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SUMMARY

Because of the rapid increasing of malware attacks on the Internet of Things in recent years, it is critical
for resource-constrained devices to guard against potential risks. The traditional host-based security solu-
tion becomes puffy and inapplicable with the development of malware attacks. Moreover, it is hard for the
cloud-based security solution to achieve both the high performance detection and the data privacy protection
simultaneously. This paper proposes a cloud-based anti-malware system, called CloudEyes, which provides
efficient and trusted security services for resource-constrained devices. For the cloud server, CloudEyes
presents suspicious bucket cross-filtering, a novel signature detection mechanism based on the reversible
sketch structure, which provides retrospective and accurate orientations of malicious signature fragments.
For the client, CloudEyes implements a lightweight scanning agent which utilizes the digest of signature
fragments to dramatically reduce the range of accurate matching. Furthermore, by transmitting sketch coor-
dinates and the modular hashing, CloudEyes guarantees both the data privacy and low-cost communications.
Finally, we evaluate the performance of CloudEyes by utilizing both the campus suspicious traffic and nor-
mal files. The results demonstrate that the mechanisms in CloudEyes are effective and practical, and our
system can outperform other existing systems with less time and communication consumption. Copyright ©
2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The explosive development of Internet of Things (IoT) is leading a unprecedented revolution in the
physical and cyber world. It is envisaged that the number of interconnected devices will exceed 7
trillion by 2025, with an estimate of about 1000 devices per person [1]. Such an enormous amount
will deeply impact our digital lives in many application domains [2], for example, transportation,
healthcare and so on, as depicted in Figure 1. However, targeted attacks caused by malicious soft-
ware (malware) increase rapidly every year and expose more interest in the IoT devices. The McAfee
Labs indicate attacks on the IoT devices will increase rapidly because of hypergrowth in the number
of connected objects, poor security hygiene and the high value of data on these devices [3]. Various
threats which exist for decades, like Spam, Privacy leak, Botnet, Distributed denial-of-service and
Advanced persistent threat (illustrated in Figure 1), are still rampant in the IoT paradigm. For exam-
ple, even an innocuous fridge can be employed to launch security attacks by sending spam mails [4].
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Figure 1. Applications and attacks in the Internet of Things. APT, Advanced persistent threat; DDoS,
Distributed denial-of-service.

Hence, it is urgent to provide a trusted and one-stop security solution to take care of data security
and privacy in those resource-constrained devices.

To defend against various malware, signature-based detection approach still plays an important
role and takes up a large proportion after decades of development in both industry and academic
research [5]. It is based on the theory that the crux of various malware, called signature, is generally
unchangeable and can be detected at the early stage of propagation though the amount of malware
samples is limited [6]. This approach is implemented by scanning and checking if a file contains
the contents which match the known signatures. There are several commonly used and effective
signature matching algorithms, such as Aho–Corasick [7] and Wu–Manber [8]. The efficiency of
detection depends on several measures, such as the number of signatures, the accuracy and time
consumption of matching, which are the primary motivations behind many of the researches done
in this field.

1.1. Research challenges

Two primary kinds of signature-based anti-malware approach have been deployed according to their
infrastructures in state-of-the-art technology. The first kind is host-based security system which
installs detection agent in the users’ devices and updates the signature database to ensure timely and
complete security protection. ClamAV [9] is an open-source anti-virus system most widely used
and many reformative works based on it are recently proposed, such as GrAVity [10]. However,
these systems have become increasingly puffy with the development of malware attacks [11, 12]
and do not suit for resource-constrained devices. The problems mainly embody in the following
areas: (1) heavy resources consumption caused by the growing number of signatures which leads
to low detection performance, such as memory, time, and database updating; (2) many mechanisms
applied to improve detection performance, such as matching acceleration that benefits from the
improvements in hardware speeds [10, 13], are paradoxical for resource-constrained devices. (3)
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the characteristic of these systems that they must be updated at a very high frequency to provide
up-to-date protection may give the malware attackers opportunity to compromise the hosts [14].

The other kind is cloud-based security system [15] which places different types of detection
agents over the cloud servers and offers security as a service. Generally speaking, a user of the ser-
vice can upload any type of file and receive a report about the malware that might be contained in the
file [16–18]. This newly developed framework is lenitive and cost-saving for resource-constrained
devices. However, most of existing cloud-based anti-malware technologies cannot solve all the fol-
lowing problems simultaneously: (1) security vendors are designed to directly expose or deliver the
signature databases to the clients which is unwillingness for the vendors, and actually it is possible
to ulteriorly lighten the consumption of clients, such as SplitScreen [5]; (2) users have to upload the
whole file contents which may result in some important information (e.g., location and password)
leakage, such as CloudAV [17]; (3) the communication consumption between the server and client
should be further optimized which is significant for the improvement of detection efficiency, espe-
cially for the IoT devices. To conclude, it is hard to achieve high performance of security detection
and data privacy protection simultaneously.

1.2. Research motivations

To address the problems earlier, the proposed system should be cloud-based and privacy preserv-
ing which are our main research motivations. In this paper, we propose CloudEyes, a cloud-based
anti-malware system which utilizes the effective properties of reversible sketch to provide efficient
security service and reliable data privacy protection for resource-constrained devices. Specifically,
we make the following contributions:

(i) For the cloud server, a novel signature-based detection mechanism, called suspicious bucket
cross-filtering, is proposed based on the structure of reversible sketch. It can provide retrospec-
tive and accurate orientations of malicious signature fragments which dramatically cut down
the time and computation consumption in signature-based malware matching. To the best of
our knowledge, no previous work has implemented similar endeavor.

(ii) For the client, a lightweight scanning agent is implemented to rapidly identify the suspicion
of file content according to the digest of reversible sketch. It shows high applicability for
resource-constrained devices with the advantage of sharp reduction of matching range and the
capability of avoiding accurate matching of whole file content.

