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A B S T R A C T

In the recent times, the IoT (Internet of Things) enabled devices and applications have seen a
rapid growth in various sectors including healthcare. The ability of low-cost connected sensors
to cover large areas makes it a potential tool in the fight against pandemics, like COVID-
19. The COVID-19 has posed a formidable challenge for the developing countries, like India,
which need to cater to large population base with limited health infrastructure. In this paper,
we proposed a Cloud-fog-dew based mOnitoriNg Framework foR cOvid-19 maNagemenT, called
CONFRONT. This cloud-fog-dew based healthcare model may help in preliminary diagnosis and
also in monitoring patients while they are in quarantine facilities or home based treatments.
The fog architecture ensures that the model is suited for real-time scenarios while keeping the
bandwidth requirements low. To analyse large scale COVID-19 statistics data for extracting
aggregate information of the disease spread, the cloud servers are leveraged due to its scalable
computational and storage capabilities. The dew architecture ensures that the application is
available at a limited scale even when cloud connectivity is lost, leading to a faster uptime for
the application. A low cost wearable device consisting of heterogeneous sensors has also been
designed and fabricated to realize the proposed framework.

. Introduction

The COVID-19 pandemic has created an unprecedented challenge to the healthcare systems across the world. This is much more
ritical for the developing and under-developed countries, which often have very high population densities and limited healthcare
nfrastructure. Further, a large number of citizens are often needed to be quarantined or to be provided home-based treatments.
hus, there is need of a low-cost solution that may help in preliminary diagnosis/monitoring while the patients are in quarantine
acility or in home isolation.

The cloud computing paradigm has risen to become a ubiquitous technology in the recent times. It is considered as a perfect
olution to handle big data and provide resources on demand basis to the stakeholders. However, the amount of data, generated by
he plethora of Internet of Things (IoT) sensors, especially for real-time applications has increased manifold. In such a case, it is not
easible to transmit such large amount of data all the way to the cloud as not only will it congest the network but will also result
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in large amount of latency. For such applications, it is desired that the processing elements be brought closer to the sensors and
actuators. This has been achieved by implementing a hierarchical architecture in which a fog layer has been introduced between
he user devices and the cloud. The fog layer can be realized using network devices such as routers and servers which will perform
art of the processing and storing tasks originally meant for the cloud layer.

In recent years, research in the area of fog technology in health sector has increased substantially. The role of automation to
etect or predict diseases and ailments has opened new research avenues. The inherent ability of the ubiquitous sensors to collect
ata and transmit it to centralized locations has made them a potent tool in the fight against pandemic like situations. The COVID-19
risis has brought out glaring lacunae in the health infrastructure to handle such a widespread pandemic, more so in developing
nd under-developed countries, where resources are often far and few. With exponential increase in the COVID-19 cases around
he world, it is essential that home based remote health monitoring systems be used by health care professionals for monitoring the
ess critical patients. Such a system can also be used to regularly look for symptoms in individuals who have been quarantined on
asis of their contact history and are susceptible to the infection in near future. Not only it will help in saving the precious time
nd effort, but also may ensure minimum physical contact between the suspect and health care workers and avoid possible virus
ransmission. Such an IoT based health monitoring framework can continue to be used in normal scenario in remote areas of the
eveloping and third world countries, where people seldom go to health centres to get their medical check-ups done. Similarly, the
lderly population of the society is often incapable to look after itself. In such scenarios, it may be prudent to provide citizens with
low-cost mechanism that can regularly collect information of vital body parameters and generate timely alerts.

In this paper, we have proposed a generic framework, namely CONFRONT, based on cloud-fog-dew architecture for monitoring
ubjects who are susceptible to COVID-19 like pandemic or other similar ailments. The framework collects data from wearable sensor
evice and alerts the user and health professionals on detection of any abnormality. The fog layer in the model reduces the latency
nd thus makes it suitable for real-time analysis which is a primary requirement for any health care applications. The proposed
ierarchical infrastructure consists of three layers — IoT layer (consisting of sensors and actuators), fog layer and the cloud layer.
he application for the framework has been designed in a modular fashion. The tasks can be added to, changed, or deleted from each
odule based on the service provider’s application. The framework has a novel dew architecture which can be implemented using
ew servers and dew databases. These dew components not only lead to better on-premise resource utilization but also improve
he service uptime as the framework continues to be available to the user even if cloud connectivity is temporarily lost. This makes
t even more suitable for use in remote and far-off places where seamless internet connectivity with the distant cloud data centres
ay not be available.

The major significance and the contributions of the work are as follows:

1. proposing a novel cloud-fog-dew architecture to remotely monitor health in case of pandemics, like COVID-19
2. fabricating a low-cost wearable device for remote monitoring of COVID-19 suspects without hampering their mobility
3. the proposed framework can significantly contribute in health care sector, especially of developing and under-developed

countries, where the health infrastructure is often inadequate
4. the fog layer reduces latency and network usage by performing data processing at intermediate stages. The dew architecture

improves the application uptime and resource usages
5. CONFRONT uses a Hidden Markov Model (HMM) architecture to effectively predict user’s health status reducing the

false-alarms

he rest of the paper is structured as follows. Section 2 discusses the existing research work in this field. Section 3 explains the
roposed framework followed by its theoretical and simulation performance analysis in Sections 4 and 5. Finally, the conclusions
re drawn in Section 6 along with the future scope of the work.

. Related work

The term fog computing was introduced by Cisco1 but was subsequently defined from several different perspectives. Fog
omputing [1] is a paradigm that helps in achieving reduced latency in applications along with better mobility and scalability
f heterogeneous sensors in order to achieve inter-operability. This is a promising paradigm to bring cloud applications closer to the
oT devices at the edge of the network [2]. In this work, the authors present Fog Smart Gateway (FSG) which is an intelligent gateway
ntegrated with the capabilities of fog nodes. He et al. [3] proposed a private cloud six-layered architecture based on message queue
t the cloud along with a plug-in algorithm so as to support concurrent requests from healthcare services. However, security issues
re not dealt with and computing is centralized at cloud. Ghosh et al. [4] propose cloud-fog-edge based workflow management
ramework for emergency services such as healthcare.

Ahmad et al. [5] proposed a framework called Health Fog to be used as an intermediate layer between Cloud and end-users so
s to reduce network usage. Cloud Access Security Broker has been used along with homomorphic encryption to provide security
nd privacy. Another work [6] presents how the inter-connectivity of IoT paradigm is beneficial for delivering healthcare services.
ahmani et al. [7,8] propose smart gateways at the edge of network to perform local storage, processing, etc. to exploit Fog
omputing. This intermediate layer handled the load of the sensor and the distant cloud. A proof-of-concept design has been

1 https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf
2
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Fig. 1. Hierarchical structure of CONFRONT framework.

