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1 | INTRODUCTION

Containers have gained significant attention in recent years. They are standalone self-contained units that package soft-
ware and their dependencies together and provide process isolation at the operating system (OS) level. Hence, similar
to virtual machines (VMs), containers are a virtualization technique that enable the resources of a single compute node
to be shared between multiple users and applications simultaneously. However, instead of virtualizing resources at the
hardware level as VMs do, containers do so at the OS level.

There are multiple technologies that realize the concept of containers. Perhaps the most widely used one is Docker,!
but there are several products on the market including LXC,2 OpenVZ,? Linux-VServer,* and rkt.> Although with different
underlying architectures and designed for different OSs (eg, Docker Windows containers versus Docker Linux containers),
there are various defining characteristics of containers that are a common denominator between different solutions. First,
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containers executing on a single host share the OS's kernel and run as isolated processes in user space; hence, there is
no need for a hypervisor. This isolation is done in such a way that there is no interference between applications, albeit
some performance interference due to colocated processes competing for resources. This however is controlled to some
extent by container managers by limiting the amount of resources such as CPU and memory that a container can use.
Second, containers use as many system resources as they need at any given point in time, and hence, there is no need
to permanently allocate resources such as memory. Finally, containers are spawned from images, which are executable
packages that include everything that is needed to run them. This includes code, libraries, settings, and system tools. More
importantly, these images can be constructed from filesystem layers and hence are lightweight and use considerably less
space than VMs.

As aresult of the aforementioned features, containers provide a flexible environment in which applications are isolated
from each other and offer benefits in terms of ease of deployment, testing, and composition to developers. Furthermore,
they enable a better utilization of resources and the performance overhead that results from running applications in
containers has been shown to be marginal by various studies.®® Their provisioning time has also been found to be much
faster than VMs, and in many cases, almost immediate.® These benefits have led to a considerable increase in the adoption
and popularity of this technology. Containers are being widely used by organizations to deploy their increasingly diverse
workloads derived from modern-day applications such as web services, big data, and internet of things in either private
or public data centers. This, in turn, has led to the emergence of container orchestration platforms. Designed to manage
the deployment of containerized applications in large-scale clusters, these systems are capable of running hundreds of
thousands of jobs across thousands of machines.

Such orchestration systems are commonly designed to schedule a workload of containerized applications of one or more
types. Each application type has its own characteristics and requirements such as high availability long-running jobs,
deadline-constrained batch jobs, or latency-sensitive jobs for instance. The majority of systems support multitenancy, ie,
they schedule applications belonging to multiple users on a shared set of compute resources, allowing for better resource
utilization. Hence, as applications are submitted for deployment, the orchestration system must place them as fast as
possible on one of the available resources while considering its particular constraints and maximizing the utilization of
the compute resources to reduce to the operational cost of the organization. These systems must also achieve this while
handling a considerably large number of compute resources, providing fault tolerance and high availability and promoting
a fair resource allocation.

In summary, to achieve their goal, container orchestrating tools must efficiently manage a wide range of containerized
applications and the distributed resources that support their execution. This is a challenging problem considering several
issues that must be addressed such as scaling to a large number of machines, maximizing the application throughput,
minimizing the application deployment delay, maximizing the resource utilization, meeting the specific requirements
and constraints of different applications, providing fault tolerance and high availability, supporting different types of
applications, and achieving a fair allocation of resources, among others. In this work, we aim to study how different
container orchestration systems achieve these requirements as well as the different capabilities they offer. In the context
of cloud computing, a similar problem has already been faced by VM resource managers (RMs), which are responsible
for allocating compute, storage, and networking resources to applications within a data center. There are various surveys
that explore this topic in great detail’®!? and aid in understanding the foundations of the systems studied in this work,
which can be seen as the evolution of VM-based infrastructure-as-a-service RMs.

The rest of this paper is organized as follows. Section 2 presents a reference architecture for container-based cluster
management systems. Section 3 introduces the proposed taxonomy from three different perspectives, the application,
scheduling, and resource models of cluster management systems. Section 4 describes and classifies various state-of-the-art
systems followed by future directions in Section 6 and a summary to conclude in Section 7.

2 | REFERENCE ARCHITECTURE FOR CONTAINER ORCHESTRATION
SYSTEMS

Container orchestration systems enable the deployment of containerized applications on a shared cluster. They enable
their execution and monitoring by transparently managing tasks and data deployed on a set of distributed resources. A
reference architecture is shown in Figure 1; the components shown are common to most container orchestration sys-
tems; however, not all of them have to be implemented to have a fully functional system. Four main entities or layers
are identified in the presented architecture, namely, one or more Jobs, a Cluster Manager Master, a Compute Cluster,
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FIGURE1 A high-level container orchestration system reference architecture. QoS, quality of service

and the physical Infrastructure. From a high-level perspective, users submit jobs composed of one or more tasks to the
cluster manager master. This entity then assigns the submitted tasks to worker nodes in the compute cluster, where they
are executed. The compute cluster is an abstraction of interconnected nodes that can be either physical or VMs on dif-
ferent infrastructures such as clouds or private clusters. A detailed explanation of each layer and its responsibilities is
presented as follows.

Jobs

Users submit their applications in the form of jobs. These jobs usually belong to different users and are heterogeneous; they
can range from long lasting latency sensitive services to short lived resource intensive batch jobs. A job is composed of one
or more smaller tasks. Tasks are generally homogeneous and independent, but some frameworks extend this definition
and allow users to define jobs in terms of interdependent and heterogeneous tasks. Users can also express the resource
requirements of jobs in terms of the amount of CPU and memory they will require for example. Other quality of service
(QoS) requirements such as fault-tolerance requirements, time constraints, priorities, and QoS classes can be included as
part of the job definition.
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Cluster manager master

The master component is the core of the orchestration system. It has a resource monitor module responsible for keeping
track of real-time resource consumption metrics for each worker node in the cluster. This information is usually accessed
by other modules in the system as required. For instance, the task scheduler and relocator modules may use these data
to make better optimization decisions. The accounting module has a similar functionality to the resource monitor but
focuses on collecting the actual resource usage and metrics relevant to the owner of the cluster management system.
On one hand, infrastructure-related metrics consolidated by this module include the overall resource utilization, energy
usage, and cost if deployed on a cloud environment. On the other hand, user-related metrics may include the number and
type of jobs submitted by users as well as the amount of resources consumed by these jobs. These measurements may aid
in enforcing user quotas or estimating billing amounts for example.

The admission control module is responsible for determining whether (1) the user's resource quota is equal to or larger
than the amount of resources requested or (2) there are enough resources available in the cluster to execute the submitted
jobs. For the latter scenario, multiple decisions can be made in case resources are insufficient. On one side of the spectrum,
jobs could simply be rejected. On the other side, a more complex solution would take into consideration users' priorities
and QoS classes to preempt jobs deemed less important and free resources for those incoming jobs that are considered
more important. Another possible solution would be to consider increasing the number of cluster nodes to place the
incoming jobs.

The task scheduler maps jobs, or more specifically tasks, onto the cluster resources. This is usually done by considering
several factors and opposing goals. First, the resource requirements and availabilities must be considered. Second, cluster
management systems are concerned with efficiently using resources and hence, maximizing the utilization of the cluster
nodes is usually an objective of schedulers. Finally, mapping tasks so that additional QoS requirements of jobs in terms
of affinities, priorities, or constraints are met is another key scheduler responsibility.

The task relocator can be seen as a rescheduler. Whenever tasks need to be relocated either because they are preempted
or for consolidation purposes for example, this component is responsible for determining their fate, a task relocation
policy may simply choose to discard the task or to place it back in the scheduling queue. More sophisticated approaches
may analyze the state of the system and determine a new optimal location for the task with the aim of improving resource
utilization.

The task launcher is responsible for launching the tasks’ containers on specific cluster machines once this decision
has been finalized by the scheduler or the relocator. Furthermore, to support the management of executing tasks, the
task monitor is responsible for auditing running tasks and monitoring their resource consumption and QoS metrics. This
information aids in detecting failures or QoS violations and enables the system to make better scheduling or relocation
decisions.

