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Abstract: Cloud computing is distinguished from such conventional computing paradigms as 
grid computing and cluster computing in that it provides a practical business model for customers 
to use the resources remotely. It is natural for service providers to allocate the pooled cloud 
resources dynamically among the differentiated customers to maximise their revenue. This paper 
addresses the problem of the revenue maximisation through the SLA-aware resource allocation. 
Firstly, two TSF (Time Service Factor) based pricing models are proposed since TSF is a widely 
used metric to determine the billings of internet services with variable performance. Then the 
resource allocation problem is formulised with queuing theory and its optimal solutions are 
proposed. The optimal solution considers various Quality of Service (QoS) parameters such as 
pricing, arrival rates, service rates and available resources. Finally, the experiment results, both 
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resource allocation solutions and shown that our algorithms outperform the related work. 
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1 Introduction 

Cloud computing is a technology that uses remote centralised 
servers via internet, whereby all applications are provided as  
a service. By means of cloud computing, customers can 

expand or shrink resources for their applications adaptively 
and simultaneously save themselves from the complex  
IT management and maintenance. Cloud computing makes 
it possible for any company or consumer to operate 
sophisticated and expensive applications without having  
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to purchase, install and maintain the actual software and 
hardware. 

From the perspective of service providers, cloud is a 
pool computing resources providing services for end-users. 
The goal of cloud providers is to lease various services and 
obtain the revenue. The business model is the key point to 
distinguish cloud computing from conventional distributed 
computing paradigms (Gong et al., 2010). Cloud services 
are delivered to customers in a ‘prepaid’ or ‘pay-as-you-go’ 
manner. The customers only rent the required resources or 
services and only pay for the consumed services.  

This paper considers two scenarios: (1) some big 
multinational corporations rent the IT infrastructure and 
services from cloud as a virtual data centre for their 
branches all over the world; (2) a cloud provides electronic 
transaction services for some small electronic commerce 
companies. 

Under both scenarios, Service Level Agreement (SLA) 
plays an indispensable role in facilitating the transactions 
between customers and service providers. Consumers indicate 
the required service level through Quality of Service (QoS) 
parameters, which are noted in SLAs established with 
providers. SLA usually specifies a common understanding 
about responsibilities, guarantees, warranties, performance 
levels in terms of availability, response time, etc. A pricing 
model, including the pricing mechanism and penalties in case 
of non-compliance of SLA, is also specifically defined in 
SLA. The cloud services are usually charged according to 
achieved performance level. For example, Amazon EC2 
offers three types of compute services i.e., on-demand,  
spot and reserved, at different prices based on their 
service/performance levels. 

We define a service instance as a combination of a 
customer and a certain type of rented service with binding 
SLA. The service instances certainly have different attributes 
such as arrival rate, execution time, performance requirement 
and pricing mechanism. Even for the same service instance, 
its arrival rate can vary with different distributions at 
different times.  

To a service provider, the proper resource allocation 
among the service instances is of vital importance because 
the revenue can vary quite widely under different allocation 
strategies even with the same resources. Therefore, a 
fundamental problem faced by any cloud service provider is 
how to maximise their revenue by managing resource 
allocation and providing differentiated performance levels 
dynamically based on SLAs and measurable service 
attributes.  

This paper focuses on how a Cloud data center 
maximises the SLA-based revenue by proper resource 
allocation and two optimal allocation algorithms are 
presented. The basic idea in this paper is to re-allocate the 
resources among different service instances adaptively 
based on the dynamically collected information. Our main 
contributions in this paper include: 

1 We have proposed a Queuing Theory based mathematical 
model to formulate the resource allocation problem.  
The formulation models the application situations with 

various parameters such as resource quantity, request 
arrival, service time and pricing model.  

2 We have proposed two optimal pricing mechanism 
based resource allocation algorithms, by which cloud 
providers can maximise their revenue given a pricing 
model. The algorithms outperform related work under 
any situation as they are obtained from the theoretical 
analysis but not experience or inspiration. 