Table 1
Comparisons of existing works and CONFRONT framework for COVID-19 management.
Feature Related works CONFRONT

[10,9,12] [13] [11]

Cloud-fog-edge enabled framework ✓ ✘ ✘ ✓

Dew computing ✘ ✘ ✘ ✓

Health data analysis ✓ ✓ ✘ ✓

Activity analysis ✘ ✘ ✓ ✓

Design of wearable device ✘ ✘ ✘ ✓

proposed to demonstrate the efficacy of the gateways. On the other side, [9,10] leverage cloud-fog paradigm for contact tracing, real-
time drone based system and analysing the growth of the COVID-19 disease. Jean Louis et al. [11] presents a wearable activity tracker
analysis in the context of home confinement during COVID-19. Another work [12] presents a novel spatio-temporal data analytics
framework considering heterogeneous data sources, such as, mobility, travel statistics, population, literacy rate to effectively find
out next hotspot zones and deploy zone-based lockdown measures.

Paul et al. [14] has proposed a context-sensitive healthcare system based on Fog layer which would weed out irrelevant data
and thus reduce network usage, processing at the cloud and latency. Gill et al. [15] proposed another fog based information model
that delivers healthcare service using IoT devices. Tuli et al. [13] proposed Health-Fog framework which used deep learning based
techniques in the Edge devices in order to increase prediction accuracy and thus make the system useable in real-life situations.
Yingwei Wang [16] formally defined dew computing as a potent technology to make independent and collaborative use of on-premise
resources. A fog based Internet of Health things framework has been proposed in [17]. There are also works on analysing health
status while user is in move [18] and home monitoring [19]. Yingwei Wang [20] suggest dew computing based architecture and
potential methods of employing it as a global standard. The work [21] presents dew computing architecture in cyber–physical
system and presents new features and functionalities of the architecture. The author claims that autonomy, independence and
collaboration features of the proposed framework makes an edge over varied conventional paradigm such as edge computing systems,
fog computing or cloudlet framework. Wang et al. [22] proposes a dew architecture based blockchain framework, named, Dewblock
to enable enabled cryptocurrencies and enhance trust among several entities.
3
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After the outbreak of COVID-19, many governments have come up with mobile based health platforms to effectively use user
ata for monitoring the health situation in the society. One such application is ‘Aarogya Setu’2 by the Government of India. Though

the application is a great step to monitor the user’s movement and contact history, however, it does not measure any health
parameters. As a result, the application cannot monitor the health of the users. Our proposed model, which is based on a set of
low-cost wearable sensors, collects vital body parameters and forwards it to fog and cloud devices to generate timely alert. Table 1
summarizes the features and existing works and CONFRONT to combat COVID-19. To the best of our knowledge, the proposed

ONFRONT framework is unique and novel as none of the existing models or frameworks use dew architecture along with the
loud-fog hierarchy. This makes it more robust. At the same time, the detection algorithms and learning techniques can be replaced
r modified any time by the service provider.

. Proposed CONFRONT framework

This section presents the overview of the CONFRONT framework followed by the design and implementation process. Fig. 1
llustrates the hierarchical structure of the framework. At the bottom layer, the health parameters are collected using the customized
earable device which has several components to collect health parameters (blood pressure, heart-rate, oxygen level, body

emperature) and movement parameters (accelerometer and GPS) at a given time-interval. These values are transmitted and
ccumulated in the users’ mobile devices; which in turn transmitted to the fog layer. Then, the fog nodes perform the basic analysis
n these sensory data in a distributed manner. For instance, as shown in Fig. 1, one fog node analyses the movement parameters and
inds out the activity performed by the user in a particular time-interval. The other fog node simultaneously finds out whether the
ealth parameters are within the normal range. Finally, the combiner node takes the decision about the health status of the users
ased on the data analytics, and sends the recommendation to the users’ mobile devices accordingly. The cloud server performs
ny compute intensive task which is not feasible to run in the fog nodes due to the low computing power. Further, the cloud
erver stores the information about the users’ health profiles. The computational and storage power of cloud servers is utilized for
ggregate operations, such as, community health analysis and trend analysis of a region. The aggregate analysis performed in cloud
ervers provides recommendations of lockdown measures by extracting the risk of the infectious disease spread in a spatial region.
ONFRONT framework also has a separate component named Dew server, which is utilized to cache the information in case the
onnectivity between the fog nodes and the cloud servers is lost. This dew server may be configured in the same physical device
s the fog device or it can be placed on a separate system in close proximity (with fail-safe connectivity with the fog device). This
ill enable uninterrupted physical connectivity between the fog and dew server. The internet connectivity status at the fog layer
ill thus not impact fog-dew interaction. This ensures that the user can still connect/interact with the fog layer seamlessly in case

he connectivity of fog-cloud is lost. It is assumed that the fog service provider will give dew services to the end users. The dew
erver will respond to the co-located fog device’s users. The mobile devices send the user data to the static fog devices. The user is
onnected to the fog device by his/her mobile handset even when he/she moves around on their daily activities. It is evident that
he CONFRONT framework is conducive to provision 24 × 7 home-health monitoring for ailing and elderly persons effectively.

.1. Model design

A hierarchical structure and the application module implementing the proposed framework is shown in Fig. 2. The model
roposed by Mahmud et al. [23] has been modified by adding an additional ‘confirmatory module’.

Algorithm 1 : Working Model of CONFRONT

Input: Sensor data received from IoT devices
utput: Recommendation to users after processing the raw data

1: medical sensors embedded in the wearable device collect health parameters (blood pressure, heart-rate, oxygen level, body
temperature) and movement sensors embedded in the wearable device collect movement parameters (GPS, accelerometer) in a
defined time-interval

2: both health and movement variables are accumulated in the mobile-device
3: mobile device sends the data to the fog node
4: if fog node I is able to process all the health data then
5: fog node processes the health parameters
6: if all health parameters are within normal range then
7: sends OK information to controller fog node
8: controller fog node receives the information
9: if connection with cloud can be established then