Finally, the resource provisioner is in charge of managing the addition of new cluster nodes. This can be either a man-
ual or an automatic process. In a manual process, usually system administrators will launch a new node with the worker
agent software installed in it and execute a call for the agent to advertise itself to the master. This call can be processed by
the resource provisioner so that the new node is now accounted for by the master. However, a resource provisioner is not
always necessary in such a case, as the worker may automatically send a heartbeat signal to the resource monitor to adver-
tise itself for instance. In the case of an automatic process however, the resource provisioner is an essential component of
the architecture as it will be responsible for dynamically adding virtual nodes (ie, VMs) to the cluster when the existing
resources are insufficient to meet the applications’ demands. It will also decide when nodes are no longer required in the
cluster and will shut the nodes down to prevent incurring in additional costs.

Compute cluster

Each machine in the cluster that is available for deploying tasks is a worker node. Each of these nodes has a worker
agent with various responsibilities. First, it collects local information such as resource consumption metrics that can be
periodically reported to the master, specifically to the resource monitor. Second, it starts and stops tasks and manages local
resources, usually via a container manager tool such as Docker or Linux containers. Finally, it monitors the containerized
tasks deployed on the node, ie, information, which is usually relied onto the task monitor component in the master.

Infrastructure

One of the main benefits of containers is their flexibility in being deployed in a multitude of platforms. Because of these,
the cluster machines can be either VMs on public or private cloud infrastructures, physical machines on a cluster, or even
mobile or edge devices among others.
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FIGURE 2 Application model taxonomy

3 | TAXONOMY

In this taxonomy, we identify various characteristics and elements of container-based cluster orchestration systems. In
particular, we study these platforms from the scheduling, application, and resource model perspectives. The aim of this
section is to explain each taxonomy classification, examples, and references to systems for each category are presented in
Section 4.

3.1 | Application model

In this section, we identify a classification for the application model used by container-based cluster management sys-
tems as depicted in Figure 2. This taxonomy is related to the Job components as depicted in the reference architecture
(Figure 1). In particular, we present various ways in which jobs or applications can be described by users as well as different
characteristics that they can have.

To efficiently utilize resources, instead of running separate clusters of homogeneous containers, organizations prefer
to run different types of containerized applications on a shared cluster. A common type of applications is long-running
services that require high availability and must handle latency-sensitive requests. Examples include user-facing service
or web service. Another type of application are batch jobs. These have a limited lifetime and are more tolerable toward
performance fluctuations. Examples include scientific computations or map-reduce jobs. Cron jobs are a type of batch
jobs that occur periodically. The advantage for schedulers is that the time when cron jobs must be deployed is known in
advance, and hence, this information can be used to make better scheduling decisions.

Supporting a mixed workload may pose further challenges for container orchestrating systems as each type of appli-
cation has different QoS requirements that must be fulfilled when performing the scheduling. However, having multiple
applications share a cluster has significant benefits in terms of resource utilization. For example, Google'* demonstrated
they would need 20% to 30% more machines to run their workload if long running and batch jobs were segregated into
separate clusters. Having a mixed workload allows for less performance-sensitive jobs to use resources that are claimed
but not used by those with more stringent requirements for example. A batch job with a loose deadline could for instance
tolerate being placed in a node with less CPU resources available than those requested for the job. As a result, better job
packing can be achieved.

Container orchestration systems may allow jobs to be defined by users in different ways. For instance, a job may be
defined as a single containerized task. To offer more flexibility, frameworks generally allow jobs to be defined as a com-
position of multiple independent tasks that are identical, or almost identical to each other. Each of these tasks can then
be deployed in a container on any given resource; this application model is used by Google's Borg" system for example.
Another approach is to define a job in terms of multiple dependent tasks that must be colocated on the same node, as is
done in Kubernetes.' Finally, systems like Apollo'® from Microsoft provide users with a more powerful application model
in which they can define jobs as a graph of tasks. This enables users to define the communication patterns and depen-
dencies between tasks and enables the scheduler to make better optimization decisions as more details on the application
are known in advance.
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3.2 | Scheduling

This section discusses containerized cluster management systems from the scheduling perspective. The classifications
presented here relate mainly to the task scheduler and task relocator components from the Cluster Manager Master entity
described in Figure 2. In particular, we analyze the problem from two different angles; the first one is the scheduler
architecture presented in Section 3.2.1 and the second one is related to the job scheduling policies depicted in Section 3.2.2.

3.2.1 | Scheduler architecture

Regarding the scheduler architecture, there have been extensive studies on their classification on distributed systems. For
example, Casavant and Kuhl'® proposed a taxonomy of scheduling algorithms in general purpose distributed computing
systems; Toptal and Sabuncuoglu'” presented a classification of different factors related to distributed scheduling as well
as a survey of the literature in the same topic, and Krauter et al’® proposed a taxonomy and performed a survey of grid
resource management systems for distributed computing that included the scheduler architecture or organization. Since
this specific characteristic is key in understanding different approaches to scheduling in cluster management systems,
we identify here the most prevalent architectures used by the surveyed frameworks, as shown in Figure 3. After briefly
introducing their general definition, we aim to keep the discussion as relevant to the problem addressed in this work as
possible.

In a centralized architecture, there is a single scheduler responsible for making placement decisions for the container-
ized applications. These schedulers are monolithic in that they implement all the policy choices for the different types of
workloads in a single code base. They have a global view of the system and the available resources and hence have the
capability of choosing any of the existing nodes when making a placement decision. This also enables such schedulers to
make better optimization decisions. However, they have the disadvantage of being a single point of failure in the system
and suffering from scalability issues as the load of incoming scheduling requests increases and the number of nodes in
the cluster grows.

Decentralized architectures can be used to improve scalability. In this case, multiple distributed scheduler replicas exist.
The replica instances can be monolithic, meaning that they handle a subset of the requests but implement all the policies
and handle all the workloads. On the other hand, the replicas can be modular, and hence, each instance can specialize on
a specific application type or implement a different set of policies. For example, there may be a scheduler for long running
jobs and a scheduler for batch jobs. Each of these can, in turn, be replicated. There are two key aspects that need to be
considered by decentralized schedulers. The first one is determining how the requests are partitioned between schedulers.
The second one consists on managing the state of the system between different replicas. For monolithic decentralized
schedulers for example, the load can be partitioned using a traditional load balancing mechanism; for modular ones, the
type of application to schedule will achieve this goal.

Regarding state management, an approach is to provide each replica with access to the entire cluster state. If paired with
optimistic concurrency control, despite the need to redo some work, this method successfully increments the parallelism
of the schedulers. Omega® is an example of a system implementing a decentralized modular scheduler with shared state
and optimistic concurrency control. On the other hand, each scheduler replica may have a partial view of the system
state in which a particular resource is only made available to a particular scheduler at a time. Also known as pessimistic
concurrency, this approach ensures there are no conflicts between schedulers by selecting the same resource for different
applications. Another option is to implement an optimistic concurrency approach, in which all the schedulers have access
to a shared state, increasing parallelism but also the potential for wasted scheduling effort if conflicts happen too often.

Finally, in a two-level architecture, the resource management and the application framework are decoupled, and the
scheduling is done in two separate layers. The bottom layer is responsible for managing the cluster resources and either
offering available resources (ie, offer based) or granting resource requests (ie, request based) to application frameworks.
These application frameworks are then responsible for making the actual placement decisions, ie, determining which
tasks will be deployed on which resources. This approach offers a great deal of flexibility to frameworks and mitigates the
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load and stress on the central scheduler. Mesos® is an example of an offer-based two-level scheduler, whereas Fuxi* is
an example of a request-based one.

It is worth mentioning that offer-based schedulers that hold a lock on resources offered to an application framework (ie,
pessimistic concurrency control) are more suited to application frameworks capable of making fast scheduling decisions
on small and short-lived and small tasks."” Mesos for example, alternates offering all the available cluster resources to
each application scheduler. As a result, long scheduling decisions by application frameworks would result in nearly all
resources being locked and out of access to other schedulers during this period of time.