(iii) A balanced interaction mechanism is design to protect the data privacy for both client and
server, and reduce the communication consumption. The client transmits the sketch coordi-
nates of suspicious file segments, instead of the whole file content, to the cloud after fast
scanning. As for the cloud server, modular hashing of malicious signature fragments are sent
back to the client, rather than the signature database.

We analyse the accuracy of the proposed mechanism theoretically to prove its validity and verac-
ity with appropriate parameters. Our implementation of CloudEyes consists of roughly 2.5K lines of
C/C++ code for client and 4.5K for server which makes it easily applied to the resource-constrained
devices. In addition, we evaluate the system by normal files and suspicious traffic captured from
campus network with the number of signatures ranges from 460,000 to 3,700,000. Statistical
results show that CloudEyes outperform ClamAV and SplitScreen with lower time consumption and
smoother increment when scanning increasing number of samples. Moreover, the communication
consumption in CloudEyes is on average 12.6 times smaller than that in SplitScreen.

The preliminary version of this paper has previously appeared in [19]. In this paper, we have
substantially improved and extended the previous version. The most significant extensions include
multiple hash functions adopted in each hash table for efficient detection (Section 4.2.1), modular
hashing of signature fragments for reducing the memory cost in the cloud server (Section 4.2.2) and
corresponding analysis of false positive it brings (Section 5.3.3), fast scanning and suspicious bucket
cross-filtering for availably screen out the culprit signature (Section 4.3), and finally a series of per-
formance studies for demonstrating how the proposed mechanisms enhance our system (Section 6).
In addition, we specify the motivations and workflow of our system (Section 3).
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The remainder of this paper is organized as follows: Section 2 introduces related work about
signature-based malware detection. Section 3 presents the preliminaries and the architecture of our
work. Section 4 gives a detail description about the signature-based detection mechanism, followed
by accuracy discussion of the proposed mechanisms in Section 5. Section 6 shows the experimental
results and analysis. Finally, we conclude the paper in Section 7.

2. RELATED WORK

Signature-based malware detection remains important and technically reliable after decades of
development in anti-malware industry. Most researches can be divided into two kinds, host-based
and cloud-based, according to where the main detection agents are placed.

ClamAV [9] is the most widespread and representative open-source host-based malware detection
system. The latest database (main v.55 and daily v.19688) approximately contains 3,700,000 signa-
tures consist of MD5 and regular expression signatures. Input files content are sequentially matched
with the signature database when scanning. If a known signature is successfully matched, the file is
claimed to be infected by malware. The matching algorithms adopted are primarily Aho–Corasick
[7] and Wu–Manber [8].

Recently, several efforts to improve the detection performance based on host have been proposed.
Hash-AV [13] proposes a malware scanning technique which aims to take advantage of improve-
ments in CPU performance. It utilizes hashing functions that fit in L2 caches to speed up the exact
pattern matching algorithms in ClamAV. GrAVity [10] is a massively parallel anti-malware engine
which utilize the good performance of GPUs to accelerate the process of scanning. Hardware imple-
mentations provide better performance, but it is always impracticable for the resource-constrained
devices, such as mobile phones and wearable devices. Deepak et al. [20] design a signature match-
ing algorithm which is well suited in mobile device scanning, but its testing signatures are limited
by fixed byte and the performance declines with the growth of signatures amount.

Cloud servers provide high-performance computation support to reduce the match consumption in
malware scanning which is the main limitation of signature-based mechanism. Now, it is attracting
lots of security vendors to start to deploy their cloud solutions, like Trend Micro, Panda Security
and Kaspersky Lab.

CloudAV [17] first puts forward the notion of cloud-based malware scanning in academic research
and the author apply their strategy to a mobile environment [21]. It runs a local cloud service con-
sists of heterogeneous anti-virus engines running in parallel virtual machines and uses an end-user
agent to transfer suspicious files to the cloud to be checked by all anti-virus engines. CloudAV
achieves high detection rate, yet obviously, exposes the sensitive data which compromise users pri-
vacy. Similar researches like ThinAV [16] propose a lightweight anti-malware for android which
utilize third party online malware scanning services, the users also need to submits size-restrained
applications for scanning. CloudSEC [22] move the analysis and correlation of network alerts into
network cloud which also consists of plenty autonomous anti-malware agents. Secloud [23] designs
a generic framework for smartphone security that can be used to perform various powerful intrusion
analysis solutions, but it suffers the problems as mentioned earlier of communication consumption
and exposing the client to malware.

SplitScreen [5] designs a distributed anti-malware system based on ClamAV to speed up the
malware scanning. SplitScreen design its first scanning mechanism based on Bloom filter [24] to
perform slight comparisons with file data and reduce the size to be accurately matched. However,
bloom filter is not reversible which is similar to sketch data structure because of the multiple-to-one
nature of hashing functions, so it does not store any information about the fragments. Actually, the
first scanning is so coarse-grained that the client still spends plenty of time and computation in exact
pattern matching. Our study results show SplitScreen averagely spends 74.3 percent of its time in
accurate pattern matching about 65 percent of pending files with small caches.
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3. PRELIMINARIES AND SYSTEM ARCHITECTURE

In this section, we first introduce two main preliminaries of our work, then describe the architecture
and workflow of our system, followed by the list of frequently used notations.

3.1. Preliminaries

Sketch structure is an aggregation method which maps diverse data streams into uniform vectors
based on the Turnstile Model [25]. Let I D ˛1; ˛2; : : : , be a sequential input stream during a given
time interval. Each item ˛ D .˛i ; �i / consists of a key ˛i 2 ¹0; 1; : : : ; n � 1º , Œn�, and a value
�i 2 R. The model assigns a time varying signal U Œ˛i � for each key ˛i 2 Œn�, and update U Œ˛i �
with an increment of �i if a new item .˛i ; �i / arrives.

Most researches based on sketch are applied to analysis of basic elements in flow, such as source
and destination IP/Port. Reversible sketch (RS for short) [26] is the representative one and the
infrastructure our system based on. It is based on the k-ary sketch data structure consists of H
hash tables of size m, which k comes from the use of size k hash tables, that is, m D k. The hash
functions adopted in the hash tables are chosen randomly from a universal hash-function family.
The basic methodology of RS is detecting the heavy changes of data stream by summarizing the IP
information into two schedule-based sketches and finding the suspicious keys whose updates cause
the significant changes in these two time periods.

