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With the seamless proliferation of cloud services, it becomes challenging to select and compose cloud
services that satisfy the requirements of users. A service may be connected with another service(s) for
satisfying a workflow/function in a service composition. Further, the service assessment based on one
or two QoS parameters is not accurate enough to achieve the desired optimality in a cloud service
composition. Most of the existing methods in the literature consider either a single QoS parameter or
two QoS parameters for QoS-aware composition and do not consider the balancing of QoS parameters
and/or the connectivity constraints between two compositions. In this paper, we present an Optimal
Fitness Aware Cloud Service Composition (OFASC) using an Adaptive Genotype Evolution based Genetic
Algorithm (AGEGA) dealing with multiple QoS parameters and providing the solutions that satisfy the
balancing QoS parameters and connectivity constraints of service composition. Experimental results show
that our approach enhances the efficiency of cloud service composition by converging quickly and obtains
better composition when compared to other approaches.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Cloud computing has been widely recognized as one of the most

Cloud service composition aims to fulfill the functional de-
mands of the business logic. Business processes comprised of sev-
eral tasks of varying functionalities require a composition strategy
of cloud services based on Quality of Service (QoS) parameters

influential information technologies because of its unprecedented
advantages [1]. Without the ownership of technology infrastruc-
ture, organizations can access technology-enabled services from
the cloud via the Internet. The cloud offers several benefits to
businesses by providing different services at reduced cost (the
businesses pay only for what they use) [2]. Cloud services are pro-
liferating nowadays considering these advantages in the adoption
of cloud technologies to the organizations.
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and an execution priority connectivity constraints based on the
context of composition [3,4]. The resulting composite service is
characterized by these QoS parameters, which helps users to assess
the quality of service composition. A connectivity constraint refers
to the connection between any two constraints that depend on
each other [5]. Between two service compositions, a cloud service
can be functionally dependent on another cloud service or several
cloud services can be executed in parallel. Further, the same task of
a cloud service may be reinitiated by another cloud service. There
may be a dependency upon the intermediate execution of several
cloud services for completing the task of a cloud service.
Nowadays, several cloud services with comparable functional-
ity are offered to consumers at varying QoS level. As cloud services
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that are offered have different QoS levels for a specific task, a
QoS-based ranking of these services helps the user in selecting
services [6]. A service can be ranked as the best service under a
particular QoS parameter but may be ranked as the worst under
another QoS parameter. The performance of a service can be ranked
differently according to various QoS parameters. The priorities of
QoS parameters vary from one cloud service composition context
to another. This requires equal consideration of all QoS parameters
(called as balancing of QoS parameters) in selecting a cloud service
without neglecting the influence of a primary QoS parameter in a
cloud service composition.

In general, the solutions for QoS-aware cloud service compo-
sition [7-10] address either a single QoS parameter or two QoS
parameters and do not consider the balancing of QoS parameters
and/ or satisfying of the connectivity constraints between two
compositions. In this paper, we present an Optimal Fitness Aware
Cloud Service Composition (OFASC) using an Adaptive Genotype
Evolution based Genetic Algorithm (AGEGA) dealing with multi-
ple QoS parameters and providing the solutions that satisfy the
balancing QoS parameters and connectivity constraints of service
composition. Our approach uses the adaptive genotype progres-
sive evolution strategy for restricting the evolution iterations. This
strategy considers those offspring in the new generation that have
better fitness than any of their parents. The salient contributions
of this paper are as follows:

e Anovel methodology to assess cloud service fitness and com-
position fitness by using Discrete Uniform Rank Distribu-
tion (DURD) and Discrete Uniform Service Rank Distribution
(DUSRD).

e An Optimal Fitness Aware Cloud Service Composition
(OFACSC) using an Adaptive Genotypes Evolution based Ge-
netic Algorithm (AGEGA) to improve the convergence rate
and computational complexity.

The rest of the paper is organized as follows. Section 2 dis-
cusses the related works in QoS aware cloud services composition.
Section 3 presents our novel Optimal Fitness Aware Cloud Service
Composition (OFASC) using an Adaptive Genotype Evolution based
Genetic Algorithm (AGEGA) for providing the solutions that satisfy
the balancing QoS parameters and connectivity constraints of ser-
vice composition. Section 4 discusses the results of experiments
followed by conclusions in Section 5.

2. Related work

Genetic algorithms effectively address the complications in the
optimization process of composition of services. Canforaetal. [11]
proposed a genetic algorithm (GA) based method to solve QoS-
ware web service composition. Yilmaz et al. [12] proposed im-
proved versions of genetic algorithms combined with Simulated
Annealing and Harmony search for QoS-aware service composi-
tion. Karimi et al. [13] proposed a genetic algorithm based ap-
proach for service composition using association rules and cluster-
ing. Seghir et al. [7] developed a hybrid algorithm for QoS-aware
cloud service composition, where GA is used for global search and
fruit fly optimization is used for local search. Mistry et al. [ 14] pro-
posed a dynamic metaheuristic optimization approach to compose
an optimal set of laaS service requests incorporating the factors
of dynamic pricing and operation cost modeling of the service
requests in cloud computing. Ding et al. [ 15] presented a GA-based
approach to achieve transaction and QoS aware optimal service
selection. However, if there are large number of services in the
repository, then the GA based methods result in poor readability
of the chromosomes and fail to predict the information related to
the semantics of services.

2.1. Applications of genetic algorithms in cloud, IoT, and other related
domains

Using a genetic algorithm to tackle resource scheduling and
management in cloud computing has received increasing attention
in recent years [16,17]. These genetic algorithms offer an NP-hard
problem global solution acceptable in a time frame proportional
to the number of variables. Thiruvenkadam et al. [ 18] proposed a
hybrid genetic algorithm for scheduling and optimizing virtual ma-
chines in cloud environment. The algorithm minimizes the number
of migrations when balancing the virtual machines, considering
more attention to the variable loads of hosts and dynamicity of
virtual machine allocations. Anastasi et al. [19] developed a cloud
brokering approach using a genetic algorithm to match services
and cloud resources and to aim at finding IaaS resources for sat-
isfying the QoS requirements of cloud applications in multicloud
environment. Mennes et al. [20] presented a distributed genetic al-
gorithm for placing a service on a hybrid cloud with multiple indi-
vidual smaller clouds and different capabilities. Guerrero et al. [21]
proposed a genetic algorithm approach using the Non-dominated
Sorting Genetic Algorithm-II, to optimize container allocation and
elasticity management in cloud architectures.