10: sends (𝑂𝐾, 𝑇 𝑖𝑚𝑆𝑡𝑎𝑚𝑝) message to cloud server

2 https://www.mygov.in/aarogya-setu-app/
4
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11: else
12: discards the information
13: end if
14: else
15: sends ALERT message to the controller node along with the abnormal health parameter value
16: controller fog node receives the information
17: stores the abnormal parameter value and timestamp
18: go to step 44
19: end if
20: else
21: controller node checks the available resources
22: if total available resources at fog layer ≤ computing resources required to analyse health information then
23: controller node accumulates all information
24: if connection with cloud can be established then
25: sends the accumulated information along with user id to cloud server
26: cloud server receives and analyses the information, and stores the result
27: cloud server sends notification to controller fog node based on the analysis result
28: go to step 44
29: else
30: sends the information in the Dew server
31: Dew server stores the data
32: controller fog nodes periodically checks the connectivity with the cloud servers
33: if connectivity with cloud is restored then
34: go to step 26
35: else
36: go to step 34
37: end if
38: end if
39: else
40: controller node distributes the analysis task among available fog nodes
41: sends notification to the allotted nodes with the health data and analysis task
42: end if
43: end if
44: Fog node II receives the movement parameters
45: activity detection module within fog node II identifies the activity user is performing at a given instance
46: sends the result 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦, 𝑡𝑖𝑚𝑒𝑆𝑡𝑎𝑚𝑝 to controller node
47: controller node analyses the results of health module (from fog node I) and activity detection module
48: if abnormality is detected then
49: sends immediate notification to the user
50: if connection with cloud can be established then
51: sends the abnormal health status along with user id to cloud server
52: cloud server stores the result and takes necessary action
53: else
54: Sends the information in the Dew server
55: Dew server stores the data
56: controller fog nodes periodically checks the connectivity with the cloud servers
57: if connectivity with cloud is restored then
58: go to step 51
59: else
60: go to step 56
61: end if
62: end if
63: end if

Each of these modules are placed on one of the hierarchy levels depending on the application. The red path represents flow
f data. The client module is responsible for receiving the data from the wearable device which houses heterogeneous sensors
uch as blood pressure sensor, pulse sensor, pulse oximeter, body temperature sensor, accelerometer and GPS. The collected data
s forwarded to the fog device where subsequent modules reside. The client module also receives the predicted result from event
andler module and sends it to the user mobile for displaying. It may be noted that the client module is configured to always reside
5
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Fig. 2. Structure and application model implementing the proposed framework.

Fig. 3. Workflow of the CONFRONT framework.

Thus, the users must ensure that their mobile handsets should meet the minimum requirements to house this module. Data
filtering module is responsible for noise filtering which then sends the filtered data to processing module. At the data processing
module, features are extracted and data normalization is done and forwarded to event handler module. It is this module that
implements the decision making algorithm and sends the result to be displayed to the user via the client module. Any positive
case detected by the event handler module will be forwarded to the confirmatory module also, where human assisted decision may
be made by a healthcare professional. If the manual diagnosis differs from the predicted result, an immediate correction can be
forwarded to the user. This prediction error will be informed to the event handler module so that the prediction algorithm can learn
and train itself continuously. The confirmatory module is always placed on the cloud. This has been done so that all the wrong
predictions are known globally and can be used by all the fog nodes for training.

While the cloud-fog architecture ensures that the intermediate devices are used for processing tasks in order to bring computing
closer to the edge, the architecture fails to access the cloud component if in case the internet connectivity goes down. The proposed
framework can overcome this problem by employing the dew server. Fig. 2 and the workflow in Fig. 3 shows that if the internet
connectivity between fog device and the cloud server snaps down, a connectivity with the dew server will be established.

To implement the dew server (which is co-located with the fog nodes through dedicated connection), the browser can be
configured to redirect to the dew server address in case internet connectivity is lost. If a common dew architecture standard is
accepted in future, the service provider can have their own dew-sites which may be mapped to the dew servers by the owner of
the domain through the domain’s registrar. Once the dew server is reached, the request is matched with the correct environment
variable by the Dew DNS. This way the correct dew script is accessed. The user can then work on his/her data residing in the
corresponding database using the installed database. The changes made to the database are retained in this dew server copy. The
dew server database will be synchronized with the cloud database as soon as the internet connectivity between the dew server and
cloud server is restored. Simultaneously, the fog device will also be now directly connected to the cloud server. At the back end,
updates at the cloud server keep getting synchronized with the dew server. This will ensure that the fog device accesses the updated
copy if the connectivity with the cloud breaks down again.

3.2. Activity analysis module to reduce false alarm in detecting abnormal health condition

In the context of COVID-19, the activity analysis of individual’s is a crucial factor. The major objective of this work is to detect
whether an user has any early symptoms of COVID-19 exposure. The commonly used screening tool for patients with COVID-19 is
6



Internet of Things 16 (2021) 100459A. Poonia et al.

n
a
o
m
k
s

s
a
h
t

H
c
a
c
i

t
a

e

s

s
v

b
s

A

t

d

the 6-minute walk test (6MWT).3 This 6MWT is a measure of functional status or physical fitness. During this test, an user walks at her
ormal pace for six minutes. The heart rate and blood oxygen levels are measured before and after the test and these parameters are
nalysed. Specifically, these two parameters fluctuate if the user is infected. The test provides better understanding on probability of
xygen level decreasing, and will be beneficial for elderly and homebound users. Further, this test can be administered by a family
ember without any help from a paramedical/medical personnel. It may be noted that the activity analysis module of CONFRONT

eeps track of the activity (walking for 6 min) of the user, and takes necessary action. For instance, information such as, start and
top alerts to the user, distance covered, heart rate and SPO2 change-rate — can be computed by CONFRONT.

The CONFRONT provides an excellent solution for this procedure. As discussed before, the embedded movement and medical
ensors of our low-cost wearable device capture the sensory values of health parameters and movement features of an user. Now, the
ctivity analysis module detects and assists user to take the 6MWT properly, and the medical sensors captures the blood pressure,
eart-rate and oxygen saturation levels before, after and during the test at different time-intervals. Finally, the fog devices analyse
he log and identifies if there is any risk present.

Another important feature of CONFRONT is that it is capable to detect health-status of users efficiently without less false-positives.
ere, the false-positive of identification risk denotes that the module detect health abnormality of an user, however, the parameter
hanges are due to some environmental context, and the user is completely fine. This false positive results initiates unnecessary
nxiety of the patients as well as overall hassle for the false-alarm to the health-caretakers. For instance, the heart rate of an user
an be more than the normal range, when she works out in the gym, or the body temperature of an user may be more, when she
s taking hot-bath. Therefore, these activity-contexts need to be identified in order to eliminate the false-alarms.

Environmental Context (EC): Environmental context (EC) is defined by an arraylist 𝐸𝐶 𝑡 = [𝑒𝑐𝑡1, 𝑒𝑐
𝑡
2,… , 𝑒𝑐𝑡𝑛], where each entry of

he array-list contains a parameter of the surrounding region where the user is present at time 𝑡. Few examples of such parameters
re air temperature, humidity and light intensity.