Our model design is inspired by RS structure whose methodology can be applied in identifying
malicious data fragments from large amount of suspicious data. However, there are two different
properties between the content and address element of data stream. Firstly, the size of content is
distinct and various which results in more enormous quantity of keys. Our basic solution is to ini-
tialize the signatures and suspicious data to fragments with uniform length, and the digests of RS
are utilized to achieve dramatic quantity reduction in scanning. The second and more important dif-
ference is distribution property. In RS , the distribution of IP addresses and ports are analyzed to
reveal the heavy changes of data flows which are closely related to attacks, such as DoS and SYN
flooding. While the distribution of the data fragments is less meaningful to reveal malware infor-
mation which means the methodology of detecting heavy buckets needs proper modification. In our
system, one k-ary reversible sketch and the corresponding digest are maintained to store the infor-
mation of signatures which are the crux to define the data fragments to be malicious or not. The
heavy buckets (suspicious reversible buckets in our work) are located by the result of fast scanning
and the malicious keys (signature fragments) in the heavy buckets are selected by suspicious buckets
cross-filtering.

Our goal is to design an efficient security system for resource-constrained devices, called
CloudEyes, which achieves high performance of security detection and data privacy protection
simultaneously, as we conclude in Section 1. The design of CloudEyes is inspired by SplitScreen
[5], but differs from it on two significant aspects. First, we employ reversible sketch structure con-
taining the information of suspicious signature fragments for malware detection. It is more efficient
than Bloom filter structure because of needless to accurately match the whole contents of suspicious
files. Second, we give consideration to the perspectives of both anti-malware vendors and end-users.
Given the rapid incremental trend of signature volume and the security vendors’ unwillingness
of directly exposing malware signature databases which are their core profit and competitiveness,
the system opts to transmit the sketch coordinates of file fragments and modular hashing of mali-
cious signature fragments between the client and cloud server which cut down the communication
consumption simultaneously.

3.2. System architecture: An overview

To break out of high time consumption, which is primarily caused by the enormous quantity of
signatures, CloudEyes adopts the reversible sketch structure for effective representation and orien-
tations of signatures. Additionally, it designs balanced interactive mechanism to protect the data
privacy and reduce the communication consumption.
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Figure 2. The system architecture of CloudEyes. SBCF, suspicious bucket cross-filtering.

We illustrate the system architecture of CloudEyes in Figure 2. The cloud server runs the signature
database, summarizes the signatures into the reversible sketch. Meanwhile, the cloud generates a
digest of the sketch which represents the existence of signatures. The digest is stored in the client
when CloudEyes is firstly installed. The cloud updates the signature database and sketch periodically
and sends the locations in the sketch where the changes take place to the client. The detail operations
will be described in Section 4.2. As for file scanning, the client, rather than sends the whole file
content to the cloud, first initializes the file content into the segments by the similarity method with
the signatures (described in Section 4.1), then sifts out the unmatched segments with the latest digest.
The matched ones are suspicious and need to be confirmed. We design the suspicious bucket cross-
filtering (SBCF) mechanism for the cloud to locate the malicious file segments according to the
sketch coordinates of suspicious segments sent from the client. The results which consist of modular
hashing of malicious signature fragments are sent back to the client as a confirmed report according
to which the client takes corresponding security measures. Figure 3 explicates the workflow during
the communication between clients and cloud server in CloudEyes.

A list of frequently used notations is maintained in Table I.

4. DESIGN

In this section, we give a detail description about the signature-based detection mechanism via
reversible sketch structure in CloudEyes.

4.1. Signature initialization

Let DB be the signature database managed in the cloud. Considering signatures do not have uni-
form length generally, we set a sliding window with size of w to scan the signatures in DB . For
an arbitrary signature S of length l , there will be a set of segments of length w-byte after initial
scanning, namely, S ! ¹S1; S2; : : : ; Sl�wC1º. Moreover, we take account of the wildcards in spe-
cific signatures to map down multiple versions of a malware that originated from the same source.
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Figure 3. Workflow between clients and server in CloudEyes.

Table I. Frequently used notations.

H number of hash tables
m D k number of buckets per hash table
K number of hash functions per hash table adopts
w size of sliding window in signature initialization
X a signature fragment after initialization with the length of w
q number of words X is broken into, X D ¹X1; X2; � � � ; Xqº
NS number of signatures in database

l average length of the signatures

L
j
i .X/ sketch coordinate located by hash function result hji .X/; i 2 ŒH �; j 2 ŒK�

RB
h
L
j
i

i
.X/ the corresponding reversible bucket of Lji .X/

D
h
L
j
i

i
.X/ the corresponding digest of Lji .X/, value is 0 or 1

M.X/ the modular hashing of X;M.X/ D ¹mh1.X1/mh2.X2/:::mhq.Xq/º
FPh; FPmh; FPc three types of false positive: hashing, modular hashing and collision respectively

In a way, the initialization can be effective in handling polymorphic malware caused by wildcards
[13]. However, it is still impractical to deal with all possibilities. In CloudEyes, the signatures with
wildcard are roughly divided into two portions.

