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Abstract—The COVID-19 global pandemic is an unprece-
dented health crisis. Many researchers around the world have
produced an extensive collection of literature since the outbreak.
Analysing this information to extract knowledge and provide
meaningful insights in a timely manner requires a considerable
amount of computational power. Cloud platforms are designed
to provide this computational power in an on-demand and elastic
manner. Specifically, hybrid clouds, composed of private and
public data centers, are particularly well suited to deploy com-
putationally intensive workloads in a cost-efficient, yet scalable
manner. In this paper, we developed a system utilising the Aneka
Platform as a Service middleware with parallel processing and
multi-cloud capability to accelerate the data process pipeline and
article categorising process using machine learning on a hybrid
cloud. The results are then persisted for further referencing,
searching and visualising. The performance evaluation shows that
the system can help with reducing processing time and achieving
linear scalability. Beyond COVID-19, the application might be
used directly in broader scholarly article indexing and analysing.

I. INTRODUCTION

COVID-19 has given place to a global scale health crisis.

Since the outbreak, a massive amount of research efforts

have been poured into many aspects of this highly infectious

disease. To help the research community, in March 2020, the

White House and the Allen Institute for AI teamed up with

many researchers and released the COVID-19 Open Research

Dataset (CORD-19) [1]. As of July 2020, CORD-19 contained

over 199,000 research papers, with nearly half of them being

open access publications [2]. The rapid increase on the number

of articles has posed a challenge for the research community

to process these data in a timely manner. Furthermore, the

general public is also interested in many aspects of the

disease, especially on findings related to day-to-day life. As

a result, tools and platforms that support machine learning

approaches to extract knowledge from this vast amount of data

are required. This is a challenging endeavor as a considerable

amount of computing power is needed by Extract, Transform,

Load (ETL) and ML techniques in order to produce results in

a reasonable amount of time.

Cloud computing is the de facto standard to access com-

puting resources on demand and on a pay-as-you-go manner.

Hybrid Cloud Environments (HCEs) combine private data

centers with resources offered by public cloud providers;

thus enabling applications to save cost by using existing on-

premise resources and to scale onto public clouds if the private

data center’s capacity is not sufficient [3]. This approach can

be greatly beneficial to organizations seeking to process the

CORD-19 dataset. However, building an application using

HCE is also a demanding task as it requires detailed knowl-

edge of cloud computing techniques.

In this context, we propose a system design and imple-

mentation to accelerate ETL processing and text classification

based on ML techniques in an HCE. The architecture is

designed with the following requirements in mind: scalability,

availability, stability, high performance and portability. To

achieve these goals and for ease of development, the proposed

application deploys on top of Aneka [4], which is a resource

management framework that provides high level Application

Programming Interfaces (APIs) and Software Development

Kits (SDKs) to transparently enable the deployment of ap-

plications on cloud resources. It allows developers to focus on

implementing their program logic without spending too much

time considering deployment and scalability. When additional

resources are required, they can be seamlessly acquired from

different CSPs via Aneka dynamic provisioning mechanism.

The following are the key contributions of this paper:

• We present a system architecture design that fulfils dif-

ferent requirements: scalability, availability, stability, high

performance and portability.

• The system is implemented and tested using real world

CORD-19 dataset in a real hybrid cloud environment,

built using on-premise private cloud and the Melbourne

Research Cloud (MRC).

• The architectural design can be easily generalized and

quickly adopted in similar scenarios. The system is not

only applicable for the CORD-19 dataset but also for a

broader scholarly article indexing and analysing.

The rest of this paper is organized as follows: Section II

presents background information about Aneka PaaS and other

technologies used in the system. The system architecture is
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detailed and discussed in Section III. Section IV explains the

system design and implementation by using UML diagrams

and workflows, in addition, some example queries and visual-

izations are given. Afterwards, section V describes the testbed

built on a hybrid cloud including an on-premise private cloud

and MRC, followed by the performance evaluation. Finally,

section VI summarizes our work and findings and outlines

proposed future work.

II. BACKGROUND AND RELATED WORK

Since the CORD-19 dataset was made available, it has been

downloaded over 200,000 times and many applications have

been created from it [2]. For instance, Amazon Web Service

(AWS) provides a search engine over the CORD-19 dataset

and a question answering system powered by AWS Kendra [6].

Azure [7], TekStack [8], and COVID-Miner [9] developed full-

text search engines. VIDAR-19, which extracts and visualizes

risk factor from articles, was presented by Wolinski et al. [10].

COVID Seer [11] and COVID Explorer [12] were developed

by the Pennsylvania State University. COVID Seer is a multi-

facet search engine powered by Elasticsearch and COVID

Explorer has visualization and advanced filtering features

utilizing automatic unsupervised ML.