3.2.2 | Job scheduling

From the perspective of job scheduling, there are various policies and considerations that can be implemented by cluster
managers. Namely, we consider in this work the constraints used to determine the placement of a task in a node, the
pool of nodes that is considered when making this placement decision, whether tasks are preempted or not, and whether
rescheduling tasks is a feature supported by the system or not. This taxonomy is shown in Figure 4.

To improve the scalability of the system and to reduce the time from job submission to job placement, some schedulers
will select resources to execute tasks from a subset of the cluster nodes, as opposed to evaluating the suitability of every
single cluster node. This will speed up the decision time and enable the system to process more requests per time unit and
to reduce the amount of time jobs have to wait before being assigned to resources. A possible strategy to achieve this is
to select the best suited node to place a particular containerized task based on a randomized sample of the entire cluster
nodes as done by Borg. Another approach is to partition the cluster into smaller subclusters and assign them to different
scheduler replicas.

Schedulers can have greater flexibility in placing tasks if they can preempt existing assignments, as opposed to simply
considering resources that are idle, but this comes at the cost of wasting some work in the preempted tasks. Preemption
is useful when a priority scheme is in place. In this way, high priority tasks can obtain resources at the expense of lower
priority ones, which are preempted. The system may even notify tasks before preempting them so that they have time to
save their state and gracefully finish their execution. Preempted tasks will often be rescheduled elsewhere in the cluster
though. This is one scenario in which rescheduling is currently being used in existing systems such as Borg.

Another rescheduling use case is related to failures; when a worker node is deemed to have failed or is unreachable, the
orchestrator will reschedule the tasks that were running on the machine on other nodes. Other systems like Kubernetes™
transparently manage the replication of failure-sensitive tasks via a replication controller. In this way, when a task termi-
nates abruptly causing the number of current replicas to be smaller than the expected number of replicas, the task will be
relaunched or rescheduled by the system. Finally, it is not unusual for tasks to be evicted from a node and rescheduled if
they have exceeded their expected resource usage. This is further discussed in Section 3.3.
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Placement constraints are offered as a mean for users to customize the behavior of the scheduler to meet their appli-
cations' specific requirements. Hence, this feature does not apply to two-level schedulers, which leave the placement
decisions to the application frameworks. For centralized and decentralized schedulers, value-based constraints are the
simplest way of achieving this with a user specified value matching a specific attribute of the node where the task is to be
placed. Specifying the name of the node where a task must be deployed is an example of this type of constraint. Another
example is specifying a hardware component that must be present in the host, such as the disk type being solid-stare drive.

Query-based constraints on the other hand offer more expression power to the users by enabling them to define more
complex placement rules such as spreading the load evenly across a set of nodes and filtering attributes according to a set
of values. For example, in Marathon,* the constraint [“rack_id”, “GROUP_BY”] will lead to tasks being evenly distributed
across racks.

Limit-based constraints allow the control of machine diversity, ie, they enforce per-attribute limits such as the number
of tasks of a given type to be deployed on a single host. Their functionality is actually a subset of the functionality offered
by query-based constraints. An example would be a constraint ensuring that no more than two instances of a job are
deployed on a single host. Aurora,? a framework built on top of Mesos, implements this type of scheduling constraints.

Label-based constraints are similar to value based but offer more flexibility in that users can define their own labels
used to specify identifying attributes of objects that are meaningful and relevant to them, but that do not reflect the
characteristics or semantics of the system directly. For example, in Kubernetes, labels can be used to force the scheduler
to colocate tasks from two different jobs that communicate a lot into the same availability zone.

Finally, affinity-based placement constraints enable users to define rules on how jobs can be scheduled relative to other
jobs. An affinity rule would lead to jobs being colocated, whereas an antiaffinity one would prevent jobs from being
colocated. A key difference with the other placement constraints is that affinity rules apply constraints against other
jobs running on a node, as opposed to applying constraints against labels or features of the actual node. Finally, it is
worthwhile mentioning that the use of constraints can significantly impact the performance of scheduling algorithms.
An affinity-based constraint in Yarn** would enable users for example to place two containers with tag x on a node on
which containers with tag y are running.

3.3 | Cluster infrastructure and management

This section describes different characteristics of the compute cluster, its management, and the underlying infrastructure
supporting it. Section 3.3.1 presents a taxonomy for the cluster infrastructure, Section 3.3.2 introduces a taxonomy for dif-
ferent resource management techniques, Section 3.3.3 outlines different cluster-wide objectives, and finally, Section 3.3.4
introduces different features of container-based cluster management systems that support multitenancy.

3.3.1 | Cluster infrastructure

Figure 5 depicts the taxonomy for the cluster infrastructure. This classification defines the different types of infrastructures
that can support the compute cluster, which, based on their characteristics, may have a significant impact on how the
compute cluster resources are managed by the cluster manager master.

The resources in a cluster may be static in that there is a fixed number of machines that remains relatively constant
(failures, maintenance, and new hardware addition, may be exceptions) or elastic in that the cluster scales out and in
based on the current demand of the system. Static settings are more likely to be based on bare metal or nonvirtualized
servers. Their management consists on efficiently utilizing all of the existing resources. Elastic approaches on the other
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FIGURE 5 Cluster infrastructure taxonomy
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hand expect the cluster to vary in size over time and are more common on virtualized environments. This scaling may
be available through manual methods, in which a system administrator or an external framework adds (or removes) one
or more compute resources to (from) the cluster, which then become available (unavailable) to the scheduler for placing
containers. Autoscaling methods on the other hand enable the addition and deletion of resources from the cluster in
an automated fashion. The autoscaler is part of the system as opposed to an external decision maker and hence decides
whether nodes should be added or removed based on the current state of the system. The current utilization of resources
would be a good indicator to trigger such decision for example. Although the latter scenario considerably increases the
complexity of the system, it may enable a better utilization of resources leading to decreased operational costs, a potential
improvement in performance, and reduced energy consumption.

3.3.2 | Resource management

Different resource management techniques implemented by the Cluster Manager Master are illustrated on Figure 6. Allo-
cating computational resources in distributed environments is a challenging problem. Orchestration systems usually
achieve this with task resource requests, which allow users to define the amount of resources such as memory and CPU
that a given task will use (at its peak time). This information is then used by the framework to efficiently assign containers
to machines based on their available resources and the tasks currently deployed on them.

Resource limits on the other hand are an upper bound on the amount of resources a job or a task is allowed to con-
sume. They are usually enforced by orchestration systems by means of resource reclamation, ie, by either throttling the
use of a given resource when a task has exceeded its limit or by evicting the task. The choice between throttling or killing
generally depends on whether the over consumed resource is compressible or noncompressible. Compressible resources
are those to which the amount used by a task can be controlled without the need of killing it; an example is CPU capac-
ity. Noncompressible resources are those that cannot be reclaimed without killing the task; an example is RAM. It is
worthwhile noticing that resource reclamation does not have to be enforced for every task in the system; contrary to this,
many frameworks apply these methods selectively to tasks with specific priorities or importance within the system. For
example, Borg will only throttle or kill nonproduction tasks, but would never apply these rules to production ones.

Resource granularity refers to the way in which resources are allocated to tasks, which equates to the way in which
tasks are allowed to express resource requests. Some systems assign tasks to fixed-sized coarse-grained slots. In this way,
CPU cores are assigned for example in units of 1 and RAM in units of 256 bytes. An example of such system is YARN,
which enables CPU requests to be made in increments of one virtual core and RAM requests in increments of 1 megabyte.
These increment values can be configured by users, but they must be larger than the aforementioned ones. Fine-grained
resource granularity on the contrary gives users more control and flexibility on the amount of resources they request.
Borg users for example request CPU in units of millicores and memory and disk space in bytes. According to the findings
of th work of Verma et al,”® this enabled the system to have a better resource utilization by requiring 30% to 50% less
resources in the median case than when rounding up resource requests to the nearest power of two. For the purpose of
this taxonomy, we define units equal to or larger than one CPU core and 1 megabyte for RAM or disk to be coarse grained;
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anything smaller we classify as fine grained. Yet another option is to bundle resources, just as VMs are. In this way, a
resource unit is specified as a tuple of resource amounts and allocations are done in number of resource units. An example
is ScheduleUnits in Fuxi, defined as a unit size description of a set of resources such as <1 core CPU, 1 GB memory>.
Resource requests and allocations are then specified in number of ScheduleUnits.