4.1.1. Fixed-size wildcard. It denotes the wildcards which contains numbered probabilities. For
example, 00‹00 matches any byte, 00ajbjc00 matches 00a00 or 00b00 or 00c00. We adapt modulo .q/ func-
tion in the wildcard signature initialization, which maps each string byte to a class between 0
to q � 1 (q is a random number smaller than 256),to support wildcard matching [27]. Therefore
the matching space size is restricted because matching any value between the range of [0,q � 1],
instead of all possible values between 0 to 255, means successful hit. For instance, suppose a sig-
nature 00abcd‹efgh00 is initialized with q D 4 and w D 9. The initialization is processed by
constructing four segments:00abcd0efgh00;00 abcd1efgh00;00 abcd2efgh00 and 00abcd3efgh00. Sim-
ilarly, 00abcd.xjyj´/efgh00 is classified into three substrings: 00abcd0efgh00;00 abcd1efgh00 and
00abcd2efgh00 because character x would be mapped to class 0 as ASCII.x/ mod q D 0.
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4.1.2. Variable-size wildcard. It denotes the wildcards with variable size, such as, 00�00 matches
any number of bytes, 00¹nº00 matches n bytes. Considering the large amount of probabilities lead to
serious performance slowdown, we ignore these wilcards and initialize the rest part of signature.
For instance, a signature 00abcdef � ghijkl 00 or 00abcdef ¹200ºghijkl 00 is initialized with w D 6,
the corresponding substrings are 00abcdef 00 and 00ghijkl 00.

Additionally, if a signature does not contain a fixed fragment at least as long as the window
size, the signature cannot be initialized. Small value of w cannot provide enough amount of unique
fragments which raise the rate of collision to an unacceptable level during mapping. Alternatively,
if the value is too large, there is not enough granularity to answer queries for smaller file frag-
ments in detection. Study result of ClamAV’s signature set for the 16-byte window size shows that
the short-signature proportion is about 0.15% after initialization. This infrequence does not signif-
icantly reduce performance. For convenience, below we use X to represent a signature fragment
after initialization.

4.2. Reversible sketch structure

4.2.1. Basic design. In our design, each element of hash table consists of a container called
bucket.RB/ which stores the information of signature and a bit called digest.D/ which stands
for the bucket is empty or not, with the value 0 or 1 respectively. Let hji ; i 2 ŒH �; j 2 ŒK� be
H � K functions randomly chosen from a class of 2-universal hash functions, each hash table
adopts K independent functions respectively. Assume an arbitrary signature X with length of
w-byte, that is X D ¹x1; x2; : : : ; xwº. As we adopt modulo (q) function to deal with the sig-
nature contain fixed-size wildcards initially, each byte of X (or file content) needs to do the
same modulo arithmetic to avoid false negative rate in detection, although it will bring slight
false positive rate which is discussed in Section 5. Hence, the hashing result of X is hji .X/ D
h
j
i ..x1 mod q/; .x2 mod q/; : : : ; .xw mod q//. Then, we can use L.X/ D

SH
iD1

SK
jD1L

j
i .X/

which consists of Lji .X/ D
�
i; h

j
i .X/

�
.1 6 i 6 H/ to be the sketch coordinates of X , that

means each signature fragment X has H � K sketch coordinates. When summarizing X into RS ,

all the Lji .X/ in L.X/ are utilized to locate the corresponding reversible buckets RB
h
L
j
i

i
.X/ and

digests D
h
L
j
i

i
.X/.

There are three operations related with RS :

(i) Insert (X;L.X/): Initially,RB contains no element and all the digests value is 0. ForX which
has not been mapped, L.X/ decides which buckets it belongs to. Then the sketch is updated
as follows.

for each Lji .X/ 2 L.X/; i 2 ŒH �; j 2 ŒK�

RB
h
L
j
i

i
.X/ RB

h
L
j
i

i
.X/

[
¹M.X/º

D
h
L
j
i

i
.X/ 1

Figure 4 illustrates the state of reversible sketch structure with K D 2 after inserting X1
and X2. The buckets labeled by sketch coordinates mean each contains at least one M.X/
and the rest stand for empties. And M.X/ in the operation denotes the modular hashing
of X which is designed in storage mechanism (discussed in Section 4.2.2) for reducing the
memory consumption.

(ii) Delete (X;L.X/): For the signature X that is proved to be incorrect or reduplicate for mal-
ware description, the servers call delete operations to get rid of X from the sketch with
following steps:

for each Lji .X/ 2 L.X/; i 2 ŒH �; j 2 ŒK�

RB
h
L
j
i

i
.X/ RB

h
L
j
i

i
.X/ � ¹M.X/º

D
h
L
j
i

i
.X/ 0; if RB

h
L
j
i

i
.X/ D ;
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Figure 4. Reversible Sketch Structure after insertions.

(iii) Update (˙X ;…L,OP): The cloud needs to periodically update the signature database with
the increment of signature quantity. ˙X D ¹X1; X2; : : : ; Xnº is the set of signature frag-
ments need to be updated,…L D ¹L.X1/; L.X2/; : : : ; L.Xn/º is the set of sketch coordinates
to locate the fragments and OP is the set of operations (1 or 0, stands for Insert or Delete
respectively) corresponding to each signature. After the Update operation, theRB andD com-
plete the similar changes with the two operations described earlier Additionally, the clients
need to update their signature digests before file scanning. After receiving the update requests
from clients, the cloud will send the …L and OP back. Hence, the clients and cloud keep
synchronous in this way.

4.2.2. Storage mechanism. After summarizing the signature database into the reversible sketch,
fundamental scanning about the database can be approximately answered very quickly according
to the previous work [28, 29]. Generally speaking, the contents of signature should be stored in
the structure in order to achieve the scanning veracity without the accurate scanning process like
SplitScreen. Considering the amount of signatures is huge and growing, it is not scalable to store all
the signature segments into the RS . Likewise, it is not applicable to assign each signature segment
a unique number and store them, because the number of signatures is dynamic. To balance memory
consumption and searching speed in the implementation, we design the storage mechanism based
on modular hashing for signatures which accompanies with the RS operations.

In the stage of signature initialization, we utilize sliding window with size of w bytes and modulo
(q) function. Hence, the basic element to be stored is the signature segment with 8w bits. Instead of
directly hashing the entire segment in Œ28w �, we adopt modular hashing which divide the segment
into q words, each word of size 8w=q bits. Then each word is hashed respectively by different hash
functions which map from space Œ28w=q� to Œ28w=q

2
�. Figure5 illustrates the process of modular

hashing. The 16-byte segment is divided into four words, each of 4 bytes, which are mapped by
four independent hash functions from space Œ232� to Œ28�. The hashing results of each word are
concatenated to compose the final hashing result.

