly

because of the dependencies between tasks and performance

requirements. Some algorithms are directly concerned with

minimizing these idle time slots and maximizing the utilization

of resources, which has benefits for users in terms of cost, and

for providers in terms of energy consumption, profit, and more

efficient usage of resources.

Energy consumption minimization. Individuals, organizations,

and governments worldwide have developed an increased

concern to reduce carbon footprints to lessen the impact on

the environment. Although not unique to cloud computing,

this concern has also attracted attention in this field. A few

algorithms that are aware of the energy consumed by the

workflow execution have been recently developed. They con-

sider a combination of contradicting scheduling goals as they

try to find a trade-off between energy consumption, perfor-

mance, and cost. Furthermore, virtualization and the lack of

control and knowledge of the physical infrastructure limit their

capabilities and introduce further complexity into the problem.

Reliability awareness. Algorithms considering reliability as part of

their objectives have mechanisms in place to ensure the work-

flow execution is completed within the users’ QoS constraints

even if resource or task failures occur. Algorithms targeting

unreliable VM instances that are failure prone (eg, Amazon

EC2 spot instances) need to have policies addressing reliability

in place. Some common approaches include replicating critical

tasks and relying on checkpointing to reschedule failed tasks.

However, algorithms need to be mindful of the additional costs

associated with task replication as well as with the storage of

data for checkpointing purposes. Furthermore, it is important

to consider that most scientific workflows are legacy applica-

tions that are not enabled with checkpointing mechanisms, and

hence, relying on this assumption might be unrealistic.

Security awareness. Some scientific applications may require that

the input or output data are handled in a secure manner. Even

more, some tasks may be composed of sensitive computations

that need to be kept secure. Algorithms concerned with these

security issues may leverage different security services offered

by IaaS providers. They may handle data securely by deeming

it immovable47 or may manage sensitive tasks and data in such

a way that either resources or providers with a higher security

ranking are used to execute and store them. Considering these

security measures has an impact when making scheduling deci-

sions as tasks may have to be moved close to immovable data



10 of 23 RODRIGUEZ AND BUYYA

sets, and the overhead of using additional security services may

need to be included in the time and cost estimates.

4.2.4 Optimization strategy

The optimization strategy taxonomy is shown in Figure 9. Scheduling

algorithms can be classified as optimal or suboptimal following the

definition of Casavant and Kuhl.44 Because of the NP-completeness19

of the discussed problem, finding optimal solutions is computationally

expensive even for small-scale versions of the problem, rendering this

strategy impractical in most situations. In addition, the optimality of the

solution is restricted by the assumptions made by the scheduler regard-

ing the state of the system as well as the resource requirements and

computational characteristics of tasks. On the basis of this, the over-

head of finding the optimal solution for large-scale workflows that will

be executed under performance variability may be unjustifiable. For

small workflows, however, with coarse-grained tasks that are computa-

tionally intensive and are expected to run for long periods, this strategy

may be more attractive.

There are multiple methods that can be used to find optimal

schedules.44 In particular, Casavant and Kuhl44 identify 4 strategies

for the general multiprocessor scheduling problem: solution space

enumeration and search, graph theoretic, mathematical programming,

and queueing theoretic. Most relevant to our problem are solution

space enumeration and mathematical models; in the surveyed algo-

rithms mixed integer linear programs (MILPs) have been used to obtain

workflow-level optimizations.48 The same strategy and dynamic pro-

gramming have been used to find optimal schedules for a subset of the

workflow tasks or simplified versions of the problem,49,50 although this

subglobal optimization does not lead to an optimal solution.

Most algorithms focus on generating approximate or near-optimal

solutions. For the suboptimal category, we identify 3 different methods

used by the studied algorithms. The first two are heuristic and

meta-heuristic approaches as defined by Yu et al.46 We add to this

model a third hybrid category to include algorithms combining differ-

ent strategies.

Heuristics. In general, a heuristic is a set of rules that aim to find

a solution for a particular problem.51 Such rules are specific to

the problem and are designed so that an approximate solution is

found in an acceptable time frame. For the scheduling scenario

discussed here, a heuristic approach uses the knowledge about

the characteristics of the cloud as well as the workflow applica-

tion to find a schedule that meets the user’s QoS requirements.

The main advantage of heuristic-based scheduling algorithms

is their efficiency performance; they tend to find satisfactory

solutions in an adequate lapse of time. They are also easier

to implement and more predictable than meta-heuristic based

methods.

Meta-heuristics. While heuristics are designed to work best on

a specific problem, meta-heuristics are general-purpose algo-

rithms designed to solve optimization problems.51 They are

higher level strategies that apply problem specific heuristics to

find a near-optimal solution to a problem. When compared to

heuristic-based algorithms, meta-heuristic approaches are gen-

erally more computationally intensive and take longer to run;

however, they also tend to find more desirable schedules as

they explore different solutions using a guided search. Using

meta-heuristics to solve the workflow scheduling problem in

clouds involves challenges such as modeling a theoretically

unbound number of resources, defining operations to avoid

exploring invalid solutions (eg, data dependency violations) to

facilitate convergence, and pruning the search space by using

heuristics on the basis of the cloud resource model.

FIGURE 9 Types of optimization strategies

FIGURE 10 Resource model taxonomy



RODRIGUEZ AND BUYYA 11 of 23

Hybrid. Algorithms using a hybrid approach may use meta-heuristic

methods to optimize the schedule of a group of workflow

tasks. Another option is to find optimal solutions for simpli-

fied and/or smaller versions of the problem and combine them

using heuristics. In this way, algorithms may be able to make

better optimization decisions than heuristic-based methods

while reducing the computational time by considering a smaller

problem space.

4.3 Resource model taxonomy

In this section a taxonomy is presented on the basis of the resource

model considerations and assumptions made by algorithms. These

design decisions range from high-level ones such as the number of IaaS

providers modeled to lower level ones concerned with the services

offered by providers, such as the VM pricing model and the cost of data

transfers. The characteristics of the resource model considered in this

survey are illustrated in Figure 10.

4.3.1 VM leasing model

This feature is concerned with algorithms assuming providers offer

either a bounded or an unbounded number of VMs available to lease

for a given user (Figure 11).

Limited. These algorithms assume providers have a cap on the

number of VMs a user is allowed to lease. In this way, the resource

provisioning problem is somehow simplified and is similar to

scheduling with a limited number of processors. However, provi-

sioning decisions are still important because of the overhead and

cost associated with leasing VMs.

Unlimited. Algorithms assume they have access to a virtually

unlimited number of VMs. There is no restriction on the number

of VMs the provisioner can lease, and hence, the algorithm needs

to find efficient policies to manage this abundance of resources

efficiently.

4.3.2 VM type uniformity

Algorithms may assume resource homogeneity by leasing VMs of a sin-

gle type or may use heterogeneous VMs with different configurations

on the basis of their scheduling objectives (Figure 12).

Single VM type. In this category, VM instances leased from the IaaS

provider are limited to a single type. This assumption is in most

cases made to simplify the scheduling process, and the decision

of which VM type to use is made without consideration of the

workflow and tasks characteristics. This may potentially have a

negative impact on the outcome of the algorithm, and as a result,

this strategy fails to take full advantage of the heterogeneous

nature of cloud resources.

FIGURE 11 Types of virtual machine (VM) leasing models

FIGURE 12 Types of virtual machine (VM) uniformity

Multiple VM types. These algorithms acknowledge IaaS clouds

offer different types of VMs. They have policies to select the

most appropriate types depending on the nature of the work-

flow, the characteristics of tasks, and the scheduling objectives.

This enables the algorithms to use different VM configurations

and efficiently schedule applications with different require-

ments and characteristics.

4.3.3 Deployment model

Another way of classifying algorithms is based on the number of data

centers and public cloud providers they lease resources from as shown

in Figure 13.

Single provider. Algorithms in this category consider a single pub-

lic cloud provider offering infrastructure on a pay-per-use basis.

In general, they do not need to consider the cost of transferring

data in or out of the cloud as this cost for input and output data

sets is considered constant on the basis of the workflow being

scheduled.

Multiple providers. This deployment model allows algorithms

to schedule tasks onto resources owned by different cloud

providers. Each provider has its own product offerings, service

level agreements (SLAs), and pricing policies, and it is up to the

scheduler to select the best suited one. Algorithms should con-

sider the cost and time of transferring data between providers

as these are not negligible. This model may be beneficial for

workflows with special security requirements or large data sets

distributed geographically. A potential benefit of these inter-

cloud environments is taking advantage of the different billing

period granularities offered by different providers. Smaller

tasks may be mapped to VMs with finer billing periods such as

1 minute while larger ones to those with coarser-grained peri-

ods. While interclouds could be beneficial for the scheduling

problem by providing a wider range of services with different

prices and characteristics, the lack of standardization, network

delays, and data transfer costs, pose real challenges in this area.

Single data . Often, algorithms choose to provision VMs in a sin-

gle data center, or in the terminology of Amazon EC2, a sin-

gle availability zone. This deployment model is sufficient for

many application scenarios as it is unlikely that the number of

VMs required for the execution of the workflow will exceed

the data center’s capacity. It also offers 2 key advantages of

data transfers. The first one is reduced latency and faster

transfer times, and the second one is potential cost savings

as many providers do not charge for transfers made within a

data center.