The remainder of this paper is organised as follows. Section 2 
presents some related work. Section 3 introduces two 
pricing models in terms of TSF (Time Service Factor). 
Section 4 formulates the problem of resource allocation and 
provides the exact answers to these two problems. In 
Section 5, we have carried out some simulations to verify 
our solutions. Finally, Section 6 concludes our paper. 

2 Related work 

Cloud computing provides the practical business models  
to facilitate the trades between providers and customers, 
which distinguishes cloud computing from previous typical 
computing paradigms (Gong et al., 2010). Therefore, SLA 
plays an important role in that it provides mechanisms and 
tools for customers to express their requirements and 
constrains such as response time and price scheme. It is very 
natural but challenging for service providers to transform 
the service-oriented contract metrics into resource-oriented 
metrics and allocate the resources dynamically among the 
customers, thereby maximising the revenue. Buyya et al. 
(2009) argues that commercial offerings with clouds must 
be able to derive proper market-based resource management 
strategies and leverage VM (virtual machine) technology to 
assign resources dynamically. 

There is an extensive literature on resource management 
techniques for commercial data centres. Utility is often  
used to evaluate resource allocation, especially when the 
objectives and criterion are multi-dimensional. Amato et al. 
(2013) proposed a touristic context-aware recommendation 
system by means of cloud computing infrastructure that 
allows to process big collections of data and numerous user 
accesses. Walsh et al. (2004) discussed a distributed 
architecture for dedicated data centre with dynamic virtual 
pool. However, it emphasised on the utility of resource 
usage rather than the utility of data centre. Buyya et al. 
(1997) proposed a QoS-aware resource allocation model Q-
RAM to maximise the utility under multi-dimensional QoS 
constraints. Q-RAM was further enhanced with scalability 
and ability (Ghosh et al., 2003; Hansen et al., 2004). 
Householder et al. (2014a, 2014b) have proposed the 
oversubscription technology in cloud infrastructure to 
diminish the sum of unutilised resources. 

Many works illustrated how to meet the QoS and SLA 
requirements by proper resource allocation. Daniel et al. 
(2001) and Mohammed and Daniel (2005) proposed an 
approach based on hill climbing techniques to cope with 
short-term fluctuations in the workload and guide the search 
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for the best combination of configuration parameters of a 
multilayered architecture. Chandra et al. (2003) presented 
techniques for dynamic resource allocation in shared  
web servers. Levy et al. (2003) presented a prototype 
implementation with performance management, where cluster 
utility was used to encapsulate business value. The system 
dynamically allocates server resources, balances the  
load among multiple classes according to performance 
demand. Li et al. (2005) took the minimisation of resource 
consumption as the objective and proposed a strategy for 
autonomic computing to meet requirements in terms of 
response time and server utilisation. Kertesz et al. (2014) 
presented a self-manageable architecture for SLA-based 
service virtualisation that provides a way to ease interoperable 
service executions in a distributed and virtualised world of 
services. Garg et al. (2011) proposed a technique to maximise 
the utilisation of Cloud data centre with different SLA 
requirements, where utilisation is indicated by the number 
of used hosts for a given workload.  

Moreover, many works considered the economic issues 
related to SLAs. Goudarzi et al. (2012) considered a 
resource allocation problem, which aimed to minimise the 
total energy cost of cloud system while meeting SLAs. 
Zhang and Ardagna (2004) proposed a resource allocation 
controller to maximise the provider’s revenues associated 
with multi-class SLA, where the revenue depended on 
discrete QoS levels. Liu et al. (2001) proposed a theoretical 
model to maximise the revenue of a hosting platform 
subject to multi-class SLAs. Püschel et al. (2010) presented 
a framework that linked technical and economical aspects to 
the management of computational resources. It combined 
some technical methods such as dynamic pricing, different 
job priorities, and client classification into an economically 
enhanced resource management, which increases the revenue 
for the local resource sites. Villela et al. (2007) studied how a 
service provider should allocate the application tier of an  
e-commerce application subject to QoS constraints. Our work 
is different from them in that we adopt a continuous price 
function and provide the formal precise answer to the 
problems. Decentralised economic approaches are proposed 
in (Goiri et al., 2012; Bonvin et al., 2011) to utilise the 
resources dynamically to meet SLA performance and 
availability goals in a federated cloud.  