Genetic algorithms are widely applied in Internet of Things
(IoT) device selection and placement, thus connecting the real
world and cyberspace via physical objects that embed with various
types of intelligent sensors. Li et al. [22] proposed a decentralized
semantics-based service discovery framework, to locate trustwor-
thy services based on requester’s demands and changing context
requirements. Cuka et al. [23] proposed an integrated intelligent
system for [oT device selection and placement in opportunistic net-
works using Fuzzy Logic and Genetic Algorithm. Several resource
provisioning and optimal service placement algorithms in IoT and
fog environment are being developed by various researchers con-
sidering time, cost, or energy efficiency optimization [24-26]. Li
et al. [27] proposed a multi-population genetic algorithm to solve
the multi-criteria objective programming model and help to keep
the variety of population in the domain of IoT. Skarlat et al. [28]
modeled the service placement problem for [oT applications over
fog resources as an optimization problem, which explicitly con-
siders the heterogeneity of applications and resources in terms of
Quality of Service attributes. Kalsi et al. [29] developed a method
for key generation based on the theory of natural selection us-
ing Genetic Algorithm with Needleman-Wunsch algorithm and a
method for implementation of encryption and decryption based on
DNA computing.

2.2. Achieving higher QoS in cloud, IoT, and related services

This paper intends to provide a solution to service consumers
for selecting the best cloud service composition achieving the
optimal QoS values, satisfying the connectivity constraints and
balancing of QoS parameters. Similarly, different methods aiming
for achieving excellent QoS in offering services to consumers exist
in [oT and Smart Grid related fields. Wang et al. [30] proposed a
dependable time series analytics framework for IoT-based smart
grid, capable of providing a dependable data transforming from
cyber physical systems to the target database. Cao et al. [31] pro-
posed a QoS-aware service recommendation based on relational
topic model and factorization machines for IoT Mashup applica-
tions allowing developers to compose existing Web APIs to create
value-added composite Web services. Jatoth et al. [32] developed
a novel MapReduce based evolutionary algorithm with guided
mutation to solve QoS-aware Big service composition across vir-
tual and physical domains. Faheem et al. [33] proposed a novel
dynamic clustering based energy efficient and quality-of-service
(QoS)-aware routing algorithm, inspired by the real behavior of the
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bird mating optimization, to balance the data traffic and energy
consumption load evenly among clusters in the smart grid. Wu
etal.[34] developed a novel deviation-based neighborhood models
for QoS prediction by taking advantages of crowd intelligence to
obtain personalized quality of cloud/IoT services and assist users
selecting appropriate services. Tomovic et al. [35] presented a
software defined networking based architecture for virtualization
of IoT networks, allowing virtualization of IoT resources in order
to provide to users the intended service at the requested level of
quality.

3. Optimal fitness aware cloud service composition using an
adaptive genotypes evolution based genetic algorithm (OFASC-
AGEGA)

3.1. Adaptive genotype evolution using genetic algorithm

Adaptive genotype evolution is a progressive evolution strat-
egy [36] in which the evolution iterations are restricted to a mini-
mal number. A progressive evolution strategy considers the new
generation’s offspring that have better fitness than any of their
parents. The connectivity of QoS constraints and the balancing
of QoS parameters for cloud service composition motivated us to
define a genetic algorithm approach based on adaptive genotype
evolution that discovers a set of best-fit QoS-aware cloud service
compositions from among all possible compositions. It finds the fit-
ness of the resultant compositions of the GA evolution iterations as
described in Sections 3.2 and 3.1.1, and 3.3. Further compositions
are ranked according to their composition fitness value cf v, and the
top n compositions are selected from the sorted list. These selected
compositions are sorted in descending order of their associability
fitness value af v and are used in the same sort to finalize services
for further evolution or to recommend best compositions after
completion of the evolution.

3.1.1. Evaluating discrete uniform rank distribution as service fitness

Let P be a set of QoS parameters {p1, p2, .. ., pq} of each service
in the given cloud service set ST; = {s;1,...,Six}. Let the QoS
parameter P,y be the anchor parameter for ranking the cloud
services. The QoS parameters are classified into positive param-
eters (having higher values for representing higher utility level
(e.g., availability and reliability)) and negative parameters (having
higher values for representing lower utility level (e.g., cost and
response time) [37]. These positive and negative parameter values
are normalized as follows:

Pr — ming py
maxy py — miny p

maxy px — Dk
maxy py — miny p

for positive parameter

for negative parameter

Further, the cloud services related to a specific task are ranked
in descending order of the values of these QoS parameters. Each
cloud service is ranked in different positions under different QoS
parameters, which are used for measuring the discrete uniform
rank distribution (DURD). For each cloud service ST; of task T,
the discrete uniform distribution scope [38] of the QoS parameter
ranks can be measured using the following three parameters:

e Mean uR(Ts;) of QoS parameter ranks for the cloud service.

e Variance vQV(Ts;) of correlations between discrete parts of
the QoS parameter rank set for cloud service s; of task T. The
number of discrete partitions of the rank set is q.

e Deviation o QV(Ts;) of correlations between discrete parts of
the QoS parameter rank set for cloud service s; of a task T.

Measurement of mean of QoS parameter ranks for a service. Let
a rank set for a cloud service [p; € ST; A ST; € CS] be r(s;) =
[r(p1), r(p2), . .., r(pn)]. The service fitness value (sf v) of this cloud
service s; is explored in the following step. The mean uR(ts;) of the
ranks of all QoS parameters P is measured as follows:

|P| )
WUR(Ts;) = [ZH rip; € P)} (3.2)

|P|
Measurement of correlations between discrete partition of the QoS
parameter rank set. We partition the rank set r(s;) into g partitions,
which can be referred to as Q 1,(s;), Q2r(s;)» Q3r(s;) - - - » Qi(sy)- Then,
we find the correlation of each partition with all other partitions
and the covariance of these resultant correlations as follows:

[Algorithm 1: Correlations for each partition
v(Qs,) < ¢; {initializing a vector}
for each k:1,2,......q do

for eachj:1,2,....,q do
| p(Qc) < cor(Qkys;), Qirs)) :
end
v(Qs;) < cov(pQx) ; {adding covariance of the values of vector|
p(Qr) to v(Qs;).}

end

In Algorithm 1, po(Qy) is a vector of size g, and each entry of this
vector is the correlation between partition Qk,s;) and one of the
partitions Qjys;). v(Qs,) is a vector of size q, and each entry of this
vector is the covariance of the vector p(Qy) entries (correlations
observed between a part Qk; ;) and all parts of r(s;)).