To achieve a better utilization of the available resources, many frameworks oversubscribe their servers. This idea is
based mainly on two observations. First, it is uncommon for tasks to consume the amount of resources they requested
throughout their entire lifetime, and instead, their average usage is usually significantly lower. Second, users tend to
overestimate the amount of resources they request for a given task. Hence, rather than letting unused requested resources
go unused, container orchestration systems may choose to assign these unused reserved resources to tasks that can tolerate
lower quality resources. To be able to achieve this safely, a relatively accurate estimate of the actual resource consumption
of tasks must be made by the orchestration system. When tasks exceed this estimate, the resources must be reclaimed
either by throttling or killing the opportunistic tasks, which may eventually need to be rescheduled somewhere else.

Resource consumption estimation is used to predict and estimate the amount of resources a container consumes at
different points in time, as opposed to relying simply on the amount of resources requested for a particular container.
The reason is twofold. First, resource requests are usually misestimated and overestimated by users. Second, the resource
consumption of a task is likely to vary over time, with the peak consumption spanning only over a fraction of its life-
time. Both scenarios lead to resources that are reserved but are idle most of the time and hence lead to the cluster being
underutilized. By monitoring and estimating the resource consumption of containers, then better oversubscription and
opportunistic scheduling decisions can be made by the system.

3.3.3 | System objectives

Many of the resource management mechanisms are put in place to fulfill a higher level goal, referred to as the system
objectives. These objectives ultimately guide the design and decisions made by the modules in the Cluster Management
Master. Their classification is outlined in Figure 7.

Scalability is a primary goal of existing systems. An approach to achieving it is to avoid a centralized scheduler. For
example, having scheduler replicas and an optimistic concurrency management approach to sharing the cluster state
seems to lead to high levels of scalability. Making quick scheduling decisions will also have a positive impact on the
scalability of the system. Other policies used for this purpose include caching the score given to nodes when selecting them
in the scheduling process, using equivalence classes to group tasks with similar characteristics for scheduling purposes,
and selecting a node to place a task from a subset of the cluster nodes."

Ensuring that applications deployed on the cluster have high availability is another goal for many systems. To achieve
this, management systems must be able to appropriately handle, mitigate, and detect node and task failures. Some systems
achieve this by automatically rescheduling tasks when they fail or are evicted, spreading task replicas across machines
and racks, and avoiding redeploying tasks on a machine where the task previously failed, among others.

Achieving high cluster utilization is also a primary concern, especially in proprietary clusters as underutilizing
resources will ultimately lead to higher operational costs for the organization. Oversubscription, fine-grained resource
allocation, resource consumption estimation, resource reclamation, and preemption are some of the methods used for
this purpose.

Maximizing job throughput is another common goal of systems. This will eventually lead to a more scalable system and
to a reduced delay between job submission and job placement. This may be crucial for applications requiring low response

Scalability

High Resource Utilization

System Objectives High Availability

High Scheduling Throughput

Application-specific QoS

FIGURE 7 System objectives taxonomy. QoS, quality of service
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times or latencies or with a very strict deadline. Ultimately, high throughput is achieved by making fast scheduling
decision and may require the optimality of the placement decisions to be compromised.

Finally, management systems may aim to satisfy QoS requirements that are specific to the applications they serve. This
may be an inherent characteristic in two-level schedulers as the application frameworks can use the resources requested
or offered to them in such a way that different objectives such as meeting a deadline or minimizing the makespan of a
job are fulfilled. For systems with a centralized or decentralized built-in scheduler, this goal is not as straightforward. Of
the surveyed systems, Apollo is the only one that considers the applications’ goals when scheduling. It aims to deploy
tasks so that their makespan is minimized. It does however assume that this is a common QoS requirement across all the
applications it handles; managing heterogeneous QoS parameters for different applications is an interesting challenge
that has not been addressed yet.

In this taxonomy, systems are classified as having one of the above objectives if and only if the functionality to achieve
them is built-in into the core components of the system. For instance, the scheduler must have policies in place that aim to
allocate tasks across nodes in different power domains to achieve high availability. We do not consider the case in which
a framework offers users the means of achieving these objectives by using mechanisms such as placement constraints,
job replication, or QoS classes.

3.3.4 | Multitenancy features

Multitenancy refers to the ability of a system or framework to serve multiple tenants in a physically shared environment.
A tenant is defined as a user or an application that must be kept logically isolated from other tenants. Within the context
of cluster orchestration systems, two particular scenarios arise based on the membership of tenants to either the same or
different organizations. On one hand, multitenancy across different organizations enables a single cluster to be shared
between users or stakeholders belonging to different companies. In this scenario, applications deployed on the cluster
are untrusted, and hence, strong policies isolating tenants are necessary. For example, each tenant should have access to
their own set of control plane objects (eg, master component), resource quotas should be enforced based on how much
tenants have paid, network isolation should be strong to prevent communication between applications belonging to dif-
ferent tenants, performance and security isolation of applications may require stronger guarantees than what is currently
provided by containers (eg, VMs), and sole-tenant nodes may be necessary in some particular instances.

On the other hand, multitenancy within a single organization sees the resources of a cluster being dedicated to a particu-
lar company but shared between different employees or teams within that organization. Cluster management systems are
commonly deployed under this scenario, which requires a less strict degree of isolation between tenants as it is assumed
all applications deployed in the cluster are trusted. In this case, the cluster control plane can be shared among tenants,
the current level of isolation provided by shared-OS containers is usually sufficient, and communication across tenancy
domains may be desirable in some instances.

Based on this, we have identified different multitenancy features as illustrated in Figure 8 that are present in cluster
management systems and provide different levels of isolation between tenants. Security isolation policies refer to features
restricting access to the cluster resources and what containers can do on a particular node. In particular, we categorize
frameworks based on whether they provide (or not) the following access control isolation-enabling features: an authenti-
cation module capable of identifying genuine tenants, an API, which allows tenants to create, access, or modify only those
objects they own and hides those that belong to other tenants, and an authorization module that ensures tenants can only
access those resources they are entitled to (eg, role-based access control capabilities). Container-centric isolation defines
whether a framework supports the definition of policies that restrict what the code executing inside containers can or
cannot do (eg, disable applications running as root) or whether hypervisor-based containers with hardware-enforced iso-
lation are supported or not. Examples of hypervisor-based containers are Kata containers,* runV,* and vSphere integrated
containers.”’

Network isolation features mask the use of a single physical network by applications from multiple tenants. They usually
allow restrictions to be put in place defining the way in which applications across different tenant domains can communi-
cate with each other. In an internet protocol (IP)-per-container model, each container is assigned a unique IP address, and
as a result, owns the entire available port range. This model enables containers to resemble VMs or physical hosts from
the networking perspective. Hence, rules can then be put in place defining address ranges to or from which applications
are allowed to send or receive packets. This rule can be defined and enforced in different manners. For instance, a simple
approach relying on network routing tables can be devised or third-party vendor plugins can be used to provide network
isolation for different requirements. Examples of these third-party plugins include Calico,”® Flannel,” and Nuage.*
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FIGURE 8 Multitenancy features taxonomy. IP, internet protocol; RBAC, role-based access

Port mapping on the other hand forces all of the containers running in a node to share the same IP. Containers on
the node are assigned a separate network stack, usually via Linux network namespaces. In this way, each container is
assigned a nonoverlapping range of ports and only packets addressed to or from these ports are delivered. Other network
stack resources that are partitioned include routes and firewall rules, which enables the network within a single running
kernel instance to be virtualized.

