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18.1 INTRODUCTION

Workflows are a commonly used application model in computational science. They describe a series of
computations that enable the analysis of data in a structured and distributed manner and are commonly
expressed as a set of tasks and a set of dependencies between them. These applications offer an efficient
way of processing and extracting knowledge from the ever-growing data produced by increasingly
powerful tools such as telescopes, particle accelerators, and gravitational wave detectors and have been
successfully used to make significant scientific advances in various fields such as biology, physics,
medicine, and astronomy [1].

Scientific workflows are often data- and resource-intensive applications and require a distributed
platform in order for meaningful results to be obtained in a reasonable amount of time. Their deploy-
ment is managed by Workflow Management Systems (WMS) which are responsible for transparently
orchestrating the execution of the workflow tasks in a set of distributed compute resources while en-
suring the dependencies are preserved. A high-level overview of this process is shown in Fig. 18.1. In
general, WMSs provide essential functionality to enable the execution of workflows such as data man-
agement and provenance, task scheduling, resource provisioning, and fault tolerance among others.

The latest distributed computing paradigm, cloud computing, offers several advantages for the de-
ployment of these applications. In particular, Infrastructure-as-a-Service (IaaS) clouds offer WMSs
an casily accessible, flexible, and scalable infrastructurc by leasing virtualized compute resources, or
Virtual Machines (VMs). This allows workflows to be easily packaged and deployed and more impor-
tantly, enables WMSs to access a virtually infinite pool of heterogeneous VMs that can be elastically
acquired and released and are charged on a pay-per-use basis.

In this way, WMSs can use cloud resources opportunistically based on the number and type of tasks
that need to be processed at a given point in time. This is a convenient feature as it is common for the
task parallelism of scientific workflows to significantly change throughout their execution. The resource
pool can be scaled out and in to adjust the number of resources as the execution of the workflow
progresses. This facilitates the fulfilment of the quality-of-service (QoS) requirements by allowing the
WMS to fine-tune performance while ensuring the available resources are efficiently used.

In this chapter we present an existing WMS and detail its extension to support the cloud computing
paradigm. Firstly, we review the concept of scientific workflow and the infrastructure services offered
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FIGURE 18.1
High-level overview of a scientific workflow deployment in a distributed environment

by clouds as well as existing management solutions for workflow applications. Next, we introduce
common functionalities of WMSs designed for cloud environments as well as a general architecture
and its components. We then introduce the Cloudbus WMS [2] and detail our implementation of cloud-
enabling components to support the dynamic provisioning and deprovisioning of VMs. Finally, with
the aim of demonstrating the added functionality, we present a case study on the use of cloud services
for a well-known scientific workflow from the astronomy domain.

18.2 BACKGROUND

The concept of workflow has its roots in commercial enterprises as a business process modeling tool.
These business workflows aim to automate and optimize the processes of an organization, seen as an
ordered sequence of activities, and are a mature research area [3] lead by the Workflow Management
Coalition! (WfMC), founded in 1993. This notion of workflow has extended to the scientific commu-
nity where scientific workflows are used to support large-scale, complex scientific processes. They are

1 http://www.wfmc.org/.
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FIGURE 18.2
Sample workflow with nine tasks

designed to conduct experiments and prove scientific hypotheses by managing, analyzing, simulating,
and visualizing scientific data [4]. In science, it is common for these applications to be composed of
a set of computational tasks and a set of data or control dependencies between the tasks. A sample
workflow application can be seen in Fig. 18.2.

Extensive research has been done on the use of scientific workflow systems, particularly in shared
infrastructure environments such as grids and dedicated clusters. An example is the Askalon [5] sys-
tem developed at the University of Innsbruck, Austria. It facilitates the development and optimization
of workflows on distributed infrastructures and supports the execution of workflows expressed in an
XML-based language called AGWL that enables the specification of looping structures, conditional
statements, and Directed Acyclic Graph (DAG) constructs. Another system is Kepler [6], it offers ser-
vices to design, execute, and share scientific workflows and supports various models of computations
such as superscalar and streaming workflows. Taverna [7] is a suite of tools used to design and exe-
cute scientific workflows and aid in silico experimentation. The system is capable of interacting with
various types of services including web services, data warehouses, and grid services. Finally, Pega-
sus [8] WMS supports the deployment of workflows in different environments and has the ability to
execute workflows expressed as DAGs, manage their data, monitor their execution, and handle failures.
A comprehensive taxonomy and survey of these systems is presented by Yu and Buyya [9]; it provides
an understanding of existing works from different perspectives such as scheduling, fault management,
and data movement.