There were several works sharing the similar scenarios 
with our work. Zhu et al. (2001) proposed an allocation 
strategy of server resources among customers to minimise 
the mean response time. However, this work did not 
consider the economic model, thereby the parameter of 
weight q in optimal solution lacks of the specific practical 
meaning. Goudarzi and Pedram (2011) and Wu et al. (2011) 
also addressed the problem of SLA-based resource allocation. 
However, they emphasised the situation where services have 
multi-dimensional resources such as memory, bandwidth and 
CPU. This paper masks the resource diversity. The work of 
Mazzucco (2009) is similar to ours. It provided two strategies 
for the resource allocation, Heuristic and Greedy. Greedy is 
optimal but it often costs an impractically long execution time  
 

while the improved algorithm does not always work well. 
Heuristic is simple but our following work have displayed 
that its validity is affected much by the environment 
parameters. 

3 Models 

Cloud computing should incorporate autonomic resource 
management according to the signed SLA that effectively 
satisfies service demands and obligations. In this paper,  
we contribute towards this aim of cloud computing and 
therefore, consider a similar scenario where a cloud 
provider offers various services to customers at different 
SLA levels. All services are hosted within a data centre 
using certain number of virtual infrastructure, which can 
grow and shrink. The objective is to find a proper allocation 
of servers among the service instances so that maximum 
revenue can be achieved given a charging/pricing model. 

3.1 Mathematical model 

We assume there are all N servers in the cloud data centre. 
Service provider has signed long-term SLAs with m 
customers. Each customer is allocated with servers to 
provide services. We consider ni servers allocated to each 
service instance i as one super server. The capability of each 
super server is proportional to the server number. This 
assumption is reasonable especially for those computing 
tasks that can be divided into several pieces and dispatched 
to many servers to execute concurrently. For example, many 
dynamic web pages are composed of many parts that should 
be computed separately; or some tasks can be decomposed 
for parallel computing. 

Table 1 Symbols and their meanings 

Symbol Meaning 

λ Arrival rate 

ρ Service intensity 

N Number of all the servers 

R Demand of response time 

r Variable of response time 

b Base price of services 

μ Service rate per server 

m Number of service instances (customers) 

c Margin per unit resource 

A Demand of assurance factor 

a Variable of assurance factor 

B Revenue from a service provision 

We assume that the requests from each service instance 
arrive at the system in a Poisson distribution with average 
arrival rate λ and the processing time by one server follow a  
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negative exponential distribution with average service rate 
1/μ (μ is the number of processed requests per unit time). 
We also assume that it costs much for servers to shift their 
running environments. For example, it needs a long time to 
read the commercial data of a new customer into cache from 
the external memory. Therefore, each group of servers 
associated with one service instance can be modelled as a 
FIFO (First In First Out) M/M/1 queue. Here we define 
service intensity ρ as the ratio of arrival rate to service 
throughput of one server, 

/    (1) 

The symbols used in this paper are listed in Table 1. 

3.2 TSF (Time Service Factor) based pricing models 

3.2.1 Service performance metrics 

The cloud services are usually charged based on achieved 
performance. There are two often used metrics associated 
with response time, MRT (Mean Response Time) and TSF 
(Time Service Factor). MRT is a commonly used metric to 
express the service performance. However, it cannot reflect 
the reality when the response time varies over a large range. 
TSF is another metric to evaluate the service performance. It 
means the percentage of services answered within a definite 
timeframe, e.g., 80% in 20 seconds (Wikipedia, 2014). Time 
service factor is widely used because it can reflect the 
response time as well as response time distribution more 
precisely. We formulate TSF as a 2-tuple <r, a>, where r is 
response time and a means the percentage of services with 
the response time less than r. Symbol a also is referred as to 
Assurance Factor.  