Activity (A): Activity of an user is represented by an ordered triplet (𝑎𝑝𝑖, 𝑇𝐷𝑖, 𝑠𝑇𝑖), where 𝑎𝑝𝑖 denotes the activity-name (such as,
xercise, walking etc.) and the time-duration (𝑇𝐷𝑖) and start-time (𝑠𝑇𝑖) of the activity performed by the user.

Health Parameter (HP): Health parameter is represented by a pair ⟨(ℎ𝑠1, ℎ𝑝𝑡1), (ℎ𝑠2, ℎ𝑝
𝑡
2),… , (ℎ𝑠𝑛, ℎ𝑝𝑡𝑛)⟩, where ℎ𝑠 denotes the health

ensor/parameter (say, blood pressure) and the value of ℎ𝑠 is presented by ℎ𝑝𝑡 at time 𝑡.
Normal Range (NR): The normal ranges of the health parameter set (ℎ𝑝) is represented by 𝑁𝑅 = {𝑛𝑟1, 𝑛𝑟2,… , 𝑛𝑟𝑛}, where 𝑛𝑟𝑖

tores the normal range of health parameter ℎ𝑠𝑖. It may be noted that based on the age and other health-profiles of users, this 𝑁𝑅
alue changes. Therefore, the fog nodes store different 𝑁𝑅 values for different users.

Next, we aim to identify the activities performed by the user in a given time-interval. We have categorized the activities in five
road classes, namely, running, walking, standing, exercise and sitting. The accelerometer is used to predict physical activity of the
ubject.

ccelerometer inputs

In our framework, the 3-axis accelerometer with high resolution (ADXL345) provides the 𝑋, 𝑌 and 𝑍 coordinates which is used
o find the rate of change of position. This in turn is used to classify whether the subject is walking or running.

In the pre-processing step, the 𝑋, 𝑌 and 𝑍 dimensions are merged to give a single quantity denoted by ‘a’ using Euclidean
istance formula as shown in Eq. (1). This will simplify the process of feature extraction.

𝐚 =
√

𝑥2 + 𝑦2 + 𝑧2 (1)

Noise filtering

The received signal is smoothed using a 5-point smoothing signal. Each signal is obtained as an average of four signals, two
preceding signals and two succeeding signals. This will reduce some of the noise that may have got induced due to orientation shift
of the sensor or accidental jerks in the subject activity.

Feature extraction

The following features were extracted from the filtered signal using a sample window size of 256 samples and an overlap of
50%:
(a) Maximum Amplitude
(b) Minimum Amplitude
(c) Mean Amplitude
(d) Standard Deviation in Amplitude
(e) Energy in Time Domain
(f) Energy in Frequency Domain

3 https://www.physio-pedia.com/Six_Minute_Walk_Test_/_6_Minute_Walk_Test
7
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Fig. 4. Health status prediction of CONFRONT framework.

Feature normalization

The values obtained for the features were then normalized in the range [0,1]. The formula for normalization is as given in Eq. (2):

𝐲 = 𝑥 − min
max−min

(2)

The data so obtained is used for training the KNN classifier, The testing data is also normalized in similar way and would then
be used for prediction by the classifier.

KNN classifier

K Nearest Neighbour (KNN) [24] classifier has been used for classifying the activities as one of the five classes. The value of 𝑘 = 3
was found to give the best result. This best result was obtained using GridSearchCV4 when 5 fold cross validation was performed
on the normalized training set. The nearest distance was calculated on based of Euclidean distance.

The activity classification coupled with data collected by all other sensors helps in predicting if the patient can be classified as
a potential or expected positive case of COVID-19 or pandemic of similar nature. For example, a patient with oxygen levels less
than 90%, high body temperature and abnormal pulse readings will be classified as positive case of COVID-19 by the used disease
prediction algorithm. However, if the accelerometer indicates a strenuous activity (i.e. running) in hot/humid ambient temperature,
the predicted result may change as low oxygen levels, high body temperature and pulse readings may now be attributed to the
physical activity. It may be noted that the disease prediction algorithm employed is for research demonstration purpose only. The
positive case results are notified back to respective users and healthcare authorities by the fog node so that confirmatory tests can be
initiated at the health care centre for such individuals and adequate preventive measures are taken at the earliest. If the confirmatory
test results are negative, the same can be informed to the prediction algorithm so that it can learn better and improve its prediction
accuracy.

3.3. Health data analysis

In this section, we discuss about the health parameter analysis module (HAM). Here, the inputs of the module are health
parameter (𝐻𝑃 ), activity (𝐴𝑃 ) and environmental context (𝐸𝐶) at different timestamps. The objective of the module is to identify
whether the person is at risk of infection or any other abnormal health conditions.

The method to identify an users’ health status is not straight forward, as it depends on several factors. Firstly, the health parameter
values depend on the age, gender and pre-existing disease of the user. Also, the environmental contexts plays an important role to

4 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
8
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understand whether the user is actually at risk or not. In this regard, we model the problem of identifying health-problems of users
based on the accumulated data using Hidden Markov Model. In brief, Hidden Markov Model is a statistical Markov model in which
it is assumed that the system is modelled using Markov process. Markov process assumes that future predictions are dependent on
most recent observations. Based on the changes of health parameters along with other variables over time, HMM can detect whether
a person is having any abnormal health condition efficiently. CONFRONT uses the hidden Markov model to predict a individual’s
health status due to its ability to consider various influencing factors as an unobserved parameter.

We aim to model user’s activity, environment variables and collected health parameter values to predict the health status of the
user. Typically HMM consists of two kinds of stochastic variables, state variables (hidden) and observable variables. Our architecture to
identify user’s health status is illustrated in Fig. 4. It represents the architecture of the HMM-based health status prediction module
where each nodes represent a random variable at a given time (𝑡). In the left side, two separate layers are present. 𝑡𝑖 represents
he observed variable (timestamp and movement sensor), and the hidden state is activity sequences of the user. Specifically, this
ayer constructs the basic activity sequences (standing, walking, sitting etc.) from movement sensory information. The left bottom
ayer extracts the context (hidden state) from observed environment variables (air temperature, humidity, low light/sound intensity
tc.). This layer extract the hidden context of the activity sequences. Next, the basic activity sequences are refined based on the
xtracted contexts. For instance, heart rate may increase while exercising, or heart rate may decrease while sleeping etc. The body
emperature of an user may increase/decrease while having bath. We also append user’s pre-existing disease/medical history in the
econd layer of the model. This is beneficial for identifying the health-status of users more efficiently.