Multiple data centers. Using a resource pool composed of VMs

deployed in different data centers belonging to the same

provider is another option for algorithms. This choice is more



12 of 23 RODRIGUEZ AND BUYYA

FIGURE 13 Types of provider and data center deployment models

FIGURE 14 Types of intermediate data sharing models

suited for applications with geographically distributed input

data. In this way, VMs can be deployed in different data centers

on the basis of the location of the data to reduce data transfer

times. Other workflows that benefit from this model are those

with sensitive data sets that have specific location requirements

due to security or governmental regulations. Finally, algorithms

under this model need to be aware of the cost of transferring

data between different data centers as most providers charge

for this service.

4.3.4 Intermediate data sharing model

Workflows process data in the form of files. The way in which these

files are shared affects the performance of scheduling algorithms as

they have an effect on metrics such as cost and makespan. A com-

mon approach is to assume a peer-to-peer (P2P) model while another

technique is to use a global shared storage system as a file repository

(Figure 14).

P2P. These algorithms assume files are transferred directly from

the VM running the parent task to the VM running the child task.

This means tasks communicate in a synchronous manner, and

hence, VMs must be kept running until all of the child tasks have

received the corresponding data. This may result in higher costs

as the lease time of VMs is extended. Additionally, the failure of

a VM would result in data loss that can potentially require the

re-execution of several tasks to recover. The main advantage of

this approach is its scalability and lack of bottlenecks.

Shared Storage. In this case, tasks store their output in a global

shared storage system and retrieve their inputs from the same.

In practice, this global storage can be implemented in different

ways such as a network file system, persistent storage solutions

like Amazon S3,52 or more recent offerings such as Amazon

EFS.53 This model has several advantages. Firstly, the data are

persisted and hence can be used for recovery in case of failures.

Secondly, it allows for asynchronous computation as the VM

running the parent task can be released as soon as the data are

persisted in the storage system. This may not only increase the

resource utilization but also decrease the cost of VM leasing.

Finally, if the application scenario allows for it, redundant com-

putations can be avoided if the persisted data can be reused by

multiple tasks, instances of the same workflow or even by other

workflows of the same type. There are 3 main disadvantages

of this approach. The first one is the potential for the storage

system to be a bottleneck, the second one is the extra cost of

using the cloud’s storage system, and the third one is a poten-

tial higher number of data transfers when compared to the P2P

model.

4.3.5 Data transfer cost awareness

The IaaS providers have different pricing schemes for different types of

data transfers, depending if the data are being transferred into, within,

or out of their facilities. Transferring inbound data are generally free,

and hence, this cost is ignored by all of the studied algorithms. On the

contrary, transferring data out of the cloud provider is generally expen-

sive. Algorithms that schedule workflows across multiple providers are

the only ones that need to be concerned with this cost, as data may need

to be transferred between resources belonging to different providers.

As for transferring data within the facilities of a single provider, it is

common for transfers to be free if they are done within the same

data center and to be charged if they are between different data cen-

ters. Hence, those algorithms considering multiple data centers in their

resource model should include this cost in their estimations. Finally,

regarding access to storage services, most providers such as Amazon

S3,52 Google Cloud Storage,54 and Rackspace Block Storage55 do not

charge for data transfers in and out of the storage system, and hence,

this value can be ignored by algorithms making use of these facilities.

4.3.6 Storage cost awareness

Data storage is charged on the basis of the amount of data being stored.

Some providers have additional fees on the basis of the number and

type of operations performed on the storage system (i.e., GET, PUT, and

DELETE). This cost is only relevant if cloud storage services are used,

and even in such cases, it is ignored in many models mainly because

the amount of data used and produced by a workflow is constant and

independent of the scheduling algorithm. However, some algorithms do

acknowledge this cost and generally estimate it on the basis of the data

size and a fixed price per data unit.

4.3.7 VM pricing model

As depicted in Figure 15, we identify 4 different pricing models con-

sidered by the surveyed algorithms that are relevant to our discussion:

dynamic, static, subscription-based, and time unit.

Dynamic pricing. The price of instances following this model varies

over time and is determined by the market dynamics of supply

and demand. Generally, users acquire dynamically priced VMs

by means of auctions or negotiations. In these auctions, users

request a VM by revealing the maximum amount of money they

are willing to pay for it, providers then decide to accept or reject

the request on the basis of the current market conditions. These

type of instances generally offer users an economical advan-

tage over statically priced ones. An example of VMs following

this pricing model are Amazon EC2 Spot Instances.38 The spot

market allows users to bid on VMs and run them whenever

their bidding prices exceed the current market (i.e., spot) price.

Through this model, users can lease instances at considerably

lower prices but are subject to the termination of VMs when the



RODRIGUEZ AND BUYYA 13 of 23

FIGURE 15 Types of virtual machine (VM) pricing models

market price becomes higher than the bidding one.

Hence, tasks running on spot instances need to be either

interruption-tolerant or scheduling algorithms need to imple-

ment a recovery or fault tolerant mechanism; VMs with

dynamic pricing are often used opportunistically by scheduling

algorithms56,57 in conjunction with statically priced ones to

reduce the overall cost of executing the workflow.

Static pricing. The static pricing model is the conventional cloud

pricing model and is offered by most providers; VMs are priced

per billing period, and any partial utilization is charged as

a full-period utilization. An example of a provider offering

instances under this pricing model is Google Compute Engine.58

All VM types are charged a minimum of 10 minutes, and after

this, they are charged in 1-minute intervals, rounded up to the

nearest minute.59 For example, if a VM is used for 3 minutes,

it will be billed for 10 minutes of usage, and if it is used for

12.4 minutes, it will be billed for 13.

Subscription-based. Under this model, instances are reserved for

a longer time frame, usually monthly or yearly. Generally, pay-

ment is made upfront and is significantly lower when compared

to static pricing; VMs are billed at the discounted rate for every

billing period (eg, hour) in the reserved term regardless of usage.

For the cloud workflow scheduling problem, this pricing model

means that schedulers need to use a fixed set of VMs with

fixed configurations to execute the tasks. This transforms the

problem, at least from the resource provisioning point of view,

into one being designed for a platform with limited availability

of resources such as a grid or cluster. An example of a provider

offering subscription-based instances is Cloudsigma.60 It offers

unbundled resources such as CPU, RAM, and storage (users can

specify exactly how much of each resource they need without

having to select from a predefined bundle) that can be leased for

either 1, 3, or 6 months or 1, 2, or 3 years. They offer a fixed dis-

count on the basis of the leasing period selected; the longer the

leasing period, the larger the discount.

Time unit. Algorithms in this category assume VMs are charged

per time unit. Under this model, there is no resource wastage or

additional costs because of unused time units in billing periods.

Hence, the scheduling is simplified as there is no need to use idle

time slots of leased VMs as the cost of using the resources cor-

responds to the exact amount time they are used for. This may

be considered as an unrealistic approach as there are no known

cloud providers offering this level of granularity and flexibility

yet; however, some algorithms do assume this model for simplic-

ity. Additionally, there is the possibility of new pricing models

being offered by providers or emerging from existing ones, as

is pointed out by Arabnejad et al,61 a group of users may, for

example, rent a set of VMs on a subscription-based basis, share

them, and price their use on a time-unit basis.

FIGURE 16 Types of virtual machine (VM) delays

FIGURE 17 Types of virtual machine (VM) core count

4.3.8 VM delays

This category is concerned with the awareness of algorithms regarding

the VM provisioning and deprovisioning delays (Figure 16).

VM provisioning delay. In Section 3.2, VM provisioning delays

have non-negligible, highly variable values. To make accurate

scheduling decisions, algorithms need to consider this delay

when making runtime estimates. Its effect is specially notice-

able in situations in which the number of VMs in the resource

pool is highly dynamic because of performance requirements,

topological features of the workflow, and provisioning strate-

gies designed to save cost. All of the algorithms that acknowl-

edge this delay do so by associating an estimate of its value to

each VM type. Another strategy used is to avoid these delays by

reusing leased VMs when possible.

VM deprovisioning delay. The impact of VM deprovisioning delays

is strictly limited to the execution cost. To illustrate this, consider

the case in which a scheduler requests to shutdown a VM just

before the end of the first billing period. By the time the instance

is actually released, the second billing period has started, and

hence, 2 billing periods have to be paid for. Those algorithms

that consider this delay do so by allowing some time, an estimate

of the deprovisioning value, between the request to shutdown

the VM and the end of the billing period.

4.3.9 VM core count

This category refers to wether algorithms are aware of multicore VMs

for the purpose of scheduling multiple, simultaneous tasks on them

(Figure 17).

Single. Most algorithms assume VMs have a single core and hence

are only capable of processing one task at a time. This simpli-

fies the scheduling process and eliminates further performance

degradation and variability due to resource contention derived

from the coscheduling of tasks.

Multiple. The IaaS providers offer VMs with multiple cores.

Algorithms that decide to take advantage of this feature may

schedule multiple tasks to run simultaneously in the same VM,



14 of 23 RODRIGUEZ AND BUYYA

potentially saving time, cost, and avoiding intermediate data

transfers. However, this coscheduling of tasks may result in

significant performance degradation because of resource con-

tention. Being mindful of this is essential when making schedul-

ing decisions as estimating task runtimes assuming optimal

performance will most definitely incur in additional significant

delays. Zhu et al,62 for example, bundle tasks together on the

basis of their resource usage characteristics; tasks assigned

to the same VM should have different computational require-

ments to minimize resource contention.

5 SURVEY

This section discusses a set of algorithms relevant to each of the cate-

gories presented in the taxonomy and depicts a complete classification

including all of the surveyed algorithms, these results are summarized

in Tables 1, 2, 3, and 4.