Further, we find the mean of all entries in the vector v(Qy;) for
each service s; of a specific task T as follows:

|U(QTsi

[v(Qrs;)l

where v(Qry;) is a vector of size g and each entry of this vector is
the covariance of p(Qy). o(Qx) is a vector of correlations observed
between a part Qk,s;) and all parts of the rs(Ts;) entries.

vQV(Tsi) = (3.3)

3.1.2. Measurement of deviation of correlations between discrete par-
titions of the QoS parameters rank set

We find the deviation o QV(Ts;) of service s; of a task T as
follows:

v(Qrs,)

oQV(Ts;) = k=1 ((M(U(QTS,-)) - U(QTsi))k)z

|U(QTS,')|

where v(Qyy,;) is a vector of size g, each entry of which is the covari-
ance of the vector p(Qy) entries (the correlations observed between
a part Qk;s, and all parts of rsy;), and uQV/(Ts;) is the mean of the
vector U(Q'rlsi ). The pseudocode representation of DURD is shown
as Algorithm 2.

(3.4)

3.1.3. Service selection by DURD

We apply the processes explored in this section 3.1.1 for all
the available cloud services for a task T. We sort all the cloud
services by their 4R values in ascending order and discard the
cloud services with a iR value greater than the given threshold
(generally the average of the uR values for all services). Then, we
sort the remaining cloud services in ascending order of their vQV
values and discard cloud services with an vQV value greater than
the given threshold (generally the average of the vQV values for
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[Algorithm 2: Discrete Uniform Rank Distribution (DURD)
Ranks of cloud service: a set that contains ranks for each QoS
parameter of a cloud service.
Steps applied to all possible cloud services to a task:
for each task (T, Vk € 0,1,2,...,m)do
for each service (s;, Vi€ 0,1,2,...,n)do
(sl

UR(si) <« %ﬁ?‘)erm; {Mean of Ranks}
Ry, < pR(si); {Move uR(s;) as an entry to vector uRy, }
Partition the ranks set r(Ty) into q sets ;
for each partition (QjVj € 1,2,3,...,q)do

for each partition (QVl € 1,2,3,...,q)do

v(Qy,) <= Correlation(Q;, Q) ; {correlation of ranks}
P5(Q1) < v(Qs);

end

v(Qy;) < variance(ps,(Q:)); {Find variance p,(Q;)}
end
vVQ(Ty) < mean (v(Qy,)); {Find mean v(Qy,s, )}
oQ(ty) < deviation (U(ng)) ; {Find deviation v(@j)}
end
Sort (uRy,); {Sort the services Ascending Order} for each
services;,Vie 0,1,2,...,ndo
if (Rs;) < Threshold) then

| service_variance.add(s;);

end
end
Sort (service_deviation); {Sort service deviation} for each
servicesgvVd € 0,1,2,..., mdo

if (0Q(sq) < Threshold) then
| select_services.add(sg);
end
end
best_rank (select_ services); {Select best services based on
their average rank of QoS parameters}.
end

all cloud services). Afterwards, the remaining cloud services are
sorted in ascending order of their o QV values, and cloud services
with o0 QV values greater than the given threshold (generally the
average of the o QV values for all cloud services) will be discarded.
The cloud services surviving this DURD filtering process are those
that exhibit the best QoS fitness. These cloud services are then
sorted in ascending order of their uR values. An illustration of the
DURD model is presented in Appendix A.

3.2. Evaluation of associability fitness of the composition

Let us consider a set of possible service compositions C be
{c1, c2, €3, ..., cp}. The connection associability score (cas) of com-
position c; refers to the number of connections having associability
against the number of connections requiring associability (see [5]).
The associability fitness value af v(c;) is determined as follows:

1

afvla) = 1+ u(cas(c;), AC) (33)
where u(cas(c;), AC)is the mean of cas(c;) and AC. AC is the associa-
bility count, representing the total number of edges between tasks
that require associability in the target application of the service
composition. afv(c;) is the associability fitness of composition c;,
measured by normalizing the standard deviation observed from
cas(c;)and AC to 0 < afv(c;) < 1.The resultant standard deviation
is increased by 1 in order to avoid a divide-by-zero error.

3.3. Evaluation of overall fitness of the composition

The overall composition fitness of a composition is measured by
finding the service fitness values, the fitness score of the composi-
tion, and the composition fitness values and associability fitness
value.

3.3.1. Finding service fitness

The fitness values of the cloud services involved in a composi-
tion is measured as follows:

If

UR(Tise) < (Y i uR(Tjs))and
nQV(Tise) < (Y-, nQV(Tjsi))and (3.6)
O'Qv(TjSk M(ZLl O‘QV(TJS,‘))

then Tjs is considered to be fit.

) <
) <

3.3.2. Finding fitness score of the composition

In a given composition ¢ such that ¢ = T;5;3j € [1,2,3,...]
Vi € [1,2,3,...,]c|] (c being a composition of cloud services
related to all tasks in a sequence), if a cloud service of the com-
position is fit, then the fitness score of the composition fc(c) will
be incremented by 1. Then we select all compositions having a
fitness score less than a given threshold as an input for assessing
the discrete uniform service rank distribution.

3.3.3. Sorting by composition fitness and associability fitness values

The resultant compositions are sorted in descending order of
their composition fitness values cf v, and the one having the max-
imum best service compositions ratio (mbscr) is selected from the
best compositions mbsc among the resultant ordered composi-
tions. Then, the compositions mbsc are sorted in descending order
of their associability fitness af v, and the one having the maximum
best associability compositions ratio (mbacr) is selected from the
ordered mbsc.

3.4. Evaluating discrete uniform service rank distribution as compo-
sition fitness

This process depicts the uniform distribution of the ranks of
cloud services assessed under DURD for each service related to
the different QoS parameter considered. The process is similar to
DURD. DURD considers the ranks assigned to the QoS parameters
as the inputs to assess the service level fitness, whereas the discrete
uniform service rank distribution (DUSRD) considers the ranks
assigned to the cloud services to assess the composition fitness.

In order to assess the DUSRD of a cloud service S; of task t, we
measure the following three parameters:

e Mean value uR(c;) of the ranks of the composition.
e Correlations for each partition in a composition.
e Deviation of correlations in each composition.

3.4.1. Measuring mean value of ranks of the composition

Let the rank set of a composition ¢ = Tis;3j € [1,2, 3, ..., |Tis|]
Vie[1,2,3,...,]|c|](c being a composition of services related to
all tasks in a sequence) be rs(¢;) = [r(Ty5;3j € [1,2, 3, ..., |T1s]]),
r(Tasidie[1,2,3, ..., |Tas|]), ..., 1(TwmsjF € [1, 2,3, ..., [Tws|])].