In this paper, we propose two user’s demand based 
metrics, ASF (Assurance Satisfaction Factor) and RSF 
(Response Satisfaction Factor). Both ASF and RSF reflect 
the deviation of achieved performance to user’s demand. 
We denote user’s demand in terms of TSF by <R, A>. And 
then we define ASF of a service instance with a demand <R, 
A> in SLA as, 

1A

a A
f

A





 (2) 

where a is the actually achieved assurance factor with 
response time demand R, namely the ratio of services with 
response time less than R. fA means the offset of actually 
achieved performance to user’s demand. Expression (2) 
implies that the achieved performance meets user’s demand 
when fA is larger than or equal to zero. fA is less than zero 
when the achieved performance fails to meet user’s demand. 
Expression (2) also shows us that the same offset is more 
sensitive for those services having severe response time 
requirement. 

We denote user’s demand in terms of TSF by <R, A>, and 
define RSF of a service instance with demand <R, A> as, 

R

R r
f

R


  (3) 

where r is the achieved A-th response time. Expression (3) 
implies that the achieved performance meets user’s demand 
when fR is larger than or equal to zero. fR is less than zero 
when the achieved performance fails to meet user’s demand.  

The percentile mechanism (e.g. the well-known 95th 
percentile) is a widely used mathematical calculation to 
determine billings for internet services that are provided as 
‘burstable’ (variable rate) performance. To calculate A-th 
percentile response time of a service instance during a time 
slot, we 

 record all the response time of all the services during a 
time slot of a service instance;  

 sort all the records in an ascending order;  

 select the A-th record from the ordered sequence. 

3.2.2 Pricing models 

In this paper, we propose two demand-driven pricing 
models in terms of ASF and RSF respectively. We partition 
the provision time of a service instance into slots with fixed 
length. If <R, A> denotes the proposed demand by customer, 
we can obtain the service performance in terms of ASF and 
RSF. If the achieved performance meets users’ demands, the 
services are charged with the base price. If the actual 
performance fails to meet the demand, the service provider 
will be penalised at the basis of base price. Base price b is 
determined by the attributes of service instances. The 
algorithm to obtain b is presented in Subsection 3.2.3. 

Here we define two pricing models in terms of ASF and 
RSF,  

,  0

,  0
A

A A

b f
B

b bf f


   

 (4) 

Or, 

,  0

,  0
R

R R

b f
B

b bf f


   

 (5) 

where price B of a service provision is a linear function of fA 
and fR respectively.  

Both pricing models are also illustrated using Figure 1. 
We denote these two pricing models by ASF and RSF in the 
following. 

3.2.3 Base price 

According to the conclusions on Queuing Theory of M/M/1 
model, the cumulative distribution function of sojourn time 
is (Thomas, 2000), 

( )( ) 1 tw t e     (6) 

We assume that a service instance with demand <R, A>is 
assigned n servers. To substitute <R, A> into Expression (6), 

( )1 n RA e     (7) 

ln(1 )A
n

R





   (8) 
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Expression (8) implies that n servers are required to 
guarantee the customer’s performance demand <R, A>. If 
we assume c is the expected margin revenue per unit 
resources, then b is the expected revenue from n servers, 

ln(1 )A
b cn c

R



 

   
 

 (9) 

Arrival rate may vary dynamically. We can adopt the 
statistical mean arrival rate by sampling. 

Figure 1 Pricing models in terms of time service factor 
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(a) Pricing model ASF 

R 
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b 
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Response time r  

(b) Pricing model RSF 

4 Optimal resources allocation in theory 

4.1 ASF based optimal allocation 

We assume that the service instance i is assigned ni servers 
and its performance demand is <Ai, Ri>. The assurance 
factor ai actually is the probability that the response time of 
a service request is less than or equal to Ri. According to (6), 
the assurance factor ai will be, 

 1 i i i in R
ia e     (10) 

By substituting (10) into (2), the performance of service 
instance i in terms of metric ASF is, 

 1

1

i i i in R
i i
A

i

e A
f

A

  



 (11) 