With the advent of cloud computing, researchers are now focusing on extending existing workflow
systems to support the deployment of scientific applications in cloud environments, particularly in
TaaS clouds. For instance, the above mentioned products, although initially developed for grids and
clusters, have now been enhanced to work with IaaS resources. That is, they are capable of interacting
with TaaS vendors that offer VMs for lease with a predefined CPU, memory, storage, and bandwidth
capacity. Different resource bundles (i.e., VM types) are available at varying prices and are generally
charged per time frame, or billing period. While VMs deliver the compute power, IaaS clouds also
offer storage and networking services, providing all the necessary infrastructure for the execution of
workflow applications.

WMSs and their users can benefit in different ways from using IaaS resources. As already men-
tioned, clouds eliminate the need to own any physical resources and users can easily access a flexible
and scalable infrastructure on-demand. This not only leads to WMSs being able to customize the type
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and number of resources used at any point in time but is also beneficial in economical terms. For in-
stance, Deelman et al. [10] studied the cost of running scientific workflows in the cloud. Specifically,
they studied the trade-off between cost and performance under different execution and resource provi-
sioning plans as well as storage and networking fees on Amazon AWS. Their findings support the fact
that clouds are a cost-effective solution for scientific applications.

Another benefit derives from the fact that scientific workflows are generally legacy applications
that contain heterogeneous software components. Virtualization allows for the execution environment
of these components to be easily customized. The operating system, software packages, directory struc-
tures, and input data files, among others, can all be tailored for a specific component and stored as a VM
image. This image can then be easily used to deploy VMs capable of executing the software component
they were designed for. Another advantage of using VM images for the deployment of workflow tasks
is the fact that they enable scientific validation by supporting experiment reproducibility. Images can
be stored and redeployed whenever an experiment needs to be reproduced as they enable the creation
of the same exact environment used in previous experiments. The Cloudbus WMS, presented in the
sections to follow, is our initiative towards leveraging the aforementioned benefits.

18.3 WORKFLOW MANAGEMENT SYSTEMS FOR CLOUDS

We will begin by introducing a general architectural model for cloud WMSs. In general, a WMS en-
ables the creation, monitoring and execution of scientific workflows and has the capability of transpar-
ently managing tasks and data by hiding the orchestration and integration details among the distributed
resources [2]. A reference architecture is shown in Fig. 18.3. The depicted components are common
to most cloud WMS implementations, however, not all of them are required to have a fully functional
system.

User interface. The user interface allows for users to create, edit, submit, and monitor their applications.

Workflow engine. The workflow engine is the core of the system and is responsible for managing the
actual execution of the workflow. The parser module within the engine interprets a workflow depicted
in a high level language such as XML and creates the corresponding internal workflow representation
such as task and data objects. The scheduler and resource provisioning modules work together in plan-
ning the execution of the workflow. The resource provisioning module is responsible for selecting and
provisioning the cloud resources and the scheduling component applies specific policies that map tasks
to available resources, both processes are based on the QoS requirements and scheduling objectives.
The performance prediction and runtime estimation module use historical data, data provenance, or
time series prediction models, among other methods, to estimate the performance of cloud resources
and the amount of time tasks will take to execute on different VMs. This data is used by the resource
provisioning and scheduling modules to make accurate and efficient decisions regarding the allocation
of tasks. The data management component of the workflow engine manages the movement, placement,
and storage of data as required for the workflow execution. Finally, the task dispatcher has the re-
sponsibility of interacting with the cloud APIs to dispatch tasks ready for execution onto the available
VMs.

Administration and monitoring tools. The administration and monitoring tools of the WMS architecture
include modules that enable the dynamic and continuous monitoring of workflow tasks and resource
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FIGURE 18.3
Reference architecture of a Workflow Management System

performance as well as the management of leased resources, such as VMs. The data collected by these
tools can be used by fault tolerance mechanisms or can be stored in a historical database and used by
performance prediction methods, for example.

Cloud information services. Another component of the architecture is the cloud information services.
This component provides the workflow engine with information about different cloud providers, the
resources they offer including their characteristics and prices, location, and any other information re-
quired by the engine to make the resource selection and mapping decisions.

Cloud provider APIs. These APIs enable the integration of applications with cloud services. For the
scheduling problem described in this chapter, they enable the on-demand provisioning and deprovi-
sioning of VMs, the monitoring of resource usage within a specific VM, access to storage services to
save and retrieve data, transferring data in or out of their facilities, and configuring security and net-
work settings, among others. The majority of laaS APIs are exposed as REST (Representational State
Transfer) and SOAP (Simple Object Access Protocol) services, but protocols such as XML-RPC and
Javascript are also used. For instance, CloudSigma, Rackspace, Windows Azure, and Amazon EC2 all
offer REST-based APIs. As opposed to providing services for a specific platform, other solutions such
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Key architectural components of the Cloudbus WMS

as Apache JClouds” aim to create a cross-platform cloud environment by providing and API to access
services from different cloud providers in a transparent manner. Cross-platform interfaces have the ad-
vantage of allowing applications to access services from multiple providers without having to rewrite
any code, but may have less functionality or other limitations when compared to vendor-specific solu-
tions.