Then, we find the mean of the ranks of all cloud services (uR) of
composition ¢;, defined as follows:

uR(c,—):( I (Tsi3j€l1,2,3, ... Tysl) ) (3.7)

[rs(si)l
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[AIgorithm 3: Correlation for each partition of composition (c;)

[Algorithm 4: Discrete Uniform Service Rank Distribution (DUSRD

v(Q.;) < ¢; {initializing a vector}
foreachk: 1,2, ...,qdo
P(Q;,) < ¢; {initializing a vector}
foreachj: 1,2,...,qdo
‘ p(Q(c,-)k) <~ Cor(ris(s,-)s ers(sl-)) )
end
v(Qg;) < cov(pQy); {adding covariance of the values of vector
2(Qx) to v(Qs;)}
end

3.4.2. Measuring correlations for each partition in a composition

We partition the rank set rs(c;) into q partitions, which can be
referred to as Q 1ys(¢;), Q2rs(c;)> Q3rs(cy)» - - - » Qllrs(c;)- Then, we find the
correlation of each part with all other parts and the covariance of
these resultant correlations as given in Algorithm 3.

p(Q(;),) is a vector of size g, and each entry of this vector is
the correlation between partition Qk,s;) and one of the partitions
Qlis(¢;) of 1s(c;). v(Qg;) is a vector of size g, and each entry of this
vector is the covariance of the vector p(Q,) entries (correlations
observed between a part Qkiy,) and all parts of rs(c;)).

Further, we find the mean of all entries of the vector v(Q,,) for
each composition ¢; as follows:

S ()
[v(Qg)

where v(Q,,) is a vector of size q and each entry of this vector is the
covariance of p(Qy, )- P(Q),) is a vector of correlations observed
between a part Qk;s(;) and all parts of the rs(c;) entries.

vQV(c) = (3.8)

3.4.3. Measuring deviation of correlations in each composition
We measure the deviation o QV|(;) of composition ¢; as follows:

[u(Qg;)I
_ k=1 (;L(U(ch)) - U(Qq)k)2
Qe = 0(Qq) 59)

The pseudocode representation of DUSRD is shown as Algorithm 4.

3.4.4. Compositions selection by DUSRD

We apply the processes explored in this section 3.4 for all com-
positions available as genotypes. We initially sort all compositions
by their 4R values in ascending order and discard the compo-
sitions with uR greater than the given threshold (generally the
average of the uR values for all cloud services). Then, we sort the
remaining compositions by their vQV values in ascending order
and discard compositions with an vQV value greater than the given
threshold (generally the average for all compositions). Afterwards,
the remaining compositions are sorted by their cQV values in
ascending order, and compositions with o QV values greater than
the given threshold (generally the average of the o QV values for all
compositions) will be discarded. The compositions surviving this
filtering process for assessing DUSRD are the set of new genotypes
for further GA evolution. An illustrated example of the DUSRD
model is presented in Appendix B.

3.5. Optimal fitness-aware service composition using AGEGA

The inputs for AGEGA are as follows:

e Asetoftasks CT = {Ty,T,, Ts, ..
application

., Tir;} involved in the given

Ranks of service: a set that contains ranks for each service of a
composition.
Steps applied to all possible tasks to a composition:
Generate_composition(set of tasks); {Generate possible
composition}
for each task(T;) do
| selected_services <— DURD(S;);
end
for each composition (¢c;, Vi€ 0, 1,2, ..., m)do
for each task (T;,Vj € 0,1,2,...,n)do
IS omvg ey
UR(T;) < %j;ﬁﬂmm)) {Mean of Ranks}
uR;; < uR(T;); {Move uR(T;) as an entry to vector uR,}
Partition the ranks set rs(c;) into q sets;
for each partition (Q;Vie 1,2,3,...,q)do
for each partition (Q;iVj € 1,2,3,...,q)do
v(Qr,) < Correlation(Q;, Q) ; {Correlation of ranks}
pr;(Qi) < v(Qr);
end
v(Qr;) < variance(pr,(Q)); {Find variance pr,(Q;)}
end
vVQ(c;) < mean (v(Qy,)); {Find mean v(Qy;s,)}
oQ(¢;) < deviation (v(Qy;)); {Find deviation v(Qr;)}
end
vVQ(c)) < mean (u(Qy,); {Find mean v(Qr,q,)}
0Q(c;) < deviation (v(Qy,)); {Find deviation v(Qy;)}
end
MRc < puR(ci); vVQ(C) < vVQ(ci);
0Q(C) < oQ(ci);
Sort(uR(C)); {Sort the services Ascending Order}
for each composition c;, Vi€ 0,1,2,...|C| do
if (uR(c;) < Threshold) then
| composition_variance.add(c;);

end
end
Sort (composition_variance); {Sort composition variance}
for each composition c;Vi € 0, 1, 2, ... |composition_variance| do

if (uVQ(c;) < Threshold) then
| composition_deviation.add(c;);
end
end
ort(composition_deviation); {Sort composition deviation}
for each composition s4Vd € 0, 1, 2, ... composition_deviation do
if (0Q(c;) < Threshold) then
| select_compositions.add(c;);
end
end
Best_rank (select_composition);

¢

e A set of available candidate cloud services CS = {ST; =
{s11,812,...,51i1, STo = {s21, 822, .. ., S2j} -+ ., STy = {Sp 1,
Sp2, ..., Spm}}, where i, j, and m denote the number of candi-

date cloud services in STy, ST, and STy, respectively

o Set of all possible compositions: C = {cy, ¢, C3, ..., Cc|}

e Associability count AC observed

e A set of task sets demanding associability ST' = {{ST;, STj,
ST, ...}, {STx, ST, ST, .. .}, .. .}

e Maximum evolution iteration threshold, met

Following are the preprocessing steps for AGEGA:

e Perform the service level fitness

Section 3.1.1).

calculation (see
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e Perform the composition associability fitness calculation (see
Section 3.2).

e Perform the composition fitness calculation (see Section 3.3).

e Sort the resultant compositions and select the best composi-
tions by composition fitness value and composition associa-
bility fitness value (see Section 3.4.4).

The proposed OFASC using Adaptive Genotypes Evolution-Based
GA is as follows (see Algorithms 5 and 6):

1. Find the common services from given any two compositions
such that a common service must not be the crossover point
if it currently has a desired associability in parent composi-
tions and does not retain that associability in the resultant
composition.

2. For all the common services found: (i) Divide the first and
second compositions in the pair having a common service
into two parts, denoted as Ip; and rp; from the first compo-
sition and Ip, and rp, from the second composition. Then,
build the two new compositions by connecting Ip; and rp,,
which forms the first one, and connecting Ip, and rp;, which
forms the second. (ii) Consider any of the newly formed
compositions to be best composition if its fitness is greater
than the fitness of any of the parent compositions.

3. If any new compositions are formed in step 2, then add all of
them to the composition set C.

4, Sort the composition set C and select the best compositions
by composition and associability fitness values.

5. Continue the adaptive genotype evolution process on C up
to the given maximum evolution iteration threshold met.

6. Verify the DUSRD (see Section 3.4) of each composition
among the resultant compositions.

7. Sort the resultant compositions and select the best compo-
sitions through fitness score, associability score, and DUSRD
(see Sections 3.3 and 3.4).