One drawback with existing systems is that they are not

keeping up-to-date with the growing dataset. Some of these

are still using the initial version of CORD-19, even though

the current dataset has grown threefold since the initial release.

Hence, we address this issue by introducing additional work-

flows to keep up-to-date with current version of CORD-19

dataset and ingest newly published articles. These workflows

allow users to have the latest view of state-of-the-art COVID-

19 research outputs.

To implement the system quickly, the best solution is to se-

lect some proven technologies in both industry and academia.

After evaluating many different technologies, we decide to go

with the following: (a) Aneka PaaS [4] for core processing and

deployment; (b) Microsoft .NET Framework and ML.net [13]

for development; (c) Grobid [14] for ML-based scientific paper

parsing; (d) Minio [15] for scalable S3 compatible shared

storage; (e) Elastic Stack [16] including Elasticsearch for full-

text indexing and Kibana for data visualization.

Aneka PaaS provides a platform for users and developers to

develop and deploy distributed applications. An overview of

Aneka is shown in Fig 1. It comprises of three major layers

with a rich collection of components:

• Application Development and Management Layer: This

layer contains the Software Development Kit (SDK) and

the management kit. SDK is a collection of Application

Programming Interfaces (APIs), tutorials and examples

to help users and developers get started. Management

kit includes a Graphical User Interface (GUI) to assist

with management. It comprises of a management studio,

admin portal and web services. Within the management

studio, there is also an accounting view, allowing users

to view various states and statistics of application execu-

tions.

• Middleware Container Layer: This layer provides many

services, such as execution services, foundation services,

and fabric services, among others. The execution service

is the most crucial part for our application. It performs

scheduling and execution based on the user’s choice of

QoS and strategy and supports four execution models: (1)

Bag of Tasks (BoTs); (2) Distributed Threads (DTs); (3)

MapReduce; and (4) Parameter Sweep Model (PSM). In

our application, we want the processing to be completed

as soon as possible. Therefore, we can use either BoTs

or DTs model; we choose the default QoS strategy that

uses all available computing resources.

• Infrastructure Layer: The bottom layer offers fundamental

support to the above layers. In the current version, Aneka

allows to use resources with static or dynamic provision-

ing. For static provisioning, user can install Aneka on

fixed number of physical machines or VMs in desktop

cloud, data centre, cluster, and let Aneka manages them;

For dynamic provisioning, Aneka can add VMs on-the-

fly when needed in public clouds, such as Amazon EC2,

Microsoft Azure, GoGrid, etc.

Microsoft .NET Framework/.NET Core is a free software

development framework developed by Microsoft. It is a com-

plete platform that supports various languages, such as C#,

VB, F#, etc. It provides cross-platform support including

Windows, Linux and MacOS. Since Aneka is developed using

.NET, it becomes a natural choice for our application. In

addition, Microsoft made an extensive ML framework for

.NET developers. It implements many traditional and proven

ML algorithms; users who don’t have detailed knowledge of

ML techniques can still easily use ML technology in their

application. This significantly lowers the barrier for developers

to utilize ML technology.

Elastic Stack (ES) [16] is widely used in industry; it is

also known as ELK Stack (Elasticsearch, Logstash, Kibana).

Elasticsearch is a distributed full-text indexing and search

engine based on Apache Lucene library; Logstash provides

data collection and log-parsing engine through various of

agents called Beats; Kibaba is a data visualization platform

using searching, filtering and aggregation functions provided

by Elasticsearch. In our system, Logstash was replaced by our

customized ETL pipeline implemented with Aneka, we only

utilize Elasticsearch and Kibana in the ELK stack.

In addition to the technologies above, we also use an open

source program called Grobid [14] in our update workflow.

Grobid is a ML library designed explicitly for extracting text

data from technical or scientific documents. It is capable of

converting PDF file to TEI/XML while maintaining section

and structure format. It has been actively developed since 2008

and open-sourced in 2011.

III. SYSTEM DESIGN AND ARCHITECTURE

This section outlines an overview of the system architecture

visualized in Fig. 2. The system utilizes a hybrid cloud

environment: an on-premise private cloud for storing and
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Fig. 1. Aneka Framework Overview [5]

processing data and Melbourne Research Cloud (MRC) for

hosting and serving public-facing ES traffic.