18.4 CLOUDBUS WORKFLOW MANAGEMENT SYSTEM

The Cloudbus WMS was developed at the CLOUDS Laboratory in the University of Melbourne, Aus-
tralia. It allows scientist to express their applications as workflows and execute them on distributed
resources by transparently managing the computational processes and data. Its architecture consists of
a subset of the components depicted in Fig. 18.3 and is presented in Fig. 18.4.

The Workflow Portal is the entry point to the system. It provides a web-based user interface for
scientists to create, edit, submit, and monitor their applications. It provides access to a Workflow De-
ployment page that allows users to upload any necessary data and configuration input files needed to
run a workflow. A Workflow Editor is also embedded in this component and it provides a GUI that en-
ables users to create or modify a workflow using drag and drop facilities. The workflow is modeled as
a DAG with nodes and links that represent tasks and dependencies between tasks. The editor converts

2Apalche JClouds: http://jclouds.apache.org.
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the graphical model designed by the users into an XML based workflow language called xWFL which
is the format understood by the underlying workflow engine.

The Workflow Monitor Interface is also accessed through the portal and it provides a GUI to the
Workflow Monitor module which is part of the Monitoring Services component. It allows users to
observe the execution progress of multiple workflows and to view the final output of an application.
Users can monitor the status of every task in a specific workflow, for instance, tasks can be on a
ready, executing, stage in, or completed status. Additionally, users have access to information such
as the host in which a task is running, the number of jobs being executed, and the failure history of
each task. The Workflow Monitor relies on the information produced by the Workflow Engine and
the interaction between these two components takes place via an event mechanism using tuple spaces.
In broad terms, whenever the state of a task changes, the monitor is notified and as a response to
the event, it retrieves the new state and any relevant task metadata from a central database. Finally,
the portal offers users access to a Resource Monitor Interface which displays the information of all
the current available computing resources. The Resource Monitor module in the Monitoring Services
component is responsible for the collection of this information.

The Workflow Engine is the core of the Cloudbus workflow management system; its main respon-
sibilities include scheduling, dispatching, monitoring, and managing the execution of tasks on remote
resources. As shown in Fig. 18.4, the workflow engine has four main subsystems: workflow language
parser, scheduler, task dispatcher, and data manager.

The workflow portal or any other client application submits a workflow for execution to the engine.
The submitted workflow must be specified in the XML-based language, xWFL. This language enables
users to define all the characteristics of a workflow such as tasks and their dependencies among others.
Aside from the xWFL file, the engine also requires a service and a credential XML-based descrip-
tion files. The service file describes the resources available for processing tasks while the credentials
one defines the security credentials needed to access these resources. The existence of these two files
demonstrates the type of distributed platforms the engine was originally designed to work with, plat-
forms where the resources are readily available and their type and number remains static throughout
the execution of the workflow. Once the system is upgraded to support clouds, the use of these files
will be obsolete as resources will be created and destroyed dynamically.

The xWFL file is then processed and interpreted by a subsystem called the workflow language
parser. This subsystem creates objects representing tasks, parameters, data constraints and conditions
based on the information contained on the XML file. From this point, these objects will constitute the
base of the workflow engine as they are the ones containing all the information regarding the workflow
that needs to be executed. Once this information is available, the workflow is scheduled and its tasks
are mapped onto resources based on a specific scheduling policy. Next, the engine uses the Cloudbus
Broker as a task dispatcher.

The Cloudbus Broker [11] provides a set of services that enable the interaction of the workflow
engine with remote resources. It mediates access to the distributed resources by discovering them,
deploying and monitoring tasks on specific resources, accessing the required data during task execution
and consolidating results. An additional component that aids in the execution of the workflow is the
data movement service which enables the transfer of data between the engine and remote resources
based on protocols such as FTP and GridFTP.

The workflow engine has a decentralized scheduling system that supports just-in-time planning and
allows resource allocation to be determined at runtime. Each task has its own scheduler called Task
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Key architectural components of the Cloudbus WMS Scheduler

Manager (TM). The TM may implement any scheduling heuristic and is responsible for managing the
task processing, resource selection and negotiation, task dispatching and failure handling. At the same
time, a Workflow Coordinator (WCO) is responsible for managing the lifetime of every TM as well as
the overall workflow execution.