For a signature segment X , M.X/ denotes its modular hashing result. We adopt q independent
hash functions mh1; :::; mhq for every hash table, so M.X/ D

®
mh1.X1/mh2.X2/:::mhq.Xq/

¯
is stored into the corresponding buckets in RS and all these buckets are arranged in the form of
red black tree to achieve fast and dynamic operations. Suppose each hash function needs constant
time to hash a value, modular hashing will slightly increase the operations discussed in the section
above from O.H � K/ to O.H � K C q/ because the calculation of M.X/ simply executes once
before the storage, while the memory consumption will be decreased by q times. Moreover, modular
hashing permits the efficient execution of suspicious buckets cross-filtering and avoids the direct
exposure of signatures during the communications between cloud server and clients (more details
in Section 4.3.2)

More theoretical analysis about the accuracy of reversible sketch structure is discussed in
Section 5 later and details about the performances are illuminated in Section 6.
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Figure 5. Modular hashing of signature segment (w D 16; q D 4).

4.3. Matching mechanism

The design of matching mechanism in CloudEyes is inspired by two purposes we desired: (1) taking
the demands of both security vendors and clients into account and (2) ensuring high performance in
the matching of file content. Hence, we divide the process of matching into two steps, fast scanning
and suspicious bucket cross-filtering, for the client and cloud, respectively. Detail descriptions are
listed below:

4.3.1. Fast scanning. In the CloudEyes system, the reversible sketch structure, which contains the
reversible buckets and digest, is designed to store the summarization of signature and service for
matching. The digest is the crux of fast scanning process which is stored in the client when the
system is firstly installed. The files need to be initialized with w and q before scanning because of
their diverse types and sizes, that is the file content should be incised into regular fragments and
then do the modulo arithmetic like the initialization of signatures. Let F be the set of file fragments
after initialization, the purpose of fast scanning is picking out the suspicious set of file fragments
Fsus and the corresponding set of sketch coordinates …sus with the digest D.

For each fragment in F , we calculate its sketch coordinates in the digest and check the corre-
sponding value to estimate its existence. Only successful matching in all H �K sketch coordinates
make the fragment suspicious, the others are normal because the hash functions bring no false neg-
ative during signature summarization. That is to say, the file fragment f is checked to be suspicious
if and only if all the values of D

h
L
j
i .f /

i
; i 2 ŒH �; j 2 ŒK� are equal to 1. After all the fragments
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have been checked, the suspicious fragment set Fsus which consists of the modular hashing result
of file fragments, and corresponding sketch coordinate set…sus are generated. Algorithm 1 presents
details of fast scanning mechanism. This process is easy to be applied in the client because of its
lightweight and can largely reduce the number of file fragments to be further confirmed. Consid-
ering the privacy protection of client, we only send the sketch coordinates of suspicious fragments
to the cloud after fast scanning, which can cut down the communication consumption for the client
simultaneously.

4.3.2. Suspicious bucket cross-filtering. This process aims at finding the set of culprit signature
fragments according to the result of fast scanning. The basic idea is checking every reversible bucket
according each sketch coordinate sent from the client to find the signature fragment which exists in
all the H hash tables.

As we describe earlier, different types of signature need to be initialized into regular fragments.
Let NS be the total number of signatures in the DB (including the signatures with wildcards after
initialized), and l be the average length of the signatures, w is the size of sliding window, m is
the size of per hash table, and K is the number of hash functions each hash table adopts. So the
number of fragments after initialization is

�
l � w C 1

�
� NS , and each bucket averagely contains

t D
�
l � w C 1

�
�NS �K=mmodular hashing results of signature fragments. The reversible buckets

inRS corresponding with the set of…sus are treated as suspicious ones. For each f whoseM.f / 2
Fsus , there are K suspicious buckets in each of H hash tables.

The intuitionistic heuristic to find the target signature fragments is taking the intersections of all
these buckets, but it is noteworthy that the values of K will make the filtering process different. For
K D 1, each f relates to one suspicious bucket in each hash table. One possible way to achieve our
goal is to take the union of the possible fragments of all suspicious buckets for each hash table and
then take the intersections of these union. But it can lead to an enormous amount of fragments output
that do not match and needless computation which called Reverse Sketch Problem [26]. We solve
this instance in our previous work RScam [19] by building a filtering buffer to count the appearances
of signature fragments in suspicious buckets. For K > 2, there are K buckets which contain the
duplicates of arbitraryM.f / which means the union operations do not work. Hence, the processing
range should be shrink from all suspicious buckets in each hash table to the ones related to each f
and the suspicious bucket filtering should be performed in cross way (row and column).

Algorithm 2 shows the process of suspicious bucket cross-filtering. Trow and Tcolumn are the
modular hashing filtering buffers based on red black tree structure in the row and column orientation,
respectively. The affirmative precondition is that the suspicious buckets corresponding to the sketch
coordinates…sus are not empty. In the row orientation, we want to pick out the signature fragments
exist in all the K suspicious buckets. Considering the economization of memory and computation
consumption, we insert the first word of fragments’ modular hashing results contained in the targeted
buckets into Trow and insert the ones whose count is K into Tcolumn, which means the signature
fragments appear in all the K suspicious buckets. After the filtering in all row orientations has
finished, we do the similar filtering in the column orientation to screen out the H -count words and
insert the correspondingM.X/ of signature fragments into the result setRmal which can be utilized
to claim the malice of file fragments in the client.

The cross-filtering scheme is running in the cloud server which possesses sufficient computation
and memory power, but we still need to carefully choose the parameters to make our matching
efficient. The filtering buffers we adopt are based on the red black tree structure which achieve the
insertion and searching in O.logN/. For arbitrary L.f /, there are K � H corresponding buckets
each of which contains t modular hashing results, so the total insertion and searching operations can
be implemented roughly in 2K � H � O.log t / (the operations of Tcolumn can be ignored because
each L.f / corresponds to one word in each hash table theoretically). The H and K are assigned to
be small constant. Hence, the total time complexity of suspicious bucket cross-filtering is equivalent
to O.N logN/. The analysis of memory cost is discussed in Section 6.2.