According to the price model (4), a service provision of 
service instance i brings the mean revenue is, 

 
 1

1 1
1

i i i in R
i i

i i A i
i

e A
g b f b

A

   
      

 (12) 

Then the overall revenue from service instance i per unit 
time is, 

 1
1

1

i i i in R
i

i i i
i

e A
G b

A

 


  

    
 (13) 

Thus, our optimisation problem can be formulated as, 

 

1

1

1
1

1

             . . 

i i i in Rm
i

i i
i i

m

i
i

e A
Max b

A

s t n N

 








  
   






 (14) 

Constructing Lagrange composite function, 

 

1

1

1
( ) 1

1

          

i i i in Rm
i

i i i
i i

m

i
i

e A
L n b

A

N n

 











  
    

   
 




 (15) 

where  is Lagrange multiplier. 
Letting / 0idL dn  , 0,1,2...i m , 

 
0

1

i i i in R
i i i i

i

b R e

A

   


 


 (16) 

 1
ln /i

i i i i
i i i i

A
n R

b R


 

 
 

    
 

 (17) 

Substituting (17) into the constrain condition in (14), 

1 1 1

1
ln / ln

1

m m m
j j j j

j j j
j j jj j j

b R
N R

A R

 
  

  

 
     
    (18) 

1 1

1

ln /
1

ln
1

m m
j j j j

j j j
j jj

m

j j j

b R
R N

A

R

 
 





 



 
    

 


 (19) 

Substituting (19) into (17), we can obtain the results, 

 

1 1

1

ln /
1

ln /
1

1

i i i i
i i i i

i

m m
j j j j

j j j
j jj

m

i i
j j j

b R
n R

A

b R
R N

A

R
R

  

 
 




 



 
     

 
    

 



 (20) 

It is assumed that arrival rate of requests of each service 
instance can be modelled by Expression (6). However, (6) is 
valid only when the arrival rate of each service instance is 
less than service processing rate. Otherwise, the response 
time of a queue with FIFO does not converge and the 
response time always increases as time elapses. Therefore, 
our conclusion of (20) holds only if arrival rate is less than 
service processing rate, 

i i in   (21) 
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i in   (22) 

Figure 1(a) also shows us that the revenue stops to rise any 
more once ai equals to Ai. Thus, there is no use any more to 
increase the resources for service instance i once the 
response demand is met. According to (8), 

ln(1 )i
i i

i i

A
n

R





   (23) 

Therefore, Expression (22) is the lower resource bound and 
(23) is the upper threshold for instance i. 

4.2 Optimal allocation based on RSF 

We assume that the service instance i is assigned ni servers 
and its performance demand is <Ai, Ri>. We also assume 
that the Ai-th response time of service instance i is ri.  

Then according to (6), Expression (24) holds, 

 1 i i i in r
iA e     (24) 

Then the Ai-th restime of service instance i is, 

 ln 1 i
i

i i i

A
r

n 





 (25) 

By substituting (25) into (5), the performance of service 
instance i will be, 

 
 

ln 1
1 ii

R
i i i i

A
f

R n 


 


 (26) 

According to the pricing model (5), a service provision of 
service instance i brings the mean revenue is, 

   
 

ln 1
1 2 ii

i i R i
i i i i

A
g b f b

R n 
 

      
 (27) 

Then the overall revenue from service instance i per unit 
time is, 

 
 

ln 1
2 i

i i i
i i i i

A
G b

R n


 
 

    
 (28) 

Thus, our optimisation problem can be formulated as, 

 
 1

1

ln 1
 2

             . . 

m
i

i i
i i i i i

m

i
i

A
Max b

R n

s t n N


 



 
   






 (29) 

Constructing Lagrange composite function, 

 
 1

1

ln 1
( ) 2

           

m
i

i i i
i i i i i

m

i
i

A
L n b

R n

n N


 







 
    

   
 




 (30) 

where also is Lagrange multiplier. 