Fig. 18.5 shows the interaction between the different components involved in the scheduling pro-
cess. The WCO creates and starts a TM based on the task’s dependencies and any other specific
scheduling heuristic being used. Each TM has a task monitor that continuously checks the status of
the remote task and a pool of available resources to which the task can be assigned. The communica-
tion between the WCO and the TMs takes place via events registered in a central event service.

Each TM is independent and may have its own scheduling policy, this means that several task
managers may run in parallel. Additionally, the behavior of a TM can be influenced by the status of
other task managers. For instance, a task manager may need to put its task execution on hold until its
parent task finishes running in order for the required input data to be available. For this reason, TMs
need to interact with each other just as the WCO needs to interact with every TM; once again this is
achieved through events using a tuple space environment.

18.5 CLOUD-BASED EXTENSIONS TO THE WORKFLOW ENGINE

Several extensions and changes were made to the workflow engine component of the Cloudbus WMS
in order to support the execution of workflows in IaaS clouds. These extensions allow for scheduling
algorithms and resource provisioning strategies to leverage the elastic and on-demand nature of cloud
resources, in particular of VMs. The overall architecture of the system and the interaction between
the main components remains the same, the extended architecture is shown in Fig. 18.6, where the
shaded components are the newly included ones. Each of these components is explained next and a
class diagram depicting their implementation is presented in Fig. 18.7.

VM lifecycle manager. A module providing an interface to access VM lifecycle management services
offered by IaaS providers. These include leasing, shutting down, restarting, and terminating VMs.
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Key architectural components of the extended Cloudbus WMS

Access to a provider’s VM management API is done using Apache JClouds,® a Java-based multi-
cloud toolkit. It is an open source library that provides portable abstractions for cloud-specific features.
It currently supports 30 providers and cloud software stacks such as OpenStack, Amazon, Google,
Rackspace, and Azure. The class diagram in Fig. 18.7 shows the methods and IaaS providers currently
supported by this module.

The realization of this module also included eliminating the need of having a set of compute ser-
vices defined in an XML file previous to the execution to the workflow.

Cloud resource manager. An entity responsible of managing the cloud resources used by the engine.
It maintains information on the VMs leased from an IaaS provider. Its responsibilities include keeping
track of leased, busy, and idle VMs, as well as recording data regarding the lease of VMs such as their
lease start and end times.

The following are examples of data that can be accessed through the Cloud Resource Manager:

* Leased VMs: a list of all the VMs that have been leased throughout the lifecycle of the workflow
execution.

* Terminated VMs: a list of all the VMs that have been terminated throughout the lifecycle of the
workflow execution.

* Active VMs: a list of VMs that are currently leased and active.

* Busy VMs: a list of all VMs that are active and busy with the execution of one or more tasks.

* Idle VMs: a list of all VMs that are active and idle.

3Apache JClouds http://jclouds.apache.org.
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Class diagram architectural components of the Cloudbus WMS Scheduler

Resource provisioning. An entity responsible of making resource provisioning decisions based on the
scheduling objectives and QoS requirements. A basic provisioning strategy was implemented. It moni-
tors the leased VMs every PROV_POLLING_TIME. The value for this polling interval is a configurable
parameter that can be defined via a properties file. The provisioner then makes the decision to shut VMs
down whenever they are idle and approaching their next billing cycle. It does so by considering the time
it takes for VMs to be deprovisioned, the time remaining until the VM reaches the next billing cycle,
and the time when the next provisioning cycle will occur. If the deprovisioning delay is larger then
the time remaining until the next billing cycle then there is no benefit on shutting down the VM as
incurring in a new billing cycle is inevitable. Otherwise, the algorithm decides whether the VM can be
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Algorithm 1 Resource provisioning

1: procedure MANAGERESOURCES

2: VMidle — a]l leased VM that are currently idle

3 for each vm; g, in VM do

4 t, = time remaining until next billing period
5: ty = Deprovisioning delay estimate
6
7
8

if (¢t —t; > 0) AND (¢, — t; < PROV_POLLING_TIME) then
terminate vin;qje
end if
9: end for
10: end procedure

left idle and be shutdown on later provisioning cycles without incurring in an additional billing period
or if the VM should be deprovisioned in the current cycle to avoid incurring in additional costs. An
overview of this strategy is depicted in Algorithm 1. The design provides the flexibility to plug-in dif-
ferent resource provisioning strategies without the need of modifying any other module. For instance,
a provisioning strategy that not only decides when to shut-down VMs but also when to lease them
based on a utilization metric could also be easily implemented.