5.1 Scheduling multilevel deadline-constrained

scientific workflows

Malawski et al50 present a mathematical model that optimizes the cost

of scheduling workflows under a deadline constraint. It considers a mul-

ticloud environment where each provider offers a limited number of

heterogeneous VMs, and a global storage service is used to share inter-

mediate data files. Their method proposes a global optimization of task

and data placement by formulating the scheduling problem as a mixed

integer program (MIP). Two different versions of the algorithm are

presented, one for coarse-grained workflows, in which tasks have an

execution time in the order of one hour, and another for fine-grained

workflows with many short tasks and with deadlines shorter than

one hour.

The MIP formulation to the problem takes advantage of some char-

acteristics of large-scale scientific workflows: they are composed of

sequential levels of independent tasks. On the basis of this, the authors

decided to group tasks in each level on the basis of their computa-

tional cost and input/output data and schedule these groups instead

of single tasks, reducing the complexity of the MIP problem consider-

ably. Another design choice to keep the MIP model simple is that VMs

cannot be shared between levels; however, this may potentially lead to

low resource utilization and higher costs for some workflows. Because

the MIP model already assumes VMs cannot be shared between lev-

els, a potential improvement could be to design the MIP program so

that the schedule for each level can be computed in parallel. Finally, the

algorithm is too reliant on accurate runtime, storage, and data transfer

time estimations, considering its main objective is to finish executions

before a deadline.

5.2 Security-aware and budget-aware

The security-aware and budget-aware (SABA) algorithm47 was

designed to schedule workflows in a multicloud environment. The

authors define the concept of immoveable and movable datasets.

Movable data have no security restrictions and hence can be moved

between data centers in replicated if required. Immoveable data on

the other hand are restricted to a single data center and cannot be

migrated or replicated because of security or cost concerns. The

algorithm consists of 3 main phases. The first one is the clustering and

prioritization stage in which tasks and data are assigned to specific

data centers on the basis of the workflow’s immoveable data sets. In

addition to this, priorities are assigned to tasks on the basis of their

computation and I/O costs on a baseline VM type. The second stage

statically assigns tasks to VMs on the basis of a performance-cost ratio.

Finally, the intermediate data are moved dynamically at runtime with

the location of tasks that are ready for execution guiding this process;

SABA calculates the cost of a VM on the basis of the start time of the

first task assigned to it and the end time of the last task mapped to

it. Even though the authors do not specifically describe a resource

provisioning strategy, the start and end times of VMs can be derived

from the start and end times of tasks, and therefore, we classify it as

adopting an elastic resource pool strategy.

In addition to the security of data, SABA also considers tasks that

may require security services such as authentication, integrity, and con-

fidentiality and includes the overheads of using these services in their

time and cost estimations. What is more, instead of considering just the

CPU capacity of VMs to estimate runtimes, SABA also considers fea-

tures such I/O, bandwidth, and memory capacity. The cost of VMs is

calculated on the basis of the total units of time the machine was used

for, and billing periods imposed by providers are not considered. This

may result in higher VM costs than expected when using the algorithm

on a real cloud environment. Other costs considered include data trans-

fer costs between data centers as well as the storage used for input and

output workflow data.

5.3 Particle swarm optimization–based resource

provisioning and scheduling algorithm

Rodriguez and Buyya63 developed a static, cost minimization,

deadline-constrained algorithm that considers features such as the

elastic provisioning and heterogeneity of unlimited compute resources

as well as VM performance variation. Both resource provisioning and

scheduling are merged and modeled as a particle swarm optimization

problem. The output of the algorithm is hence a near-optimal sched-

ule determining the number and types of VMs to use, as well as their

leasing periods and the task to resource mapping.

The global optimization technique is an advantage of the algorithm

as it allows it to generate high-quality schedules. Also, to deal with the

inability of the static schedule to adapt to environmental changes, the

authors introduce an estimate of the degradation in performance that

would be experienced by VMs when calculating runtimes. In this way, a

degree of tolerance to the unpredictability of the environment is intro-

duced. The unlimited resource model is successfully captured by the

algorithm; however, the computational overhead increases rapidly with

the number of tasks in the workflow and the types of VMs offered by

the provider.

5.4 Multi-objective heterogeneous earliest

finish time

Durillo and Prodan developed the multi-objective heterogeneous

earliest finish time (MOHEFT) algorithm64 as an extension of the

well-known DAG scheduling algorithm HEFT.65 The heuristic-based

method computes a set of pareto-based solutions from which users can

select the best-suited one. The MOHEFT builds several intermediate



RODRIGUEZ AND BUYYA 15 of 23

workflow schedules, or solutions, in parallel in each step, instead of a

single one as is done by HEFT. The quality of the solutions is ensured

by using dominance relationships while their diversity is ensured by

making use of a metric known as crowding distance. The algorithm is

generic in the number and type of objectives it is capable of handling;

however, makespan and cost were optimized when running workflow

applications in an Amazon-based commercial cloud.

The flexibility offered by MOHEFT as a generic multi-objective

algorithm is very appealing. In addition, the pareto front is an efficient

tool for decision support as it allows users to select the most appro-

priate trade-off solution on the basis of their needs. For example, their

experiments demonstrated that in some cases, cost could be reduced

by half with a small increment of 5% in the schedule makespan. Finally,

as noted by the authors, most of the solutions computing the pareto

front are based on genetic algorithms. These approaches require high

computation time while MOHEFT offers an approximate time complex-

ity of O(n × m) where n is the number of tasks and m the number of

resources.

5.5 Fault-tolerant scheduling using spot instances

Poola et al57 propose an algorithm that schedules tasks on 2 types of

cloud instances, namely, on-demand and spot. Specifically, it considers

a single type of spot VM type (the cheapest one) and multiple types

of on-demand VMs. The authors define the concept of latest time to

on-demand, or LTO. It determines when the algorithm should switch

from using spot to on-demand instances to ensure the user-defined

deadline is met. A bidding strategy for spot VMs is also proposed; the

bidding starts close to the initial spot price and increases as the execu-

tion progresses so that it gets closer to the on-demand price as the LTO

approaches. This lowers the risk of out-of-bid events closer to the LTO

and increases the probability of meeting the deadline constraint.

This algorithm is one of the few exploring the benefits of using

dynamically priced VMs. It addresses a challenging problem by aim-

ing to meet deadlines not only under variable performance but also

under unreliable VMs that can be terminated at any time. The bene-

fits are clear with the authors finding that by using spot instances, the

algorithm is able to considerably lower the execution cost. However,

this advantage may be reduced because only the cheapest spot VM is

considered. If deadlines are strict, the cheapest VM may not be able to

process many tasks before the LTO, and hence, most of the workflow

execution would happen in on-demand instances. Another potential

drawback of the algorithm is its reliance on checkpointing. Not only

are many scientific workflows legacy applications lacking checkpoint-

ing capabilities but also storing data for this purpose may considerably

increase the infrastructure cost.

5.6 IaaS cloud partial critical path

The IaaS cloud partial critical path (IC-PCP) algorithm66 has objective

to minimize the execution cost while meeting a deadline constraint.

The algorithm begins by finding a set of tasks, namely, partial critical

paths (PCPs), associated to each exit node of the workflow (an exit

node is defined as a node with no children tasks). The tasks on each

path are then scheduled on the same VM and are preferably assigned

to an already leased instance, which can meet the latest finish time

requirements of the tasks. If this cannot be achieved, the tasks are

assigned to a newly leased VM of the cheapest type that can finish

them on time. The PCPs are recursively identified, and the process is

repeated until all of the workflow tasks have been scheduled.

Along with IC-PCP and with the same scheduling objectives, the

authors propose the IC-PCPD2 (IC-PCP with deadline distribution

algorithm). The main difference between both algorithms is that,

instead of assigning all tasks in a path to the same VM, IC-PCPD2 places

each individual task on the cheapest VM that can finish it on time.

According to the authors, IC-PCP outperforms IC-PCPD2 in most of

the cases. This highlights one of the main advantages of IC-PCP and an

important consideration regarding workflow executions in clouds: data

transfer times can have a high impact on the makespan and cost of a

workflow execution. The IC-PCP successfully addresses this concern by

scheduling parent and child tasks on the same VM, thereby reducing

the amount of VM to VM communication.

A disadvantage of IC-PCP is that it does not account for VM pro-

visioning delays or for resource performance variation. This makes it

highly sensitive to CPU performance degradation and causes deadlines

to be missed because of unexpected delays. Because it is a static and

heuristic-based algorithm, it is capable of finding high-quality sched-

ules efficiently, making it suitable to schedule large-scale workflows

with thousands of tasks. Hence, IC-PCP could be better suited to sched-

ule large workflows with tasks that have low CPU requirements so that

the impact of resource performance degradation is reduced.

5.7 Enhanced IC-PCP with replication

Calheiros and Buyya67 propose the enhanced IC-PCP with replication

(EIPR) algorithm, a scheduling and provisioning solution that uses the

idle time of provisioned VMs and a budget surplus to replicate tasks

to mitigate the effect of performance variation and meet the applica-

tion’s deadline. The first step of the algorithm consists in determining

the number and type of VMs to use as well as the order and placement

of the tasks on these resources. This is achieved by adopting the main

heuristic of IC-PCP,66 that is, identifying PCPs and assigning their tasks

to the same VM. The second step is to determine the start and stop

time of VMs. The EIPR does this by considering both the start and end

time of tasks as well as input and output data transfer times. Finally, the

algorithm replicates tasks in idle time slots of provisioned VMs or on

new VMs if the replication budget allows for it. The algorithm priori-

tizes the replication of tasks with a large ratio of execution to available

time, then tasks with long execution times, and finally tasks with a large

number of children.