Finally, performance isolation policies refer to features that prevent a tenant's resource usage from negatively impacting
other tenant's applications. Achieving compute resource usage isolation is a key aspect, which is accomplished to some
degree by all frameworks within the scope of this work by means of containerization. Other mechanisms that facilitate
performance isolation include enabling and enforcing a per-tenant resource quota and scheduling-related policies such
as placement constraints and preemption. A discussion on these scheduling features was presented in Section 3.2.

4 | SURVEY

This section discusses a set of state-of-the-art container orchestration systems and analyzes them in the context of the
presented taxonomy. The results are summarized in Tables 1 to 6.

TABLE1 Originating organizations of the surveyed systems

System Originating Organization Open Source Container Technology
Borg Google — Linux cgroups-based

Kubernetes Google 4 Docker, rkt, CRI API implementations, OCI-compliant runtimes
Swarm Docker 4 Docker

Mesos UC Berkeley v Mesos containers, Docker

Aurora Twitter v Mesos containers, Docker

Marathon Mesosphere v Mesos containers, Docker

YARN Apache v Linux cgroups-based, Docker

Omega Google — N/S

Apollo Microsoft — N/S

Fuxi Alibaba — Linux cgroups-based

Abbreviations: CRI, container runtime interface; OCI, open container initiative.
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TABLE 2 System classification for the application model
System Workload Job Composition
Borg All Independent tasks
Kubernetes All Colocated tasks
Swarm Long-running jobs Colocated tasks
Mesos All Single task
Aurora Long-running and cron jobs Independent tasks
Marathon Long-running jobs Colocated tasks
YARN Batch jobs Single task
Omega All Independent tasks
Apollo Batch jobs Task graph
Fuxi Batch jobs Task graph
TABLE 3 System classification for job scheduling
System Architecture Node Selection Preemption Rescheduling Placement Constraints
Borg Centralized monolithic Randomized sample v 4 Value-based
Kubernetes Decentralized monolithic All nodes — — Label and affinity-based
Swarm Decentralized monolithic ~ All nodes — v Label and affinity-based
Mesos Two-level offer-based N/A — — N/A
Aurora Two-level offer-based All nodes 4 v Value and limit-based
Marathon = Two-level offer-based All nodes — v Value and query-based
YARN Two-level request based All nodes — — Value and affinity-based
Omega Decentralized modular All nodes v v N/S
Apollo Decentralized monolithic  Cluster partition and v v None
randomized sample
Fuxi Two-level request-based ~ All nodes v v Value-based
TABLE 4 System classification for cluster infrastructure
System Cluster Elasticity Cluster Infrastructure
Borg Static Nonvirtualized
Kubernetes Elastic, manual, and autoscaling Virtualized, nonvirtualized
Swarm Elastic, manual scaling Virtualized, nonvirtualized
Mesos Elastic, manual scaling Virtualized, nonvirtualized
Aurora Elastic, manual scaling Virtualized, nonvirtualized
Marathon Elastic, manual scaling Virtualized, nonvirtualized
YARN Elastic, manual scaling Virtualized, nonvirtualized
Omega Static Nonvirtualized
Apollo Static Nonvirtualized
Fuxi Static Nonvirtualized
4.1 | Borg

Google's Borg® cluster management system is designed to run hundreds of thousands of heterogeneous jobs across sev-
eral clusters, each with tens of thousands of machines. Users submit jobs to Borg, which are composed of one or more
homogeneous tasks. Each job runs in a cell, which is a set of heterogeneous machines managed as a unit. The workload
in Borg cells is composed of two types of applications. The first are long-running services that must remain available at
all times. These services must serve short-lived requests with minimal latency and correspond mostly to end-user-facing
web applications. They are commonly classed as high-priority job or production job. The second type of workload corre-
sponds to batch jobs. These can take from a few seconds to days to complete and are commonly classed as lower-priority
job or nonproduction job. Tasks run on containers deployed on physical machines and have resource requirements
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TABLE 5 System classification for resource management

System Quota Management Resource Reclamation Resource Granularity Oversubscription Resource Estimation
Borg Limits, requests Eviction, throttling Fine-grained 4 v
Kubernetes Limits, requests Eviction, throttling Fine-grained v —
Swarm Requests Eviction Fine-grained — —
Mesos Requests Eviction, throttling Fine-grained v —
Aurora Limits Eviction, throttling Fine-grained v —
Marathon  Requests Eviction, throttling Fine-grained — —
YARN Requests Eviction Coarse-grained — —
Omega N/S N/S Fine-grained 4 —
Apollo Limits Eviction, throttling Fine-grained v —
Fuxi Requests Eviction Bundle — —

TABLE 6 System classification for system objectives

System Scalability High Availability High Utilization High Throughput Application QoS

Borg v 4 v v —
Kubernetes v — — — —
Swarm v v v v —
Mesos v v — — —
Aurora v v — — —
Marathon v v — — —
YARN v v —_ v —
Omega 4 4 v v —
Apollo 4 — 4 4 v
Fuxi v v v v —

Abbreviations: QoS, quality of service.

specified in terms of disk space, RAM, and CPU cores, among other resources. The container stack used is proprietary
and is based on Linux cgroups.*® However, an open-source version of this stack, called Imctfy,* is readily available.

Regarding the scheduler, a queue of pending tasks is asynchronously monitored. This queue is transversed in a high to
low priority order with jobs selected based on a round robin scheme within each priority. The scheduling algorithm has
two parts, ie, finding feasible machines that match the task’s requirements and choosing one of these machines (scoring).
The scoring mechanism favors machines that already have the tasks' packages, spreading tasks (from the same job) across
power and failure domains, and packing quality like mixing low and high priority tasks on the same machine to allow
the high priority ones to consume more resources when required (eg, in a load spike).

Borg does not rely solely on the amount of resources requested for a task to reserve CPU and RAM for example. Instead,
it estimates the amount of resources a task will use and reclaims the rest for work that can tolerate lower quality resources
such as batch jobs. This reservation changes dynamically based on the fine-grained resource consumption of the task
measured every few seconds. Borg differentiates between compressible resources like CPU cycles that can be reclaimed
from a task by decreasing its QoS without killing it and noncompressible resources like memory, which generally cannot
be reclaimed without killing the task. Hence, tasks that try to consume more ram are killed, while CPU is throttled to the
requested amount.

Borg uses various technologies as building blocks to achieve its goals. For instance, Chubby,* a distributed lock service
implemented at Google that provides strong consistency, supports the framework's name system that allows tasks to be
located by clients and other services. To enable the monitoring of tasks, these have a built-in HTTP server that publishes
information about their health as well as different performance metrics. Supporting the accounting module by recording
data such as job submissions and task resource usage is Infrastore, a scalable read-only data store with an interactive
structured query language-like interface via Dremel** also developed at Google. A Paxos-based store® is used to maintain
the replicated state of five master processes in a highly available manner. Finally, Linux chroot jail is used as part of the
container stack to securely isolate multiple tasks running on the same machine.
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Overall, Borg is one of the most advanced surveyed systems. It supports features such as oversubscription with resource
consumption estimation, mixed workloads, fine-grained resource requests, and task preemption among others. Its cluster
utilization rate was reported to be between 60% and 70% and its throughput to be approximately 10 000 tasks per minute
in a cluster composed of tens of thousands of nodes.

4.2 | Kubernetes

Kubernetes' is a framework designed to manage containerized workloads on clusters. The basic building block in Kuber-
netes is a pod. A pod encapsulates one or more tightly coupled containers that are colocated and share the same set of
resources. Pods also encapsulate storage resources, a network IP, and a set of options that govern how the pod's con-
tainer(s) should run. A pod is designed to run a single instance of an application; in this way, multiple pods can be used
to scale an application horizontally for example. The amount of CPU, memory, and ephemeral storage a container needs
can be specified when creating a pod. This information can then be used by the scheduler to make decisions on pod place-
ment. These compute resources can be specified both as a requested amount or a as cap on the amount the container is
allowed to consume.