[Algorithm 5: The pseudo code representation of the OFASC
pc < true; {Best composition process}
met < 0; {Maximum evolution threshold}
while pc do
nC <« ¢;
for each composition {c;Vc; € C} find crossover points do
for each composition {¢;3(c; € C Aj # i)} do
| nC < AGEGA(c;, ¢j);
end
end

C < C; {Clone the C as C}
C < nC; {Adding new compositions to C}
DUSRD (C); {see section ??}
if C > C then

| pc <« false; {Equaling by definition}
end

end

4. Performance evaluation and results

To evaluate the scalability and effectiveness of the proposed
approach, we conducted experiments on a personal computer with
an Intel (R) core (TM) i5 2.60-GHz processor and 8 GB of memory,
running Windows 8.1. There are some benchmark data sets for
web services, [41] and [42], that are not suitable in the context of
OFASC-AGEGA because these benchmark data sets describe only
the values for response time and throughput. For our proposed
approach, we used a synthetic data set comprising the QoS pa-
rameters such as availability, security, accessibility, cost, integrity,
throughput, response time, and reliability. This synthetic data set

[AIgorithm 6: Adaptive Genotypes Evolutions based Genetic Algo-
rithm (AGEGA)
AGEGA(C,‘, Cj)
BEGIN
Cij < ¢; {a set of compositions formed from crossover of c;, ¢;}
for each service s, Vs, € c¢; do
cop < ¢; {set of crossover points}
for each service s;Vs; € c; do
if ((sk = sl)&(a(e(5k71*>5k)) = O&a(e(skﬂslpﬂ)) =
0)&((1(6(5171—)5[)) = O&a(e(sl—>51+1)) = O)) then
{(ale(s,_;—s)) = O&a(e(s, s, ,)) = 0) indicates that the
Sk is not having associability with predecessor and
successor services in composition}
{(a(e(s,_—s)) = 0&a(e(s;—s,,,)) = 0) indicates that the s
is not having associability with predecessor and
successor services in composition}
COp <— Sk;
end
nd
or each cpVcp € cop do
Cross ¢; at cross point cp and form <E and ¢;;
Cross ¢; at cross point cp and form (CT and ¢ ;
divide ¢; in to two parts at cross point cp, and the left part
label as (E and right part as ?,) ;
divide ¢; in to two parts at cross point cp, and the left part
label as (CT and right part as ?,) ;
Form composition ¢ as
Ck < @5 Ck < i3 Ck < CP; Ck < G5 Cij < Ci;
Form composition ry as
< 0 < G0 < Cp;C < G 5 Cij < Ci
end
for each new composition cVc € ¢;; do
if (fs(c) < fs(ci)&fs(c) < fs(c;)) then
| delete c form ¢;j;
end
end
return ¢;;;
end
END

- "

comprises 2250 web services. We used the QoS data set described
in [43] to assign the values to the services. The QoS data set has
various QoS parameters and more than 2500 web services. From
this data set, we randomly selected 2250 web services and their
corresponding QoS parameter values. The missing QoS parame-
ters and their corresponding values were randomly generated.
Different combinations of tasks in the range of 70 (sparse) to 250
(dense) were used to conduct experiments in order to assess the
performance. Each task comprises 7 to 16 services. We considered
450 different service composition scenarios. The number of tasks
given for each service composition was between 7 and 25. We
tested this data set using the Shapiro-Wilk test, and the results
revealed that the given data set was normally distributed [44].
Several researches adopted synthetic data sets to validate their
methods in service composition [45-49]. The empirical analysis
of our proposed approach was implemented in Java. Statistical
measures such as discrete uniform rank distribution and discrete
uniform service rank distribution of the discovered compositions
were performed using the R language. In our evaluations, several
parameters were fixed for all approaches, controlling the execution
time and specifying the population size. We set the population size
to 100. Each experiment was executed continuously 30 times, and
the mean of each run was duly noted due to the stochastic nature
of algorithms. Table 1 presents the list of approaches (with name,
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Table 1
Compared approaches with parameter settings.
Approach Abbrevations Parameter Setting
Genetic Algorithm [11] GA Crossover = 0.8, mutation = 0.001 and random selection approach is applied
Orthogonal Genetic Algorithm [39] OGA Crossover P, = 0.1, mutation P, =0.02 and F=4
Adaptive Genetic programming [40] AGP population size = 30, gnax = 500, k. = 2.5, k;y, = 2.0,

Crossover P. = 0.9, mutation P,,, = 0.01

Genetic algorithm with simulated GASA | GAHS
annealing | Genetic algorithm with

Harmony Search [12]

Transactional Genetic Algorithm [15] TGA

Crossover = 0.8, mutation = 0.01, SA application = 0.03

population = 50, Crossover = 0.9, mutation = 0.1, n (incentive factor = 0.5) and p (penality factor = 0.3)

Table 2

Average fitness values observed for our proposed approach and other compared approaches.

Mean of the fitness values

Test Cases. Number of Abstract Services GA TGA GASA GAHS AGP 0OGA OFASC-AGEGA
65 10 0.327 0.3261 0.3333 0.323 0.3241 0.3875 0.4138
54 0.3166 0.3156 0.3159 0.3071 0.3229 0.3357 0.4299
49 30 0.2681 0.3083 0.3348 0.2369 0.2912 0.3132 0.4108
61 0.3297 0.2901 0.3451 0.2053 0.2874 0.3128 0.4584
65 50 0.2791 0.3049 0.3150 0.3083 0.3181 0.3351 0.4330
54 0.3138 0.3174 0.329 0.3138 0.3218 0.3315 0.4603
49 20 0.2873 0.2870 0.3343 0.3239 0.3189 0.3437 0.4679
61 0.3027 0.2907 0.3234 0.3358 0.3298 0.3473 0.4897
65 90 0.3071 0.3116 0.3435 0.3268 0.3014 0.4757 0.4983
54 0.327 0.3261 0.3333 0.323 0.3241 0.5075 0.5138
49 100 0.3235 0.4061 0.3781 0.3643 0.3591 0.5248 0.5456
65 0.327 0.4261 0.3833 0.3834 0.3739 0.5784 0.6238
abbreviations, and parameter Settings) that we Compared Wlth our Process Completion Time observ;ri)g(:isdivergem GA based Composition
approach. 350
We evaluated the performance of our proposed algorithm in the .
following ways: (i) Evaluated the average fitness values by varying 0
the number of abstract services. (ii) Evaluated the process comple- £ 20
tion time and computational complexity for a varying number of § § ~-®-- OFASC-AGEGA
. = 200 s —--
abstract services. : oo
We compare our propose approach OFASC-AGEGA with other 2 150 _ Pl —e
approaches such as GA [50], TGA [15], GASA [12], GAHS [12], ERN e 7 i’i::
. 2 . .
AGP [40], and OGA [39]. Table 2 illustrates the average fitness ] 2 g 2 | .eTGA
values for different test cases with 10, 30, 50, 70, 90, and 100 50
abstract services. ol