Although a static algorithm, EIPR is successful in mitigating the

effects of poor and variable performance of resources by exploiting

the elasticity and billing scheme of clouds. This allows it to generate

high-quality schedules while being robust to unexpected environmen-

tal delays. However, the replication of tasks may not be as successful

in cases in which the execution time of tasks is close to the size of the

billing period. This is mainly because there are less chances or reusing

idle time slots. Another advantage of the algorithm is its accountabil-

ity of VM provisioning delays and its data transfer aware provision-

ing adjust, which enables VMs to be provisioned before the actual

start time of their first task to allow for input data to be transferred

beforehand.



16 of 23 RODRIGUEZ AND BUYYA

TABLE 1 Workflows used in the evaluation of the surveyed algorithms

Algorithm Evaluation Strategy Montage Cybershake Epigenomics SIPHT LIGO Randomly Generated Other

Malawski et al50 Real ✓ ✓ ✓ ✓ ✓

cloud

SABA 47 Simulation ✓ ✓ ✓ Gene2Life,

Motif,

NCFS,

PSMerge

WRPS 49 Simulation ✓ ✓ ✓ ✓

RNPSO 72 Simulation ✓

Rodriguez&Buyya 63 Simulation ✓ ✓ ✓ ✓

MOHEFT 64 Simulation ✓ WIEN2K,

POVRay

Poola et. al57 Simulation ✓

Poola et al (Robust)73 Simulation ✓ ✓ ✓ ✓ ✓

IC-PCP/IC-PCPD2 66 Simulation ✓ ✓ ✓ ✓ ✓

EIPR 67 Simulation ✓ ✓ ✓ ✓

Strech&Compact 74 Simulation ✓ ✓ ✓ ✓ ✓

Oliveira et al75 Real SciPhy

cloud

Genez et al48 Simulation ✓ ✓

PBTS 68 Simulation ✓ ✓ ✓ ✓ ✓ ✓

BTS 69 Simulation ✓ ✓ ✓ ✓ ✓ ✓

Zhu et al76 Simulation ✓ ✓ ✓ ✓ ✓ ✓

SPSS 42 Simulation ✓ ✓ ✓ ✓ ✓

DPDS 42 Simulation ✓ ✓ ✓ ✓ ✓

SPSS-ED 70 Simulation ✓ ✓ ✓

SPSS-EB 70 Simulation ✓ ✓ ✓

Wang et al77 Simulation ✓

ToF 78 Real ✓ ✓

cloud

Dyna 56 Simulation ✓

SCS 71 Simulation ✓

5.8 Workflow scheduling considering 2 SLA levels

Genez et al48 implement an SaaS provider offering a workflow execu-

tion service to its customers. They consider 2 types of SLA contracts

that can be used to lease VMs from IaaS providers: static and sub-

scription based. Specifically, they consider the corresponding options

offered by Amazon EC2, namely, on-demand and reserved instances.

In their model, the SaaS provider has a pool of reserved instances

that are used to execute workflows before a user-defined deadline.

However, if the reserved instance infrastructure is not enough to sat-

isfy the deadline, then on-demand instances are acquired and used

to meet the workflow’s requirements. Even though their algorithm

is presented in the context of an SaaS provider potentially serving

multiple users, the solution is designed to schedule a single work-

flow at time. They formulate the scheduling problem as a MILP

with the objective of minimizing the total execution cost while

meeting the application deadline of the workflow. They then pro-

pose 2 heuristics to derive a feasible schedule from the relaxed

version of the MILP. Their algorithm is capable of selecting the

best-suited IaaS provider as well as the VMs required to guarantee the

QoS parameters.

The scalability of the MILP model presented is a concern. The num-

ber of variables and constraints in the formulation increases rapidly

with the number of providers, maximum number of VMs that can be

leased from each provider, and the number of tasks in the DAG. This

may rule the algorithm as impractical in many real-life scenarios, espe-

cially considering even after a time-expensive schedule computation;

the workflow may still finish after its deadline because of poor and

variable resource performance. Aware of this limitation, the authors

propose a relaxation approach and application of time limits to the

MILP solver; however, the scalability concerns still remain in this cases

as workflows are likely to have thousands of tasks. On the positive side,

the MILP finds an optimal solution to their formulation of the problem

and can be successfully used in scenarios where workflows are small or

even as a benchmark to compare the quality of schedules generated by

different algorithms.

5.9 Partitioned balanced time scheduling

The partitioned balanced time scheduling (PBTS) algorithm68 was

designed to process a workflow in a set of homogeneous VMs



RODRIGUEZ AND BUYYA 17 of 23

TABLE 2 Algorithm classification for the application model

Algorithm Workflow Dynamicity

Malawski et al50 Single

SABA47 Single

WRPS49 Single

RNPSO72 Single

Rodriguez&Buyya63 Single

MOHEFT64 Single

Poola et al57 Single

Poola et al (Robust)73 Single

IC-PCP/IC-PCPD266 Single

EIPR67 Single

Strech&Compact74 Single

Oliveira et al75 Single

Genez et al48 Single

PBTS68 Single

BTS69 Single

Zhu et al76 Single

SPSS42 Ensemble

DPDS42 Ensemble

SPSS-ED70 Ensemble

SPSS-EB70 Ensemble

Wang et al77 Multiple

ToF78 Multiple

Dyna56 Multiple

SCS71 Multiple

by partitioning its execution so that scheduling decisions are made

every billing period. Its main objective is to estimate, for each

scheduling cycle or partition, the minimum number of compute

resources required to execute the workflow within the user-specified

deadline. For each partition, PBTS first identifies the set of tasks

to run on the basis of an approximate resource capacity estimate

that considers the total cost. Then, it estimates the exact number of

resources needed to run the tasks during the partition using the bal-

anced time scheduling (BTS) algorithm,69 which was previously pro-

posed by the same authors. Finally, the actual VMs are allocated,

and the tasks executed on the basis of the schedule obtained from

running BTS.

Adjusting the number of VMs and monitoring the execution of tasks

every scheduling cycle allows the algorithm to have a higher toler-

ance to performance variability and take advantages of the elasticity of

clouds. The PBTS is a good example of an algorithm using a subworkflow

static hybrid approach to address the task to VM mapping, statically

scheduling tasks every billing period. It also uses runtime refinement

to handle delays on the statically scheduled tasks. The algorithm is

capable of handling tasks that require multiple hosts for their execu-

tion (eg, MPI tasks), and even though this is out of the scope of this

survey, we include it as it still has the ability to schedule workflows

were all tasks require a single host. The PBTS was clearly designed for

coarse-grained billing periods, such as 1 hour. For finer-grained periods,

such as 1 minute, PBTS may not be as successful as tasks are unlikely

to finish within a single partition, and it would be difficult to assign a

large-enough number of tasks to each partition to make the scheduling

overhead worthwhile.

5.10 Static provisioning static scheduling

and dynamic provisioning dynamic scheduling

Malawski et al42 propose 2 algorithms to schedule workflow ensembles

that aim to maximize the number of executed workflow instances while

meeting deadline and budget constraints. The dynamic provisioning

dynamic scheduling (DPDS) algorithm first calculates the initial num-

ber of VMs to use on the basis of the budget and deadline. This VM pool

is then updated periodically on the basis of the VM utilization; if the

utilization falls below a predefined threshold then VMs are shutdown,

and if it exceeds this threshold and the budget allows for it then new

VMs are leased. The scheduling phase assigns tasks on the basis of their

priority to arbitrarily chosen VMs dynamically until all of the workflow

instances are executed or until the deadline is reached. The WA-DPDS

(workflow aware DPDPS) is a variant of the algorithm that aims to be

more efficient by executing only tasks of workflows that can be fin-

ished within the specified QoS constraints. It incorporates an admission

control procedure so that only those workflow instances that can be

completed within the specified budget are scheduled and executed.

The authors demonstrate the ability of DPDS to adapt to unexpected

delays, including considerable provisioning delays and innacurate task

runtime estimates. A drawback of the algorithm is leasing as many VMs

as allowed by the budget from the beginning of the ensemble execu-

tion. This may result in VMs being idle for long periods as they wait for

tasks to become ready for execution resulting in wasted time slots and

additional billing periods.

The static provisioning static scheduling (SPSS) algorithm assigns

sub-deadlines to each task on the basis of the slack time of the workflow

(the time that the workflow can extend its critical path and still finish

by the deadline). The tasks are statically assigned to free time slots of

existing VMs so that the cost is minimized and their deadline is met. If

there are no time slots that satisfy these constraints then new VMs are

leased to schedule the tasks. Being a static approach, the authors found

that SPSS is more sensitive to dynamic changes in the environment than

DPDS. However, it outperforms its dynamic counterpart in terms of the

quality of schedules as it has the opportunity to use its knowledge on

the workflow structure and to compare different outputs before choos-

ing the best one. The major drawback of SPPS is its static nature and

unawareness of VM provisioning times, as the authors found it to be too

sensitive to these delays for it to be of practical use.

5.11 SPSS-ED and SPSS-EB

Pietri et al70 propose 2 algorithms to schedule workflow ensembles

in clouds, both on the basis of SPSS.42 One of them, called SPSS-ED,

focuses on meeting energy and deadline constraints while another one,

called SPSS-EB, focuses on meeting energy and budget constraints.