Performance prediction and runtime estimation. Two different performance prediction strategies where
implemented into a newly created Performance Prediction and Runtime Estimation Module. The first
one is a straightforward strategy that allows for the runtime of tasks to be estimated using a measure
of the size of a task and the CPU performance of the VM. For this purpose, the xWFL language as
well as the existing parser were extended so that the definition of a task includes an optional element
indicating its size. In practice, this size can be either the number of instructions (MI), the number of
floating point operations (FLOP), or the time complexity of the tasks among others. Additionally, the
definition of compute service within the engine was extended to include an optional property indicating
a measure of the resource’s CPU capacity. For this purpose the schema and parsers of the XML-based
service file were modified to include the new property as was the ComputeService class.

The second strategy is based on the analysis of historical task runtime data. For this purpose, task
runtimes are recorded on a historical database which can be later used to estimate the runtime of tasks
on particular VM types using statistical tools. The data recorded for each task executed by the engine
are depicted in Table 18.1. The current strategy calculates the 95% confidence interval of a task runtime
given the task name or type, the workflow it belongs to, the number of tasks in the workflow, the amount
of input and output data generated by the task, and the name of the VM type for which the prediction
is being made for.

In the future, different prediction algorithms can be seamlessly implemented into this module and
used by scheduling algorithms to guide their decisions.

Cloud information services. Through the cloud providers APIs, this module enables the workflow
engine to query information regarding the types of services offered by a given provider. Specifically, the
implementation leveraged the JClouds API to query the types of VMs available from a given provider
as well as the VM images available for use for a given user.
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Table 18.1 Contents of the database table recording historical runtime data of tasks

Property Description

Workflow Name of the workflow application

Number of Tasks Total number of tasks in the workflow

Run Date Date the workflow was deployed

Algorithm Name of the scheduling algorithm managing the workflow execution

Task Type Name or type of the workflow task for which the runtime is being recorded

Transferred Input Data Amount of input data transferred to the task’s VM
Transferred Output Data | Amount of output data transferred out of the task’s VM

VM Type Name of the VM type used to run the task

VM CPU Capacity CPU capacity of the VM type

VM Memory Memory available for the VM type

VM Bandwidth Bandwidth of the VM type

Task Runtime Time taken to complete the task’s execution (including input transfer, computations, and

output transfer)

DAX to XWFL. The DAX* format is a description of an abstract DAG workflow in XML that is used
as the primary input into the Pegasus WMS [8], a tool developed at the Information Sciences Institute
(ISI), University of Southern California. The extensive research done by this organization in workflows
as well as their collaboration with the scientific community makes of the DAX format a popular and
commonly used one. For instance, the Pegasus Project’ has developed a tool in conjunction with the
NASA/IPAC project that generates the specification of different Montage workflows in a DAX format.
Hence, to take advantage of the existence of these tools as well as workflows described in the DAX
format, a DAX-to-xWFL tool was developed as part of this thesis. In this way, the Cloudbus WMS
now has the ability to interpret workflows expressed in the DAX format.

Scheduler extension. The existing Scheduler component has been modified to allow the workflow co-
ordinator to have the ability to make scheduling decisions in terms of task to resource mappings. The
previous version of the scheduler limited the responsibilities of the coordinator to enforcing the depen-
dency requirements of the workflow. That is, it was responsible for monitoring the status of tasks and
releasing those ready for execution by launching their task manager, entity which was then responsible
for deciding the resource where the task would be executed. The extended version allows for the work-
flow coordinator to make all of the scheduling and resource provisioning decisions if required based
on its global view of the workflow. Additionally, the WRPS [12] algorithm, which will be introduced
in the following section, was implemented and integrated into the workflow coordinator.

4DAX https://pegasus.isi.edu/documentation/creating_workflows.php.
5Pegasus https://pegasus.isi.edu/.
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This section details the deployment of the Montage application on the Cloudbus WMS. The work-
flow was scheduled using the WRPS algorithm and Microsoft Azure resources that were dynamically
provisioned using the cloud-enabled version of the Cloudbus WMS.

18.6.1 WRPS

WRPS is a resource provisioning and scheduling algorithm for scientific workflows in clouds capa-
ble of generating high quality schedules. It has as objectives minimizing the overall cost of using the
infrastructure while meeting a user-defined deadline. The algorithm is dynamic to a certain extent to
respond to unexpected delays and environmental dynamics common in cloud computing. It also has a
static component that allows it to find the optimal schedule for a group of workflow tasks, consequently
improving the quality of the schedules it generates. This is done by reducing the workflow into bags of
homogeneous tasks and pipelines that share a deadline. The scheduling of these bags is then modeled
as a variation of the unbounded knapsack problem which is solved in pseudo-polynomial time using
dynamic programming. WRPS considers abundant, heterogeneous, and elastic resources and its provi-
sioning policy results in the VM pool being dynamically scaled in and out throughout the execution of
the workflow. For more details, we refer readers to the paper written by Rodriguez and Buyya [12].