The completion time of our proposed approach is presented in
Fig. 1. Based on Fig. 1, we observe that our proposed approach
takes less time to complete than other contemporary approaches.
The completion times for TGA, GAHS, GASA, GA, AGP, and OGA to
obtain the best solutions were 317.559, 221.898, 210.244, 159.920,
95.795, and 81.640 s respectively, whereas the completion time for
the OFASC-AGEGA evolution iterations was 48.086 s. The compu-
tational time taken by the adaptive genotype evolution strategy is
noticeably minimal (see Fig. 2) compared to other approaches [39,
50,40,12,15]. In GA and TGA, with each iteration, a new population
is generated, and the individual fitnesses are evaluated (based
on fixed and predetermined crossover and unguided mutation).
These processes cause GA and TGA to converge slowly and to
become easily stuck in local maxima. In GAHS and GASA, with
each iteration, a updated population is generated, and the indi-
vidual fitnesses are assessed (based on predetermined crossover
and unguided mutation). It takes more time because of the higher
number of parameter turnings and the single-point crossover. In
the OGA algorithm, the orthogonal method is used to produce the
new population, and the crossover strategy is employed on the two
parents, thus causing the process to consume more time.

The evolution complexity obtained in our proposed model is
linear (see Fig. 2). As observed from Figs. 1 and 2, our approach
is more effective, scalable, and robust than other approaches.

The time complexity of OFASC-AGEGA is O(n), whereas the ob-

served complexity of the other models ranges as O(n?) or O(n log(n)).

The fitness distribution (DURD) of the services involved in the 10

Number of Abstract Services

Fig. 1. Process completion time observed for OFASC-AGEGA with other approaches.

Average of process time taken for each 10 evolutions

==®==OFASC-
AGEGA

= # = OGA
AGP

—— GA

GASA

Time in seconds

GAHS

--8--TGA

Number of Abstrct Services

Fig. 2. Computational complexity observed for OFASC-AGEGA with other ap-
proaches.

best compositions recommended by OFASC-AGEGA is optimal, in
contrast to other approaches (see Fig. 4).

The accuracy of the composition recommendations of OFASC-
AGEGA is assessed using probability theory [51]. The success ratio
of a composition is measured as the average success ratio of the
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0351 services included in that composition. The assessment of the accu-
racy of a composition is defined as follows:
— GA
— ICs]
TGA 2121(1351 S (C,’VCi € Cs))
m— GASA sups(S;) = C (4.1)
ICs]
m— GAHS
s AGP where sups(S;) indicates the ratio (positive support) of service §;
— OGA in the set of compositions Cs that are labeled as S, ¢; indicates
— ot~ OFASC- the ith composition of set Cs, and |Cs| indicates the number of
AGEGA compositions labeled as S.
10 30 50 70 90
Number of Compositions |Cr|
Supe(S) > i(13S; € (¢Vei € Cr)) (42)
FOj) = .
Fig. 3. Average RMSE of the recommended compositions. J |Cr|
where supr(S;) indicates the ratio (negative support) of service §;
in the set of compositions Cr that are labeled as F, ¢; indicates
the ith composition of set Cr, and |Cr| indicates the number of
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Fig. 4. Fitness distribution (DURD) of service involved in 10 resultant compositions.
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Table 3
T-Test results for OFASC-AGEGA and other compared approaches.

Approaches GA TGA GASA GAHS AGP OGA OFASC-AGEGA

GA ¥ * * * * ¥ *

TGA 0.3213 * * * * * *
(0.36103)

GASA T-Value/P-Value 0.12301 0.12411 * * * * *
(0.04559) (0.06998)

GAHS 1.6894 1.7849 1.6894 * * * *
(0.05263) (0.00547) (0.052631)

AGP 0.1872 0.1904 0.1807 0.20450 * * *
(0.40913) (0.41131) (0.42913) (0.4340)

OGA 1.50505 1.69982 1.53129 2.77954 1.62635 * *
(0.07327) (0.05163) (0.06998) (0.00547) (0.059058)

OFASC-AGEGA 4.5245 1.85282 4.429244 5.96342 4.83606 1.85282 *
(0.00008) (0.03869) (0.00015) (0.00001) (0.000039) (0.03869)

Table 4
Wilcoxon signed-rank test results for OFASC-AGEGA and other compared approaches.

Approaches GA TGA GASA GAHS AGP OGA OFASC-AGEGA

GA * * * * * * *

TGA —1.1767 * * * * * *
(0.119)

GASA Z-Value/ P-Value 0.7452 0.3922 * * * * *
(0.22663) (0.3482)

GAHS 3.0594 3.0594 3.0594 * * * *
(0.00111) (0.00111) (0.00111)

AGP 0.6276 3.0594 0.2353 3.0594 * * *
(0.26435) (0.00111) (0.40517) (0.00111)

OGA 2.8241 3.0594 2.7456 3.0594 2.8241 * *
(0.0024) (0.00111) (0.00298) (0.00111) (0.00241)

OFASC-AGEGA 2.9025 3.0594 2.9025 3.0594 2.9025 2.1181 *
(0.00187) (0.00111) (0.00187) (0.00111) (0.00187) (0.017)

compositions labeled as F.
SR(s;) = sups(sj) — supe(s;) (4.3)

where SR(s;) indicates the success ratio of a service s; in composi-
tion formation. Further, the success ratio of a composition ¢; can be
measured as follows:

il (SR(s;)3s; € i)

SR(ci) = == (4.4)
|cil

where SR(c;) indicates the success ratio of composition c¢;, which
is the average of the success ratios of services involved in com-
position ¢;. The compositions recommended by the OFASC have a
lower root mean square error (RMSE) [51,52] than the composi-
tions recommended by [39,50,40,12,15] (see Fig. 3). The RMSE of a
composition is measured as follows:

I \/ EEEE s

where osr indicates the optimal success ratio (which is 1 in this
context) and n represents the n best compositions recommended.
Fig. 3, we observed that the RMSE values of the 90 compositions for
GA, TGA, GASA, GAHS, AGP, and OGA are 0.2690, 0.2663, 0.2515,
0.2489, 0.2443, and 0.2363 respectively, whereas the RMSE value
for OFASC-AGEGA is 0.1486.