Both algorithms aim to maximize the number of completed workflows.

For each workflow in the ensemble, SPSS-EB plans the execution of the

workflow by scheduling each task so that the total energy consumed is

minimum. It then accepts the plan and executes the workflow only if the

energy and budget constraints are met. The same processes is used in

SPSS-ED but instead of budget, deadline is considered as a constraint.

This work does not consider data transfer times and considers

only a single type of VM for simplicity. It also assumes the data cen-

ter is composed of homogeneous hosts with fixed capacity in VMs.



18 of 23 RODRIGUEZ AND BUYYA

TABLE 3 Algorithm classification for the scheduling model

Algorithm Task-VM Mapping Dynamicity Resource Provisioning Strategy Scheduling Objectives Optimization Strategy

Malawski et al50 Static Static EP Deadline and cost Hybrid HO

SABA47 Hybrid RR Static EP Budget and makespan
and security

Heuristic

WRPS49 Hybrid SS Dynamic CR Deadline and cost Hybrid HO

RNPSO72 Static Static EP Deadline and cost Meta-heuristic

Rodriguez&Buyya63 Static Static EP Deadline and cost Meta-heuristic

MOHEFT64 Static Static EP Generic multi-objective Heuristic

Poola et al57 Dynamic Dynamic CR Deadline and cost and
reliability

Heuristic

Poola et al (Robust)73 Static Static EP Makespan and cost Heuristic

IC-PCP/IC-PCPD266 Static Static EP Deadline and cost Heuristic

EIPR67 Static Static EP Deadline and cost Heuristic

Strech&Compact74 Static Static SP Makespan and res. util.
and cost

Heuristic

Oliveira et al75 Dynamic Dynamic PM Deadline and budget and
reliability

Heuristic

Genez et al48 Static Static EP Deadline and cost Optimal

PBTS68 Hybrid SS Dynamic CR Deadline and cost Heuristic

BTS69 Static Static SP Deadline and cost Heuristic

Zhu et al76 Static Static EP Makespan and cost Meta-heuristic

SPSS42 Static Static EP Budget and deadline and
workload

Heuristic

DPDS42 Dynamic Dynamic PM Budget and deadline and
workload

Heuristic

SPSS-ED70 Static Static EP Deadline and workload
and energy

Heuristic

SPSS-EB70 Static Static EP Budget and workload and
energy

Heuristic

Wang et al77 Dynamic Dynamic CR Makespan and cost Heuristic

ToF78 Static Static EP Deadline and cost Heuristic

Dyna56 Dynamic Dynamic CR Probabilistic deadline and
cost

Heuristic

SCS71 Dynamic Dynamic CR Deadline and cost Heuristic

In reality, however, data centers are composed of heterogeneous

servers with different characteristics. Furthermore, it assumes physi-

cal hosts are exclusively used for the execution of the workflows in the

ensemble, and this again is an unrealistic expectation. Despite these

disadvantages, this is the first work that considers energy consumption

when scheduling ensembles and hence can be used as a stepping stone

to make further advances in this area.

5.12 Dyna

Dyna56 is a scheduling framework that considers the dynamic nature

of cloud environments from the performance and pricing point of view.

It is based on a resource model similar to Amazon EC2 as it considers

both spot and on-demand instances. The goal is to minimize the exe-

cution cost of workflows while offering a probabilistic deadline guar-

antee that reflects the performance variability of resources and the

price dynamics of spot instances. Spot instances are used to reduce

the infrastructure cost and on-demand instances to meet the deadline

constraints when spot instances are not capable of finishing tasks on

time. This is achieved by generating a static hybrid instance configura-

tion plan (a combination of spot and on-demand instances) for every

task. Each configuration plan indicates a set of spot instances to use

along with their bidding price and one on-demand instance type which

should be used in case the execution fails on each of the spot instances

on the configuration set. At runtime, this configuration plan, in addition

to instance consolidation and reuse techniques are used to schedule

the tasks.

Contrary to most algorithms, Dyna recognizes that static task run-

time estimations and deterministic performance guarantees are not

suited to cloud environments. Instead, the authors propose offering

users a more realistic, probabilistic deadline guarantee that reflects

the cloud dynamics. Their probabilistic models are successful in

capturing the variability in I/O and network performance, as well

as in spot prices. However, Dyna does not consider CPU perfor-

mance variations as according to the authors their findings show

it is relatively stable. Additionally, by determining the best instance

type for each task statically, Dyna is able to generate better qual-

ity schedules; however, it still makes scheduling decisions for one

task at a time, limiting its global task to VM mapping optimization

capabilities.



RODRIGUEZ AND BUYYA 19 of 23

TA
B

LE
4

A
lg

o
ri

th
m

cl
as

si
fi

ca
ti

o
n

fo
r

th
e

re
so

u
rc

e
m

o
d

el

A
lg

o
ri

th
m

V
M

Le
as

in
g

V
M

Ty
p

e
P

ro
vi

d
er

D
ep

.
D

at
a

C
en

te
r

D
at

a
Sh

ar
in

g
D

at
a

Tr
an

sf
er

V
M

P
ri

ci
n

g
V

M
C

o
re

M
o

d
el

U
n

if
o

rm
it

y
M

o
d

el
D

ep
.M

o
d

el
M

o
d

el
C

o
st

St
o

ra
ge

C
o

st
M

o
d

el
V

M
D

el
ay

s
C

o
u

n
t

M
al

aw
sk

ie
t

al
5

0
Li

m
it

ed
M

u
lt

ip
le

M
u

lt
ip

le
M

u
lt

ip
le

Sh
ar

ed
Ye

s
N

o
St

at
ic

N
o

M
u

lt
ip

le

SA
B

A
4

7
Li

m
it

ed
M

u
lt

ip
le

M
u

lt
ip

le
M

u
lt

ip
le

P
2

P
Ye

s
Ye

s
T

im
e

U
n

it
N

o
Si

n
gl

e

W
R

P
S4

9
U

n
lim

it
ed

M
u

lt
ip

le
Si

n
gl

e
Si

n
gl

e
Sh

ar
ed

N
o

N
o

St
at

ic
P

ro
v.

an
d

d
ep

ro
v.

Si
n

gl
e

R
N

P
SO

7
2

U
n

lim
it

ed
M

u
lt

ip
le

Si
n

gl
e

Si
n

gl
e

P
2

P
N

o
N

o
St

at
ic

P
ro

v.
Si

n
gl

e

R
o

d
ri

gu
ez

&
B

u
yy

a6
3

U
n

lim
it

ed
M

u
lt

ip
le

Si
n

gl
e

Si
n

gl
e

P
2

P
N

o
N

o
St

at
ic

P
ro

v.
Si

n
gl

e

M
O

H
E

F
T

6
4

Li
m

it
ed

M
u

lt
ip

le
Si

n
gl

e
Si

n
gl

e
P

2
P

Ye
s

Ye
s

St
at

ic
N

o
Si

n
gl

e

P
o

o
la

et
al

5
7

U
n

lim
it

ed
M

u
lt

ip
le

Si
n

gl
e

Si
n

gl
e

P
2

P
N

o
N

o
D

yn
am

ic
an

d
st

at
ic

P
ro

v.
Si

n
gl

e

P
o

o
la

et
al

(R
o

b
u

st
)7

3
U

n
lim

it
ed

M
u

lt
ip

le
Si

n
gl

e
Si

n
gl

e
P

2
P

N
o

N
o

St
at

ic
P

ro
v.

Si
n

gl
e

IC
-P

C
P/

IC
-P

C
P

D
2

6
6

U
n

lim
it

ed
M

u
lt

ip
le

Si
n

gl
e

Si
n

gl
e

P
2

P
N

o
N

o
St

at
ic

N
o

Si
n

gl
e

E
IP

R
6

7
U

n
lim

it
ed

M
u

lt
ip

le
Si

n
gl

e
Si

n
gl

e
P

2
P

N
o

N
o

St
at

ic
P

ro
v.

Si
n

gl
e

St
re

ch
&

C
o

m
p

ac
t7

4
U

n
lim

it
ed

Si
n

gl
e

Si
n

gl
e

Si
n

gl
e

P
2

P
N

o
N

o
St

at
ic

N
o

M
u

lt
ip

le

O
liv

ei
ra

et
al

.7
5

U
n

lim
it

ed
M

u
lt

ip
le

M
u

lt
ip

le
M

u
lt

ip
le

Sh
ar

ed
Ye

s
N

o
St

at
ic

N
o

Si
n

gl
e

G
en

ez
et

al
.4

8
Li

m
it

ed
M

u
lt

ip
le

M
u

lt
ip

le
Si

n
gl

e
P

2
P

N
o

N
o

St
at

ic
an

d
su

b
sc

ri
p

ti
o

n
N

o
M

u
lt

ip
le

P
B

T
S6

8
U

n
lim

it
ed

Si
n

gl
e

Si
n

gl
e

Si
n

gl
e

Sh
ar

ed
N

o
N

o
St

at
ic

N
o

Si
n

gl
e

B
T

S6
9

U
n

lim
it

ed
Si

n
gl

e
Si

n
gl

e
Si

n
gl

e
Sh

ar
ed

N
o

N
o

T
im

e
u

n
it

N
o

Si
n

gl
e

Z
h

u
et

al
7

6
U

n
lim

it
ed

M
u

lt
ip

le
Si

n
gl

e
Si

n
gl

e
P

2
P

N
o

N
o

St
at

ic
N

o
Si

n
gl

e

SP
SS

4
2

U
n

lim
it

ed
Si

n
gl

e
Si

n
gl

e
Si

n
gl

e
Sh

ar
ed

N
o

N
o

St
at

ic
N

o
Si

n
gl

e

D
P

D
S4

2
U

n
lim

it
ed

Si
n

gl
e

Si
n

gl
e

Si
n

gl
e

Sh
ar

ed
N

o
N

o
St

at
ic

P
ro

v.
an

d
d

ep
ro

v.
Si

n
gl

e

SP
SS

-E
D

7
0

U
n

lim
it

ed
Si

n
gl

e
Si

n
gl

e
Si

n
gl

e
Sh

ar
ed

N
o

N
o

St
at

ic
N

o
Si

n
gl

e

SP
SS

-E
B

7
0

U
n

lim
it

ed
Si

n
gl

e
Si

n
gl

e
Si

n
gl

e
Sh

ar
ed

N
o

N
o

St
at

ic
N

o
Si

n
gl

e

W
an

g
et

al
.7

7
U

n
lim

it
ed

M
u

lt
ip

le
Si

n
gl

e
Si

n
gl

e
P

2
P

N
o

N
o

St
at

ic
N

o
Si

n
gl

e

To
F

7
8

Li
m

it
ed

M
u

lt
ip

le
Si

n
gl

e
Si

n
gl

e
P

2
P

N
o

N
o

St
at

ic
P

ro
v.