18.6.2 MONTAGE

The Montage application is designed to compute mosaics of the sky based on a set of input images.
These input images are taken from image archives such as the Two Micron All Sky Survey (2MASS),°
the Sloan Digital Sky Survey (SDSS),” and the Digitised Sky Surveys at the Space Telescope Science
Institute.® They are first reprojected to the coordinate space of the output mosaic, the background of
these reprojected images is then rectified, and finally they are merged together to create the final output
mosaic [10].

Fig. 18.8 depicts the structure of the Montage workflow as well as the different computational tasks
it performs. The size of the workflow depends on the number of input images used and its structure
changes to reflect an increase in the number of inputs, which results in an increase in the number of
tasks. For this particular workflow, same-level tasks are of the same type, that is, they perform the same
computations but on different sets of data.

The mProjectPP tasks are at the top level of the workflow and hence are the first ones to be executed.
They process Flexible Image Transport System (FITS) input images by reprojecting them. There is
one mProjectPP task for every FITS input image. In the next level are the mDiffFit tasks. They are
responsible for computing the difference between each pair of overlapping images and as a result,
their number is determined by the number of overlapping input images. Next is the mConcatFit task,
it takes all of the different images as input and fits them using a least squares algorithm. This is a
compute-intensive task as a result of its data aggregation nature. The next task is mBgModel which

6Two Micron All Sky Survey: http://www.ipac.caltech.edu/2mass.
7Sloan Digital Sky Survey: http://www.sdss.org.
8Digitised Sky Surveys: http://www.stsci.edu/resources/.
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FIGURE 18.8
Sample Montage workflow

determines a background correction to be made to all the images. This correction is the applied to
each individual image by the mBackground tasks in the next level of the workflow. Then, the mImgTbl
task aggregates metadata from all the images and is followed by the mAdd job. This task is the most
computationally intensive and is responsible for the actual aggregation of the images and the creation
of the final mosaic. Finally, the size of the final mosaic is reduced by the mShrink task and the output
converted to JPEG format by the last workflow task, mJPEG [13].

For this case study, a Montage workflow constructing a 0.5 degree mosaic of the sky was used. This
particular instance of the workflow consists of 143 tasks, their type, number, and level are depicted in
Table 18.2.

The following are the specific characteristics of the Montage workflow used in this case study:

* Survey, 2mass
* Band,j

e Center, M17

e Width, 0.5

* Height, 0.5

18.6.3 SETUP OF EXPERIMENTAL INFRASTRUCTURE

There are three types of components involved in the execution of a workflow using the Cloudbus
WMS. Each of these is deployed on its own compute resource or node. The first component is the
actual workflow engine, or master node, which is responsible for orchestrating the execution of tasks
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Table 18.2 Tasks in a 0.5 degree Montage workflow
Task Level | Count | Mean runtime (s) Mean input (MB) Mean output (MB)
mProjectPP 1 32 35.94 1.66 8.30
mDiffFit 2 73 31.72 16.6 1.02
mConcatFit 3 1 82.99 0.02 0.01
mBgModel 4 1 43.57 0.02 0.001
mBackground | 5 32 30.43 8.31 8.30
mImgTbl 6 1 93.92 129.28 0.009
mAdd 7 1 241.50 265.79 51.73
mShrink 8 1 46.43 25.86 6.47
mJPEG 9 1 88.54 6.47 0.20

on worker nodes. The lifecycle of these worker nodes is managed by the engine and they contain the
actual routines invoked by the workflow tasks. Finally, the storage node acts as a central file repository
where worker nodes retrieve their input data from and store their output data to. Fig. 18.9 depicts this
deployment.

For the experiments performed in this chapter, the VM configuration and location used for each of
these components is as follows:

* Master node: Ubuntu 14.4 LTS virtual machine running locally on a MacBook Pro with a 2.9 GHz
Intel Core 17 processor and 8§ GB RAM. The virtual machine was launched using Virtual Box and
had a memory of 2.2 GB and 125.6 GB disk.

» Storage node: Basic A2 Microsoft Azure virtual machine (2 cores, 3.5 GB RAM) with Ubuntu 14.4
LTS installed deployed on the US East region.

* Worker nodes: Dynamically provisioned on Microsoft Azure’s US East region using a custom VM
image with Montage installed (see Section 18.6.4). The types of VMs where worker nodes could be
deployed are depicted in Table 18.3. The A-series are general purpose compute instances while the
D-series VMs feature solid state drives (SSDs) and have 60% faster processors than the A-series.