We performed statistical tests (parametric and non-parametric)
for our proposed OFASC-AGEGA and other contemporary algo-
rithms to ascertain whether the results of the proposed algorithms
are statistically significant. The T-test [53,54] and the Wilcoxon
signed-rank test [55] were applied to evaluate whether the best
mean values obtained for all algorithms have a significant dif-
ference with 58 degrees of freedom at a 1% level of significance.
The results of the T-test and the Wilcoxon signed-rank test for
all methods are presented in Tables 3 and 4, respectively, for 100
abstract services (with 100 candidate services). Based on Table 3,

the values procured are statistically significant (all T-values are
positive, and the P-values are near to zero). Based on Table 4,
the values procured are statistically significant (all Z-values are
obtained by positive ranks, and the P-values are near to zero).

5. Conclusions

In this article, we presented an Optimal Fitness Aware Cloud
Service Composition using an Adaptive Genotypes Evolution based
Genetic Algorithm. This approach assesses the fitness of candidate
cloud services as well as the fitness of service compositions balanc-
ing the QoS parameters and satisfying the connectivity constraints.
Our proposed method determines the service fitness and the ser-
vice composition fitness by using DURD and DUSRD respectively,
which assist in pruning services and compositions having non-
optimal solutions and select only the best compositions, thereby
gradually reducing the search space. The empirical study of our
approach illustrates the better performance of our approach in
comparison with the existing approaches. However, if there are
very large number of candidate cloud services in the composition,
our proposed method may result in an increase of search space
within local optima. In future, we plan to work on more efficient
dynamic services composition startegies considering multiple ser-
vices connectivity constraints and multiple QoS parameters (sim-
ilar to [5]). Further, we would like to develop new approaches
for efficient cloud service composition on various parallel data
processing platforms.

Appendix A. Discrete uniform rank distribution (DURD) based
service selection

See Tables A.5-A.14.
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Table A.5

Services, metrics and their ranks, mean and mean of four quarters.
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Table A.6

Q1 correlation with Q2, Q3 and Q4 and the variance of these correlations.

cor(Q1,Q1)
cor(Q1,Q2)
cor(Q1,Q3)
cor(Q1,Q4)

1
—0.28
0.34
—0.62

1

—0.1
—0.58

0.32

1

—0.24

0.38

—0.39

1

—0.61
—0.05
—-0.41

—-0.63
0.18
—0.58

0.32

—0.26

0.32
0.79
—0.34

—0.58
0.05
—0.59

—0.26

-0.22

0.73
0.32
0.16

VAR

0.51

0.45

0.41

0.51

0.59

0.3

0.35

0.56

0.35

0.15

Table A.7

Q2 correlation with Q1, Q3 and Q4 and the variance of these correlations.

cor(Q2,Q1)
cor(Q2,Q2)
cor(Q2,Q3)
cor(Q2,Q4)

0.28
1

0.03
0.68

0.04

1

0
—0.51

0.24

1

0.69
—0.44

0.22

1

0.98
—0.42

—0.32

—0.32
0.74

—0.31

0.52
0.75

—0.87

—0.37
—0.06

—0.57

0.65

—0.11

—0.05
0.75

—0.06

0.95
—0.02

VAR

0.18

0.4

0.39

0.47

0.48

0.32

0.62

0.48

0.31

0.35

Table A.8

Q3 correlation with Q1, Q2 and Q4 and the variance of these correlations.

cor(Q3,Q1)
cor(Q3,Q2)
cor(Q3,Q3)
cor(Q3,Q4)

0.8
0.03
1
0.55

—0.65
0

1

0.48

0.21
0.69

1
-0.18

0.3
0.98

1
—0.31

0.25
—0.32

—-0.48

0.17
0.52

—-0.14

0.55
—0.37

0.62

-0.77
0.65

0.16

-0.19
—0.05

—0.58

0.2
0.95

—0.11

VAR

0.17

0.49

0.27

0.39

0.45

0.24

0.34

0.59

0.46

0.3

Table A.9

Q4 correlation with Q1, Q2 and Q3 and the variance of these correlations.

cor(Q4,Q1)
cor(Q4,Q2)
cor(Q4,Q3)
cor(Q4,Q4)

0.35
0.68
0.55
1

—-0.78
—0.51
0.48

1

0.76
—0.44
-0.18
1

0.76
—0.42
—0.31
1

0.25
0.74
—-0.48

—0.63
0.75
-0.14

—0.11
—0.06
0.62

—0.18

0.16

—0.35
0.75
—0.58

0.22
—0.02
-0.11

VAR

0.08

0.7

0.49

0.53

0.43

0.58

0.29

0.27

0.62

0.25

Table A.10

Average and standard deviation of variance of all 4 quarters and average rank.

Avg-var
Stdev-var
Avg-rank

0.14
0.05
4.9

0.56
0.14
5.35

0.33
0.15
5.45

0.38
0.17
4.1

0.41
0.08
4.9

0.41
0.16
5.5

0.48
0.19
5.85

0.49
0.16
5.5

0.44
0.13
6.7
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Table A.11
Services and the mean and standard deviation of each quarter variance with other quarters (Q1, Q2, Q3
and Q4) and average of service QoS metric ranks.
Sia avg-var stdev-var avg-rank
151 0.138339 0.050106 4.9
t152 0.562507 0.141016 5.35
t153 0.326343 0.147882 5.45
t154 0.380454 0.170691 4.1
t1Ss 0.412157 0.08367 49
t156 0.411517 0.156025 55
t157 0.479163 0.192796 5.85
t1Ss 0.492576 0.158607 5.5
t1Sg9 0.440441 0.13031 6.7
Average 0.392277 0.129055 5.275
Table A.12
Ordering and filtering the services by their average rank.
Sid Avg-var Stdev-var Avg-rank
t154 0.380454 0.170691 4.1
t1S10 0.279272 0.059449 4.5
t151 0.138339 0.050106 4.9
t1S5 0.412157 0.08367 49
Above the Average Rank
t152 0.562507 0.141016 5.35
t153 0.326343 0.147882 5.45
t1S6 0.411517 0.156025 55
t1Ss 0.492576 0.158607 55
t157 0.479163 0.192796 5.85
t1S9 0.440441 0.13031 6.7
Average 0.392277 0.129055 5.275
Table A.13
Ordering and filtering the selected services by variance average.
Sia Avg-var Stdev-var Avg-rank
t151 0.138339 0.050106 49
t1S10 0.279272 0.059449 45
t154 0.380454 0.170691 4.1
Above the average of variance
t1s5 0.412157 0.08367 49
Table A.14
Services with Discrete Uniform distribution of QoS metric Ranks (t1s1, t1s10) and optimal service (t1s10)
Sid Avg-var Stdev-var Avg-rank
t151 0.138339 0.050106 49
t1510 0.279272 0.059449 45
Above the average of variance deviation
t1s4 0.380454 0.170691 4.1
Table B.15
Compositions with desired fitness score and ranks of the involved services.
cl c2 c3 c4 c5 c6 c7 c8 c9 c10
sty 5 5.06 5.09 5.06 4 5.08 4.07 6.03 6.04 5.05
sty 6.09 5.08 4.01 5.01 4.08 5.09 4.05 6.07 4.08 5.05
st3 5.08 5.06 6.08 4.07 4.05 5.09 5.02 4.04 6.01 6.06
Sty 4.01 4.06 4.1 4.02 6 6.08 5.05 5.08 4.09 4.08
Sts 6.05 5.01 4.03 6.03 4.07 4.08 5.04 6.05 5.07 6.03
stg 6.07 5.02 6.07 6.08 4.03 5.01 4.01 4.05 5.09 6.09
sty 5.03 4.02 5.05 6.03 4.06 4 4.06 4.07 5.06 6
Stg 4.03 4.05 5.08 5.1 5.01 5.02 6.05 6.08 6.08 6.02
Stg 5.02 5.04 5.05 6.02 6.04 5.07 6.06 5.08 5.02 5.01
Stio 5.04 5.01 5.09 5.01 5.06 6.02 6.03 5.09 5.05 4.05
st11 4.06 6.01 5.02 6.02 4.04 6.01 5.06 6.05 6.03 4.08
St12 4.01 5.1 4.09 5.07 5.06 5.01 6.07 4.08 4.08 6.03
stz 4.07 5.01 6.02 4.06 5.09 6.07 4 5.02 4.08 5.09
St14 5.09 4.04 4.07 6.01 6.09 4.06 6.02 6.03 6.08 4.02