After the suspicious bucket cross-filtering, cloud server sends the result Rmal back to the client.
The culprit signature fragments and short signatures should be compared with the suspicious file
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fragments in modular hashing form to make sure the veracity of matching mechanism. The modular
hashing avoids the direct exposure of signature fragments during the communication with server
and client to protect the privacy and profit of server. Moreover, the security vendors can choose
some classical encryption algorithms to further ensure the secure communication which is beyond
the scope of this work. The client will take some security measures, such as deletion or isolation,
with the infected files after validate the matching results.

5. DISCUSSION

In this section, we discuss the accuracy of the reversible sketch structure which is measured based
on the false negative and false positive rates generally. A false negative occurs when a fragment
summarized into the RS earlier is asserted as clean when matching. While the false positive occurs
when a query fragment not summarized into the RS is incorrectly stated as present. There are two
types of false positives in CloudEyes. The first one is caused by the hash functions employed in
the RS , which is called hashing false positive. Secondly, the modulo arithmetic adopted in the
initialization brings the possibility of collision between two different fragments and modular hashing
of signature fragments adopted in the storage mechanism. Here, we call it fragment false positive.
In what follows we will conduct the theoretical and statistical analysis of these measurements.

5.1. Fasle negative

The false negative is caused by the initialization based on fixed-size slide window, rather than the
hash functions. For example, suppose the signature 00abcdefg00 has been summarized into RS with
window size of 6, which means two signature fragments are constructed and mapped into the RS :
00abcdef 00 and 00bcdefg00. Now, if we scan the file content 00bcdef 00, itwill respond that the file was clean
which is incorrect. It is remarkable that false negative in CloudEyes would occur only for the short
file content whose length is less than w bytes. So it greatly depends on the length of the scanning
content. However, this situation seldom takes place and is hard to be evaluated in prevalent security
detection because sizes of files to be scanned are always larger than w bytes which we set in the
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evaluation. Alternatively, the calculation of false negative can be more comprehensible according
to the number of short signatures produced by the initialization in the cloud server. We can adjust
the value of w to minimize the false negatives of CloudEyes, while w also plays an important role
in the false positives discussed later. Hence, it is worthwhile to give our careful consideration about
the tradeoff (more details in Section 6.5).

5.2. Hashing false positive

The hash functions we use earlier are 2-universal which make the hash results are nearly random-
ized. Hence, the principle and accuracy of summarization is similar with the Bloom Filter. This type
of false positive comes from the hash collisions which may lead to the conclusion that a specific
fragment is suspicious when it is not. Alternatively, the false negative will never exist. We learn
about the probability of false positive in a bloom filter can be calculated with following relation:

FP D

 
1 �

�
1 �

1

m

�kN!k
(1)

where m is the length of bloom filter, k is the number of used hash functions, and N is the amount
of inserted elements. We can easily conduct the hashing false positive of a hash table in RS . As
described earlier, each hash table usesK hash functions and

�
l � w C 1

�
�NS fragments are inserted

into it. So the false positive of each hash table is

˛ D

 
1 �

�
1 �

1

m

�.l�wC1/�NS �K!K
(2)

There are H hash tables built in RS which makes the hashing false positive reasonable if and
only if collisions exist in all of the H ones. According to the relation (2), let FPh be the hashing
false positive of RS that is

FPh D

 
1 �

�
1 �

1

m

�.l�wC1/�NS �K!H �K
(3)

5.3. Fragment false positive

As we described in Section 4, the CloudEyes system adopts the modulo arithmetic to deal with the
wildcards in specific signatures and cut down the storage consumption. However, this will introduce
collisions between different fragments. Specifically, there are two distinct scenarios that lead to
fragment collisions in the wildcards case which is discussed later, and the third one occurs in the
storage mechanism which is independent of the others.

5.3.1. Collision before summarization. This scenario occurs between two unsummarized frag-
ments, that is, the hashing value of them is uniform. Suppose that S and S 0 are two different strings
(signatures or files) with same length of l . Assume that S D s1s2 : : : sl and S 0 D s

0

1s
0

2 : : : s
0

l
, and

the number of classes by q, then the collision happens if each byte of string belongs to same class
after modulo. Let F1 be the false positive before summarization, which is calculated by

F1 D

 
d256
q
e

256

!l
6
�
1

q
C

1

256

�l
(4)
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5.3.2. Collision after summarization. This scenario occurs when the unsummarized file content is
matched which is incorrect. Suppose that S D s1s2 : : : sl is initialized with the window length of w.

As noted earlier, the number of w-byte fragments after initialization is
�
l � w C 1

�
. The collision

happens when all these fragments are wrongly resulted in suspicion. Let F2 be the false positive
after summarization, we can conclude the relation below according relation (4)

F2 D

 
d256
q
e

256

!w �.l�wC1/
6
�
1

q
C

1

256

�w �.l�wC1/
(5)

Consequently, the probability of collisions are the sum of F1 and F2. However, we should negate
the situation that all the bytes in the string are really equal. Moreover, the collision is directly related
to the number of signatures summarized into the RS . Let FPc be the collision false positive rate,
then we have

FPc D

"
F1 C F2 �

�
1

256

�l#
�NS

6
"�

1

q
C

1

256

�l
C

�
1

q
C

1

256

�w �.l�wC1/
�

�
1

256

�l#
�NS

(6)

5.3.3. Modular hashing false positive. We adopt modular hashing in the storage mechanism to cut
down the memory consumption which brings the false positive simultaneously. The q functions are
randomly chosen from a class of 2-universal hash functions which ensure each part of signature
segments are mapped independently and uniformly. Let FPmh be the modular hashing false positive
of any signature fragment X with the size of w-byte, then we have

FPmh D

�
1

28w=q
2

�q
�
�
l � w C 1

�
�NS D

�
l � w C 1

�
�NS � 2

�8w=q (7)

In conclusion, the total false positive of CloudEyes FP can be computed by the relations (3), (6)
and (7) as follows:

FP D FPmh � FPh C FPc (8)

In Figure 6(a), the hashing false positive, denoted by FPh, is illustrated in the left vertical axis
with blue solid line; the modular hashing false positive, denoted by FPmh, is illustrated in the right
vertical axis with red dashed line. In Figure 6(b), the collision false positive, denoted by FPc , is
depicted by black dashed line. As observed, FPh is much larger than FPc with different number
of signatures after initialization. And FPmh is 80 times smaller than FPh averagely. So FPc is
negligible compared with FPmh � FPh, and the false positive of CloudEyes primarily lies on FPh.
It is reasonable that FPh grows close to 1 when the number of signatures grows close to the size of
hash table because empty reversible buckets get rare.