Given a sequence of observations, the health-status prediction task (i) associates a set of parameters with each observed contexts;
ii) detects abnormal (or sporadic health parameter values) given the contexts and (iii) learns the parameters of the HMM module
n several layers based on the user’s dataset.

Hidden States: These are defined by the health-status of the user. For example, (high blood pressure, 𝑡1–𝑡6), (low oxygen level, 𝑡10–𝑡20)
re two hidden states of an user’s medical record.

Observable States: The sensory information, such as, accelerometer sensors, activities performed by the user and health parameter
alues are considered as observed variables. All of these variables can be easily accumulated from our low-cost customized wearable
evice.

The proposed model or HAM (health parameter analysis module) is formally defined as 𝛩 = {⟨𝐻, 𝜅⟩, ⟨𝑂, 𝜅⟩, 𝜒, 𝜅}, where ⟨𝐻, 𝜅⟩
epresents the set of hidden variables of HAM. The layers are represented by 𝜅. ⟨𝑂, 𝜅⟩ denotes the observed variables obtained from
arious sensory information. The state transition probabilities and observation probabilities at different layers of HAM are denoted
y 𝜒 .

Next we extract several inferences from the HAM of CONFRONT about the users’ health status. For evaluation or computation of
he likelihood of an observed sequence (𝑃 (𝑂|𝛩)), HAM utilizes forward-algorithm along with a k-order Markovian assumption. Inspired
rom the work of Ghosh et al. [25], we use a variable 𝑎𝑘 to extract 𝑘-length sequence of observed variables. It helps to model HAM
rom historical sequence of 𝑘-length, which is beneficial for monitoring the health status of an user during a medical test (say,
MWT). Thus, the observation probability can be represented from forward algorithm as:

𝑃 (𝑎𝑘|𝛩) =
𝑙𝑒𝑛𝑔𝑡ℎ𝑚𝑎𝑥
∑

𝑡=1
𝑃 (𝑎𝑘|ℎ𝑘𝑡 ) ∗ 𝑃 (ℎ𝑘𝑡 ) (3)

here, the maximum length of hidden states are 𝑙𝑒𝑛𝑔𝑡ℎ𝑚𝑎𝑥, ℎ𝑘𝑡 denotes sequences of hidden states within 𝑘-length. It may be noted,
hat we have used the idea of k-order Markov chain to predict the output depending on k recent sequences. After aggregation, we
et:

𝑃 (𝑎𝑘|𝛩) =
𝑙𝑒𝑛𝑔𝑡ℎ𝑚𝑎𝑥
∑

𝑡=1
[

𝑘
∏

𝑖=1
𝑃 (𝑎(𝑖)|ℎ𝑡(𝑖))

∗ 𝑃 (ℎ𝑡(𝑖)|ℎ𝑡(𝑖 − 1), ℎ𝑡(𝑖 − 2),… , 1)]

(4)

The decoding problem finds out the most likely sequence of hidden states. It is evident that each observation is related to a
equence of hidden states in different layers of HAM. We have used a variant of Viterbi algorithm using time-relationships among
he possible sequences. HAM maximizes 𝑝(ℎ𝑡∶𝑇 ,𝜅 |𝛩, 𝑜𝑡∶𝑇 ,𝜅 ) over all possible hidden state sequences. Finally, in parameter learning,
n iterative version of forward backward algorithm is utilized. Algorithm 2 briefs the steps of the health data analysis module
HAM) of CONFRONT. Fig. 5 illustrates the sequence diagram of the underlying sequence of the processes of the algorithm. The
ealth parameter values are accumulated after a specific time-interval (𝑡) and sent to the mobile device (𝑚). Similarly, environment
arameters are also sent to mobile device from the smart-home sensors (𝑒𝑠). The smart phone extracts context information such
s movement of the user, acceleration, light intensity etc. The information are processed in the worker fog nodes (𝑤𝑓𝑛) based on
ealth data, environmental condition and activity data. The controller fog node (𝑐𝑓𝑛) performs the aggregate analysis and learns
he parameter of the model to identify abnormal health condition. In case abnormal condition is detected, alert is send to the cloud
or further intimation to the health-care centres and the caregivers of the user. Subsequently, notification is sent through mobile
evice as well to the user.
9
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Algorithm 2 Health Data Analysis for Recommendation

Input: Health parameters (𝐻𝑃 = {ℎ𝑝1, ℎ𝑝2,… , ℎ𝑝𝑛}) and Sensor values for activity sensing (𝐴𝑆 = {𝑎𝑝1, 𝑎𝑝2,… , 𝑎𝑝𝑚})
Output: Recommendation regarding Health Profile

1: function Generate𝐻𝐴𝑀(𝑢) ⊳ Where 𝐻𝐴𝑀 - Health analysis module, 𝑢 - user id
2: 𝐻𝐴𝑀(𝐻[ ], 𝑂[ ]) ← 𝑁𝑈𝐿𝐿; 𝐴𝑃 ← 𝑁𝑈𝐿𝐿; 𝐸𝐶 ← 𝑁𝑈𝐿𝐿; 𝐻𝑃 ← 𝑁𝑈𝐿𝐿 ⊳ Initialization of the variables
3: for 𝑙 = 1 to 𝜅 do
4: for 𝑖 = 1 to 𝑇 do
5: 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒_𝑑𝑎𝑡𝑎(𝐸𝐶𝑖 ← (𝑑𝑎𝑡𝑎, 𝑡𝑖𝑚𝑒))
6: 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒_𝑑𝑎𝑡𝑎(𝐻𝑃𝑖 ← (𝑑𝑎𝑡𝑎, 𝑡𝑖𝑚𝑒))
7: 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒_𝑑𝑎𝑡𝑎(𝐴𝑃𝑖 ← (𝑑𝑎𝑡𝑎, 𝑡𝑖𝑚𝑒))
8: end for
9: 𝐶𝑟𝑒𝑎𝑡𝑒_𝑛𝑜𝑑𝑒(𝑂𝑙) ← 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑑𝑎𝑡𝑎(𝐸𝐶,𝐴𝑃 )