(continued on next page)
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Table B.15 (continued).

C. Jatoth, G.R. Gangadharan and R. Buyya / Future Generation Computer Systems 94 (2019) 185-198

cl c2 c3 c4 c5 c6 c7 c8 c9 c10
St1s 5 5.01 6.1 6 6.08 5.02 6.06 4.06 5.07 6.01
stie 5 4.03 6 5.1 4.04 4.1 5.01 5.03 5.08 4,09
st17 6.02 4.03 6.01 5.06 6.04 6.09 4.1 6 5.05 4.08
Stig 6.08 4.07 4.1 4.07 5.04 4.06 5.06 6.07 5.06 5.07
st1g 5.03 4.02 6.08 6.07 6.09 5.08 5.07 4.01 6.04 4,02
Stao 4.03 4.03 4.07 4.01 5.07 6.02 4.07 4.07 6.03 4.02
Table B.16
Q1 correlation with Q2, Q3 and Q4 and the variance of these correlations.
cor(Q1,Q1) 1 1 1 1 1 1 1 1 1 1
cor(Q1,Q2) —0.03 —0.46 0.28 —0.27 0.81 —0.48 1 —0.87 0.58 —-0.12
cor(Q1,Q3) -0.3 0.8 0.52 0.46 0.56 —-04 -0.11 —0.27 0 0.61
cor(Q1,Q4) —0.05 0.47 -0.39 —0.46 0.58 —0.34 0.19 -0.3 —0.44 0.55
VAR 0.33 0.42 0.34 0.45 0.04 0.5 0.32 0.62 04 0.22
Table B.17
Q2 correlation with Q1, Q3 and Q4 and the variance of these correlations.
cor(Q2,Q1) —0.03 —0.46 0.28 —0.27 0.81 —0.48 1 —0.87 0.58 —0.12
cor(Q2,Q2) 1 1 1 1 1 1 1 1 1 1
cor(Q2,Q3) —0.02 —0.04 0.02 0.38 0.8 —0.02 —0.12 —0.03 —0.56 —0.27
cor(Q2,Q4) —0.45 —0.65 0.36 0.87 0.46 —0.03 0.18 0.02 —0.45 0.43
VAR 0.38 0.54 0.17 0.33 0.05 0.39 0.33 0.58 0.59 0.33
Table B.18
Q3 correlation with Q1, Q2 and Q4 and the variance of these correlations.
cor(Q3,Q1) -0.3 0.8 0.52 0.46 0.56 —0.4 —0.11 -0.27 0 0.61
cor(Q3,Q2) —0.02 —0.04 0.02 0.38 0.8 —0.02 —0.12 —0.03 —0.56 —0.27
cor(Q3,Q3) 1 1 1 1 1 1 1 1 1 1
cor(Q3,Q4) —0.74 0.17 —0.93 0.46 0.66 —0.62 —0.62 —0.26 0.49 0.02
VAR 0.54 0.25 0.68 0.08 0.04 0.52 0.47 0.36 0.45 0.33
Table B.19
Q4 correlation with Q1, Q2 and Q3 and the variance of these correlations.
cor(Q4,Q1) —0.05 0.47 —0.39 —0.46 0.58 —0.34 0.19 -0.3 —0.44 0.55
cor(Q4,Q2) —0.45 —0.65 0.36 0.87 0.46 —0.03 0.18 0.02 —0.45 0.43
cor(Q4,Q3) —0.74 0.17 —0.93 0.46 0.66 —0.62 —0.62 —0.26 0.49 0.02
cor(Q4,Q4) 1 1 1 1 1 1 1 1 1 1
VAR 0.58 047 0.71 0.44 0.05 0.5 044 0.37 0.51 0.16
Table B.20 Table B.21
Average and standard deviation of variance of all 4 quarters and average rank of the Ordering and filtering the compositions by their average rank.
services involved in composition. Compositions Avg-Var Stdev-Var avg-rank
Compositions Avg-Var Stdev-Var Avg-Rank o 0.42 0.13 464
c1 0.46 0.12 4,99 Cs 0.05 0.01 495
(o) 0.42 0.13 4.64 =) 0.46 0.12 4,99
c3 0.48 0.26 5.06 ¢ 0.39 0.07 5
Ca 0.33 0.17 52 C10 0.26 0.08 5
Cs 0.05 0.01 4.95 c3 0.48 0.26 5.06
G 048 0.06 5.1 Compositions with rank above the mean
c; 0.39 0.07 5
cg 0.48 0.14 5.1 G 04 0.1 5.2
Co 0.49 0.08 521 Cs 048 0.14 5.1
10 0.26 0.08 5 Ca 0.33 0.17 5.2
Co 0.49 0.08 5.21
Average 0.384 0.112 5.025
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Table B.22
Compositions with Discrete Uniform Service Rank distribution (c5, c7, c9, ¢8, c10,
c4 and c1) and optimal compositions (c5, c7, ¢9, 8, ¢10) to reinitiate GA evolution.

Avg-Var Stdev-Var Avg-Rank
Cs 0.05 0.01 4.95
C10 0.26 0.08 5
c7 0.39 0.07 5
Compositions with average variance above the mean
[ 0.42 0.13 4.64
(=} 0.46 0.12 4.99
c3 0.48 0.26 5.06

Appendix B. Discrete uniform service rank distribution (DUSRD)

based composition selection

See Tables B.15-B.22.
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