18.6.4 MONTAGE SETUP

This section describes how the Montage routines were setup in the worker nodes VM image. It also
explains how the input image files were obtained and how the workflow description XML file was
generated.

The Pegasus Project has developed various tools that aid in the deployment of Montage workflows
in distributed environments. The installation of Montage on the worker VM image as well as the gen-
eration of an XML file describing the workflow were done using these tools.

The first step was to download and install the Montage application, which includes the rou-
tines (mProjectPP, mDiffFit, mConcatFit, mBgModel, mBackground, mImgTbl, mAdd, mShrink, and
mJPEG) corresponding to each workflow task. For this case study, version 3.3 was installed on a VM
running Ubuntu 14.4 LTS. In addition to the task routines, the installation of Montage also includes
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FIGURE 18.9
Cloudbus WMS component deployment

Table 18.3 Types of VMs used to deploy a 0.5 degree Montage workflow

VM name Cores | RAM (GB) | Disk Size (GB) Price per minute ($)
AO (extrasmall) | 1 0.75 20 0.000425

Al (small) 2 1.75 70 0.001275

A2 (medium) 2 3.5 135 0.002548

D1 1 3.5 50 0.001635

D2 2 7 100 0.003270

D11 2 14 100 0.004140

tools used to generate the DAG XML file and download the input image files. Namely, the mDAG and
mArchiveExec tools.

The mDAG command generates a DAX XML file containing the description of the workflow in
terms of the input files it uses, the tasks, the data dependencies, and the output files produced. This
DAX file was then transformed to a xXWFL-based one by using the DAX to XWFL tool.

The mArchiveExec command was used to download the input images which were placed in the
storage node so that they could be accessed by worker nodes when required.

18.6.5 RESULTS

This section presents the results obtained after executing the 0.5 degree Montage workflow on the
Cloudbus WMS under seven different deadlines.

Fig. 18.10A presents the results in terms of the makespan to deadline ratio obtained. The makespan
of a workflow is defined as the time it takes for the workflow execution to complete. Ratio values
greater than one indicate a makespan larger than the deadline, values equal to one a makespan equal
to the deadline, and values smaller than one a makespan smaller than the deadline. Fig. 18.10B depicts
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FIGURE 18.10
Makespan and deadline evaluation results for the 0.5 degree Montage execution

the actual makespan values obtained for each deadline. The results presented are the average obtained
after running the experiments for each deadline 10 times.

The first deadline of 1500 s is too strict for the workflow execution to be completed on time. On
average, it takes approximately 1520 s for the workflow to complete, leading to a ratio of 1.01. This
difference between makespan and deadline however is marginal and a 20 s difference is unlikely to
have a significant impact on cither cost or the usability of the obtained workflow results. The choice
of VMs for each deadline interval are presented in Table 18.4. The fact that all of the VMs leased for
this deadline interval are of the most powerful VM type (D11), reflects the urgency of the algorithm to
complete the workflow execution as fast as possible. The decision to limit the number of VMs to 9 is a
direct result of the length of VM provisioning delays. The algorithm recognizes that in some cases it is
faster and more efficient to reuse existing VMs rather than leasing new ones.

All of the remaining ratios for the deadlines ranging from 1800 to 3300 s are under one. Clearly,
1800 s is sufficient for the execution of the workflow to complete. This is achieved by leasing 7 D2
VMs and 2 D11 ones. Once again, the deadline is too strict to lease a larger number of VMs but relaxed
enough to not have to lease them all of the most powerful type.
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Table 18.4 Number of VMs per type leased for the deployment of a 0.5
degree Montage workflow with different deadlines
Deadline (s) | A0 Al A2 D1 D2 D11
1500 - - - - - 9
1800 - - - - 7
2100 - 13 - 5 - -
2400 17 2 - 1 - -
2700 17 2 - - - -
3000 17 - - 2 - -
3300 18 - - - - -
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FIGURE 18.11

Cost results obtained for the 0.5 degree Montage execution

As the deadlines becomes more relaxed, WRPS decides it is more efficient to lease a larger number
of VMs of less powerful and cheaper types. For a deadline of 2100 s, 13 A1 (small) and 5 D1 VMs are
sufficient for the workflow execution to finish well under the deadline with an average ratio of 0.85.
From this deadline onwards, the algorithm can finish the workflow execution on time with minimum
cost by taking advantage of the cheapest and least powerful VM, the AO or extra-small. By combining
this VM type with more powerful ones when necessary, all of the remaining deadlines are met.