Letting / 0idL dn  , 0,1,2...i m , 

 
 2

ln 1
0i i i i

i i i i

b A

R n

 


 


 


 (31) 

 ln 11 i i i
i i

i i

b A
n

R





 

   (32) 

Substituting (32) into the constrain condition in (29), 
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Substituting (34) into (32), we can obtain the results, 
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Owing to the same reason as previous subsection, 
Expression (22) also is the lower resource bound and (23) is 
the upper threshold for service instance i.  

5 Performance evaluations 

In this section, we present our experimental results on the 
efficiency of our algorithms for optimising the resource 
provisioning technique in the cloud environment. We 
provide two types experiments in the following, whose 
requests come from synthetic dataset and traced dataset 
respectively. 

The experiments presented in this section are obtained 
from our simulator, which is developed with C language. 
The simulator is implemented with a time-driven model. 
Simulation clock increases at a constant rate of one 
millisecond. After each millisecond, we check and handle 
those events happen at the current time point. The events 
mainly include four types: request arrival, request departure, 
resource reallocation, and output the experiment results.  

We use revenue from services as our main metric to 
evaluate the strategies. In the evaluation we use the strategy 
of Heuristic, a resource allocation algorithm proposed by 
Michele in his thesis (Mazzucco, 2009), as our target to 
compare with, because this work is the most similar to ours 
among all the related works. 

In the following, we use ASF, RSF, and Heuristic to 
denote our optimal allocation in terms of ASF, our optimal 
allocation in terms of RSF, and the heuristic allocation 
algorithm proposed by Michele respectively. The related 
parameters and their default values are listed in Table 2. 
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Table 2 Parameters and their default values in experiments 

Parameter Default values 

Arrival Distribution of Requests Poisson 

Service Time Distribution Negative Exponential 

Arrival Rate λ Random (10…50)/minute 

Service Rate μ Random (5…15)/minute 

Assurance factor demand Random (0.7…0.98) 

Response demand Random (3…10)second 

Number of Types m 20 

Margin c 1$ 

5.1 Simulations with synthetic data 

Figures 2 and 3 show the comparison of revenue with 
different pricing mechanisms and server resources between 
ASF, RSF, and Heuristic. The time slot is set an hour in the 
simulations. We calculate and output the revenue outcomes 
when the time slot expires.  

Figure 2 Revenue under ASF pricing model versus server 
number (see online version for colours) 
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Figure 3 Revenue under RSF pricing model versus server 
number (see online version for colours) 
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Figures 2 and 3 show us that both resource allocation 
strategies ASF and RSF outperform Heuristic. This is  
 
 
 

because that ASF and RSF are the results of our theoretical 
analysis. The simulations partially support that our 
conclusions are correct. The revenue of Heuristic is 75.5% 
and 16.2% lower than ASF when the number of servers is 
70 and 80. The revenue of RSF is 53.4% higher than 
Heuristic when the number of servers is 70. The curves of 
Heuristic are close to ASF and RSF with the increasing of 
servers. The values are not notable any more when the 
number of servers gets to 90. This is because that most 
service instances are assigned the same resources with the 
upper threshold when the cloud data centre has sufficient 
server resources for all the service instances. 

Figures 2 and 3 show us that the superiority of ASF  
and RSF is more remarkable when the resource is relatively 
rare. Therefore, ASF and RSF are valuable to improve the 
revenue through proper allocation especially when the 
resource is rare or the service instances are numerous. 

5.2 Simulations with traced data 

We use the traced data to simulate the requests and allocate 
the resources adaptively according to probed parameters. 
The traced data come from (Internet Traffic, 2011). All the 
data are records of HTTP requests to WWW servers. We 
intercept consecutive request records of 8 hours from the 
traces to simulate the arrival of service instances. The 
detailed information is shown in Table 3 and Figure 4. 

We partition the time into slots, each with a length of 5 
minutes. During the execution, we count the number of 
arrived requests at each time slot. Then we predict the 
average arrival rate of next slot according to the records of 
previous and current slot. The predicting algorithm is 
formulated as, 

( )post pre       (36) 

where post  denotes the arrival rate of next slot, pre  and   

mean the measured arrival rate of previous slot and current 
slot respectively. 