M
u

lt
ip

le

D
yn

a5
6

U
n

lim
it

ed
M

u
lt

ip
le

Si
n

gl
e

Si
n

gl
e

P
2

P
N

o
N

o
D

yn
am

ic
an

d
st

at
ic

P
ro

v.
Si

n
gl

e

SC
S7

1
U

n
lim

it
ed

M
u

lt
ip

le
Si

n
gl

e
Si

n
gl

e
P

2
P

N
o

N
o

St
at

ic
P

ro
v.

Si
n

gl
e



20 of 23 RODRIGUEZ AND BUYYA

5.13 SCS

SCS71 is a deadline-constrained algorithm that has an auto-scaling

mechanism to dynamically allocate and deallocate VMs on the basis of

the current status of tasks. It begins by bundling tasks to reduce data

transfer times and by distributing the overall deadline among tasks.

Then, it creates a load vector by determining the most cost-efficient VM

type for each task. This load vector is updated every scheduling cycle

and indicates how many machines of each type are needed in order for

the tasks to finish by their assigned deadline with minimum cost. After-

wards, the algorithm proceeds to consolidate partial instance hours by

merging tasks running on different instance types into a single one. This

is done if VMs have idle time and can complete the additional tasks by

its original deadline. Finally, the earliest deadline first algorithm is used

to map tasks onto running VMs, that is, the task with the earliest dead-

line is scheduled as soon as an instance of the corresponding type is

available.

The SCS is an example of an algorithm that makes an initial resource

provisioning plan on the basis of a global optimization heuristic and

then refines it at runtime to respond to delays that were unaccounted

for. The optimization heuristic allows it to minimize the cost and the

runtime refinement to ensure there are always enough VMs in the

resource pool so that tasks can finish on time. However, the refine-

ment of the provisioning plan is done by running the global optimization

algorithm for the remaining tasks every time a task is scheduled. This

introduces a high computational overhead and hinders its scalability in

terms of the number of tasks in the workflow.

5.14 Summary

This section contains the classification of the surveyed algorithms on

the basis of the presented taxonomy. In addition to this classification,

Table 1 presents a summary indicating whether the algorithms were

evaluated in real cloud environments or using simulation. This table

also indicates whether the algorithms were evaluated using any the

workflows presented in Section 2, randomly generated ones, or other

scientific applications.

Table 2 displays the application model summary. Table 3 depicts the

classification of the algorithms from the scheduling model perspective.

In the task-VM mapping dynamicity category, RR refers to the hybrid

runtime refinement class and SS to the hybrid subworkflow static one.

In the resource provisioning strategy, the term SP is short for static VM

pool. As for the algorithms in the dynamic elastic VM pool category, the

abbreviation CR is used for constraint requirement while PM is used for

performance metric. Finally, HO refers to the hybrid heuristic-optimal

class in the optimization strategy category. Table 4 shows the resource

model classification.

6 CONCLUSIONS AND FUTURE DIRECTIONS

This paper studies algorithms developed to schedule scientific work-

flows in cloud computing environments. In particular, it focuses on tech-

niques considering applications modeled as DAGs and the resource

model offered by public cloud providers. It presents a taxonomy

on the basis of a comprehensive study of existing algorithms that

focuses on features particular to clouds offering infrastructure ser-

vices, namely, VMs, storage, and network access, on a pay-per use basis.

It also includes and extends existing classification approaches designed

for general-purpose scheduling algorithms44 and DAG scheduling in

grids.46 These are included as they are of particular importance

when dealing with cloud environments and are complimented with a

cloud-focused discussion. Existing algorithms within the scope of this

work are reviewed and classified with the aim of providing readers

with a decision tool and an overview of the characteristics of exist-

ing research. A description and discussion of various algorithms is also

included, and it aims to provide further details and understanding of

prominent techniques as well as further insight into the field’s future

directions.

The abundance of resources and flexibility to use only those that are

required is a clear challenge particular to cloud computing. Most algo-

rithms address this problem by elastically adding new VMs when addi-

tional performance is required and shutting down existing ones when

they are not needed anymore. In this way, algorithms are careful not to

overprovision so that cost can be reduced and not to underprovision so

that the desired performance can be achieved. Furthermore, some algo-

rithms recognize that the ability to scale horizontally does provide not

only aggregated performance, but also a way of dealing with the poten-

tial indeterminism of a workflow’s execution because of performance

degradation. The difficulty of this provisioning problem under virtually

unlimited resources calls for further research in this area. Efficiently

utilizing VMs to reduce wastage and energy consumption79 should

be further studied. The maximum efficient reduction79 algorithm is a

recent step toward this goal. It was proposed as a post-optimization

resource efficiency solution and produces a consolidated schedule, on

the basis of the original schedule generated by any other algorithm

that optimizes the overall resource usage (minimizes resource wastage)

with a minimal makespan increase. Further, awareness and efficient

techniques to deal with the provisioning and deprovisioning delays of

VMs is also necessary. For example, pro-actively starting VMs earlier

in the scheduling cycle so that tasks do not have to be delayed due to

provisioning times may be a simple way of reducing their impact on the

workflow’s makespan.

The cost model of clouds is another challenge faced by algorithms.

Most assume a model where VMs are leased with a static price and have

a billing period longer than the average task execution time. Hence, they

focus on reusing idle slots on leased VMs so that cost is reduced, as long

as the performance objectives are not compromised. While this is true

for most applications and providers offering coarse-grained billing peri-

ods such as Amazon EC2,2 emergent services are offering more flexibil-

ity by reducing the length of their billing periods. For example, Google

Compute Engine58 charges for the first 10 minutes and per minute

afterwards while Microsoft Azure3 bills per minute. This finer-grained

billing periods eliminate the need to reuse VMs to increase resource

utilization and reduce cost and allows algorithms to focus on obtain-

ing better optimization results. As a future direction, algorithms could

focus on this specific scenario instead of focusing on either hourly billed

instances or generic algorithms that work for any period length.

The growth in the development and adoption of sensor networks

and ubiquitous computing sees a change in the data requirements of



RODRIGUEZ AND BUYYA 21 of 23

applications. This creates an increased demand for scientific work-

flow management systems that are capable of supporting the process-

ing of real time data produced by sensor or distributed devices. An

example of a model of computation supporting this particular type of

workflows is defined by Pautasso and Alonso18 as streaming pipelines

in which intermediate results are fed into continuously running tasks.

Although some management systems such as Kepler80 already incor-

porate this model, additional research on how to efficiently sched-

ule workflows with the particular challenges and characteristics of

streaming applications would greatly aid in supporting the scientific

community.

Finally, an interesting and emerging service model is workflow as a

service (WaaS). This type of platforms offer to manage the execution of

scientific workflows submitted by multiple users and hence are directly

related to scheduling algorithms designed to process multiple work-

flows simultaneously. Out of the surveyed algorithms, only a few target

this application model. As the popularity and use of cloud computing

becomes more widespread, so will services such as WaaS. Therefore,

it is important to gain a better understanding and further investigate

this type of algorithms. Multiple scenarios can be explored, for instance,

the WaaS system may acquire a pool of subscription-based instances,

and hence, algorithms may be concerned with maximizing their utiliza-

tion, maximizing the profit of the WaaS provider, and supporting generic

QoS requirements to suit the needs of multiple users. A recent step

toward this model is presented by Esteves and Veiga.81 They define

a prototypical middleware framework that embodies the vision of a

WaaS system and address issues such as workflow description and

WfMS integration, cost model, and resource allocation. We refer the

readers to this work for a more comprehensive understanding of this

service model.

ACKNOWLEDGMENTS

We would like to thank Dr Rodrigo Calheiros, Dr Amir Vahid Dastjerdi,

and Deepak Poola for their insights and comments on improving this

paper.

REFERENCES

1. Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I. Cloud com-
puting and emerging IT platforms: vision, hype, and reality for
delivering computing as the 5th utility. Future Gener Comput Syst.
2009;25(6):599–616.