While designing a data-centric processing system, the first

thing to consider is how to store and distribute the data

efficiently. Although Aneka PaaS supports data distribution

via task payload and FTP, it is not efficient and scalable

in our usecase. Therefore, we decided to use a centralized

storage cluster powered by Minio [15], an open-source object

storage software. Minio provides S3 compatible API and a

shared-nothing architecture for scalability and availability. It

is a shared file system that can be accessed by all Aneka work-

ers/master and application server. When required, data can

be easily replicated to external CSP over a VPN connection,

creating a multi-cloud storage cluster. The second component

is the computing service provided by Aneka PaaS as described

in Section II. Aneka makes it easy to perform parallel pro-

cessing by encapsulating task scheduling and execution. The

third component is an ES cluster replicated to a MRC public

instance over the Internet/VPN. The on-premise primary ES

cluster is for data persistence. The secondary instance is

configured for read-only accessing and serving public-facing

traffic. Due to resource constraint, we are running on a single

node at both sides with regular automated snapshot/backup.

The architecture design addresses some common system

design principles as follows:

1) Scalability: All major components are horizontally and

vertically scalable. When additional capability is re-

quired, the application can easily scale up by provi-

sioning more powerful virtual machines, or scale out

by adding more nodes.

2) Availability: Minio and Elasticsearch use shared-nothing

architecture, which is designed for highly available

systems. Aneka also has a robust mechanism to handle

task/node failure automatically.

3) Stability: This can be achieved using fail-fast and idem-

potent processing. If a task fails for any reason, it can be

rescheduled either periodically or automatically without

affecting the whole system.
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Fig. 2. Architecture Diagram

4) Performance: High performance is achieved by facil-

itating Aneka’s distributed scheduling and execution

capability.

5) Portability: An application developed with the Aneka

SDK/API is portable. It can be executed in any environ-

ment that supports the .Net framework, regardless of the

cloud service provider. Portability can be easily achieved

by moving the application to another CSPs like AWS,

Azure, GCP, etc.

The main system logic is implemented in the application

server component. The application server works as a collab-

orator performing some housekeeping tasks. It periodically

checks for dataset updates, downloads PDF files from various

sources and submits tasks to the Aneka master. It also monitors

the ML model bucket. When a new training set becomes

available that can improve the ML model, the application

server submits a task to the Aneka master for training. The

actual data processing tasks are performed by worker nodes.

IV. SYSTEM IMPLEMENTATION

This section describes system implementation shown in Fig.

3. The diagram comprises six UML swimlanes showing the

whole application workflow, which we categorized to three

stages, will be explain from left side.

Firstly, the data update stage is the three swimlanes from the

left. The application fetches the latest version from CORD-19

dataset and other sources like PubMed or Semantic Scholar. If

new data is available, depending on the available data type, it

ingests PDF to the storage bucket labelled as RAW or CORD-

19 to the Staging bucket. The RAW bucket stores PDF files

that need to be extracted at later stage; and the Staging bucket

contains TEI/XML, metadata and JSON files that have been

extracted from PDF files or the CORD-19 dataset. Since every

article is binary checksummed with SHA1 and all processed

articles are stored in a separate bucket, an incremental update

is possible by comparing checksum. Because checksum values

are used as object keys in S3/Minio, complexity for checking

is O(1).

The swimlane labelled as ML is the second stage. The ML

Models bucket stores training data, test data and pre-trained

ML model. This bucket will be checked periodically by the

application. We decided to use a separate bucket for the ML

models for following reasons: a) For classification problem,

high quality dataset is crucial for achieving higher quality

output. If higher quality labelled data becomes available in the

near future, it can be put into this bucket manually and the

application will train a newer model; b) Object versioning can

be enabled for pre-trained ML models. Hence, the application

can evaluate all past and current models to decide which one

to use for inference base on their quality. Also, if something

goes wrong with a newer model, it can always fallback

to the previous version. For ease of development, we use

SdcaMaximumEntropy multi-class trainer provided by ML.net

to train our model and save it to the bucket.

Finally, the main data processing stage is described in

Algorithm 1. The UML class diagram in Fig. 4 shows the

classes that comprise the application. To define an Aneka

task, developers only need to make the class serializable and

implement Aneka’s task interface. This simplifies the imple-

mentation of the application logic with just a single method to

program. After processing, the processed files are moved from

the staging bucket to the Completed bucket for archiving and

referencing purposes. The benefits for the moving are two-

fold: 1) it avoids duplicate processing; 2) data can be moved

back if required for various reasons, e.g. re-processing with

better model.

We carried out two queries with the purpose of demonstrat-

ing the use and applicability of our application:
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Fig. 3. Application Workflow

Algorithm 1: Data Processing Stage.

Result: Performing ETL and categorizing articles in

parallel

Aneka Initialisation;

totalNumberOfFiles ← Count number of files in

staging bucket;

foreach Batch of 1000 files do
keys[1000] ← file object keys;

Create an AnekaThread wrapping the keys and

process logic;

Submit to Aneka Master to schedule the

processing;

end
‖ Worker Nodes in parallel:

model ← Load pre-trained ML model;

foreach key in keys do
Read file from storage server;

Clean unnecessary texts, we only keep metadata,

abstract and full-text;

Predict the category with model and add labels;

Send data to ES cluster;

Move the processed file to the completed bucket;

end

• Query 1: What are the hottest research areas?