The scheduler ensures that the total amount of compute resource requests of all pods placed in a node does not exceed
the capacity of the node. This is even if the actual resource consumption is very low. The reason behind this is to protect
applications against a resource shortage on a node when resource usage later increases (eg, during a daily peak). If a
container exceeds its memory limit, it may be terminated and may be later restarted. If it exceeds its memory request, it
may be terminated when the node runs out of memory. Regarding the CPU usage, containers may or may not be allowed
to exceed their limits for periods of time, but they will not be killed for this. On the other hand, containers and pods that
exceed their storage limit will be evicted. Other resources (called extended resources) can be specified to advertise new
node-level resources; their resource accounting is managed by the scheduler to ensure that no more than the available
amount is simultaneously allocated to pods.

From a technical perspective, Kubernetes allows for various types of container runtimes to be used, with Docker and
rkt natively supported by the platform. More recently, the release of the framework's container runtime interface (CRI)
API has enabled Kubernetes to support other container technologies such as containerd®® and frakti,*” a hypervisor-based
container runtime. Furthermore, CRI-O,*® an implementation of the CRI API, currently enables Kubernetes to support
any open container initiative compliant container runtime such as runc.** In addition, supporting Kubernetes in manag-
ing the cluster nodes and jobs is etcd,” an open-source highly available distributed key value store. Specifically, etcd is
used to store all of the cluster's data and acts as the single source of truth for all of the framework's components.

Overall, Kubernetes is a highly mature system; it stemmed from 10 years of experience at Google with Borg and Omega
and is the leading container-based cluster management system with an extensive community-driven support and develop-
ment base. It provides users with a wide range of options for managing their pods and the way in which they are scheduled,
even allowing for pluggable customized schedulers to be easily integrated into the system. It is worthwhile noticing that
the Kubernetes built-in scheduler is classified as decentralized and monolithic in this survey; however, this can be over-
ridden by the use of pluggable schedulers, which, based on their implementation, can be either centralized, monolithic
decentralized, or modular decentralized. To conclude, although Kubernetes' performance and scalability may still not
reach the levels of industry-based systems like Borg, as of version 1.10, Kubernetes is capable of supporting clusters of up
to 5000 hundred nodes,* which suits the needs of many organizations nowadays.

4.3 | Swarm

Docker Swarm** orchestrates applications on a cluster of physical or virtual nodes running Docker. Users can execute
regular Docker commands (ie, the standard Docker API), which are then executed by a swarm manager. The swarm
manager is responsible for controlling the deployment and the life cycle of Docker-based containerized applications on
the cluster nodes. These applications are represented as services and may be composed of one or more containers. Notice
however that these services are intended to be long-running jobs that are continuously running. The replication of services
is allowed and is transparently handled by the swarm manager when an application is deployed. However, the failure of
nodes or services is not automatically handled by the framework and hence replicas are not redeployed if they fail.
Three scheduling strategies are available to deploy containers. Spread selects the node with the least number of contain-
ers deployed on it, binpack selects the node with the minimum amount of CPU and RAM available, and random chooses
a random node from the cluster. Swarm also supports placement constraints to enable users to customize the behavior
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of the scheduler based on their requirements. These include value, label, and affinity-based constraints. In this way, con-
tainers can be deployed on nodes with a specific OS, stored container image, deployed service, or that belong to a specific
cluster rack for example.

Overall, Swarm specializes on the scheduling of Docker containers; it is easy to use for Docker users and is lightweight
and flexible. Furthermore, the simplicity of the scheduling policies leads to a scalable system where placement deci-
sions are made fast; its performance in this matter has been corroborated by evaluating it an environment running
30000 containers.* However, the system lacks some key functionality offered by more robust management systems like
Kubernetes. For instance, Swarm does not handle failures of nodes, whereas the majority of surveyed systems are capable
of automatically maintaining a specified number of container replicas running throughout an application’s lifetime.

4.4 | Mesos

Mesos® is an open-source management system built around the idea of two-level scheduling. It delegates the scheduling
of tasks to application frameworks, such as Hadoop and MPI, while it remains responsible for distributing the available
cluster resources among all of its client frameworks. In particular, scheduling in Mesos is done in two phases. In the first
stage, Mesos divides the resources of the cluster and periodically presents each application framework with a resource
offer. These resource offers are based on policies that preserve priorities and fairness. Frameworks can accept or reject
these offers. Once an application framework accepts an offer, it can schedule its tasks on the obtained resources using its
own scheduler. Afterwards, Mesos actually launches the tasks for the framework on the corresponding hosts.

As mentioned in Section 3, offer-based two-level schedulers may encounter difficulties when application frameworks
have long scheduling cycles and place mostly long-running tasks that tend to hog resources. To alleviate these issues,
Mesos resource offers are time bounded, and hence, applications are incentivized to make fast scheduling decisions. The
reservation of resources for short tasks is also possible in Mesos. In this way, a specific set of resources on each node can
be associated with a maximum task duration, time after which tasks running on those resources are killed. It could be
argued that the benefits of this are twofold. First, it creates an incentive for applications to deploy short tasks, and second,
it alleviates the impact that long tasks may have on the system.

Mesos provides application frameworks with high-availability by maintaining multiple replicas of the master compo-
nent. ZooKeeper* is used to elect a leader within the replicated masters. Regarding the container runtimes supported,
Mesos allows users to deploy applications packed in Docker containers or in its custom Linux-based containers called
Mesos containers.

Altogether, Mesos provides a large degree of flexibility to its users and applications. Users can deploy different types
of frameworks on top of Mesos to suit their requirements. Applications on the other hand can apply their specialized
knowledge and schedule applications based on it. Furthermore, the unique scheduling model of Mesos and its use of
fine-grained resource-sharing model enables it to achieve high-utilization while remaining adaptable to workload changes
and robust. The simplicity of the system also allows it to scale to 50 000 nodes.

In the following sections, we introduce Aurora and Marathon, two orchestration frameworks that rely on Mesos to
manage the cluster resources. Even though they do not implement the entire functionality of a cluster management
system, they are included in the survey as they provide users with different application models and different scheduling
features that complement those offered by Mesos.

4.4.1 | Aurora

Originally developed by Twitter, Aurora® is a scheduler that runs on top of Mesos and enables long-running services,
cron jobs, and ad-hoc jobs to be deployed in a cluster. Aurora specializes in ensuring that services are kept running
continuously, and as a result, when machine failures occur, jobs are intelligently rescheduled onto healthy machines.
Furthermore, as opposed to Mesos, Aurora handles jobs, which are composed of multiple near identical tasks. Each task
is, in turn, composed of one or more processes, which are managed by an executor process that runs on worker nodes and
is responsible for launching and monitoring tasks. To deploy a job in Aurora, a job configuration is first submitted. This
configuration specifies the amount of resources required by each task as well as other constraints such as the node where
tasks should be deployed. Each task then aims to find a resource offer made by Mesos that matches its requirements.

4.4.2 | Marathon

Marathon?? is a metaframework for Mesos that is designed to orchestrate long-running services. Because of this, it focuses
on providing applications with fault tolerance and high availability; Marathon will ensure that launched applications will
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continue to run even in the presence of node failures. Aside from this, the framework also offers placement constraints,
application health checks and monitoring, and application autoscaling. Pods as defined in Kubernetes (ie, a set of appli-
cations that must be colocated) are supported in Marathon as of version 1.4. In this way, storage, networking, and other
resources can be shared among multiple applications on a single node as defined by users.

It is worthwhile mentioning that, in terms of functionality, Marathon and Aurora are very similar products. However,
there are a few differences. The main one is that Marathon handles only service-like jobs. Furthermore, setting up and
using Marathon is considered to be simpler than doing so with Aurora*; Marathon includes for example a user interface
through which users can directly schedule tasks.