2. Elastic compute cloud EC2. Available from: http://aws.amazon.com/
ec2. Accessed June 2016.

3. Microsoft Azure. Available from: https://azure.microsoft.com.
Accessed June 2016.

4. Yildiz U, Guabtni A, Ngu AH. Business versus scientific workflows: a
comparative study. Proceedings of the Fourth World Conference on Ser-
vices (SERVICES). IEEE, Los Angeles, CA; 2009:340–343.

5. Barker A, Van Hemert J. Scientific workflow: a survey and research
directions. Parallel Processing and Applied Mathematics. Springer,
Gdansk, Poland; 2008:746–753.

6. Juve G, Chervenak A, Deelman E, Bharathi S, Mehta G, Vahi K. Char-
acterizing and profiling scientific workflows. Future Gener Comput Syst.
2013;29(3):682–692.

7. Berriman GB, Laity AC, Good JC, Jacob JC, Katz DS, Deelman E, Singh
G, Su MH, Prince TA. Montage: The architecture and scientific applica-
tions of a national virtual observatory service for computing astronom-
ical image mosaics. Proceedings of Earth Sciences Technology Conference,
College Park, Maryland; 2006.

8. Graves R, Jordan TH, Callaghan S, Deelman E, Field E, Juve G,
Kesselman C, Maechling P, Mehta G, Milner K, et al. Cybershake:
a physics-based seismic hazard model for southern california. Pure Appl
Geophys. 2011;168(3-4):367–381.

9. Abramovici A, Althouse WE, Drever RWP, Gürsel Y, Kawamura S,
Raab FJ, Shoemaker D, Sievers L, Spero RE, Thorne KS, et al. Ligo:
the laser interferometer gravitational-wave observatory. Science.

1992;256(5055):325–333.

10. Livny J, Teonadi H, Livny M, Waldor M. K. High-throughput,
kingdom-wide prediction and annotation of bacterial non-coding rnas.

PloS one. 2008;3(9):e3197.

11. USC epigenome center. Available from: http://epigenome.usc.edu.
Accessed June 2016.

12. National Centre for Biotechnology Information. Available from: http://
www.ncbi.nlm.nih.gov. Accessed June 2016.

13. Bharathi S, Chervenak A, Deelman E, Mehta G, Su Mei-Hui, Vahi K.
Characterization of scientific workflows. Proceedings of the Third Work-
shop on Workflows in Support of Large-Scale Science (WORKS), Austin, TX,
USA; 2008:1–10.

14. Deelman E, Singh G, Su MH, Blythe J, Gil Y, Kesselman C, Mehta G,
Vahi K, Berriman GB, Good J, et al. Pegasus: a framework for mapping

complex scientific workflows onto distributed systems. Sci Program.
2005;13(3):219–237.

15. Pandey S, Karunamoorthy D, Buyya R. Workflow engine for clouds.
Cloud Computing: Principles and Paradigms, Hoboken, New Jersey,

United States; 2011;87:321–344.

16. Fahringer T, Prodan R, Duan R, Nerieri F, Podlipnig S, Qin J, Siddiqui M,
Truong HL, Villazon A, Wieczorek M. Askalon: a grid application devel-
opment and computing environment. Proceedings of the Sixth IEEE/ACM
International Workshop on Grid Computing. IEEE Computer Society, Seat-
tle, Washington, USA; 2005:122–131.

17. Couvares P, Kosar T, Roy A, Weber J, Wenger K. Workflow manage-
ment in condor. Workflows for e-Science. Springer; 2007:357–375.

18. Pautasso C, Alonso G. Parallel computing patterns for grid work-
flows. Workshop on Workflows in Support of Large-Scale Science, 2006.
WORKS’06., IEEE, Paris; 2006:1–10.

19. Ullman JD. NP-complete scheduling problems. J Comput Syst Sci.
1975;10(3):384–393.

20. Hu TC. Parallel sequencing and assembly line problems. Oper Res.
1961;9(6):841–848.

21. Mayr EW, Stadtherr H. Optimal parallel algorithms for two processor
scheduling with tree precedence constraints. 1995.

22. Fishburn P. C. Interval Orders and Interval Graphs: A Study of Partially
Ordered Sets: John Wiley & Sons; 1985.

23. Yu J, Buyya R. A novel architecture for realizing grid workflow using
tuple spaces. Proceedings of the Fifth IEEE/ACM International Workshop on
Grid Computing. IEEE, Pittsburgh, USA; 2004:119–128.

24. Apache Jclouds. Available from: http://jclouds.apache.org. Accessed
June 2016.

25. Gutierrez-Garcia JO, Sim KM. A family of heuristics for agent-based
elastic cloud bag-of-tasks concurrent scheduling. Future Gener Comput
Syst. 2013;29(7):1682–1699.

26. Michon E, Gossa J, Genaud S, et al. Free elasticity and free CPU power
for scientific workloads on IaaS clouds. Proceedings of the Eighteen IEEE
International Conference on Parallel and Distributed Systems (ICPADS).
IEEE, Singapore; 2012:85–92.

27. Villegas D, Antoniou A, Sadjadi SM, Iosup A. An analysis of provisioning

and allocation policies for infrastructure-as-a-service clouds. Proceed-
ings of the Twelfth IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGRID). IEEE, Ottawa, Canada; 2012:612–619.

28. Frincu ME, Genaud S, Gossa J, et al. Comparing provisioning and

scheduling strategies for workflows on clouds. Proceedings of the Sec-
ond International Workshop on Workflow Models, Systems, Services and
Applications in the Cloud (CloudFlow). IEEE, Boston, MA; 2013.

http://aws.amazon.com/ec2
http://aws.amazon.com/ec2
https://azure.microsoft.com
http://epigenome.usc.edu
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://jclouds.apache.org


22 of 23 RODRIGUEZ AND BUYYA

29. Schad J, Dittrich J, Quiané-Ruiz JA. Runtime measurements in the
cloud: observing, analyzing, and reducing variance. Proc of the VLDB
Endowment. 2010;3(1-2):460–471.

30. Ostermann S, Iosup A, Yigitbasi N, Prodan R, Fahringer T, Epema
D. A performance analysis of EC2 cloud computing services for
scientific computing. Cloud Computing. Springer, Munich, Germany;
2010:115–131.

31. Gupta A, Milojicic D. Evaluation of HPC applications on cloud. Open
Cirrus Summit (OCS), 2011 Sixth, Atlanta, Georgia; 2011:22–26.

32. Iosup A, Ostermann S, Yigitbasi MN, Prodan R, Fahringer T, Epema D.
Performance analysis of cloud computing services for many-tasks
scientific computing. IEEE Trans Parallel Distrib Syst. 2011;22(6):
931–945.

33. Jackson KR, Ramakrishnan L, Muriki K, Canon S, Cholia S, Shalf J,
Wasserman HJ, Wright NJ. Performance analysis of high performance
computing applications on the amazon web services cloud. Proceed-
ings of the IEEE Second International Conference on Cloud Computing
Technology and Science (CLOUDCOM). IEEE, Athens, Greece; 2010:
159–168.

34. Nabrzyski J, Schopf JM, Weglarz J. Grid Resource Management: State of
the Art and Future Trends, vol. 64: Berlin, Germany: Springer Science &
Business Media; 2012.

35. Valentin C, Ciprian D, Corina S, Florin P, Alexandru C. Large-scale dis-
tributed computing and applications: models and trends. 2010.

36. Berman F, Fox G, Hey AnthonyJG. Grid Computing: Making the Global
Infrastructure a Reality, vol. 2: Hoboken, New Jersey, United States: John
Wiley and sons; 2003.

37. Mao M, Humphrey M. A performance study on the VM startup time in
the cloud. Proceedings of the Fifth IEEE International Conference on Cloud
Computing (CLOUD), IEEE, Honolulu, Hawaii, USA; 2012:423–430.

38. Amazon EC2 Spot Instances. Available from: https://aws.amazon.com/
ec2/purchasing-options/spot-instances/. Accessed June 2016.

39. Maechling P, Deelman E, Zhao L, Graves R, Mehta G, Gupta N,
Mehringer J, Kesselman C, Callaghan S, Okaya D, et al. SCEC Cyber-
Shake Workflows—Automating Probabilistic Seismic Hazard Analysis
Calculations. Workflows for e-Science. Springer; 2007:143–163.

40. Deelman E, Singh G, Livny M, Berriman B, Good J. The cost of doing sci-
ence on the cloud: the montage example. Proceedings of the ACM/IEEE
Conference on Supercomputing (SC). IEEE Press, Austin, Texas; 2008:Arti-
cle No. 50.

41. Vöckler JS, Juve G, Deelman E, Rynge M, Berriman B. Experiences
using cloud computing for a scientific workflow application. Proceed-
ings of the Second International Workshop on Scientific Cloud Computing
(ScienceCloud). ACM, San Jose, California; 2011:15–24.

42. Malawski M, Juve G, Deelman E, Nabrzyski J. Cost-and
deadline-constrained provisioning for scientific workflow ensembles
in IaaS clouds. Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis (SC). EEE, Salt Lake
City, Utah; 2012:Article No. 22.

43. Tolosana-Calasanz R, BañAres JÁ, Pham C, Rana OF. Enforcing qos
in scientific workflow systems enacted over cloud infrastructures. J
Comput Syst Sci. 2012;78(5):1300–1315.

44. Casavant TL, Kuhl JG. A taxonomy of scheduling in general-purpose
distributed computing systems. IEEE Trans Softw Eng.
1988;14(2):141–154.

45. Kwok YK, Ahmad I. Static scheduling algorithms for allocating
directed task graphs to multiprocessors. ACM Comput Surv (CSUR).
1999;31(4):406–471.