6. PERFORMANCE EVALUATION

In this section, we first introduce the experimental setup in detail, then we evaluate the perfor-
mance of the CloudEyes system and make some comparison with the ClamAV and SplitScreen with
different measurements.

6.1. Evaluation setup

We have implemented CloudEyes based on the file and signature identification model of ClamAV
with approximately 7K lines of C/C++ code which consist of 4.5K for cloud server and the rest for
client. CloudEyes clients and cloud server are connected with each other via Transmission Control
Protocol sockets. And, we adopt the current version of ClamAV (0.98.5) and implement SplitScreen
based on it for latter comparisons.
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Figure 6. Three types of false positive in CloudEyes with m D 224; w D 16; l D 30;H D 4;K D
2; q D 4 and different number of signatures between 460,000 to 3,700,000. (a) is hashing false positive FPh
(depicted by blue line) and modular hashing false positiveFPmh (red line); (b) is collision false positiveFPc

(black line).

The signature databases which originate from the ClamAV open source platform contain two
types of signatures: whole file or segment MD5 signatures and regular expression signatures. We
employ ten versions from Nov. 2008 to Nov. 2014, which the number of signatures ranges from
460,000 to 3,700,000. About 98% of all signatures are MD5 signatures with uniform size of 16 bytes
each in the latest database which means one MD5 signature can be treated as a signature segment
directly. Thus, we fix the value of w to be 16 while dealing with MD5 signature initialization and
scanning. If unspecified, we use m D 224; q D 4;H D 2;K D 2; l D 20 for the RS in our
experiment and w D 16 for regular expression signatures as well. We implement the evaluation
with the latest database (main v.55 and daily v.19688) and show the average results over 20 runs.

Our total 36GB suspicious data set consists of about 240,000 unique samples named by MD5
hash, which are captured by specific IDS from the campus network. The clean files come from the
install of common applications. And experiments are performed on a CentOS 5.6 virtual cloud server
(8 cores, 32-GB memory, and 2.53 GHz) and a common open research network emulator based
on OpenVZ which provides different types of virtual machines and distributed network. Figure 7
depicts the topological architecture of our experiments.

6.2. Memory analysis

As described earlier, we adopt the reversible sketch structure in the cloud server. Each bucket aver-
agely contains t D

�
l � w C 1

�
� NS � K=m signature segments, so the entire memory cost is at

least .w � t � m � H/=q bytes theoretically. We utilize the dynamic red black tree structure to store
these segments and prune the reduplicate ones after initialization. This process takes up a period of
time, but we do not count it in the performance of CloudEyes because it performs only once at the
starting of evaluation.

We first practically analyse the numbers of signature segments and filled buckets in RS after
initialization with different number of signatures. Table II lists these numbers and the average mem-
ory cost of the cloud server. The number of signature item listed in the table indicates how many
signatures are contained in different versions of ClamAV database. For example, 460K means the
database (main v.49 and daily v.8683) contains 460 thousands signatures, 3.7M means the database
(main v.55 and daily v.19688) contains 3.7 million signatures, et cetera. The item of Signature Seg-
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Figure 7. The experimental topological architecture.

Table II. Memory analysis of cloud server.

The number of signature

460K 530K 860K 1M 2M 3M 3.7M

Signature segments 7,642,123 7,717,276 8,355,560 8,774,970 9,567,772 10,733,552 11,917,850
RS Buckets 4,862,216 5,031,482 5,565,858 6,427,696 7,737,428 8,624,520 9,798,166
Cloud Server(MB) 102 149 195 262 328 417 488
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Figure 8. Memory cost of ClamAV, the client of SplitScreen and CloudEyes with different numbers
of signatures.

ments in the table means the sum of original segments after signature initialization, andRS Buckets
item includes all the buckets which contain at least one segment in H hash tables. As observed, the
memory cost of cloud server in CloudEyes mounts up with the growth of signatures. However, it is
acceptable for security vendors. The commercial cloud products are abundant to achieve the storage
in memory and ensure high accessing speed.

Figure 8 lists the average memory cost of the client with various number of signatures after we
adjust from different versions when scanning 900 suspicious samples (total 600MB). Unlike the
cloud server, memory cost of client does not grow with the number of signatures. We compare
the memory cost of SplitScreen client and ClamAV with same environments which are also illus-
trated in Figure 8. The numbers indicate that our client appropriator the least memory, which means
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CloudEyes is more applicable than SpliltScreen because the latter calls the accurate scanning of
ClamAV after its first scanning.

6.3. Time analysis

In this section, we evaluate the performance of our system from several perspectives. First, we test
the scanning time cost of CloudEyes in the virtual machine as a resource-constrained client with
350MB memory, 256KB L2 cache, and 1GHz CPU, and the bandwidth between the cloud and client
is 1MB/s. The testing data are the samples randomly chosen from our data set. The average size of
each sample is 2MB. Meanwhile, we make comparisons with the system of ClamAV and SplitScreen
in the same environment. Figure 9 shows the details of the time cost. We implement this with 1MB
signature database (main v.54 and daily v.13810) because ClamAV exhausts the system memory
when running with larger signature databases. As observed, CloudEyes outperform the others with
lower time consumption and smoother increment. We can conclude that small cache volume slows
down the detecting speed of SplitScreen distinctly. In some condition, SplitScreen even runs slower
than ClamAV.