• Query 2: Which country is contributing the most efforts

to these researches? How many articles are contributed

by Australia and the University of Melbourne?

For both queries, the data was searched, aggregated and

visualized using Elasticsearch and Kibana. The results are

shown in Fig. 5 and Fig. 6. These results are based on the

data that existed at the time of querying and are intended only

for illustration purposes.

V. PERFORMANCE EVALUATION

In this section, we introduce our testing environment,

present benchmark results, and also share our observations

based on the experimental findings.

A. Testing Environment Setup

Table I lists the specifications of our test environment. The

Aneka master runs in a converged mode, which means it

also acts as a worker node. In our single node performance

benchmark, the master node processed all data on itself; in

multi-node benchmark, the workload was sent to workers over

network. In our test-bed, the nodes are virtualized instances

with Linux KVM running on top of three physical hosts. Each

host has 2x1 GBE configured with LACP (802.3ad), layer 2+

hashing and connected to the same gigabit managed switch.

Testing Environment
Role x Qty CPU/RAM/OS

Aneka Master x1 Xeon E5-2690v3 2.6GHz(4C)/8G/Windows 10
Aneka Worker x3 Xeon E5-2690v3 2.6GHz(4C)/8G/Windows 10

Minio x1 Xeon E3-1245v5 3.5GHz(2C)/8G/Ubuntu 20.04
ES Private x1 Xeon E3-1245v5 3.5GHz(4C)/16G/Ubuntu 20.04
ES Public x1 MRC vCPU(2C)/8G/Ubuntu 18.04

TABLE I
SPECIFICATION FOR TESTING ENVIRONMENT
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Fig. 4. UML Class Diagram for the Application

B. Benchmark Results and Observations

The experiments were done with smaller sets of articles

N = {10000, 20000, 30000, 40000, 50000} randomly taken

from the CORD-19 dataset, running with M = {1, 2, 3, 4}
nodes to demonstrate performance and scalability. Fig. 7 and

Fig. 8 show data processing time for a single node and multiple

nodes.

Since each article in the dataset is independent, for a single

node, we assume the execution time increases linearly in

relation to the size of input. It is demonstrated in Fig. 7.

For multiple nodes, the processing time can be significantly

reduced; we are able to achieve near linear scalability with

minor overhead. There are few observations worth note here:

1) Processing time of each article is near constant, the

fluctuation is relatively small from 18.2ms to 18.7ms.

This is largely caused by I/O bound and network latency

since each article is read from storage server before

processing and persisted to the ES cluster afterwards.

2) Based on single node result, assumedly, using two nodes

reduces processing time by half comparing to a single

node. However, the actual result is less than 2x since

there is communication and task scheduling overhead.

3) When dataset is not large enough, after reaching the

diminishing return point, further increasing number of

nodes will not reduce processing time much further as

theoretically expected due to overheads (e.g., for 10000-

20000 articles, the benefit of using more than two nodes

is less rewarding, meaning using two nodes is the best

in this problem size). For larger input, using more nodes

is still beneficial.

VI. CONCLUSIONS AND FUTURE WORK

Extracting knowledge and providing meaningful insights

from an extensive collection of literature remains a non-trivial

task, especially when time is a constraint under circumstances

such as the COVID-19 crisis. Hybrid clouds are well suited for

these scenarios because of its scalable yet cost-effective nature.

In this paper, we proposed a system architecture for indexing,

analysing and extracting insights from scholarly articles. In

particular, we conducted our experiment with the CORD-19

dataset. We choose many technologies from academia and

open-source community to create an scalable, highly available,

stable, high-performance and portable application. By using

the Aneka PaaS solution, parallel data processing application

can be effortlessly developed. It significantly reduces entry

barrier for a developer to develop such a distributed applica-

tion.
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Fig. 5. Example Query 1: Field of Studies Visualized

For future work, the ML model can be improved with

higher quality labelled datasets. A significant contribution is

the CODA-19 dataset [17]. Huang et. al. used 248 human

workers provisioned by AWS Mechanical Turk and created

a human-annotated dataset. We plan utilize this dataset to

improve our model in the near future.

Also, we are planning on performing more comprehensive

tesits with a more extensive data collection. S2ORC [18]

is a general-purpose corpus containing 136M+ paper nodes

with 12.7M+ full-text papers (as of 27/July/2020) from many

different sources. As a future work, we will be testing and

benchmarking the system design with a much larger dataset

with the aim of iteratively improving the framework.
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