4.5 | Apache Hadoop YARN

YARN?* is a cluster manager designed to orchestrate Hadoop tasks, although it also supports other frameworks such as
Giraph, Spark, and Storm. Each application framework running on top of YARN coordinates their own execution flows
and optimizations as they see fit. In YARN, there is a per-cluster RM and an application master (AM) per framework.
The AM requests resources from the RM and generates a physical plan from the resources it receives. The RM allocates
containers to applications to run on specific nodes. In this context, a container is a bundle of resources bounded to run
on a specific machine. There is one AM per job (a job is a set of tasks related to a framework) and it is responsible for
managing its life cycle. This includes increasing and decreasing resource consumption, managing the flow of executions,
etc. The AM needs to harness the resources available on multiple nodes to complete a job. To obtain these, the AM requests
resources from the RM and the request can include locality preferences and properties of the containers.*® Finally, YARN
supports two different containerizers, a custom built-in container manager based on Linux cgroups and Docker.

4.6 | Omega

Omega® is Google's next generation cluster management system. As opposed to a monolithic or two-level scheduler as
used by other approaches, Omega proposes the use of a parallel scheduler architecture built around shared state. In this
way, Omega offers a platform that enables specialized and custom schedulers to be developed, providing users with a great
deal of flexibility. The shared cluster state is maintained in a centralized Paxos-based transaction-oriented data store that
is accessed by the different components of the architecture (such as schedulers). To handle conflicts derived from this,
Omega uses an optimistic concurrency control approach. This means that occasionally a situation will arise in which two
schedulers select the same set of resources for different tasks; hence, the scheduling of one of these tasks may have to be
redone. Despite this additional work, the overhead was found to be acceptable and the resulting benefits in eliminating
blocking as would be done by a pessimistic concurrency approach was found to offer better scalability."

4.7 | Apollo

Apollo® is a scheduling framework developed at Microsoft. It aims to balance scalability and scheduling quality by
adopting a distributed and coordinated scheduling strategy. In this way, it avoids suboptimal decisions by independent
distributed schedulers and removes the scalability bottleneck of centralized ones. The scheduling of tasks is done so that
the task completion time is minimized. This is a unique feature among all the surveyed systems. The runtime of tasks
is estimated based on historical data statistics from similar tasks. Apollo uses opportunistic scheduling to drive high uti-
lization while maintaining low job latencies. While regular tasks are scheduled to ensure low latency, opportunistic ones
are scheduled to drive high utilization by filling the slack left by regular tasks. In Apollo, the physical execution plan of
jobs is represented as directed acrylic graphs, with the tasks representing a basic computation unit and the edges the data
flow between tasks. Tasks of the same type are logically grouped together in stages, with the number of tasks per stage
indicating the degree of parallelism of the directed acrylic graph.

4.8 | Fuxi

Fuxi® is a resource management and scheduling system that supports Alibaba's proprietary data platform. It is the
resource management module on their Aspara system, which is responsible for managing the physical resources of Linux
clusters within a data center and controlling the parallel execution of parallel applications. Users submit jobs to the
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TABLE 7 Security isolation taxonomy

Access Control Container-centric

System Restriced API Authentication RBAC-based Restricted Execution Hypervisor Isolation
Access Authorization

Borg v v/ N/S — —
Kubernetes v v 4 4 v
Swarm — v — v —
Mesos v v v v —
Aurora v 4 v v —
Marathon v v v v —
YARN v v v v —
Omega N/S N/S N/S N/S N/S
Apollo v v v N/S N/S
Fuxi N/S N/S N/S N/S —

Abbreviations: RBAC, role-based access.

FuxiMaster along with information such as the application type and the master package location. A FuxiAgent then
launches the corresponding AM, which retrieves the application description and determines the resource demand for dif-
ferent stages of the job execution. The AM then sends resource requests to the FuxiMaster. When resources are granted,
the AM sends concrete work plans to FuxiAgents. FuxiAgents use Linux cgroups to enforce resource constraints. When
the application process finishes, the AM returns the resources back to FuxiMaster. Finally, incremental or locality-based
scheduling enables Fuxi to make scheduling decisions in micro seconds. When resources are free, the decision of whom
to allocate them to is only made between those applications in the machine's queue, as opposed to considering all the
other existing machines and applications.

5 | SYSTEM CLASSIFICATION AND DISCUSSION

This section contains the classification of the surveyed container orchestration systems based on the presented taxonomy.
First, as a reference to readers, Table 1 depicts the organization from which each of the surveyed systems originate from,
as well as whether they are open source or proprietary and the container runtimes they support. Next, the classification
of the studied systems is presented on Tables 2 to 8. Specifically, Table 2 displays the application model summary while
Table 3 contains the classification from the scheduling perspective. Tables 4 to 8 depict the classification of the studied
systems from the cluster infrastructure and management perspective. Note that N/A is used when a property does not
apply to the given system and N/S is used when details regarding the specific characteristic were not specified in the
information sources that describe the system.

TABLE 8 Network and performance isolation taxonomy

Network Isolation Performance Isolation
System IP-per-container Port Mapping Third-party Plugins Compute Performance Per-tenant Resource
Isolation Quota

Borg — 4 — v v
Kubernetes v — v v 4
Swarm 4 — v v —
Mesos v v v v v
Aurora v v v v v
Marathon 4 v v v v
YARN — —_ —_ v v
Omega N/S N/S N/S v N/S
Apollo N/S N/S N/S v v
Fuxi N/S N/S N/S v v

Abbreviations: IP, internet protocol.
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Overall, we found that the commercial systems include more advanced features than the open-source ones. Some of
these features such as preemption and rescheduling however, may be tailored for the specific needs of an organization
and hence may be unsuitable for more general open-source systems, unless the flexibility of deciding their goals is left up
to users or developers. This is a complex endeavor.

In terms of scheduling, two-level schedulers such as Mesos and YARN offer the most flexibility and extensibility by
allowing each application framework to define their own scheduling policies based on their needs and specialized knowl-
edge. However, framework schedulers in this type of systems are limited in the decisions they can make as they only have
access to the cluster state information that is provided by the RM. To address this issue, shared-state schedulers such as
Kubernetes and Omega support pluggable schedulers that can be used simultaneously to schedule different types of jobs
with different characteristics. This approach may avoid the scalability and scheduler complexity issues of fully centralized
schedulers such as Borg. However, the ability of the system to scale the number of schedulers to a large number while
remaining efficient is an open research question.

Oversubscribing resources seems a common practice in most systems with the aim of achieving high cluster utiliza-
tion. However, how this is achieved in practice may have a considerable impact in the performance of applications and
the orchestration system itself. For example, relying on users’ estimates of an application resource requirements may not
leave room for oversubscription or may make this process cumbersome in that resources are frequently exhausted (eg, out
of memory events) in servers, and hence, tasks have to be frequently evicted and rescheduled. Borg's approach to over-
subscription seems to work well, with task resource usage being estimated based on fine-grained resource consumption
measurements over time, instead of relying solely on user resource requests. This approach raises another interesting
feature that could greatly benefit container orchestration systems, ie, resource consumption estimation.

All of the studied systems require users to specify the amount of resources, at least in terms of CPU and memory, that a
task will consume. This is not only a challenging task for users but also a risk for orchestrators. Users may easily overesti-
mate their resource requirements for example. This will lead to an inefficient use of resources with many remaining idle.
Some work on automatically determining resource requirements would greatly facilitate the deployment of containerized
applications for users, improve their quality of service, and allow cluster resources to be better utilized.

Regarding preemption, although a common denominator in proprietary systems, only Aurora supports this function-
ality in the open-source category. The use of preemption enables clusters to be used to run jobs with different purposes
such as production or staging in a more robust manner. In this way for example, the RM can make room for production
jobs by evicting staging ones if the cluster no longer has adequate resources. It may also work in the opposite way, with
testing jobs opportunistically using resources but only if they are not in use or needed by production jobs.