10: 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑀𝑜𝑑𝑒𝑙(𝛩) ← 𝑂𝑙
11: 𝜒 ← 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔(𝛩) ⊳ Model update
12: 𝐻 ← 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐺𝑒𝑛(𝛩, 𝜒)
13: end for
14: for 𝑗 = 1 to 𝑚 do
15: for 𝑖 = 1 to 𝑚 do
16: 𝑓𝑙𝑎𝑔 ← 𝑐ℎ𝑒𝑐𝑘𝑅𝑎𝑛𝑔𝑒(𝐻𝑃𝑖, 𝑁𝑅𝑗 ) ⊳ Check the normal range of the parameters
17: if 𝑓𝑙𝑎𝑔 == 0 then ⊳ Health parameter values NOT within normal range
18: 𝑝 ← 𝑎𝑛𝑎𝑙𝑦𝑠𝑒𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝐻𝑃𝑖,𝐻, 𝑡)
19: count=0
20: while 𝑝! = 1 𝑎𝑛𝑑 𝑐𝑜𝑢𝑛𝑡 ≤ 5 do
21: 𝑇𝐸𝑀𝑃 ← 𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝑎𝑙𝑙 𝑠𝑒𝑛𝑠𝑜𝑟 𝑑𝑎𝑡𝑎 𝑎𝑓𝑡𝑒𝑟 (𝑡 + 𝜁 ) 𝑡𝑖𝑚𝑒 − 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙
22: 𝑝 ← 𝑅𝑒𝑝𝑒𝑎𝑡𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠(𝑇𝐸𝑀𝑃 )
23: 𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 + 1
24: end while
25: end if
26: if 𝑓𝑙𝑎𝑔 == 0 𝑜𝑟 𝑝 == 0 then
27: 𝐴𝑙𝑒𝑟𝑡(𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑡𝑎𝑡𝑢𝑠 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙)
28: else
29: 𝐴𝑙𝑒𝑟𝑡(𝐻𝑒𝑎𝑙𝑡ℎ 𝑆𝑡𝑎𝑡𝑢𝑠 𝑁𝑜𝑟𝑚𝑎𝑙)
30: end if
31: end for
32: end for
33: end function

3.4. Design and implementation

The proposed model has been implemented using actual sensors. A low-cost wearable device (see Fig. 6) has been fabricated by
emoving the LCD panel of the blood-pressure and pulse sensor. The created space has been used to accommodate other sensors
uch as blood-pressure sensor, pulse meter, accelerometer (ADXL-345), NZ-GPS and wifi module in the plastic body case itself and
tilize it as a single wearable sensor.

The device has been further customized to output serial data at 9600 baud rate (8 bits data, No parity, 1 stop bits) in ASCII
ormat. In addition, body temperature sensor and pulse oximeter sensor can provide critical additional information. This information
s critical as pandemics like COVID-19 often show symptoms such as fever [26] and low blood oxygen levels [27] which may result
n shortness in breath and rapid pulse rate.

ADXL345 has been used as an accelerometer with an aim to infer the amount of physical activity being undertaken by the subject
earing the sensor. This would help to ascertain if abnormality in the collected values is attributed to increased physical activity
f the subject, low oxygen level or some other unknown reasons.

The NZ-mini GPS module is fitted so that the subject’s geographical location is continuously monitored. This will not only help
n understanding endemic factors while making inferences from the collected data but can be used to enforce strict quarantine on
uspected COVID-19 or similar pandemic patients. The collected data can also be used to trace the movement history of such patients
ho have been under monitoring using our proposed wearable device. In addition, containment areas or zones can be identified
here the number of COVID-19 cases are high.

All these sensors have been integrated, programmed and burnt onto a single chip which has been integrated with the blood
ressure and pulse sensors in the same wearable body case. Employment of ECG sensors is desirable in early detection of COVID-19.
owever, it would need medical expertise for data collection, severely reduce the mobility and comfort level of an asymptomatic
ser apart from significantly increasing the wearable device cost. Thus, ECG sensor has not been integrated in the present design.
owever, it is technically feasible to integrate the ECG sensor. This wearable case is then connected using ESP8266 wifi chip 12f
10
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Fig. 5. CONFRONT framework: sequence diagram.

Fig. 6. Low-cost wearable sensor (designed and fabricated in the lab of IIT Kharagpur for this research work).

to the RPi which is further connected to the cloud. All the collected data is sent at continuously from the wearable device to the
user mobile handset using ESP8266 wifi chip 12f and MQTT protocol. The data is then forwarded over wifi network by the client
module on the user mobile handset to a Raspberry Pi 3 which acts as fog node where all the modules are placed except confirmatory
module which as mentioned previously will always remain on cloud. In a real world scenario, the user mobile handset can easily
connect to internet using the existing network of Base Transceiver Stations and then forward it to designated fog nodes. The activity
detection algorithm [28] as well as the disease prediction algorithm are also implemented in the fog device. We have also deployed
activity-modelling using activity-time graph [29] for profiling users based on their habitual preferences at different time-scales.

4. Power and energy consumption of CONFRONT: Theoretical model

In case of continuous health monitoring, the health, activity and movement data are collected using the wearable device, and the
mobile device sends the data to fog nodes. The data processing is performed inside these fog devices before forwarding to the cloud.
Inside the fog nodes, the data-instances are processed and then the predicted recommendations are forwarded to the mobile device.
11
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Fig. 7. Comparison of latency in receiving recommendations from fog nodes and cloud.

In this regard it has to be noted that the fog nodes have limited resources and storage capabilities. The recommendations are sent to
the user based on his/her preferences. As the fog nodes store the recommendations itself, the user can receive them at lower latency
than the conventional paradigm where the recommendations are sent to the user from the cloud. Let the recommendation data
amount is 𝐷𝑎𝑡𝑎𝑟𝑒𝑐 , data transmission rate from cloud to fog and from fog to mobile device are 𝑅𝑐𝑠 and 𝑅𝑠𝑚 respectively, and the link
failure rate from cloud to fog and from fog to mobile device are 𝑓𝑢1 and 𝑓𝑢2 respectively. The latency in receiving recommendation
from cloud 𝐿𝑐𝑚 is given by,

𝐿𝑐𝑚 = (𝐷𝑎𝑡𝑎𝑟𝑒𝑐∕𝑅𝑐𝑠)(1 + 𝑓𝑢1) + (𝐷𝑎𝑡𝑎𝑟𝑒𝑐∕𝑅𝑠𝑚)(1 + 𝑓𝑢2) (5)

The latency in receiving recommendation from fog node 𝐿𝑠𝑚 is given by,

𝐿𝑠𝑚 = (𝐷𝑎𝑡𝑎𝑟𝑒𝑐∕𝑅𝑠𝑚)(1 + 𝑓𝑢2) (6)