46. Yu J, Buyya R, Ramamohanarao K. Workflow scheduling algorithms for
grid computing. Metaheuristics for Scheduling in Distributed Computing
Environments. Springer; 2008:173–214.

47. Zeng L, Veeravalli B, Li X. Saba: a security-aware and budget-aware
workflow scheduling strategy in clouds. J Parallel Distrib Comput.
2015;75:141–151.

48. Genez TA, Bittencourt LF, Madeira ER. Workflow scheduling for
SaaS/PaaS cloud providers considering two sla levels. Proceedings of

the IEEE Network Operations and Management Symposium (NOMS). IEEE,
Maui, Hawaii, USA; 2012:906–912.

49. Rodriguez MA, Buyya R. A responsive knapsack-based algorithm for
resource provisioning and scheduling of scientific workflows in clouds.
Proceedings of the Fourty-Fourth International Conference on Parallel Pro-
cessing (ICPP), vol. 1. IEEE; 2015:839–848.

50. Malawski M, Figiela K, Bubak M, Deelman E, Nabrzyski J. Scheduling
multilevel deadline-constrained scientific workflows on clouds based
on cost optimization. Sci Program. 2015;2015.

51. Talbi EG. Metaheuristics: From Design to Implementation, vol. 74: Hobo-
ken, New Jersey, United States: John Wiley & Sons; 2009.

52. Amazon Simple Storage Service. Available from: http://aws.amazon.
com/s3/. Accessed June 2016.

53. Amazon EFS. Available from: https://aws.amazon.com/efs/. Accessed
June 2016. Accessed June 2016.

54. Google Cloud Storage. Available from: https://cloud.google.com/
storage/. Accessed June 2016.

55. Rackspace Block Storage. Availeble from: http://www.rackspace.com.
au/cloud/block-storage. Accessed June 2016.

56. Zhou A, He B, Liu C. Monetary cost optimizations for hosting
workflow-as-a-service in iaas clouds. IEEE Trans Cloud Comput.
2015;PP(99):1–1.

57. Poola D, Ramamohanarao K, Buyya R. Fault-tolerant workflow
scheduling using spot instances on clouds. Procedia Comput Sci.
2014;29:523–533.

58. Google Compute Engine. Available from: https://cloud.google.com/
products/compute-engine/. Accessed June 2016.

59. Google Compute Engine Pricing. Available from: https://developers.
google.com/compute/pricing. Accessed June 2016.

60. Cloudsigma. Available from: https://www.cloudsigma.com. Accessed
June 2016.

61. Arabnejad H, Barbosa JG, Prodan R. Low-time complexity
budget–deadline constrained workflow scheduling on heterogeneous
resources. Future Gener Comput Syst. 2016;55:29–40.

62. Zhu Q, Zhu J, Agrawal G. Power-aware consolidation of scientific work-
flows in virtualized environments. Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE Computer Society, New Orleans, Louisiana,
USA; 2010:1–12.

63. Rodriguez MA, Buyya R. Deadline based resource provisioning and
scheduling algorithm for scientific workflows on clouds. IEEE Trans
Cloud Comput. 2014April;2(2):222–235.

64. Durillo JJ, Prodan R. Multi-objective workflow scheduling in amazon
ec2. Cluster Comput. 2014;17(2):169–189.

65. Topcuoglu H, Hariri S, Wu Min-you. Performance-effective and
low-complexity task scheduling for heterogeneous computing. IEEE
Trans Parallel Distrib Syst. 2002;13(3):260–274.

66. Abrishami S, Naghibzadeh M, Epema DickHJ. Deadline-constrained
workflow scheduling algorithms for infrastructure as a service clouds.
Future Gener Comput Syst. 2013;29(1):158–169.

67. Calheiros RN, Buyya R. Meeting deadlines of scientific workflows in
public clouds with tasks replication. IEEE Trans Parallel Distrib Syst.
2014;25(7):1787–1796.

68. Byun EK, Kee YS, Kim JS, Maeng S. Cost optimized provisioning of
elastic resources for application workflows. Future Gener Comput Syst.
2011;27(8):1011–1026.

69. Byun EK, Kee YS, Kim JS, Deelman E, Maeng S. Bts: Resource capacity
estimate for time-targeted science workflows. J Parallel Distrib Comput.
2011;71(6):848–862.

70. Pietri I, Malawski M, Juve G, Deelman E, Nabrzyski J, Sakellariou R.
Energy-constrained provisioning for scientific workflow ensembles.
Proceedings of The Third International Conference on Cloud and Green
Computing (CGC), IEEE, Karlsruhe, Germany; 2013:34–41.

71. Mao M, Humphrey M. Auto-scaling to minimize cost and meet appli-
cation deadlines in cloud workflows. Proceedings of The International

https://aws.amazon.com/ec2/purchasing-options/spot-instances/
https://aws.amazon.com/ec2/purchasing-options/spot-instances/
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
https://aws.amazon.com/efs/
https://cloud.google.com/storage/
https://cloud.google.com/storage/
http://www.rackspace.com.au/cloud/block-storage
http://www.rackspace.com.au/cloud/block-storage
https://cloud.google.com/products/compute-engine/
https://cloud.google.com/products/compute-engine/
https://developers.google.com/compute/pricing
https://developers.google.com/compute/pricing
https://www.cloudsigma.com


RODRIGUEZ AND BUYYA 23 of 23

Conference for High Performance Computing, Networking, Storage and
Analysis (SC), ACM, Seattle, WA, USA; 2011:Article No. 49.

72. Li HH, Fu YW, Zhan ZH, Li JJ. Renumber strategy enhanced parti-
cle swarm optimization for cloud computing resource scheduling. Pro-
ceedings of the IEEE Congress on Evolutionary Computation (CEC). IEEE;
2015:870–876.

73. Poola D, Garg SK, Buyya R, Yang Y, Ramamohanarao K. Robust schedul-
ing of scientific workflows with deadline and budget constraints in
clouds. Proceedings of the Twenty-Eighth IEEE International Conference
on Advanced Information Networking and Applications (AINA), Victoria,
Canada; 2014:1–8.

74. Lee YC, Zomaya AY. Stretch out and compact: workflow scheduling with
resource abundance. Proceedings of the Thirteenth IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing (CCGRID). IEEE,
Delft, Netherlands; 2013:219–226.

75. de Oliveira D, Ocaña KA, Baião F, Mattoso M. A provenance-based
adaptive scheduling heuristic for parallel scientific workflows in clouds.
J Grid Comput. 2012;10(3):521–552.

76. Zhu Z, Zhang G, Li M, Liu X. Evolutionary multi-objective workflow
scheduling in cloud. IEEE Transactions on Parallel and Distributed Systems.
2016;27(5):1344–1357.

77. Wang J, Korambath P, Altintas I, Davis J, Crawl D. Workflow as a service
in the cloud: architecture and scheduling algorithms. Procedia Comput
Sci. 2014;29:546–556.

78. Zhou AC, He B. Transformation-based monetary cost optimizations for
workflows in the cloud. IEEE Trans Cloud Comput. 2014:1–1.

79. Lee YC, Han H, Zomaya AY, Yousif M. Resource-efficient workflow
scheduling in clouds. Knowl-Based Syst. 2015;80:153–162.

80. Altintas I, Berkley C, Jaeger E, Jones M, Ludascher B, Mock S. Kepler:
an extensible system for design and execution of scientific workflows.
16th International Conference on Scientific and Statistical Database Man-
agement, 2004. Proceedings. IEEE; 2004:423–424.

81. Esteves S, Veiga L. Waas: workflow-as-a-service for the cloud with
scheduling of continuous and data-intensive workflows. Comput J.
2016;59(3):371–383.

How to cite this article: Rodriguez MA, Buyya R. A taxonomy

and survey on scheduling algorithms for scientific workflows

in IaaS cloud computing environments. Concurrency Computat:

Pract Exper. 2017;29:e4041. https://doi.org/10.1002/cpe.4041

https://doi.org/10.1002/cpe.4041

	A taxonomy and survey on scheduling algorithms for scientific workflows in IaaS cloud computing environments
	Abstract
	Introduction
	Scientific Workflows: An Overview
	Workflow Scheduling inxmltex	?> IaaS Clouds
	Cloud workflow management system
	Challenges

	Taxonomy
	Application model taxonomy
	Workflow multiplicity

	Scheduling model taxonomy
	Task-VM mapping dynamicity
	Resource provisioning strategy
	Scheduling objectives
	Optimization strategy

	Resource model taxonomy
	VM leasing model
	VM type uniformity
	Deployment model
	Intermediate data sharing model
	Data transfer cost awareness
	Storage cost awareness
	VM pricing model
	VM delays
	VM core count


	Survey
	Scheduling multilevel deadline-constrained scientific workflows
	Security-aware andxmltex	?> budget-aware
	Particle swarm optimization–based resource provisioning andxmltex	?> scheduling algorithm
	Multi-objective heterogeneous earliestxmltex	?> finish time
	Fault-tolerant scheduling using spot instances
	IaaS cloud partial critical path
	Enhanced IC-PCP withxmltex	?> replication
	Workflow scheduling considering 2 SLA levels
	Partitioned balanced time scheduling
	Static provisioning static scheduling andxmltex	?> dynamic provisioning dynamic scheduling
	SPSS-ED andxmltex	?> SPSS-EB
	Dyna
	SCS
	Summary

	Conclusions andxmltex	?> Future Directions
	References