Moreover, we are concerned about the composing of the time cost illustrated in Figure 10
which reveals the effect of our matching mechanism. The mean percentage of accurate scanning
of SplitScreen is 74.3% while that of CloudEyes is 19.7%. The fast scanning takes account of all
the file fragments which matched in the digest to avoid the accurate scanning of whole file content,
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Figure 9. Time performance of ClamAV, SplitScreen and CloudEyes using different number of samples.

Figure 10. The composing of time cost of CloudEyes and SplitScreen. SSAS and SSFS stand for the accurate
and first scanning of SplitScreen, respectively. SBCF and FS stand for suspicious bucket cross-filtering and

fast scanning of CloudEyes.
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while the fast scanning of SplitScreen only reserve the first matched file fragment to label the file
to be accurately scanned. In this way, we cut down a mass of computation and time. Hence, we can
confirm that the matching mechanism based on the reversible sketch structure can largely improve
time performance.

Besides, we try to analyse the time costs of three systems from the hardware execution perspec-
tive. We hypothesize that the primary time consumption of these systems are cache misses which
consist of instruction fetches and loads that miss the different level caches. Figure 11 illustrates the
total number of cache misses for ClamAV, SplitScreen, and CloudEyes as the number of signatures
increases. We achieve the statistic and comparison after servers of SplitScreen and CloudEyes are
steadily running. The trendlines of increment which tally with the time performance confirm our
hypothesis. The lower number of cache misses indicates the less time consumption and this disparity
grows as the number of signatures increases.

Finally, we test the throughput performance of CloudEyes with three different resource-
constrained nodes assigned by the network emulator: Node 1 (512KB L2 cache, 1GHz CPU, 1GB
RAM); Node 2 (256KB L2 cache, 1GHz CPU, 768MB RAM) and Node 3 (256KB L2 cache,
512MHz CPU, 768MB RAM). Comparisons with SplitScreen and ClamAV are made using latest
signature database and 210 MB suspicious data samples. Figure 12 shows these results which indi-
cate CloudEyes performs better than the others in three nodes. In the third node with lower frequency
processor, the performance is affected because more time is needed in the fast scanning.
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Figure 11. Total cache misses of ClamAV, SplitScreen and CloudEyes using different number of signatures.
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Figure 12. Throughput performance for three different resource-constrained nodes.
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6.4. Communication consumption analysis

Another important inspiration of our design is data privacy protection with slight amount of com-
munication consumption between the client and server. We achieve this through the communication
mechanism labored earlier. The client sends the sketch coordinates of suspicious file fragments to the
server, and the server send the short signatures and transformation of malicious signature segments
back to the client.

Figure 13 illustrates the average communication consumption between the client and server with
different number of signatures in CloudEyes and SplitScreen when scanning 2GB suspicious sam-
ples. The other experiment parameters are same with Section 6.2, besides the client and server are
connected with Transmission Control Protocol protocol.We do not take ClamAV into consideration
to make this analysis not so far-fetched as the infrastructure of universal ClamAV is designed to
be host-based. As observed, the communication consumption in CloudEyes is averagely 12.6 times
smaller than that in SplitScreen, and stand smooth with the growth of signatures. The communica-
tion bandwidth of CloudEyes during scanning is averagely 36.7 KB/S which is acceptable for the
resource-constrained clients, such as mobile phones and pads.

6.5. Practical accuracy

We discuss the accuracy of the reversible sketch structure in Section 5 and conclude that it should
be carefully balanced with false positive and false negative. Moreover, we give a practical test of
the accuracy in detecting 5972 clean PE files (totally 1.42GB) with different window size under the
latest signatures database. There is no need to repeat the evaluation in anterior versions of database
because they are successive. Table III lists the details of the practical accuracy. The false positive of
CloudEyes is calculated by the number of suspicious file fragments divided by the total number of
file fragments. As mentioned earlier, for MD5 signatures, we fix the value of w to be 16, the other
variable values are for regular expression signatures. The false negative is calculated by the number
of short signatures divided by the total number of signatures. Small window size cannot provide
enough possibilities for the large amount of signature fragments which caused high false positive.
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Figure 13. The communication consumption between the client and server with different number of
signatures.

Table III. Practical accuracy of CloudEyes.

Window size Fasle Positive (%) Short Sigs False Negative (%)

w D 12 7.861 3467 0.092
w D 16 5.726 5741 0.152
w D 20 3.380 7676 0.203
w D 24 2.371 10929 0.289
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While large window size will produce many short signatures which bring high false negative and
not be enough fine-grained. Hence, we can ensure the high accuracy of CloudEyes with considered
window size and 20 seems to be the moderatest value.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed CloudEyes, a cloud-based anti-malware system which provides secu-
rity service with high-performance detection and data privacy protection for resource-constrained
devices. In this CloudEyes work, we designed suspicious bucket cross-filtering, a novel signature-
based detection mechanism based on the reversible sketch structure which dramatically reduce the
scanning range and provide retrospective and accurate orientations of malicious data fragments.
And we implemented a lightweight scanning agent which utilizes the digest of signature fragments
to sharply reduce accurate matching range. Meanwhile, we design the balanced interaction mecha-
nism to protect the data privacy and reduce the communication consumption for both the clients and
security vendors. Performance evaluation in suspicious campus networks and normal files shows
that the system is able to achieve efficient malware detection and trusted protection of data privacy
with slight traffic and acceptable memory requirement.

As part of our future work, we are planning to address several challenges. The detection perfor-
mance can be ulteriorly improved by better algorithms. For example, private set intersection allows
two parties to compute the intersection of private sets while revealing nothing more than the intersec-
tion itself. This property can be utilized to reinforce the suspicious bucket cross-filtering to protect
the data privacy in the cloud. Moreover, some new effective methods applied in payload attribution
to provide large data reduction rates and support efficient payload queries, such as Winnowing Block
Shingling and Winnowing Multi-Hashing, can be utilized in the process of signature initialization
to optimize the storage and matching performances.
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