Comparing Eqs. (5) and (6) it is observed that 𝐿𝑠𝑚 < 𝐿𝑐𝑚. In Fig. 7 the latency in receiving recommendations by the users from cloud
and fog nodes are shown. It may be observed from the theoretical analysis that the latency in receiving recommendations from fog
nodes as in the proposed framework is ∼ 45% lower than receiving recommendations from cloud as in the conventional scheme. In
this regard it may be noted that in link failure cases, dew servers cache the information and processes the data. Therefore, the users
will receive the result faster than receiving them from cloud (when connectivity issue arises). Let us consider the number of IoT
devices sending data to the mobile device is 𝑁𝑖𝑜𝑡, the number of data packets received by the mobile device from an IoT device 𝐷𝑗
is 𝑃𝑗 , where 1 ≤ 𝑗 ≤ 𝑁𝑖𝑜𝑡, the power consumption of a mobile device in receiving a data packet 𝑝 is 𝑃𝑟𝑝, the power consumption in
transmitting a data packet 𝑝 is 𝑃𝑡𝑝, the power consumption for accumulating data packets is 𝑃𝑎, the power consumption for analysing
data packets is 𝑃𝑒𝑛, 𝑁𝑡𝑚𝑒𝑛 is the number of data packets transmitted by a mobile device to the fog device.

The total number of data packets 𝑁𝑟𝑚 received by the mobile device from 𝑁𝑖𝑜𝑡 number of IoT devices is given as,

𝑁𝑟𝑚 =
𝑁𝑖𝑜𝑡
∑

𝑗=1
𝑃𝑗 (7)

The power consumption of a mobile device 𝑃𝑟𝑚 in receiving 𝑁𝑟𝑚 data packets is given as,

𝑃𝑟𝑚 =
𝑁𝑟𝑚
∑

𝑝=1
𝑃𝑟𝑝 (8)

The power consumption of a mobile device 𝑃𝑡𝑚𝑒𝑛 in transmitting 𝑁𝑡𝑚𝑒𝑛 data packets is given as,

𝑃𝑡𝑚𝑒𝑛 =
𝑁𝑡𝑚𝑒𝑛
∑

𝑝=1
𝑃𝑡𝑝 (9)

Therefore, if dew servers are not present, the total power consumption of the mobile device for data transmission, reception,
accumulation and encoding is given by,

𝑃𝑡𝑜𝑡𝑚𝑒𝑛 = 𝑃𝑟𝑚 + 𝑃𝑡𝑚𝑒𝑛 + 𝑃𝑎 + 𝑃𝑒𝑛 (10)

The power consumption of a mobile device in transmitting 𝑁𝑡𝑚 data packets is given as,

𝑃𝑡𝑚 =
𝑁𝑡𝑚
∑

𝑝=1
𝑃𝑡𝑝 (11)

If dew server is present, the total power consumption of the mobile device for data transmission, reception and accumulation is
given by,

𝑃 = 𝑃 + 𝑃 + 𝑃 (12)
12
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Fig. 8. Comparison of energy consumption of CONFRONT.

Fig. 9. Snapshot of accelerometer profile of three activities.

Table 2
Comparison of accuracy measure for identifying activity and health condition.
Activity Bayesian model KNN DT SVM NN CONFRONT

Walk 68.8% 77.3% 71.05% 81.52% 73.09% 86.02%
Run 73.2% 82.08% 74.6% 84.03% 79.63% 87.80%
Climb upstairs 71.04% 78.56% 70.48% 81.2% 75.28% 85.71%
Climb downstairs 75.46% 85.2% 72.15% 84.8% 77.08% 89.11%

Health condition

Normal health and high external temperature 65.12% 67.8% 58.19% 71.72% 72.32% 96.11%
Normal health and strenuous activity 61.06% 68.21% 52.62% 73.81% 74.72% 95.04%
Abnormal health status 59.08% 62.16% 80.61% 77.50% 79.61% 95.83%

In Fig. 8 the power consumption of CONFRONT is presented and compared with the cloud-only solution. This is observed that
use of dew server reduces the power consumption by ∼ 35%. It also outperforms the baselines in terms of latency as well. Therefore,
the proposed framework, CONFRONT provides a delay-aware and energy-aware health recommendations to users.

5. Performance evaluation

In this section, we present the performance evaluations of the CONFRONT framework to demonstrate the efficacy of the
system. Specifically, we evaluate the framework with few real data-instances collected during the study. Further, the scalability
of CONFRONT is evaluated using a simulation study in iFogSim toolkit.

5.1. Experimental results

During this study, we collect user’s activity, health and other contextual datasets from the Kharagpur (22.31454, 87.306) and
Kolkata (22.5379, 88.3682) region of India. The collected dataset includes all parameters captured by our designed wearable sensor
at different time-intervals for a duration of 14 days. Specifically, we have collected health data voluntarily from a small set (40) of
students including both under graduate and graduate students (including Ph.D. scholars and research staffs of the laboratory) and
professors. Amongst them, the age and sex distribution are as follows: 8 (age range: 17–21), 10 (age range: 22–30) and 14 (age
range: 31–40), 8 (age range: 41+), 25 (Male), 15 (Female). Among the volunteers, twelve people reported pre-hypertension in their
health profiles. Different health parameter (body temperature, blood pressure, pulse rate, SPO2 etc.) values and the normal range
are logged in a dictionary object based on the age and sex of people. The normal range is identified by the help of the medical
13
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Table 3
Placement for application modules.
Application module Placement in CONFRONT Placement in cloud-only solution

Client module Mobile Mobile
Data filtering module Area gateway Cloud
Data processing module Area gateway Cloud
Event handler module Cloud Cloud
Confirmatory module Cloud Cloud

Fig. 10. Model performance during simulation: latency.

practitioner. In a given condition, say the user is doing normal activities (walking, sitting, sleeping etc.), if all the health parameters
sensed by the wearable device fall into the defined range, then the user is considered having ‘‘normal health condition’’. Here,
‘‘Strenuous activity’’ represents running, physical exercise, swimming, cycling, - in other words, when our health parameter values
change due to the activities performed. ‘‘High external temperature’’ represents the ambient temperature is more than the normal
weather condition due to some external stimulus (hot water), and that may too effect the body temperature of the user. Finally,
the ‘‘abnormal health status’’ represents that without any external impact the health parameter values are outside the range of
the normal values. The dataset is captured at varied environment conditions as well to validate our proposed methodology. Fig. 9
shows a snapshot of an user’s accelerometer profiles while the user is engaged in different activities, such as, walking (see Fig. 9(a)),
running (see Fig. 9(b)) and climbing upstairs (see Fig. 9(c)).