Table 3 Metadata about traces 

# Source Date Time #Records 

1 EPA-HTTP 30 Aug. 1995 09:00–17:00 31,385 

2 EPA-HTTP 30 Aug. 1995 16:00–24:00 14,714 

3 SDSC-HTTP 22 Aug. 1995 09:00–17:00 15,479 

4 SDSC-HTTP 22 Aug. 1995 16:00–24:00 7178 

5 NASA-HTTP 01 Jul. 1995 00:00–08:00 16,481 

6 NASA-HTTP 01 Jul. 1995 09:00–17:00 24,021 

7 NASA-HTTP 01 Jul. 1995 16:00–24:00 25,476 

8 NASA-HTTP 25 Jul. 1995 00:00–08:00 9360 

9 NASA-HTTP 25 Jul. 1995 09:00–17:00 34,965 

10 NASA-HTTP 25 Jul. 1995 16:00–24:00 20,652 
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Figure 4 Evolution of total arrival requests over time (see online 
version for colours) 
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The servers are partitioned into ten groups for every service 
instance, each group with a FIFO (First In First Out) waiting 
queue. At the end of each time slot, the system re-allocates 
the resources among all the service instances according to 
the predicted arrival rate in next time slot. The specific 
parameters are listed in Table 4. 

Table 4 Parameters and their default values 

Parameter Default values 

Service Time Distribution Negative Exponential 

Service Rate μ Random (5…15) 

Number of service instances m 10 

Assurance factor demand Random (0.7…0.98) 

Response demand Random (3…10) second 

Number of Servers N 90 

Figures 5 and 6 are the ASF and RSF pricing mechanisms 
based revenue every 5 minutes. Ninety servers are deployed 
in the simulations. It can be seen that both ASF and RSF 
outperform Heuristic. The average revenue every 5 minutes 
(excluding the first 30 minutes) of ASF and Heuristic is 
8.2k$ and 1.6k$ respectively. The former is four times 
higher than the latter. The average revenue every 5 minutes 
(excluding the first 30 minutes) under RSF pricing 
mechanism of RSF and Heuristic is 8.7k$ and 6.6$. The 
former is 32% higher than the latter. Figures 2 and 3 also 
show us that ASF and RSF are more significant if the 
available computing resources are relatively rare in the 
simulations. 

Simultaneously, both figures show us that the revenue of 
ASF and RSF during the 47th time slot decreases sharply, 
even lower than Heuristic. We believe that it results from 
the extreme volatility of arrival rate. As displayed in Figure 4, 
the arrival rate decreases sharply from 42nd to the 45th time 
slot; while it rises quickly after the 46th time slot. Thereby, 
the prediction of arrival rate by Expression (36) is not 
correct, which misleads the resource allocation. What’s  
 

more, because the algorithms of ASF and RSF are accurate 
and heuristic is not, the effect of ASF and RSF depends on 
the arrival rate prediction more sensitively. A more refined 
predicting algorithm of arrival rate improves the quality of 
ASF and RSF much. 

Figure 5 Evolution of revenue over time under ASF pricing 
model (see online version for colours) 
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Figure 6 Evolution of revenue over time under RSF pricing 
model (see online version for colours) 
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6 Conclusions 

Cloud computing has changed the way how applications are 
delivered to customers. In this new computing paradigm, 
service level agreements play an important role to facilitate 
the collaboration between end-users and service providers. 
This paper addresses how to maximise providers’ revenue 
under the pricing models in terms of TSF (Time Service 
Factor) in SLAs. This paper has formulated the optimisation 
problem and given the optimal results by the Method of 
Lagrange Multiplier. Our simulations have also validated 
the conclusions. The experimental results have shown that the 
proposed algorithms in this paper always outperform related 
work. The proposed algorithms are of higher significance 
especially when the Cloud is faced with computing resource 
shortage. 

Pricing model is the foundation of our work. A nice 
price model plays an important part not only in theory but 
also in practice. We will further these problems in the future 
work. 
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