Fig. 18.11 shows the costs of the execution of the workflow for each of the deadlines. As expected,
the most expensive scenario occurs when the deadline is the tightest, that is 1500 s. This is a direct result
of the provisioning decision to lease the most expensive, and powerful, VM types to finish the execution
on time. Overall, except for the deadline of 2400 s, the infrastructure cost consistently decreases as the
deadlines become more relaxed. The fact that the cost of running the workflow with a deadline of
2400 s is cheaper than doing it with a deadline of 2700 can be explained by performance and VM
provisioning delay variations.

To demonstrate the auto-scaling features introduced into the Cloudbus WMS, Table 18.5 shows
the number of VMs used to run the tasks on each level of the Montage workflow for the 2100 s
deadline. For the first level mProjectPP tasks, only one A1 VM is used. WRPS estimates that this
configuration will allow the mProjectPP tasks to finish by their assigned deadline. The second level
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Table 18.5 Number and type of VMs used on the execution of each level of the 0.5 degree Montage
workflow with a deadline of 2100 s

Level | Task Count A0 Al A2 D1 D2 D11
1 mProjectPP 32 - 1 - - _ _

2 mDiftFit 73 - 13 - 5 - -

3 mConcatFit 1 - 1 - - - _

4 mBgModel 1 - 1 - - - -

5 mBackground 32 - 1 - - - -

6 mImgTbl 1 - 1 - - - -

7 mAdd 1 - 1 - - — _

8 mShrink 1 - 1 - _ _ _

9 mJPEG 1 - 1 - - — —

of the workflow contains 73 mDiffFit tasks. Unlike the mProjectPP tasks, these tasks have different
starting times, depending on when their mProjectPP parent tasks finished their execution. Based on
this, WRPS makes the decision to scale the number of VMs out as mDiffFit tasks become ready for
execution. At this point, 13 A1 VMs and 5 D1 Vms, 18 in total, are used to process all the 73 tasks
in the level. Next, the parallelism of the workflow is reduced by a data aggregation task, mConcatFit,
and as a result the resource pool is scaled in and only one VM of type Al is left in the resource pool.
The next level contains a single mBgModel task and the VM used in the previous level is reused. For
the 32 mBackground tasks, WRPS decides they can finish on time by reusing the existing A1 VM. The
remaining levels in the workflow contain a single task and hence there is no need to lease more VMs
and the workflow finishes its execution with a single A1 VM.

The experiments presented in this section demonstrate how the elasticity and heterogeneity of cloud
resources can be leveraged to meet the QoS requirements of workflow applications. In particular, they
demonstrate how the performance of the workflow execution in terms of time as well as the cost of
using the cloud infrastructure can be controlled by dynamically scaling the number of resources. This
enables scientists to benefit from the flexibility, scalability, and pricing model offered by cloud comput-
ing. However, evaluating the performance of the Cloudbus WMS with different scheduling algorithms
and with larger scientific workflows that have different data and computational requirements and topo-
logical structures is an essential future task. In addition to this, as a future work, it is important to
cvaluate the performance of workflow executions deployed on different cloud providers with different
billing periods, VM types, provisioning and deprovisioning delays, and resource performance varia-
tions.

18.7 SUMMARY AND CONCLUSIONS

This chapter presented the use of WMSs in cloud computing environments. These distributed platforms
offer several advantages for the deployment of scientific applications that stem mainly from their use of
virtualized resources and their economic model. For scientific workflows in particular, these benefits
include the illusion of unlimited resources, the flexibility of leasing and releasing VMs of different
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configurations on-demand, paying only for what is used, and the support for legacy applications and
experiment reproducibility through virtualization, among others.

We presented a reference architecture for cloud WMSs and explained its key components which
include a user interface with workflow modeling tools and submission services, a workflow engine
capable of making resource provisioning and scheduling decisions, a set of task and resource monitor-
ing tools, and a set of cloud information services that can be queried to retrieve the supported cloud
providers and the type of resources they offer. We then introduced a concrete example of an existing
system, the Cloudbus WMS, along with our efforts to extend its functionality to support the elastic
cloud resource model. Finally, we demonstrated with a practical scenario the use of the enhanced
Cloudbus WMS by deploying a Montage workflow on Microsoft Azure.

The development of cloud-based tools for the deployment of scientific workflows is an emerging
field. Systems developed for grids and clusters are being extended to support the cloud resource model
and new ones are being developed to support the specific features of the cloud computing paradigm.
An example of the latter one is the Workflow as a Service (WaaS) service model. This type of platforms
offer to manage the execution of scientific workflows submitted by multiple users on cloud resources
at the Platform or Software as a Service level. A recent step towards this is presented by Esteves
and Veiga [14]. They define a prototypical middleware framework that embodies the vision of a WaaS
system and address issues such as workflow description and WMS integration, cost model, and resource
allocation. Hence, as the popularity and use of cloud computing becomes more widespread, so will
services such as WaaS.
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