To evaluate the efficiency of the proposed framework, we set-up different conditions and measure the accuracy of identifying
activity and actual health condition. We compare CONFRONT with five baselines and report the accuracy for all of these conditions.
Table 2 presents the accuracy measure of CONFRONT along with the baseline methods namely, Bayesian Model, KNN, Decision Tree
(DT), SVM and NN. The parameter for KNN is selected as 3. We have chosen radial basis function (RF) as the activation function
in NN. A linear kernel is selected for SVM. The results for different runs are captured and average accuracy measure is reported.
In the experiment, we evaluate the accuracy of basic activities, as well, we also capture the accuracy of the methods in different
contexts, such as, when user is performing any strenuous activity, or, when the ambient temperature is high. It is observed that CONFRONT
performs exceptionally well in identifying health conditions of users compared to the baseline methods. It has outperformed other
methods in a significant margin of ≈ 24.8%. The key reason of this observation is that the refinement layer of the proposed HAM
helps in removing the false-positives and identifies the health status of the users efficiently.

5.2. Simulation results

The proposed framework’s performance has been evaluated using iFogSim [30] for five different configurations in a purely cloud
based architecture as well as cloud-fog architecture on the basis of three parameter viz. average latency, network usage, and cost of
execution at the cloud. The five configurations have one, two, four, eight, and sixteen area gateways (acting as fog nodes) respectively
with four user mobiles connected to each area gateway. The modules were placed as mentioned in Table 3. This simulation work has
been carried out in order to test the correctness and efficacy of the suggested hierarchy and the application model before investing
in actual hardware.

5.2.1. Average latency
The latency of the CONFRONT framework and cloud-only solution are illustrated in Fig. 10. Average latency is an indicator

of how well the application will respond in real time. The lesser the latency, better is real time response of the application. The
delay for cloud-fog model remains low as the application modules get placed at respective area gateways. Thus for every end user,
the response is coming from its corresponding parent area gateway. Though the confirmatory module exists at the cloud in all the
configurations, however, it contributes to the delay only when a positive case is classified by the event handler module (see Fig. 2).
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Fig. 11. Model performance during simulation: network usage.

Fig. 12. Model performance during simulation: cost at cloud.

Table A.4
List of acronyms used in the paper.
Acronym Full form

COVID-19 Coronavirus Disease 2019
BAN Body Area Network
BP Blood Pressure
AWS Amazon Web Services
ECG Electro Cardio Gram
GPS Global Positioning System
IoHT Internet of Health Things
IoT Internet of Things
QoS Quality of Service
SPO2 Saturation of Peripheral Oxygen
6MWT 6-minute walk test (6MWT)
DNS Domain Name System
MQTT Message Queuing Telemetry Transport
LCD Liquid Crystal Display
ADM Activity Detection Module
HAM Health parameter Analysis Module

5.2.2. Network usage
We show the network overhead in Fig. 11. The stark difference in network usage values of cloud-fog based placement and cloud

only placement is owing to the location of application modules in both the frameworks. The fog based placement policy has only
the event handler module and the confirmatory module placed at the cloud. However, in case of cloud based model, all the critical
modules are placed at the cloud (Table 3), which results in all the data being pushed to the cloud and thus increasing the network
usage.

5.2.3. Cost of execution
The incurred cost value in case of fog based model is less as cloud resources are used only when the confirmatory module is

accessed which happens in case of positive detection only. All the other application modules are placed either on the mobile device
15
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or the intermediate fog devices. However in case of purely cloud based model, all the modules except client module are placed on
the cloud itself. This results in large processing requirement from the cloud and thus increasing the cost phenomenally. It can thus
be clearly seen that cloud-fog architecture has outperformed the pure cloud architecture on all three parameters in simulator based
performance evaluation. The cost of execution of CONFRONT framework and cloud-only solution are shown in Fig. 12.

5.3. Discussions

Dataset collection and experimentation have been performed under several restrictions due to COVID-19. To make the system
more reliable, we have extensively tested the modules based on both real-life data (collected through volunteers) as well as simulated
traces generated from MATSIM5 toolkit. The major observations of the work are summarized as follows.

• The proposed framework provides ∼ 24% better health-status identification compared to the baselines, which proves that the
entire framework has higher accuracy in assisting users regarding their health-status (refer Table 2).

• The proposed method has ∼ 25 − 45% less latency and power consumption than the existing methods.
• A wearable and low-cost device has been designed and developed which is capable to accumulate health parameters, activity,

movement data of user. On the top of that our AI-enabled technology can produce better health-status prediction result
considering heterogeneous data-instances (refer Fig. 6).

• The dew-based architecture supports no internet connectivity situation, and the data is cached until the connectivity with the
cloud servers is restored (refer Figs. 2 and 3).

• The overall hierarchical cloud-fog-dew framework along with the activity and health analytics module ensure that when any
abnormal health situation arises, an immediate measure can be taken (Figs. 2 and 5).

Therefore, we can conclude that the proposed CONFRONT system is a faster health assistance system with higher accuracy level.
The higher accuracy also refers that the probability of false recommendation generation is very less in the proposed system with
respect to the existing methods. We can assure the proposed CONFRONT framework can be utilized for medical assistance, however,
a thorough inspection of the normal range values of health parameter from medical practitioner is recommended. The modules and
implementation are scalable enough to modify any such pre-defined health parameter values.

6. Conclusions and future work

This paper proposes a novel framework, CONFRONT, which facilitates an efficient COVID-19 in-home health monitoring
framework. The hierarchical framework having Cloud-Fog-Dew layers reduces the network usage and cost of execution as well
as reduces the latency. Further, the Dew architecture has helped in improving the uptime of the health care model.

The scope of the proposed solution is wide; it not only assists in early identification of individual COVID-19 suspects but can
also identify the zones that may require intervention to control the spread. The low-cost wearable sensor can be used to constantly
monitor home quarantined patients and timely inform the requirement of intensive hospitalized care. This may significantly reduce
the pressure on health resources in the time of pandemic which is a major challenge in developing countries. The proposed
CONFRONT framework can be modified and used with other models to develop low-cost solution for clinical diagnosis of different
diseases, in future. The framework will continue to be relevant even when there is no existing threat of pandemic as it can be used
to perform remote and continuous monitoring of senior citizens’ health. As the suggested framework employs GPS sensor, it may be
utilized for identifying disease patterns and their endemic nature. Once such patterns are identified, medical supply chains can be
automated much more efficiently. Accelerometer based detection can be modified to even detect falls/slips, which may prove fatal
in case of an elderly person. When coupled with telemedicine, the proposed framework and its underlying architecture can prove
to be a disruptive health care technology.
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Appendix. Acronyms used in this paper

The acronyms along with the full forms are reported in Table A.4 for better understanding of the work.

5 MATSIM: https://www.matsim.org/.
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