Kubernetes was the only system with a cluster autoscaler, although it is not a built-in component but rather an add-on
that is deployed as a pod in the cluster. The autoscaler's main goal is to place pods that failed to schedule due to insufficient
resources in newly provisioned nodes. It is restricted however to provisioning only nodes that are similar in characteristics
to those already in the cluster or node group. Hence, if a cluster is composed of small VMs, the newly provisioned nodes
will also be small. Although this may achieve the purpose of placing a currently unschedulable node, the consequences
in terms of cost and resource utilization for instance are not taken into consideration.

Finally, the majority of the studied systems, except Swarm, were designed with multitenancy in mind. This is aligned
with their goal of executing heterogeneous workloads on a set of shared resources. In particular, the frameworks are built
with the aim of allowing multiple tenants from a single organization to share a single compute cluster. For the open-source
systems, information on different isolation features was mostly available. However, for the proprietary ones, the details
on how isolation was achieved were elusive in the information sources. In particular, the classification for Omega, Apollo,
and Fuxi was partial due to the aforementioned reason. Despite this, it is clear from the use cases, problem formula-
tion, scheduling approaches, and evaluation sections in the corresponding manuscripts that these frameworks do support
intraorganizational multitenancy. In fact, for the specific case of Omega, it could be assumed that the multitenancy
features of Borg apply to this system as well, but this could not be confirmed.

6 | FUTURE DIRECTIONS

Although most systems (mostly the proprietary ones) are mature and include advanced features, the optimization space
can still be further explored. This is especially true in the era of cloud computing, as most existing frameworks ignore many
of the inherent features of cloud computing in favor of assuming a static cluster of resources. As a result, elasticity, resource
costs, and pricing and service heterogeneities are ignored. For organizations deploying their workloads through container
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orchestrators in cloud, this translates into higher and unnecessary costs, potentially reduced application performance,
and a considerable amount of man hours in tuning their virtual cluster to meet their needs.

In light of this, a possible optimization to current systems is related to rescheduling. In particular, rescheduling for
either defragmentation or autoscaling when the workload includes long-running tasks. Regardless of how good the initial
placement of these tasks is, it will degrade over time as the workload changes. This will lead to an inefficient use of
resources in which the load is thinly spread across nodes or the amount of resources in different nodes are not sufficient to
run other applications. Rescheduling applications that tolerate a component being shut down and restarted will enable the
orchestration system to consolidate and rearrange tasks so that more applications can be deployed on the same number
of nodes or some nodes can be shutdown to reduce cost or save energy. Similarly, if more nodes are added to the cluster,
being able to reschedule some of the existing applications on the new nodes may be beneficial in the long term.

Another future direction is for cloud-aware placement algorithms to consider the heterogeneities of the underlying
resources, including different pricing models, locations, and resource types and sizes. This would enable for instance to
dynamically provision resources of different pricing models to the virtual cluster to satisfy growing needs of the appli-
cations with minimum cost. For example, a customer-facing application should be placed on reserved instances that are
leased for lower costs and longer periods of time while offering high availability. Batch jobs on the other hand could be
placed on unreliable rebated resources, whose sudden termination will not disrupt the end user experience. The use of
on-demand instances can be explored for applications with requirements in between where the availability is needed
but they are not long-running services. To realize these goals, it is required to filter unqualified resources and propose
new resource affinity models to rank the resources when provisioning for different applications. These policies can be
implemented as extensions of the existing filtering and affinity ranking mechanisms of the current platforms for example.

Even though intraorganizational multitenancy is the most common use case for containerized clusters, existing frame-
works are continuously striving to facilitate stronger isolation mechanisms to suit stricter multitenancy requirements
that satisfy the requirements of interorganizational multitenancy. For example, enabling tenants to have their own con-
trol plane objects is yet to be a feature of existing systems. Another important consideration is related to fault isolation;
although frameworks offer several failure management and recovery mechanisms to applications, work is still required
to ensure that a failure from one tenant does not cascade to other tenants. For example, the failure of a node's OS due to
a faulty or malicious container will cause other containers sharing that node to fail. The consequences of this may differ
for different application types. For instance, those with replicated containers may not be highly impacted. However, non-
replicated critical applications may suffer grave consequences from such an event. Although this may be an inevitable side
effect of OS-level virtualization, the risks can potentially be mitigated for example by scheduling critical applications or
those that are not replicated in single-tenant nodes. Another important aspect to consider in terms of security are denial
of service attacks, preventing or mitigating the effects of these within a cluster or a network of containers is still in need
of research.

Finally, application QoS management is limited in existing systems. It is not unusual for applications to have specific
QoS requirements. For instance, long-running services commonly have to serve a minimum number of requests per time
unit or have stringent latency requirements. Batch jobs on the other hand can have a deadline as a time constraint for their
execution or may need to be completed as fast as possible. For the first scenario, many systems offer a basic autoscaling
mechanism. It monitors the CPU utilization of a service, and if a predefined threshold is exceeded, another instance of the
service is launched. This, however, is a baseline approach to autoscaling and integrating more sophisticated approaches
to container-based management systems is required. For batch jobs, orchestrating them and assigning them to resources
so that their QoS are met is another open research area. Although Apollo addresses this to a certain degree, this feature
is not present in any open-source system and support for heterogeneous QoS constraints is still unexplored.

7 | SUMMARY AND CONCLUSIONS

In this work, we have studied orchestration systems that are designed to manage the deployment of containerized applica-
tions in large-scale clusters. The growing popularity of container technologies has been a driving force contributing to the
evolution and increased adoption of these systems in recent years. Frameworks such as Kubernetes are being widely used
by organizations to deploy their large-scale workloads that include diverse applications such as web services and big data
analytics. They are designed to manage the deployment of applications in clusters and are capable of running hundreds
of thousands of jobs across thousands of machines. To achieve this, they are designed to address important challenges
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such as scalability, fault tolerance and availability, efficient resource utilization, and request throughput maximization,
among others.

To better understand containerized management systems, this work first introduced a reference architecture identify-
ing key components and their responsibilities. These were segregated in four hierarchical layers, namely, an application
layer composed of jobs submitted by users, a cluster manager master in charge of orchestrating these jobs and managing
the cluster resources, a cluster of worker compute nodes, and the infrastructure where the nodes are deployed. Based on
these layers, the roles of the components within them, and existing frameworks, a taxonomy identifying various charac-
teristics of container-based cluster management systems from the perspective of their application, scheduling, and cluster
management models was proposed. Classifications based on the types of workload supported, the features supporting
multitenancy, the scheduler architecture and scheduling policies, the elasticity of the cluster, the management of nodes
and their resources, and the system's objectives were proposed and discussed in detail. A survey of the state state-of-the-art
systems was also presented and the proposed taxonomy applied to them.

Furthermore, future directions derived from gaps identified in the literature were presented with the aim of guiding
emerging research. In particular, we identified the need for further work exploring elastic cloud-based clusters. This
would encompass addressing issues such as cost-aware scheduling that consider the heterogeneity of cloud resources
such as different pricing models, geographical locations, and VM costs and specifications. Rescheduling to address not
only defragmentation but to support the efficient use of a dynamic cluster achieved through autoscaling is another topic
that requires further attention. Managing the QoS requirements of applications is another area that should be further
explored. For example, guaranteeing the execution time of batch jobs to be within a specified deadline is yet to be a
feature of any of the surveyed open-source systems. Finally, extending the functionality of existing frameworks to provided
increased isolation features supporting various multitenancy use cases is necessary. Although the vast majority of studied
frameworks successfully support intraorganizational multitenancy use cases, further research is required to enable them
to provide the foundation for models such as container as a service for example.

To conclude, management systems orchestrating containerized jobs in clusters are growing in popularity. Their adop-
tion to provide as-a-service models resembling those offered by cloud computing as well as their use within organizations
will continue to increase. This, due to their ease of use and flexibility, their ability to efficiently use resources, their perfor-
mance offerings, and advances in container technologies, among others, it is important then for these systems to continue
to be developed and optimized to offer users with varying requirements a robust solution to their needs and aid in shaping
the future of distributed computing and applications.
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